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Abstract

Prostate cancer is the second leading cause of cancer death among men in the United States. 

The diagnosis of prostate MRI often relies on accurate prostate zonal segmentation. However, 

state-of-the-art automatic segmentation methods often fail to produce well-contained volumetric 

segmentation of the prostate zones since certain slices of prostate MRI, such as base and apex 

slices, are harder to segment than other slices. This difficulty can be overcome by leveraging 

important multi-scale image-based information from adjacent slices, but current methods do not 

fully learn and exploit such cross-slice information. In this paper, we propose a novel cross-slice 

attention mechanism, which we use in a Transformer module to systematically learn cross-slice 

information at multiple scales. The module can be utilized in any existing deep-learning-based 

segmentation framework with skip connections. Experiments show that our cross-slice attention 

is able to capture cross-slice information significant for prostate zonal segmentation in order 

to improve the performance of current state-of-the-art methods. Cross-slice attention improves 

segmentation accuracy in the peripheral zones, such that segmentation results are consistent across 
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all the prostate slices (apex, mid-gland, and base). The code for the proposed model is available at 

https://github.com/aL3x-O-o-Hung/CAT-Net.

Keywords

Attention Mechanism; Deep Learning; Magnetic Resonance Imaging; Prostate Zonal 
Segmentation; Transformer Network

I. Introduction

Prostate cancer (PCa) is the most common cancer and the second leading cause of 

cancer-related death among men in the United States [1]. Multi-parametric MRI (mpMRI), 

including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and dynamic 

contrast-enhanced (DCE) MRI, is now the preferred non-invasive imaging technique 

for prostate cancer (PCa) diagnosis prior to biopsy [2]. According to the Prostate 

Imaging Reporting and Data System (PI-RADS v2.1) [3], the current clinical standard for 

interpreting mpMRI, a suspicious lesion should be analyzed differently in different prostate 

zones, among them the transition zone (TZ) and the peripheral zone (PZ), due to variations 

in image appearance and cancer prevalence [4]. The zonal information is essential and 

should be provided explicitly for the accurate identification and assessment of suspicious 

lesions. Moreover, the size of the TZ is often used to evaluate and monitor benign prostate 

hyperplasia (BPH) in clinical practice [5]. However, the manual annotation of prostate zones 

is typically time-consuming and highly variable depending on experience level. Therefore, 

reliable and robust automatic zonal segmentation methods are needed in order to improve 

PCa detection.

With the emergence of deep learning (DL), multiple DL-based medical image segmentation 

methods have been proposed to automatically segment the prostate zones [6]–[10]. DL-

enabled segmentation methods tend to perform well in general, but several studies report that 

the apex and base locations of the prostate are more difficult to segment than the mid-gland 

slices [11], [12]. Leveraging information from nearby slices can improve the performance of 

these methods in all parts of the prostate. However, most 2D-based segmentation methods 

do not fully consider or systematically learn the available cross-slice information, thus they 

may disregard important structural information about the prostate, leading to inconsistent 

segmentation results. It is crucial to take the through-plane information or cross-slice 

relationship into full consideration when devising prostate zonal segmentation models.

Several 3D DL-based medical image segmentation networks have been proposed in previous 

studies [13], [14], but their application to prostate MRI has been limited. Following the 

standard guideline of PI-RADS [3], T2WI images are acquired using the multi-slice 2D 

Turbo Spin Echo (TSE) sequence, resulting in high in-plane image resolution (e.g., 0.3–1.0 

mm) but low through-plane resolution (e.g., 3.0–6.0 mm). Due to the anisotropic nature of 

the image resolution, existing 3D segmentation networks may not be directly applicable as 

they are typically designed for nearly isotropic 3D images [13], [14], and their performance 

suffers when they are confronted with anistropic data [15]–[17].
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Transformer networks have become the dominant DL architecture in the natural language 

processing (NLP) domain as their multi-head self-attention (MHSA) mechanisms learn 

the global context and the relationship among different word embeddings [18]. Following 

similar ideas, MHSA mechanisms have recently been applied in the computer vision domain 

to address tasks such as object detection, segmentation, and classification.

As it can capture the long-range dependencies in images [18]–[20], self-attention is a 

promising mechanism for systematically learning the cross-slice information needed to 

improve 3D medical image analysis; that is, as compared to convolutional networks whose 

inherent inductive bias is to focus more on neighboring features. To exploit the fact that 

accurate prostate zonal segmentation can benefit from information spanning all the slices 

through the entire prostate instead of only neighboring slices, we devise a 2.5D cross-slice 

attention-based module that can be incorporated within any network architecture with skip 

connections in order to capture the global cross-slice relationship. As it is shown in the 

illustration in Fig. 1, we note that a 2.5D method employs only 2D convolutional layers yet 

learns 3D information, whereas 2D methods also use 2D convolutional layers, but consider 

only a single image, while 3D methods input 3D volumes and use 3D convolutional layers.

Our main contributions include the following:

1. We formally propose the use of an cross-slice attention mechanism to capture the 

relationship between MRI slices for the purposes of prostate zonal segmentation.

2. We devise a novel 2.5D Cross-slice Attention Transformer (CAT) module that 

can be incorporated into existing skip-connection-based network architecture to 

exploit long-range information from other slices.

3. We perform an experimental study which demonstrates that our proposed DL 

models, called CAT-Net, is able to improve the zonal segmentation results both 

in general and on different prostate parts, resulting in a new state of the art 

performance.

II. Related Work

A. Fully Convolutional Network Architectures

The U-Net model [7] has revolutionized medical image segmentation using an encoder-

decoder convolutional neural network (CNN) architecture with multi-scale skip connections 

between the encoder and decoder that preserve high-resolution image information. Building 

upon U-Net, a number of subsequent segmentation models have been proposed. ResU-Net 

[21] applied the residual connections from ResNet [22], and the combination of ResNet 

with U-Net has also proven effective outside of medical image segmentation [23], [24]. 

Based on ResU-Net, Alom et al. [25] proposed a segmentation network with better feature 

representation by means of feature accumulation with recurrent convolutional layers. Apart 

from residual blocks, other attention-based modules have been incorporated into U-Net 

to improve segmentation; e.g., Rundo et al. [26] incorporated a squeeze and excitation 

(SE) module [27], a form of channel-wise attention, and Oktay et al. [28] took the 

attention module [29] a step further and applied it in U-Net. Other U-Net variants have 
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recently emerged. nnU-Net [16] modified the batch normalization [30] in U-Net to instance 

normalization [31] and employed a leaky rectified linear activation unit (ReLU). Compared 

to U-Net, U-Net++ [32] used more nested and dense skip connections to better capture the 

fine-grained details of foreground objects. MSU-Net [33] added multi-scale blocks, which 

consist of convolutions with different kernel sizes, into U-Net to improve the segmentation 

details. Gu et al. [34] proposed a novel dense atrous convolution (DAC) block along with 

a residual multi-kernel pooling (RMP) block and put them in the bottleneck layer of 

U-Net to capture more high-level features and preserve more spatial information. Apart 

from U-Net based network architectures, DRINet [35] consists of dense connection blocks, 

residual Inception blocks, and unpooling blocks, which can learn more distinctive features. 

Crossbar-Net [36] samples vertical and horizonal patches and processes them separately in 

two sub-models.

Bardis et al. [6] applied the U-Net on T2WI images to perform prostate zonal segmentation. 

Building on top of DeepLabV3+ [37], Liu et al. [11] employed multi-scale feature pyramid 

attention (MFPA) to further utilize encoder-side information at different scales to segment 

prostate zones, and subsequently expanded the network structure with a spatial attentive 

module (SAM) and Bayesian epistemic uncertainty based on dropout [8]. Cuocolo et al. 

[38] have thoroughly investigated network structures for prostate zonal segmentation and 

concluded that ENet [39] is superior to U-Net and ERFNet [40]. Zabihollahy et al. [9] 

employed two separate networks for the segmentation of different zones and combined them 

with post-processing. The Dense-2 U-Net [10] was shown to be the best performing 2D deep 

model for prostate zonal segmentation on the public dataset ProstateX [41]. Not limited to 

T2WI images, Rundo et al. [42] performed multispectral MRI prostate gland segmentation 

based on clustering.

3-dimensional CNNs are popular for 3D medical image segmentation. 3D U-Net [13], 

VNet [43], and DenseVoxelNet [14] are U-Net architectures that use 3D rather than 2D 

convolution, and they have proven effective on image data whose cross-pixel distance 

is similar in all three dimensions. Wang et al. [44] used a two-stage 3D U-Net for 

multi-modality whole heart segmentation. Other researchers have applied modified 3D 

U-Nets to infant brain segmentation [45], lung nodule segmentation [46], and brain 

tumor segmentation [47]. With regard to the application of 3D methods to prostate zonal 

segmentation, Nai et al. [12] concluded that most methods have similar performance, 

but that the addition of ADC and DWI data would slightly improve performance. Yu 

et al. [48] used mixed residual connections in a volumetric ConvNet for whole prostate 

segmentation. Z-Net [49], capable of capturing more features in a multi-level manner, was 

built on U-Net to perform 3D prostate segmentation. Wang et al. [50] incorporated group 

dilated convolution into a deeply supervised fully convolutional framework for prostate 

segmentation.

B. Transformer Architectures

Originally developed for NLP, the Transformer architecture [18] has recently been gaining 

momentum in vision. Dosvitskiy et al. [51] proposed the Vision Transformer (ViT) for 

image classification, treating images as 16×16 words. Unlike the ViT, the Swin Transformer 

Hung et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[52] used shifted windows instead of 16 × 16 fixed-size windows. Carion et al. [53] 

proposed the Detection Transformer (DETR) for object detection.

Several Transformer-based methods have been proposed for medical image segmentation. 

MedT [19] coupled a gated position-sensitive axial attention mechanism with a Local-Global 

(LoGo) training methodology, improving segmentation quality over the U-Net and attention 

U-Net. UTNet [54] incorporated Transformer blocks into the skip connections in U-Net, 

allowing the skip connection feature maps to go through a Transformer block before they 

reach the decoder side. CoTr [55] instead concatenated all the skip connection feature maps 

and applied the Transformer on the concatenated vector. Petit et al. [56] proposed a U-Net 

based Transformer framework with a self attention or cross attention module after each 

skip connection of the normal U-Net. However, these Transformer-based medical image 

segmentation methods apply attention only between pixels or patches, not between slices.

Our work is closest to that by Guo and Terzopoulos [57], which utilized attention between 

slices at the bottom layer of a U-Net with a Transformer network. The work demonstrated its 

feasibility for 3D medical image segmentation but did not consider cross-slice information at 

different scales and different semantic information learned by multiple heads of the attention 

mechanism.

III. Methods

A. Overview

We propose a 2.5D Cross-Slice Attention Transformer (CAT) module to systematically learn 

cross-slice information for prostate zonal segmentation. The module is applicable within U-

Net-like architectures with skip connections between the encoder and decoder. Segmentation 

models using CAT modules consist of three parts: a standard 2D encoder, a standard 2D 

decoder, and CAT modules in different layers. In other words, were we to remove the CAT 

modules, the network would be a pure 2D network with no interaction between slices. The 

overall structure of the CAT module is illustrated in Fig. 2, and the incorporation of CAT 

modules into existing deep models, such as nnU-Net and nnU-Net++, is illustrated in Fig. 3.

The remainder of this section is organized as follows: Section III-B introduces the cross-

slice attention mechanism. Cross-slice attention is used in the Transformer block, which is 

discussed in Section III-C. Positional encoding followed by N Transformer blocks comprise 

the CAT module, which is described in Section III-D, where we also explain how the CAT 

module is used in existing networks. In Section III-D, we mainly discuss how the CAT 

module can be incorporated into U-Net and U-Net++ networks to yield our novel CAT-Net 

models, but any other skip-connection-based networks are also amenable.

B. Cross-Slice Attention

Previous studies have used attention modules to learn inter-channel or inter-pixel 

relationships, whereas our goal here is to use the attention mechanism to learn the cross-slice 

relationship for the purposes of our segmentation task. This is important because single-slice 

prostate zonal segmentation can suffer from ambiguities, especially near apex and base 

slices. This is also true for manual annotation as clinicians typically refer to nearby slices 
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while annotating the current slice of interest. We devise an algorithm that mimics the manual 

segmentation process by attending to other slices when the current slice is being annotated. 

To this end, we regard each slice as being analogous to a word in NLP problems while 

keeping the spatial information of images intact. After the images are encoded by the 

encoder, we treat the image features as a deep representation of the “word”.

Let an l-slice stack of input images be represented by the 4D tensor x ∈ ℝl × ℎ × w × c, which 

is a stack of feature maps of height h, width w, and number of channels c. To mitigate 

computational expense, we leverage the typically high correlation of nearby pixels in feature 

maps and downsample x by average pooling with a kernel size of k, generating a condensed 

stack of feature maps xpool ∈ ℝl × ℎ
k × w

k × c. We then calculate queries Q′, keys K′ as a linear 

projection of xpool, and values V as a linear projection of x in the channel dimension:

Q′ = xpoolW Q, (1)

K′ = xpoolW K, (2)

V = xW V , (3)

where W Q, W K, W V ∈ ℝc × c are learnable weights. Note that Q′, K′, and V are the deep 

representation of the l slices and that the above 4D tensor multiplication is defined as 

follows: The product C = BW of a l × h × w × c tensor B and a c × c matrix W is calculated 

as

C[i, j, k, m] = ∑
n = 1

c
B[i, j, k, n]W [n, m] . (4)

The attention matrix A ∈ ℝl × l, which represents how much attention the algorithm should 

pay to other slices while segmenting a slice, is calculated as

A = softmax QKT

ℎwc/k2 , (5)

where each row of Q, K ∈ ℝl × ℎwc
k2 , the reshaped matrices of Q′ and K′, represents the query 

and key for each slice. The softmax is performed on the second dimension. An element A[i, 
j] in the attention matrix indicates how similar the query for slice i is to the keys for slice j; 
i.e., it is computed as a function that performs a weighted average of the values for all the 

slices to account for the interactions between queries and keys. The output of the cross-slice 

attention y ∈ ℝl × ℎ × w × c is computed as

y = AV . (6)
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Fig. 4 illustrates our cross-slice attention mechanism, which, unlike the 2D self-attention 

mechanism [18], uses a condensed deep image feature map to calculate queries Q and keys 

K and uses a normally encoded feature map for values V, while working in a 4D space to 

calculate the attention matrix between slices instead of between pixels.

C. Transformer Block

We incorporate our cross-slice attention mechanism into a Transformer block, which is 

the structure widely used in Transformer-based approaches, where one typically sees a 

multi-headed attention module followed by some linear operations, non-linear modules, and 

normalizations with some skip connections in between. Our Transformer block is shown 

within the dashed box in Fig. 2. The input to the Transformer block goes through a multi-

headed cross-slice attention and is then subjected to some linear projections along with some 

non-linear activations. Specifically, we perform multiple cross-slice attention in parallel, 

obtaining yi, where i = 1, 2, . . ., H (H is the number of heads), similar to previous work [18]. 

This is done so that the network can learn multiple semantics during the attention procedure; 

i.e., for different meanings, the network learns different attention matrices. Subsequently, 

we concatenate all the yi in the c dimension to obtain the output y of the multi-headed 

cross-slice attention module. The final output of the Transformer block can be expressed as

z = Layer_Norm GELU zintW 2+b2 +zint , (7)

with intermediate result

zint = Layer_Norm GELU yW 1+b1 +x , (8)

where W1 and W2 are the linear projection matrices, b1 and b2 are bias terms, GELU is the 

Gaussian error linear unit [58], and Layer_Norm performs layer normalization [59] across 

the h, w, and c dimensions.

D. Network Architecture

As shown in Fig. 3, we use nnU-Net [16] and nnU-Net++ [32] as the backbones of our CAT-

Net architectures, which we denote as CAT-nnU-Net and CAT-nnU-Net++, respectively. 

Other network architectures with skip connections between the encoder and decoder would 

also be suitable. We find that our attention mechanism works well on nnU-Net-like designs 

where Leaky ReLU and instance normalization is used rather than normal ReLU and batch 

normalization.

The 2D encoder E takes in a l × c0 × h0 × w0 tensor, where l, h0, w0, and c0 are the 

number of slices, height, width and the number of channels, respectively. It treats l as the 

batch dimension, where the slices do not interfere with each other. A deep feature map 

xi ∈ ℝl × ℎi × wi × ci is input into the CAT module (Fig. 2), in which it is subjected to a positional 

encoding and N Transformer blocks. The positional encoding is important in this task, since 

it tells the network the location of the slice. As in previous work [18], we first add to it a 

learnable positional encoding PEi initialized as follows [60]: For all elements on slice p and 

channel 2j,
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PEi[p, : , : , 2j] = sin p
100002j/ci , (9)

and for all the elements on slice p and channel 2j + 1,

PEi[p, : , : , 2j + 1] = cos p
100002j/ci . (10)

Then, the feature is passed through N Transformer blocks, where the feature maps of 

different slices interact to yield the outputs of the skip connection zi ∈ ℝl × ℎi × wi × ci. Again, 

we treat the first dimension as the batch dimension, interpreting zi as l feature maps of 2D 

images. The 2D decoder takes in zi and outputs the final segmentation masks.

More generally, encoder E is given l image slices denoted as x0 ∈ ℝl × ℎ0 × w0 × c0 and returns the 

encoded images xi ∈ ℝl × ℎi × wi × ci at different scales 1 ≤ i ≤ L, where L is the total number of 

layers in the encoder: {xi}1≤i≤L = E(x0).

We denote the lowest layer in the decoder as DL and the layers above it as DL−1, DL−2, . . ., 

and the output of decoder layer i as di. In a conventional skip-connection-based network, the 

decoder takes in the feature maps from different scales:

di = Di xi if i = L,
Di xi, di + 1 otherwise, (11)

whereas in our CAT-Net, CAT modules are inserted into the network:

di = Di CATi xi if i = L,
Di CATi xi , di + 1 otherwise, (12)

where CATi is the CAT module at scale i.

Our approach works better on networks with skip connections at different scales since 

multi-resolution feature maps capture different semantic information [61], [62]; thus, the 

attention at different scales should not be the same. The cross-slice attention matrices should 

be different across the different layers of the network, whereas in networks without skip 

connections across the different scales, the semantic information at different scales is not 

represented in the feature maps, and the same attention matrix would be applied, leading to 

unsatisfactory results.

IV. Experiments

Our experimental study was performed in compliance with the United States Health 

Insurance Portability and Accountability Act (HIPAA) of 1996 and was approved by the 

institutional review board (IRB) with a waiver of the requirement for informed consent.
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A. Study Population and MRI Data

1) Our Dataset: 296 patients who underwent pre-operative 3 Tesla (3T) mpMRI prior 

to robotic-assisted laparoscopic prostatectomy were included in the study. Patients with 

prior radiotherapy or hormonal therapy and with an endorectal coil were excluded. All 

mpMRI scans were performed on one of the four 3T MRI scanners (Siemens Healthineers 

MAGNETOM Trio, Skyra, Prisma, and Vida) from January 2013 to December 2018 at 

a single academic institution. T2WI was acquired using a T2-weighted Turbo Spin Echo 

(TSE) MR sequence following the standardized imaging protocol of the European Society 

of Urogenital Radiology (ESUR) PI-RADS guidelines [3]. The T2WI images were used for 

the zonal segmentation with an in-plane resolution of 0.625 mm2, a through-plane resolution 

of 3 mm, and an image size of 320 × 320 × 20 voxels. In this study, we cropped the 

central images to 128 × 128 and used 238, 29, and 29 patients for training, validation, and 

testing, respectively. For experiments involving cross validation, we randomized the data and 

grouped them into five folds.

2) ProstateX Dataset: A total of 193 patients from the ProstateX [41] dataset were 

included in the study. The imaging was performed by Siemens MAGNETOM Trio and 

Skyra 3T MR scanners. A turbo spin echo sequence was used to acquire T2WI images, 

which had a resolution of 0.5 mm in plane and a slice thickness of 3.6 mm. We excluded 

some data from the original dataset due to differences in image sizes and sequence lengths. 

The image size is 384 × 384 × 18 voxels, where we pick only the middle 18 slices for each 

patient. In this study, we cropped the central images to 160 × 160 and resampled them to 128 

× 128 and used 157, 20, and 20 patients for training, validation, and testing, respectively.

B. Implementation Details

To provide input to the models, we normalized the T2WI MRI images; i.e., the normalized 

intensity of pixel (i, j) on slice k is I i, j, k = Ii, j, k − μ /σ, where Ii,j,k is the original pixel 

intensity and μ and σ are the per-patient mean and standard deviation of the pixel intensity, 

respectively.

For our nnU-Net implementation, we downsampled five times on the encoder side, and had 

64, 128, 256, 512, 1024, and 2048 filters in each of the convolutional layers of the encoder. 

For our nnU-Net++ implementation, we downsampled four times on the encoder side and 

had 64, 128, 256, 512, and 1024 filters in each of the convolutional layers of the encoder. 

The decoders were the exact opposite of the encoders. For the 3D networks, we performed 

cross-slice upsampling and provided the upsampled volumes as inputs to the 3D models 

that require downsampling for more than twice. For a fair comparison against the other 

U-Net-based models, we ensured that the upsampled volumes could be downsampled at least 

five times. During testing, only the results from the non-interpolated slices were considered 

in our comparisons against other models. For other parts of the 3D networks and all the 

other models in our experiments, we strictly adhered to the architectures described in the 

original papers.

For data augmentation, we performed only center crop, horizontal flip, and Gamma 

transform. The same data augmentation scheme was applied across all of the experiments. 
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We applied cross entropy loss as the loss function for 150 epochs in all the training 

procedures, and used Adam [63] with a learning rate of 0.0001 and weight decay 

regularization [64] with the parameter set to 1 × 10−5. We did not perform any post-

processing after the segmentation. We maintained a simple training setting in order to 

emphasize the benefit of our CAT module. In our model, we set the number of Transformer 

blocks N = 2, the number of heads H = 3, and the average pooling size k = 4. The CAT-Nets 

were trained on a single Nvidia Quadro RTX 8000 GPU, while the other networks were 

trained on an Nvidia RTX 3090 GPU.

C. Evaluation

1) Evaluation Metrics: We used Intersection over Union (IoU), Dice coefficient (Dice), 

Relative absolute volume difference (RAVD), and average symmetric surface distance 

(ASSD) for evaluation, and these metrics were calculated in a 3D patient-wise manner. 

For experiments involving statistical testing, we used the Mann-Whitney U Test [65] to 

statistically test the distribution of results from our model and the competing models.

2) Quantitative Evaluation: We performed a comprehensive comparison between our 

model and state-of-the-art 2D, 2.5D, and 3D medical image segmentation models.

With regard to 2D methods, we compared ours against DeepLabV3+ [37], Liu et al.’s 

model [8], Zabihollaghy et al.’s model [9], CE-Net [34], MSU-Net [33], Dense-2 U-Net 

[10], nnU-Net++ [32], and nnU-Net [16]. Dense-2 U-Net as well as the models of Liu 

et al. and Zabihollaghy et al. were designed for zonal segmentation, while others are 

generic segmentation models. Specifically, we adopted the 2D nnU-Net from the paper 

[16]. Additionally, we adapted into U-Net++ the Leaky ReLU along with the instance 

normalization design, which is the main architectural contribution of nnU-Net, and denote 

it as nnU-Net++. We did not directly compare against U-Net [7] and U-Net++ because 

previous work has demonstrated the superiority of nnU-Net-based designs, which are 

supported by our experimental results in Section IV-C.3.

We continued using nnU-Net and nnU-Net++ as the backbones of our 2.5D models. Like 

Zhang et al. [66], we stacked nearby slices together and input the stacks to 2D networks 

in order to segment the middle slices. In other words, during each run, the networks take 

in a stack of images i−k, . . ., i, . . ., i+k and only output the segmentation mask for the 

middle slice i. In our experiments, we stacked 3, 5, and 7 slices together and fed them into 

the networks, which we denote as nnU-Net and nnU-Net++ w/3, w/5, and w/7. Note that 

nnU-Net w/1 and nnU-Net++ w/1 are the 2D networks where we only input 1 image per 

segmentation.

For the 3D methods, we used the most popular segmentation models, DenseVoxNet [14], 

VNet [43], and 3D U-Net [13].

Table I and Table II compare nnU-Net based architectures on our dataset and ProstateX, 

respectively, while Table III and Table IV compares nnU-Net++ based architectures on our 

dataset and ProstateX, respectively. Our model outperforms every other model in almost 

every metric. Conventional 2.5D methods are better than 2D methods for nnU-Net based 
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models, but performance starts to drop as the method uses a 7-image stack input. For 

nnU-Net++ based models, 2.5D methods show little or no improvement over 2D methods 

and the optimal number of slices to include is unclear. Naively stacking nearby slices would 

not be able to fully utilize the newly added information from nearby slices without any 

explicit information exchange mechanism. The best performing 3D methods are usually 

better than most 2D methods and they are sometimes better than conventional 2.5D methods, 

but there is no clear-cut winner among the competing methods. Specifically, 3D U-Net is the 

best performing 3D model on our dataset, but VNet shows better performance on ProstateX. 

Furthermore, the 3D models generally perform decently in segmenting the PZ in our dataset, 

but perform poorly on ProstateX. As is shown in the tables, using either nnU-Net or 

nnU-Net++ as the backbone along with our CAT modules yields better performance than 

any of the current models. The cross-slice attention in our model enables the network to 

learn the relationship between slices, which results in better performance.

The four tables reveal that, aside from our model, 2.5D methods usually performed the best. 

However, the optimal number of adjacent slices differed between datasets, prostate zones, 

and backbone networks. For example, for nnU-Net based models, nnU-Net w/5 performed 

best on our dataset while nnU-Net w/3 performed best on ProstateX. By contrast, our 

model consistently performed the best on different datasets, prostate zones, and backbone 

networks.

For a more rigorous evaluation, we selected the 2D, 2.5D, and 3D methods in the nnU-Net 

based comparison that performed best on our dataset (i.e., Table I), which are nnU-Net 

w/1, nnU-Net w/5, and 3D U-Net, and carried out a 5-fold cross validation to determine 

the robustness of our method. The results shown in Table V, where the p-values were 

calculated based on the Mann-Whitney U Test between CAT-nnU-Net and competing 

models, further establish that our method significantly improves the performance of existing 

models. Although relative to the 3D U-Net our method does not significantly improve the 

ASSD in both the TZ and PZ, our CAT module significantly outperforms the 3D U-Net in 

other metrics. Even though nnU-Net w/5 has better performance than 3D U-Net numerically, 

the fact that CAT-nnU-Net exhibits more significant improvement over nnU-Net w/5 than 

3D U-Net reveals that the performance of 3D U-Net is less consistent.

3) Ablation Study: We conducted ablation studies using our dataset in which we 

compared the performance of both nn-based and conventional U-Net and U-Net++ 

architectures with and without CAT modules. Our findings are reported in Table VI and 

Table VII. CAT modules substantially improved the segmentation of PZ on conventional 

network architectures. In general, the nn-based networks outperform conventional networks, 

and incorporating CAT modules into nn-based networks yields the best performance.

In view of the larger improvement in performance when adding CAT modules to nnU-

Net and the long training time of CAT-nnU-Net++, we performed an ablation study 

into the effect of positional encoding and Transformer blocks using only the CAT-nnU-

Net. The results on our dataset are reported in Table VIII, where we used 5-fold cross 

validation and the p-values were calculated based on the Mann-Whitney U Test between 

the network incorporating all the components and networks missing positional encoding or 

Hung et al. Page 11

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transformer blocks. We can conclude from the table that using both positional encoding and 

Transformer blocks can help with prostate zonal segmentation. Using both or either one 

alone outperforms using neither. There is no statistical significance between using both and 

using transformer blocks alone in PZ segmentation, but using both significantly outperforms 

using only Transformer blocks in TZ segmentation. Using both is also better than using just 

positional encoding.

4) Qualitative Evaluation: Some representative results on our dataset are shown in Fig. 

5. In Fig. 5a, we compare our CAT-nnU-Net with other nnU-Net based 2D and 2.5D models. 

Other nnU-Net based models tend to overpredict PZ on the side of the TZ.

In the example of Fig. 5a, our model performs better in the segmentation of PZ, especially 

in the lower middle region and the two upper head regions of the PZ. Without effectively 

considering the cross-slice relationship, e.g., where the PZ start to emerge, the models would 

poorly segment the upper head region of the PZ. This phenomenon is clearly revealed 

by the results of the other models, which over-predict the PZ region with many false 

positive predictions. Additionally, when including 7 slices in the 2.5D segmentation, the 

segmentation of the lower part of the PZ produces spurious spur-like regions. As the red 

arrows indicate in Fig. 5a, there are obvious errors in the segmentation, but the segmentation 

produced by our method does not suffer from such errors.

For a clearer demonstration of CAT-nnU-Net’s superiority, in Fig. 5b we compare it against 

the best performing 2D, 2.5D nnU-Net based methods and the best 3D method based on the 

quantitative results, which are nnU-Net w/1, nnU-Net w/5, and 3D U-Net. As is indicated 

by the red arrows, other models tend to overpredict the TZ segmentation. Moreover, the 3D 

U-Net also has some problem in segmenting the upper head region of the PZ. By contrast, 

our method can perform accurate segmentation of the TZ without predicting unrealistic 

shape for it, and around the upper head region of the PZ.

5) Evaluation on Different Parts of the Prostate: Prostate zonal segmentation 

approaches exhibit significant performance differences in different parts of the prostate [8]; 

hence, we will next investigate the performance of our method on different parts of the 

prostate on our dataset. Defining the first and last three slices of the prostate as apex and 

base, respectively, and the remaining slices are mid-gland slices, we continue our evaluation 

against other nnU-Net based models and 3D U-Net.

As shown in Fig. 6, other models perform differently in the different prostate zones. Among 

the other nnU-Net based models, nnU-Net w/5 is the best for TZ segmentation in all 

parts based on the quantitative results, while it performs badly in apex slices. Although 

nnU-Net w/7 performs well in segmenting PZ in the apex and base slices, its performance 

in the mid-gland slices and TZ segmentation is underwhelming. Therefore, it would be 

hard to determine how many slices to include when performing traditional 2.5D prostate 

zonal segmentation. However, our method inputs all the slices and learns the relationship 

between slices. 3D U-Net performs well in PZ segmentation on base slices and is on 

par with our method in TZ segmentation on mid-gland slices, but the performance of 3D 

U-Net diminishes elsewhere. Although our method yields a marginally worse result than the 
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nnU-Net w/7 on apex in the PZ and the 3D U-Net on base in the PZ, it clearly outperforms 

the other methods in general. Our method is consistently among the top two best performing 

methods in every scenario, whereas the performances of the other methods decrease in 

certain scenarios. Note that performance comparisons across different parts of the prostate 

may have practical limitations because of ground-truth annotation complexities due to the 

inherent ambiguity of zonal appearance at the apex and base slices, which manifests as high 

inter-reader variability [8].

Fig. 7 shows qualitative results of prostate zonal segmentation on a single patient. Among 

the models, our CAT-nnU-Net is the most consistent, whereas other 2D and 2.5D models 

suffer from over-prediction and inconsistency in anatomical structures.

6) Understanding the Attention Matrices: Since CAT-nnU-Net yields a larger 

improvement over nnU-Net than CAT-nnU-Net++ yields over nnU-Net++, we used the 

former in the following experiment. The most notable attention matrices A from each layer 

are visualized in Fig. 8, ranging from fine-resolution, top Layer 0 to coarse-resolution, 

bottom Layer 5. The CAT modules in the finer Layers 0–3 were able to learn something 

meaningful, while those in the coarser Layers 4 and 5 learned nothing. This observation is 

supported by the segmentation performance results reported in Table IX, which are similar 

with and without attention in Layers 4 and 5. The full network has slightly better results 

on TZ but it has worse results on PZ. The cross-slice attention in the coarsest layers may 

confuse the network when segmenting the more challenging PZ. Apparently, the cross-slice 

attention mechanism is unable to learn anything useful in Layers 4 and 5 because the 

network need not rely on nearby slices to learn coarse information. This seems to be 

consistent with how clinicians annotate prostate images, as they need to refer to nearby 

slices only to segment the finer details.

Though the CAT modules in Layers 4 and 5 learn nothing useful, we include them 

nonetheless, since doing so does not significantly hurt performance. The attention matrices 

in Layers 0 and 1 indicate that for the details, mid-gland slices will attend more to either 

the apex or the base slices, and slices in the apex and base will attend more to the slices in 

their own prostate part. At the same time, apex and base slices will also attend slightly to 

each other, which shows that there are some long-range dependencies in the segmentation 

of finer details. The attention in Layers 2 and 3, which contain more significant information 

than Layers 0 and 1, focuses more on nearby slices in the mid-gland slices. This is in line 

with the results of the previous section, where more slices are needed to accurately segment 

the base and apex, hence the more blurry regions at the top left and bottom right of Layer 2 

as well as the bottom right of Layer 3.

V. Discussion

Our study demonstrated that applying the CAT modules on skip connections at different 

scales can improve the performance of prostate zonal segmentation by systematically 

exploiting cross-slice attention. In particular, we see a significant improvement in PZ 

segmentation compared with TZ segmentation. We believe that this may be because it is 

relatively easier to segment TZ without accounting for nearby slices as the shape of the TZ 
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is well-defined and consistent across subjects. By contrast, PZ segmentation is harder than 

TZ segmentation since the shape of the PZ is less clear in certain slices, which may be why 

our cross-slice attention module improved the performance of PZ segmentation relative to 

existing networks.

Our cross-slice attention module has shown its superiority to other methods for the following 

reasons: 2D networks cannot acquire useful information from nearby slices. 3D convolution 

approaches need to work with interpolated data due to the anisotropy of the MRI data 

(i.e., through-plane resolution substantially lower than in-plane resolution). This can be 

problematic if the number of slices is large. The problem with conventional 2.5D methods 

may be that the network cannot sufficiently process which slice is the one to be segmented. 

Additionally, including more slices in the stack introduces more useless information, so the 

network could have a harder time learning the useful information. Furthermore, inputting 

more slices might make the network more susceptible to overfitting.

We find that CAT modules yield the biggest improvement on skip-connection-based 

encoder-decoder networks, e.g., U-Net and U-Net++ using leaky ReLU as activation 

and instance normalization as normalization, which is the scheme in nnU-Net. However, 

even with different activation functions and normalization schemes, performance drops 

when applying the cross-slice attention on frameworks without skip connections, e.g., 

DeepLabV3+ and the model of Liu et al. The networks can learn different attention at 

different resolutions since the information in the feature maps at different scales differs. 

This enables the network to learn more meaningful cross-slice information. On the other 

hand, the network could be confused by the cross-slice information without skip connections 

at different scales, leading to worse performance. Further investigation into why the CAT 

modules do not work on architectures lacking skip connections and how to make similar 

ideas work on these architectures would be a good direction for further study.

We only considered T2WI, but in practice performing prostate segmentation on different 

MRI or multispectral MRI can potentially improve segmentation performance [12], [42]. 

Other image contrasts, such as T1WI, are capable of providing information related to the 

segmentation that is not present in T2WI [67]. To perform multispectral MRI tasks within 

our framework, we can add the multispectral MRI images as different input channels to 

the network, where each channel is one type of MRI image. However, further consideration 

may be needed for zonal segmentation since T1WI generally does not contain good tissue 

contrast between prostate zones.

We evaluated our approach on two datasets: our dataset and the ProstateX dataset. In 

the absolute comparison, its performance differed between the two datasets, but our CAT 

module consistently improved performance on both datasets in the relative comparison. 

Although our method was evaluated only on prostate zonal segmentation due to the limited 

data available, it promises to be applicable in other segmentation tasks where information 

in nearby slices is needed. This is most useful in anisotropic imaging data where cross-slice 

information is crucial to accurate segmentation since 3D CNNs either tend to underperform 

or must work with interpolated data having high memory requirements. For isotropic data, 

our method would still produce decent results compared to other 2D and 2.5D methods, 
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albeit with high memory requirements since our method is less memory efficient than those 

lacking CAT modules. For instance, for inputs of size 128 × 128 × 20, CAT-nnU-Net has 

6.1 × 108 trainable parameters compared with 1.4 × 108 for nnU-Net, and CAT-nnU-Net++ 

has 3.9 × 108 trainable parameters as opposed to 3.7 × 107 for U-Net++. How to adapt 

our method to problems other than prostate zonal segmentation and how to make it more 

memory efficient would be interesting directions for future research.

VI. Conclusions

We have demonstrated improved prostate zonal segmentation by applying a self-attention 

mechanism to systematically learn and leverage cross-slice information. More specifically, 

we have proposed a cross-slice attention Transformer (CAT) module and incorporated it 

into state-of-the-art 2D skip connection-based deep networks. Our resulting CAT-Net models 

perform better than the current state-of-the-art 2D, 2.5D, and 3D competitors in the task 

of prostate zonal segmentation, especially in the peripheral zone (PZ) of the prostate. 

Compared with conventional 2.5D prostate segmentation methods, our segmentation 

performance was good across the apex, mid-gland, and base slices. Furthermore, our 

analysis of the attention matrices provided insights into how the cross-slice attention 

mechanism helps in prostate segmentation. Our approach has proven to be useful in skip-

connection-based networks like U-Net and U-Net++, and our ablation study has shown 

that each of its components contributes such that their combination yields the best results. 

Further research is needed to investigate the optimal incorporation of our CAT modules into 

other network architectures.
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Fig. 1: 
(a) A conventional 2D segmentation network inputs a slice of interest, performs 2D 

convolutions, and predicts its segmentation mask. (b) A conventional 2.5D network inputs 

a middle slice i along with two nearby slices i − 1 and i + 1 (defined as 2.5D w/3), 

performs 2D convolutions, and predicts the segmentation mask of slice i. (c) A conventional 

3D network, inputs the entire volume of l slices, performs 3D convolutions, and predicts 

segmentation masks for all l slices. (d) Our proposed framework employs 2D convolutions, 

encodes all the slices in the same volume, passes the encoded feature maps from the 

different slices through the cross-slice attention Transformer (CAT) module, and decodes 

them to predict segmentation maps for all the slices.
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Fig. 2: 
The CAT module includes a positional encoding and N Transformer blocks.
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Fig. 3: 
The implementation of CAT modules in the (a) nnU-Net and (b) nnU-Net++. Following the 

notation in [32], circles represent feature maps calculated at the corresponding node; gray 

circles represent the 2D encoder whereas white circles represent the 2D decoder. Rectangles 

represent the CAT modules, which operate in 3D. The input stack of images from the patient 

flow through the encoder, into CAT modules, and then through the decoder to produce the 

output segmentation.
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Fig. 4: 
Cross-slice attention with input x and output y.
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Fig. 5: 
Comparison of the CAT-nnU-Net against (a) other nnU-Net based models and (b) nnU-Net 

w/1, nnU-Net w/5, and 3D U-Net. The segmentation masks of PZ are shown in white, those 

of TZ in gray, and those of other tissues in black.
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Fig. 6: 
The performance of (a) TZ and (b) PZ segmentation on different prostate parts by different 

algorithms.
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Fig. 7: 
Comparison of our CAT-nnU-Net against other U-Net based models on different prostate 

parts.
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Fig. 8: 
Attention matrices A from Layers 0–5. Each element A[i, j] indicates the attention slice i 
pays to slice j, with darker pixels denoting higher values, and Σj A[i, j] = 1.
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