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ABSTRACT OF THE DISSERTATION

Efficient Spin-Pumping in Ultrafast Magnetic Systems

by

Mingda Guo

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2024

Dr. Ran Cheng, Chairperson

Spintronics explores the interaction between magnetization dynamics and electron

transport, primarily in ferromagnetic (FM) materials. This dissertation extends spintronics

to antiferromagnetic (AF) materials, which are underexplored and lack comprehensive the-

oretical support. We investigate dc spin pumping in the canted easy-plane antiferromagnet

α-Fe2O3, facilitated by the Dzyaloshinskii–Moriya interaction.

Additionally, we examine NiO under a magnetic field below the spin-flop transition,

demonstrating that field alteration of resonance polarization enables robust sub-terahertz

spin pumping akin to easy-axis AFs. Besides, an applied magnetic field significantly lowers

the threshold for Néel vector auto-oscillation via spin-transfer torques, enhancing potential

for device innovation in the sub-terahertz spectrum.

This comprehensive analysis not only deepens our understanding of AF spintron-

ics but also paves the way for the development of innovative spintronic devices leveraging

the unique properties of antiferromagnetic materials. Finally, the dissertation extends its

examination to the physical properties of two-sublattice ferrimagnets (FIMs) and antifer-
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romagnetic van der Waals materials within the context of two-dimensional (2D) layered

systems. This exploration further broadens the study of spintronics beyond traditional AF

materials.
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Chapter 1

Introduction

1.1 Overview of Antiferromagnetic Spintronics

Spintronics, blending the principles of electron spin with electronics, marks a piv-

otal advancement in modern technology. Its influence is profoundly felt in areas like data

storage, memory devices, quantum computing, nano-technology, etc[71, 9, 50, 7, 19]. This

innovative field harnesses not only the charge of electrons, as in traditional electronics, but

also their spin - a quantum property that offers new dimensions for device functionality. The

true potential of spintronics is its capacity to outperform conventional electronic devices in

terms of speed, efficiency, and scalability, heralding a new era in technological development.

Additionally, spintronics introduces reduced power consumption and heat generation, ad-

dressing two of the most pressing challenges in modern electronic design. This reduced

power requirement opens up possibilities for more sustainable and energy-efficient technolo-

gies, a crucial consideration in the context of global energy concerns. This backdrop of

innovation and exploration in spintronics sets the stage for a recent and significant shift in
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the field’s focus. In recent years, research has increasingly centered on enhancing the con-

trol and functionality of magnetic materials, with a particular emphasis on ferromagnetic

substances[15, 22, 43]. These materials, known for their notable macroscopic magnetiza-

tion, have been central to conventional spintronics applications. However, paralleling these

advancements, the less-explored antiferromagnetic materials, characterized by their zero

net magnetization and staggered magnetic fields, have begun to capture the attention of re-

searchers. This shift represents a paradigm change in the field, acknowledging the untapped

potential and novel functionalities that antiferromagnetic materials bring to the forefront

of spintronics research[41, 1, 28, 27, 74]. Building on the paradigm shift towards antiferro-

magnetic materials in spintronics research, the appeal of these materials lies in their diverse

and significant advantages. Antiferromagnetic materials are particularly notable for their

enhanced dynamics and stability, qualities that make them ideal for applications requiring

high speed and high density. A key attribute of these materials is their inherent absence

of stray magnetic fields, a crucial advantage for reducing magnetic interference in densely

packed electronic circuits. This characteristic becomes increasingly important as the trend

moves towards more miniaturized and integrated technological systems.

The exploration of these uncharted territories in antiferromagnetic spintronics

is not merely academic curiosity but is driven by the potential revolutionary impact on

technology[68]. Addressing the identified gaps will not only deepen our fundamental un-

derstanding of spin physics in antiferromagnets but also pave the way for groundbreaking

applications in data storage, quantum computing, and nano-technology. By unlocking the

secrets of antiferromagnetic materials, particularly in spin pumping and spin dynamics, we
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can develop faster, more efficient, and more stable spintronic devices. This research could

lead to significant advancements in the field, offering new paradigms in the design and func-

tionality of electronic devices. The pursuit of these questions is, therefore, both a scientific

imperative and a step towards technological innovation.

1.2 Spin Pumping

Building upon the foundational concepts introduced in antiferromagnetic spintron-

ics, spin pumping emerges as a key phenomenon in this domain. It involves the transfer of

angular momenta from a magnetic material, whether ferromagnetic or antiferromagnetic,

to a non-magnetic layer, typically a heavy metal. This transfer process is primarily ini-

tiated by the magnetization precession within the magnetic layer, which in turn triggers

the generation of a spin current into the adjacent non-magnetic layer[14, 1, 26, 38, 63]. At

these interfaces, spin-orbit coupling plays a significant role. This coupling, resulting from

the interaction between an electron’s spin and its orbital momentum within the material’s

potential, is notably more pronounced at interfaces. This is particularly true in areas where

there is a significant shift in the potential landscape. Understanding the intricacies of spin

pumping mechanisms is crucial, as it enables effective manipulation and control of spin cur-

rents. Such control is indispensable for the development and advancement of sophisticated

technological applications, marking spin pumping as a key process in the advancement of

spintronic technologies.

In the specific context of antiferromagnetic materials, the dynamics of spin pump-

ing present distinct characteristics, setting them apart from their ferromagnetic counterparts[43,
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26, 73, 67]. Antiferromagnets (AFs) operate at significantly higher frequencies, in the ter-

ahertz (THz) range, paving the way for ultrafast information processing and communica-

tion capabilities. Additionally, the absence of stray fields in AFs enhances their robustness

against magnetic disturbances, making them highly appealing for next-generation data stor-

age technologies. However, a notable challenge in antiferromagnets is the fact that their net

magnetization, m, typically vanishes in equilibrium in homogeneous structures and remains

negligible even when the system is slightly perturbed around this equilibrium. Consequently,

the dynamics of spin pumping in these materials cannot be effectively described using net

magnetization. Instead, the Néel vector n, which represents the difference in the magnetic

moments of the antiparallel sublattices, is employed to characterize spin-pumping dynamics

in antiferromagnetic materials.

To further probe these unique dynamics, additionally, a range of experimental

methods has been employed, offering deeper insights into the behavior of spin pumping

in antiferromagnetic materials. These methods include ferromagnetic resonance (FMR)

techniques[73, 30], which are instrumental in exciting and measuring spin waves, time-

resolved magneto-optical Kerr effect (MOKE) microscopy for observing magnetic domain

dynamics[40, 2], and spin-torque ferromagnetic resonance (ST-FMR)[75], which sheds light

on the impact of spin torque on magnetic dynamics. Recent studies employing these tech-

niques have been pivotal in unraveling the complexities of spin dynamics in antiferromag-

netic materials and their broader implications for spintronic devices. Each experimental

approach provides distinct insights into the behavior of spins, contributing vitally to a

more comprehensive understanding of spin pumping and its myriad potential applications.
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1.3 Spin-transfer Torque

Following the introduction of spin pumping and its implications in antiferromag-

netic materials, its Onsager reciprocal mechanism, spin-transfer torque (STT), comes into

focus[39, 47, 48]. STT represents a back-action of an incident spin current from the normal

metal that exerts on the interfacial magnetic moments, thereby allowing for the control of

magnetic states without the need for external magnetic fields[74, 1, 43, 53]. This mechanism

stands at the forefront of revolutionizing memory and logic devices, making it a cornerstone

in the development of energy-efficient and high-speed spintronic technologies.

Integral to understanding STT are two primary components: field-like torque and

damping-like torque. The field-like torque acts perpendicularly to the magnetic moments

and can be thought of as an effective magnetic field that influences the direction of these

moments. This torque can induce precessional motion of the magnetization, playing a sig-

nificant role in dynamic switching processes. On the other hand, the damping-like torque

aligns parallel or antiparallel to the magnetization, providing a mechanism for energy dis-

sipation. It directly influences the damping of the magnetic moment’s precession, thereby

impacting the stability and speed of the magnetic switching.

In the specific context of antiferromagnetic materials, STT exhibits notably com-

plex and nuanced characters. While STT in ferromagnets (Fs) involves the alignment of

spins in a uniform direction, AFs present a more complex scenario due to their alternating

spin alignment. This difference fundamentally alters the dynamics of how spin-polarized

currents interact with the material’s magnetic moments. In AFs, STT can induce changes

in the Néel vector n as opposed to merely reorienting uniform magnetization as in Fs.
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This distinction leads to subtler and more intricate manipulations of the magnetic state,

requiring precise control over the spin current. Furthermore, antiferromagnetic materials

typically respond to STT at an exceptionally rapid pace, operating within the terahertz fre-

quency range. This rapid response time positions antiferromagnets as ideal candidates for

applications requiring ultrafast switching, a significant advantage over their ferromagnetic

counterparts.

Owing to their inherent properties, the integration of Spin Transfer Torque (STT)

in antiferromagnetic auto-oscillators offers a plethora of significant advantages[13, 61, 57].

Foremost among these is the ability of these auto-oscillators to operate at terahertz fre-

quencies. This characteristic enables them to achieve oscillation frequencies considerably

higher than those attainable in ferromagnetic systems. Such high-frequency operation is in-

dispensable for the creation of ultrafast signal processing components and the advancement

of sophisticated communication technologies. Moreover, the intrinsic nature of antiferro-

magnetic materials, characterized by their absence of net magnetization, endows them with

enhanced robustness against external magnetic field disturbances. This inherent stability

is of paramount importance in applications that demand consistent and reliable oscillation

frequencies.

1.4 Spin-charge Conversion

Building upon the insights gained from the exploration of Spin Transfer Torque,

we venture into the realm of spin-charge conversion. This process stands at the forefront of

spintronic device functionality, acting as a vital bridge that connects spin-based phenomena
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with charge-based electronics. Among the various mechanisms at play, some have garnered

significant attention for their pivotal roles. A prime example is the Inverse Spin Hall Effect

(ISHE), which is essential for converting spin currents into charge currents within magnetic

materials. This effect emerges from the spin-orbit interaction, where the scattering of

spin-polarized electrons leads to the generation of a transverse electric voltage[59, 52, 29].

Additionally, the Rashba-Edelstein Effect (REE) becomes significant in systems exhibiting

strong spin-orbit coupling and structural inversion asymmetry. The application of an electric

field in such materials induces spin polarization, thereby converting charge current into

spin accumulation[65, 16, 76]. The REE is particularly noted for its ability to control

spin currents electrically, offering a complementary approach to the magnetic manipulation

techniques. This dual control mechanism enhances the versatility and efficacy of spintronic

devices, marrying the realms of electric and magnetic spin manipulations.

In antiferromagnetic materials, the unique attributes of both the ISHE and the

REE distinctly differentiate them from their behavior in ferromagnetic materials. Primar-

ily, the zero net magnetization characteristic of AFs implies that spin currents generated

or influenced by the ISHE are not as overtly discernible as in Fs. This subtlety, however,

is complemented by an advantage: AFs exhibit a reduced susceptibility to external mag-

netic interference. This property potentially allows for more accurate and stable detection

and conversion of spin currents, making antiferromagnetic materials highly promising for

applications in high-precision spintronics.

Additionally, while the Spin Hall Effect is known to generate spin-polarized cur-

rents, leading to effective spin–orbit torques in ferromagnetic layers, the REE in antiferro-
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magnets offers a different mechanism of action. The REE has been proposed as a method

to induce non-equilibrium spin polarization through an electrical current in solids lacking

inversion symmetry. In the context of noncentrosymmetric antiferromagnetic materials,

this effect can lead to current-induced staggered spin polarization and spin–orbit torque.

Such dynamics can cause the magnetic moments in antiferromagnetic materials to reorient

perpendicularly, presenting a novel approach to manipulating their magnetic states. This

exploration into current-induced effects in antiferromagnets underscores their potential for

innovative applications in spintronics, particularly in areas where precise control of magnetic

moments is essential.

1.5 Van der Waals Antiferromagnets

Following our in-depth exploration of spin-charge conversion mechanisms in anti-

ferromagnetic materials, the focus now shifts to a cutting-edge topic in the field of spintron-

ics: van der Waals(vdW) AFs. vdW AFs are characterized by their layered structures, held

together by weak van der Waals forces. This aspect gives rise to distinctive physical prop-

erties that set them apart from conventional antiferromagnetic materials[62, 37, 49, 23, 8].

In stark contrast to traditional magnetic thin films, two-dimensional (2D) mate-

rials exhibit a remarkable degree of decoupling from their substrates. This independence

allows for enhanced electrical control, mechanical flexibility, and opportunities for chemical

functionalization. These attributes render 2D magnets not only accessible and engineerable

but also highly integrable into novel heterostructures. Such integration can lead to previ-

ously unattainable properties and applications. For instance, the development of atomically
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thin magneto-optical and magnetoelectric devices opens new avenues in ultracompact spin-

tronics, on-chip optical communications, and quantum computing - realms where the unique

characteristics of 2D materials can be fully leveraged.

Van der Waals Antiferromagnets (AFs), a significant class of these 2D materials,

demonstrate distinctly different magnetic interactions compared to conventional antiferro-

magnets. In Van der Waals AFs, the magnetic interactions are more localized, a stark de-

viation from the strong and long-range interactions typical in traditional antiferromagnets.

This localization of interactions bestows upon these materials unique magnetic behaviors,

such as heightened sensitivity to external stimuli. Such sensitivity facilitates nuanced and

precise control over their magnetic states, crucial for applications that demand meticulous

magnetic manipulation.

Additionally, the weaker interlayer van der Waals interactions in these materi-

als result in reduced exchange coupling between the staggered sublattices. This aspect

significantly influences the dynamics of Van der Waals AFs, bringing them into the low

sub-terahertz (sub-THz) frequency regime. This lower frequency range not only makes the

antiferromagnetic fundamental dynamics more accessible for experimental study but also

opens up possibilities for practical applications that were previously hindered by the higher

operational frequencies of traditional antiferromagnets.

1.6 Motivation and Outline

As we delve deeper into the burgeoning field of antiferromagnetic spintronics, it

becomes evident that while significant strides have been made in both understanding funda-
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mental spin dynamics and mechanisms and practical technical breakthroughs, substantial

gaps remain in our knowledge. Fully harnessing the potential of antiferromagnetic mate-

rials in the domain of spintronics is replete with unique challenges. Firstly, the ultrafast

properties of antiferromagnets place exceptionally high and sophisticated demands on both

experimental tools and technological devices, often requiring capabilities to handle such

high-frequency dynamics. Additionally, the vanishing magnetization in antiferromagnetic

materials, which could be considered an advantage, ironically poses a significant challenge.

It complicates the detection of antiferromagnetic order and, consequently, the development

of effective reading mechanisms in device engineering. Furthermore, integrating these ma-

terials into existing technological infrastructures is a complex task. These materials need to

possess appropriate antiferromagnetic ordering temperatures, compatibility with existing

technologies, and electronic properties that are conducive to practical applications. These

challenges highlight the ongoing need for innovation and exploration in the realm of anti-

ferromagnetic spintronics.

In this dissertation, a comprehensive approach to antiferromagnetic spintronics is

elucidated. The core objective is to paint a detailed picture of the ultrafast properties of

antiferromagnets and their related materials. Chapter Two delves into the enhancement

of spin pumping, taking the Dzyaloshinskii-Moriya (DM) interaction in α-Fe2O3 as a case

study. Chapter Three shifts the focus to the feasibility of achieving spin pumping in easy-

plane antiferromagnets, exemplified by NiO. In chapters Four and Five, alternative materials

- ferrimagnets and 2D magnets are highlighted. These materials offer significant advantages

over traditional antiferromagnetic counterparts, potentially paving the way for ultrafast
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operational capabilities. Finally, Chapter Six synthesizes the discussions from the preceding

chapters, concluding with an in-depth analysis of ultrafast operations in antiferromagnetic

spintronics. This dissertation aims to contribute a significant body of knowledge to the

field, addressing both theoretical and practical aspects of antiferromagnetic spintronics and

its future trajectory.
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Chapter 2

Spin Pumping Enhanced by

Dzyaloshinskii-Moriya Interaction

As we delve further into the intricacies of spin pumping within the realm of an-

tiferromagnetic spintronics, the unique case of easy-plane antiferromagnets comes to the

forefront. These materials, while possessing certain advantageous properties for spin pump-

ing, also present their own set of challenges, underscoring the complexities involved in fully

harnessing their potential.

Easy-plane antiferromagnets are characterized by their relatively small magnon

gaps and accessible resonant frequencies, which at first glance, make them seemingly ideal

candidates for efficient spin pumping. Additionally, easy-plane antiferromagnets are abun-

dant in nature and can be prepared and preserved with relative ease, adding to their appeal

as materials of choice in spintronic research.

However, this advantage is counterbalanced by a significant limitation. The inher-
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ent spin dynamics within easy-plane antiferromagnets are predominantly linearly polarized.

This polarization is a key point of divergence from the more commonly studied uniaxial

antiferromagnets, where the spins are circular polarized [38]. The linear polarization in

easy-plane antiferromagnets has long been perceived as a hindrance to effective spin pump-

ing, as it contrasts with the conventional mechanisms observed in uniaxial systems.

This perception presents a notable challenge in the field: how to effectively leverage

the advantageous aspects of easy-plane antiferromagnets for spin pumping while overcoming

the inherent difficulties posed by their unique spin dynamics. The exploration of this chal-

lenge not only deepens our understanding of antiferromagnetic spintronics but also opens up

potential pathways for innovative solutions and advanced applications in spintronic devices.

2.1 Easy-plane Antiferromagnet with Dzyaloshinskii-Moriya

Interaction

The Dzyaloshinskii-Moriya (DM) interaction, originating from spin-orbit coupling

in systems with broken inversion symmetry, is an anti-symmetric exchange interaction first

proposed by Igor Dzyaloshinskii and further developed by Toru Moriya. In antiferromag-

netic systems, the DM interaction plays a crucial role in stabilizing complex spin textures

and promoting non-collinear spin arrangements, significantly influencing the magnetic prop-

erties and dynamics of these materials. This interaction is key to understanding various

phenomena in antiferromagnets, from spin canting to the emergence of exotic magnetic

states.

Consider an external magnetic field H applied along the y-axis in the magnetic
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easy plane of an AF. The effective free energy to be re-expressed as:

ϵ = ωJm1 ·m2 +
ωK

2

[
(ẑ ·m1)

2 + (ẑ ·m2)
2
]
− ωA

2

[
(x̂ ·m1)

2 + (x̂ ·m2)
2
]

− ωDẑ · (m1 ×m2)− ωH ŷ · (m1 +m2)

(2.1)

where, ωJ = γHJ represents the exchange frequency, with γ/2π being the gyromagnetic

ratio and HE denoting the exchange field. Similarly, ωK = γHK and ωA = γHA correspond

to the frequencies of the hard-axis and easy-axis anisotropies, respectively. Additionally,

ωD = γHD represents the DM field, and ωH = γH is the Larmor frequency due to the

applied magnetic field. Here, the coordinate system is depicted in Fig. 2.1.

In the exchange limit, where the exchange interaction significantly exceeds any

other interactions, the free energy can be minimized to obtain a canted ground state. In this

state, the magnetic moments are given by m̄1 = {cosϕ, sinϕ, 0} and m̄2 = {− cosϕ, sinϕ, 0},

where the canting angle ϕ is approximately (ωD+ωH)
2ωE

. To further analyze the dynamics and,

subsequently, the spin-pumping mechanisms, we consider the precessional motions of the

vectors m1 and m2 around their equilibrium directions. The behavior of the system is

effectively described by the following two coupled Landau-Lifshitz-Gilbert (LLG) equations:

ṁ1 = m1 × [ωEm2 + (ωK − ωDm2·)ẑ− ωAx̂− ωH ŷ] + αm1 × ṁ1 + γhrf ×m1, (2.2a)

ṁ2 = m2 × [ωEm1 + (ωK + ωDm1·)ẑ− ωAx̂− ωH ŷ] + αm2 × ṁ2 + γhrf ×m2. (2.2b)

Here, the microwave magnetic field is denoted as hrf = hrfe
iωtx̂ and is polarized

along the x-axis. To simplify the analysis, we linearize the LLG equations by approximating

m1 ≈ m̄1 + δm1e
iωt and m2 ≈ m̄2 + δm2e

iωt, where δmi is orthogonal to m̄i (for i = 1, 2)

and ω represents the angular frequency of the microwave. The linearization truncates the
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equations at the first order in δmi. Consequently, the LLG equations transform into an

eigenvalue problem, allowing us to derive the precession modes of the magnetization vectors

based on the eigenmodes of LLG equations.

In the absence of DM interaction, the sublattice magnetic moments, m1 and m2,

undergo right-handed elliptical precession around their equilibrium directions. The major

and minor axes of these precessional ellipses are aligned along the y-axis and z-axis, re-

spectively. Without a sufficiently strong external field to induce significant canting of m1

and m2 along the y-axis, the total magnetic moment m = m1 +m2 primarily exhibits lin-

ear oscillation along the z-direction. Consequently, this configuration leads to an AC spin

pumping phenomenon where the DC component is negligible. Additionally, due to polariza-

tion mismatch, an x-polarized microwave magnetic field cannot effectively drive resonance

with m(t), a feature typical of conventional easy-plane antiferromagnets such as NiO and

MnO.

However, when the DM field HD is introduced, the magnetic moments m1 and

m2 become canted towards the y-axis at equilibrium, leading to an elliptical precession

around these canted directions. Consequently, this results in the magnetic moment m(t)

describing an elliptical orbit around the y-axis. Crucially, the elliptical trajectory of the

canted magnetic moment gains a significant projection along the x-axis. This change permits

a Néel vector (n) polarized microwave magnetic field to effectively resonate with the acoustic

mode, facilitating DC spin pumping. As the DM field HD intensifies, the precession of m(t)

evolves towards a more circular path, which in turn markedly enhances the efficiency of DC

spin pumping, surpassing that of conventional easy-plane antiferromagnets.
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2.2 Spin Injection

Driven by the resonant field, the canted magnetic moment m = m̄+ δm compo-

nents undergo rotational motions about the y-axis. This dynamic leads to the following

mathematical expressions:

δmx = Re[m̃x] = Re[|mx|ei(ωt+ϕx)] ≡ Re[χxxhrf], (2.3a)

δmz = Re[m̃z] = Re[|mz|ei(ωt+ϕz)] ≡ Re[χzxhrf], (2.3b)

where χxx = m̃1x+m̃2x
hrf

and χzx = m̃1z+m̃2z
hrf

represent components of the dynamical sus-

ceptibility tensor. The phase factors ϕx and ϕz are appropriately adjusted relative to the

magnetic field hrf. While the dynamical susceptibility tensor can be resolved analytically,

the resulting expression is complex; therefore, we opt for numerical calculation. In our

device geometry depicted in Fig. 2.2, the direct current (dc) spin pumping is proportional

to:

ŷ · (m× ṁ) = δmz
˙δmx − δmx

˙δmz

= ω|mx||mz| [cos(ωt+ ϕx) sin(ωt+ ϕz)− sin(ωt+ ϕx) cos(ωt+ ϕz)]

= ω|χxx||χzx| sin(ϕz − ϕx)h
2
rf

= ωIm[χ∗
xxχzx]h

2
rf

(2.4)

In the standard framework, the direct current (dc) component of the pumped

spin current density, Iys , is directly related to the normalized vector m̂ ≈ ωE
ωD+ωH

m. The

relationship is expressed as follows:

Iys = h̄grŷ · (m̂× dm̂

dt
) = h̄grωIm[χ∗

xxχzx]

(
ωE

ωD + ωH

)2

h2rf ≈ h̄grfIm[χ∗
xxχzx]

(
hrfHE

HD

)2

(2.5)
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Here, f = ω
2π denotes the driving frequency, and gr represents the spin-mixing conductance.

This equation provides a quantitative measure of the pumped spin current density in terms

of the driving frequency, the material’s intrinsic properties, and the applied microwave

magnetic field. The expression highlights the critical role of the dynamical susceptibility

components in the spin-pumping mechanism.

2.3 Spin Pumping Signal

The spin current injected into the system, denoted as Is, is converted into a charge

current through the inverse spin Hall effect. This conversion process is quantified by the

voltage signal VSP, which is given by the equation:

VSP = ξr
LΘeff

SHλ

2π
tanh

(
dN
2λ

)
|hrf|2 (2.6)

Here, e represents the electron charge, while L, θSH, λ, ρ, and dN signify the length of the

heavy-metal layer, the effective spin Hall angle, the spin diffusion length, the resistivity,

and the thickness of the heavy-metal layer, respectively. The term g̃r, defined as

g̃r =
gr[

1 +
(
2λe2ρgr

h̄

)
coth

(
dN
λ

)] , (2.7)

represents the effective spin-mixing conductance which accounts for the spin backflow ef-

fect in the heavy-metal layer. This backflow is an essential consideration in accurately

determining the efficiency of the spin-to-charge current conversion.

In analysis, ξ = 2πfIm[χxxχzx] is introduced as the spin-pumping susceptibility,

a measure for quantifying the efficiency with which microwave power is converted into a

DC spin current density. The value of ξ is highly sensitive to the polarization dynamics
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of m(t), which in turn are influenced by the Dzyaloshinskii-Moriya (DM) field HD, the

driving frequency f , and the magnitude of the external magnetic field H. Remarkably, the

presence of the DM interaction has a profound effect on the system’s response; it not only

substantially increases the peak value ξp but also concurrently reduces the resonance field

Hres. This relationship is graphically depicted in the insets, where an increase in HD from

zero to its maximum value HMax
D results in a sevenfold decrease in Hres, while ξp experiences

a dramatic increase by a factor of nearly 350. Such an extraordinary enhancement is a clear

testament to the crucial role played by the DM interaction in amplifying the observed DC

spin-pumping signals.

2.4 Gilbert Damping Esitimation

To refine the approximation of the Gilbert damping coefficient for the material

under study, a comparative analysis between experimental data and theoretical projections

has been conducted. Theoretical full width at half maximum (FWHM) values are extracted

by critically examining computational curves. Iterative adjustments to the Gilbert damping

coefficient bring theoretical curves into agreement with experimental findings, as depicted

in Fig. 2.4. Parameters for the material are set as follows: exchange coupling HJ = 74 T,

Dzyaloshinskii-Moriya (DM) interaction HD = 2.07 T, hard-axis anisotropy HK = 0.216

T, and in-plane easy-axis anisotropy HA = 1.1 × 10−3 T. This methodology leads to an

estimated Gilbert damping coefficient of α ≈ 4.6 × 10−4, corroborated by experimental

results.

Furthermore, the FWHM shows a marked increase at lower driving frequencies
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before reaching a plateau as the frequency is increased. While this pattern is not overt within

the current experimental frequency range, extending the driving frequency to approximately

100 GHz is expected to manifest this trend.
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Figure 2.1: Schematic illustration of the mode in an easy-plane AFM with and without the

DM field HD. The external magnetic field H is applied along the y-axis. The solid green

arrow which we labeled as m(t) is the instantaneous magnetic moment while the dashed

green curve illustrates the trajectory of m(t)
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Figure 2.2: Schematic illustration depicts the dynamics of spin injection and the inverse

spin Hall effect within an α-Fe2O3/metal heterostructure. The variables m1 and m2 denote

the magnetic moments of the two antiferromagnetically coupled spin sublattices, while m

represents the resultant canted ferromagnetic moment intrinsic to α-Fe2O3.
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Figure 2.3: Figure demonstrates the calculated susceptibility of spin pumping, denoted as

ξ, plotted against the external magnetic field ωH . The calculation spans across a range

of Dzyaloshinskii-Moriya (DM) fields, with HMax
D = 2.07 × 104 Oe representing the actual

value obtained from measurements.
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Figure 2.4: Calculated FWHM, ∆H, of the spin-pumping susceptibility, ξ, across the fre-

quency range of 13 GHz to 23 GHz for three distinct Gilbert damping coefficients, α. The

curve that corresponds to α = 4.6 × 10−4 aligns optimally with the experimental data

(denoted by red crosses), providing the most accurate representation of the observed spin-

pumping phenomenon.
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Chapter 3

Field-assisted Spin Pumping

In this chapter, we shift our focus from the non-collinear phase to the collinear

phase, aiming to challenge the prevailing theories of spin pumping in NiO. Despite its

popularity as an experimental antiferromagnetic material, NiO is often considered a poor

candidate for spin-pumping applications. Our motivation stems from an in-depth analysis

of NiO’s eigenmodes below the spin-flop transition, which may reveal untapped potential

in this material for spintronic applications.

3.1 Field-assisted Dynamics of NiO

We begin with a similar method mentioned in Chapter 2 by exploring a two-

sublattice macrospin model where the antiferromagnetically coupled magnetic moments

are represented by M1 and M2. The coordinate system is defined such that the easy-

axis coincides with x̂, and the hard-axis with ẑ, which situates the xy-plane as the easy

plane. In the case of NiO, ẑ aligns with the (111) crystallographic direction, while x̂
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corresponds to the (112̄) direction. The unit vectors m1 = M1/Ms and m2 = M2/Ms

describe the orientations of the sublattice magnetic moments, with Ms being the saturation

magnetization. The free energy density of NiO at low temperatures can be expressed using

these vectors:

ϵ = Jm1 ·m2 −
A

2

[
(m1 · x̂)2 + (m2 · x̂)2

]
+

K

2

[
(m1 · ẑ)2 + (m2 · ẑ)2

]
−MsH · (m1 +m2)

(3.1)

where H is the applied magnetic field, J , A, and K are the exchange coupling, the easy-

axis and the hard-axis anisotropy, respectively, all being positive in our convention. The

coherent dynamics of m1 and m2 is described by the LLG equations:

ṁ1 =ωJm1 ×m2 − ωAm1 × (m1 · x̂)x̂+ ωKm1 × (m1 · ẑ)ẑ

− ωHm1 × Ĥ + αm1 × ṁ1, (3.2a)

ṁ2 =ωJm2 ×m1 − ωAm2 × (m2 · x̂)x̂+ ωKm2 × (m2 · ẑ)ẑ

− ωHm2 × Ĥ + αm2 × ṁ2 (3.2b)

where Ĥ denotes the unit vector in the direction of the external magnetic field H, and

α is the Gilbert damping constant. The terms ωJ = J/h̄, ωA = A/h̄, ωK = K/h̄, and

ωH = HMs/h̄ represent the angular frequencies associated with the exchange interaction,

the anisotropy along the easy and hard axes, and the external magnetic field respectively,

as they appear in the free energy equation (3.1).

For an external magnetic field H applied along the x̂ direction (parallel to m1), we

linearize LLG equations around the equilibrium configuration, m1,2 = ±x̂, and determine

the eigenfrequencies using the material parameters specific to NiO [42, 51]. As depicted in

Figure 3.1(a), the eigenfrequencies of NiO exhibit a gap at zero field, which is ascribed to
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the hard-axis anisotropy ωK . The diagram reveals two distinct eigenfrequencies, referred

to as acoustic and optical modes, which demonstrate a nonlinear yet continuous variation

with an increasing magnetic field up to the spin-flop (SF) transition, demarcated by the

dashed green line at approximately 7.8T.

In Figure 3.1(b), the polarization of each eigenvector is illustrated through the

logarithm (base 10) of the ratio of the principal axes of the elliptical trajectories for m1

(red lines) and m2 (blue lines). Here, an unexpected divergence is observed at around 0.4T,

significantly below the SF transition threshold. Specifically, in the acoustic mode (lower

frequency), it is m1 that exhibits a diverging ratio ϵy/ϵz at this pivotal point, whereas the

polarization of m2 in the optical mode (higher frequency) alters smoothly. This divergence

highlights a critical behavior in the polarization dynamics of NiO under an external magnetic

field, underscoring the complex interplay between anisotropy and magnetic field strength

in determining the spin dynamics.

For comparison, we also examine the eigenfrequencies and polarization of the eigen-

modes in the uniaxial AF MnF2 [63, 46], as illustrated in Figures 3.1(c) and (d). On one

hand, the two eigenfrequencies in MnF2 are initially degenerate at zero field and then split

linearly with an increasing magnetic field until the acoustic branch nearly approaches zero.

On the other hand, both modes exhibit circular polarization below the SF transition, as

indicated by lg(ϵy/ϵz) = 0 [31]. This behavior contrasts with the observations in NiO,

highlighting the distinct dynamics and polarization characteristics inherent to uniaxial an-

tiferromagnets like MnF2 under the influence of an external magnetic field.
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3.2 Field-induced Chirality Flip

To elucidate the physical mechanisms underlying the unexpected divergence ob-

served in Figure 3.1(b), we closely examine the vicinity of the critical point. Figure 3.1(e)

schematically depicts the evolution of the precession trajectories of the two antiparallel mag-

netic moments. In the acoustic branch, both m1 and m2 exhibit elliptical rotation relative

to the x-axis, with the major axis aligned along ŷ and the minor axis along ẑ. Approaching

the critical point, where ϵy/ϵz → ∞, the trajectory of m1 narrows and subsequently reopens

with reversed chirality, while m2’s chirality remains unchanged. The optical branch demon-

strates a parallel trend, albeit with polarization changes occurring in the reverse manner.

Based on the insights from Figure 3.1(e), we identify a significant range of magnetic field

strengths between the critical point and the SF transition, where both magnetic moments

process with identical chirality—a key condition for achieving nonzero DC spin pumping.

Furthermore, we observe that the critical field Hc for the chirality flip exhibits a linear de-

pendence on the hard-axis anisotropy ωK , as illustrated in the inset of Figure 3.1(e). This

finding underscores the pivotal role of hard-axis anisotropy in influencing the spin dynamics

and chirality behaviors critical for spin-pumping processes.

Specifically, when the two magnetic moments process with opposite chirality, their

contributions to DC spin pumping counteract each other, as the cross productsm1×ṁ1 and

m2×ṁ2 have opposing directions. [14]. Conversely, the generation of spin current becomes

synergistic when both sublattice moments rotate congruently. Thus, the phenomenon of

chirality flip, occurring below the SF transition, emerges as a pivotal mechanism for enabling

DC spin pumping in NiO and analogous easy-plane AF materials, even within their collinear
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phases. This field-induced chirality flip—a critical aspect previously neglected—mirrors the

reestablishment of rotational symmetry around the easy axis, predominantly influenced by

the Zeeman interaction. For instance, within the acoustic mode, the evolution of m1’s

precession from one chirality to its antithesis serves to mitigate the energy cost imposed by

escalating magnetic fields. The juncture at which this chirality conversion occurs, denoted

by Hc, marks a critical threshold for the system’s dynamic behavior and spin-pumping

capabilities.

To further elucidate the concept of field-assisted spin pumping with a more visual

approach, we delve into the behavior of the acoustic mode in NiO, as depicted in Fig. 3.2.

Initially, in the absence of a magnetic field, as shown in Figure 3.2(a), the magnetic moments

m1 (green) and m2 (purple) exhibit elliptical precession with opposing chirality. This

dynamic leads to a linearly polarized Néel vector n = (m1−m2)/2 albeit with exaggerated

trajectories for clearer illustration. Consequently, the resonance of n solely induces AC

spin pumping, rendering the DC component effectively nonexistent—a challenge inherent

to the broken rotational symmetry observed in bi-axial AF materials. Additionally, the

cumulative magnetic moment m = (m1 + m2)/2 exhibits linear oscillation along the z-

axis, rendering it unresponsive to a driving microwave field hrf polarized along the y-axis

and thereby incapable of activating the acoustic mode.

Transitioning to a scenario augmented by a Zeeman field, as illustrated in Fig-

ure 3.2(b), m1 undergoes a critical chirality flip at the specified critical point, which in

turn fosters an elliptical precession of n. This alteration not only endows n with an el-

liptical trajectory but also induces a corresponding elliptical motion in the total moment
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m, now featuring a notable projection onto the y-axis. Such a configuration permits effec-

tive coupling with, and activation by, the rf field, thereby facilitating detectable DC spin

pumping.

3.3 Spin Pumping Signal

To further elucidate the discussed physical mechanism, we examine a Pt/NiO

bilayer heterostructure, calculating the ISHE-induced voltage generated from coherent DC

spin pumping. This calculation is performed under a constant driving frequency ω while

the magnetic field H is varied along x̂. Specifically, for ω within the frequency domain of

the acoustic mode, the resonance field Hres is determined by the equation [42, 54, 53]:

Hres ≈
h̄

Ms

√
2ωJωA − ω2, (3.3)

This relation holds true within the exchange limit, where ωA ≪ ωK ≪ ωJ . Based

on the setup depicted in Figure 3.2 and discounting thermal excitations, such as the spin

Seebeck effect, the ISHE voltage generated in the y-direction is given by:

Vsp = ωIm
[
χ∗
yyχzy

]
g̃r

eLρθSH
2π

λ

dN
tanh

(
dN
2λ

)
|hrf|2 (3.4)

where χij = χij(ω,Hres) (with i, j spanning y and z) denotes the dynamical susceptibility

tensor. This tensor encapsulates the Néel vector’s responsiveness to the microwave drive

hrf, as expressed by:

ni = χij(ω,Hres)hrf,i, (3.5)

In the above equation, e represents the electron charge, and L, ρ, θSH, λ, and dN specify the

length, resistivity, spin Hall angle, spin diffusion length, and thickness of the Pt layer, re-
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spectively. The term g̃r, indicating the real part of the spin-mixing conductance, reflects the

efficiency of spin transfer across the Pt/NiO interface. This efficiency is notably influenced

by both the spin backflow effect and spin diffusion phenomena within the Pt layer [6, 25].

Figure 3.3 presents the numerical results derived from Eq. (3.4) for four distinct

driving frequencies within the acoustic mode. Interestingly, a lower driving frequency cor-

responds to a more pronounced spin pumping signal occurring at a higher resonance field,

aligning with the predictions of Eq. (3.3). As the resonance field Hres nears the SF tran-

sition threshold, the polarization of the sublattice magnetic moments—and consequently,

that of n—transitions towards a more circular profile, significantly bolstering the efficacy

of DC spin pumping. Notably, at approximately 100 GHz, the spin pumping amplitude

reaches magnitudes comparable to those observed in uniaxial AF materials. Highlighted in

the inset is the ISHE voltage’s dependency on the driving frequency, spanning from 90 GHz

to 180 GHz—a frequency spectrum readily achievable with microwave technology.

3.4 Spin-torque Nano-oscillator

Given the capacity of a magnetic field to significantly offset the broken symmetry

induced by bi-axial anisotropy, thereby facilitating substantial DC spin pumping even within

the collinear phase, it is logical to anticipate a similar field-enhanced effect on the reciprocal

phenomenon—specifically, the reduction in the current threshold required to initiate auto-

oscillation of the Néel vector. To explore this, we incorporate the spin-transfer torque (STT),

denoted as τi = mi × (ωs ×mi), into Eq. (3.2). Here, ωs = ωsx̂, with ωs representing the
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STT strength, converted into the frequency domain as [11, 13]:

ωs = Jc
θSHeρg̃rλa

3

h̄dNiO
, (3.6)

where Jc is the applied current density in the y direction, a and dNiO are the lattice constant

and thickness of the NiO layer. Considering the Néel vector n approximated as x̂+ (nyŷ+

nz ẑ)e
iωt and the magnetization m as (myŷ + mz ẑ)e

iωt, where ny,z ≪ 1 and my,z ≪ 1,

we linearize the LLG equations with respect to the basis {my,mz, ny, nz}T to form an

eigenvalue problem. The eigenfrequencies ω are then determined by the equation∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iω ωH ωs ωK + ωA + iαω

−ωH iω ωA + iαω ωs

0 2ωJ + ωK + ωA iω ωH

−2ωJ − ωA 0 −ωH iω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (3.7)

wherein only two of the four solutions are physically distinct, with the others being redun-

dant. The two physical solutions, denoted as the acoustic mode ωac and the optical mode

ωop, in the context of STT interaction with Gilbert damping, yield complex values. The

real parts of these solutions specify the precessional frequencies, while the imaginary parts

delineate the stability of the eigenmodes. An eigenmode is considered unstable when its

imaginary part Im[ω] becomes zero, indicating the commencement of auto-oscillation.

Figures 3.4(a) and (b) illustrate the real and imaginary components of both modes

as functions of the STT strength ωs, for µ0H = 0 T (black curves) and µ0H = 2 T

(red curves), applied parallel to ωs. Notably, a magnetic field of 2 T exceeds the critical

threshold, resulting in the Néel vector adopting left-handed chirality in ωac.
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At µ0H = 0T, the real parts of the eigenfrequencies, Re[ωac] and Re[ωop], converge

as the STT strength increases, until they coalesce at a bifurcation point. Concurrently, the

imaginary parts, Im[ωac] and Im[ωop], remain degenerate and constant. Past this bifurcation

point, Im[ωac] declines sharply, reaching zero at ②, a point just marginally beyond the

bifurcation. According to Ref. [13], the anti-damping influence of STT is confined to the

narrow interval between the bifurcation and ②, predominantly countervailing the hard-axis

anisotropy’s effects rather than directly opposing Gilbert damping.

Conversely, at µ0H = 2T, the dynamics alter significantly. The bifurcation point

for the imaginary parts shifts to zero, rendering any STT application instantly antithetical

to damping on the Néel vector, thus precipitating the auto-oscillation of the acoustic mode

at the much-reduced threshold denoted by ①. Regarding the real parts, the Zeeman field

obliterates the bifurcation point (effectively relocating it to infinity), ensuring the two modes

never intersect. This field-induced phenomenon results in the bifurcation point’s annulment,

markedly lowering the threshold for auto-oscillation where Im[ωac] = 0.

Upon elucidating the impact of the Zeeman field on the eigenfrequencies, it be-

comes pertinent to examine the eigenvectors for a more intuitive understanding of auto-

oscillation dynamics. Particularly, we focus on the manner in which magnetic moments pre-

cess around their equilibrium directions at the auto-oscillation threshold (i.e., Im[ωac] = 0).

We numerically simulate the eigenvectors at thresholds ① (for µ0H = 2T) and ② (for zero

field), with Figures 3.4(c) and (d) displaying snapshots where amplitudes are exaggerated

for clarity. Notably, both scenarios demonstrate left-handed chirality in the precession of

sublattice magnetic moments. However, the orientation of the polarization plane, contain-
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ing the major axis of elliptical trajectories and highlighted in green, varies significantly:

it is nearly parallel to the easy plane of NiO at ① and inclined by approximately 45◦ at

②. This inclination at ② vividly illustrates the STT’s counteraction against the hard-axis

anisotropy [13].

It is crucial to recognize that the Zeeman field alone does not induce instability;

rather, it is the anti-damping influence of STT that initiates auto-oscillation. Nonetheless,

in the absence of magnetic fields, the hard-axis anisotropy of NiO significantly impedes the

anti-damping effect. The Zeeman field contributes by mitigating the hard-axis anisotropy

ωK , thereby enhancing the STT’s capability to counteract Gilbert damping and foster the

anti-damping effect.

To elucidate the concept of field-assisted auto-oscillation further, we calculate the

threshold STT ωth
s as a function of the applied magnetic field for various Gilbert damping

constants. Figure 3.4(e) demonstrates a monotonic decrease in ωth
s with an increasing

magnetic field, a trend that is particularly pronounced for lower Gilbert damping values.

For instance, employing the experimental Gilbert damping value of α = 5×10−4 [45], we find

that a 6T magnetic field can reduce ωth
s by over an order of magnitude (illustrated by the red

curve). With an even smaller damping, say α = 1× 10−4, the reduction in ωth
s approaches

two orders of magnitude at 6T. Additionally, ωth
s displays an asymmetric behavior with

respect to H, with more significant reductions for positive H values (when the Zeeman field

is parallel to the current-induced spin accumulation ωs). This asymmetry is more distinctly

captured in the output auto-oscillation frequency, as depicted in Figure 3.4(f). Specifically,

positive (negative) magnetic fields parallel (antiparallel) to ωs favor the excitation of the
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acoustic (optical) mode by STT. However, driving the optical mode into auto-oscillation

(for negative H) destabilizes the system, leading to large-angle precession in the y−z plane.

Contrary to the STT threshold, the output frequency as a function of H remains nearly

unaffected by α beyond 2T (1T) for positive (negative) magnetic fields, as demonstrated in

Figure 3.4(f). This stability arises because the triggered auto-oscillation’s output frequency

primarily depends on the real part of the eigenfrequency, which is largely insensitive to

Gilbert damping.

In the context of both spin pumping and spin-torque oscillation analyses, the

application of a magnetic field in directions other than along the Néel vector reduces the

overall effect due to two reasons: 1) It is the projection of the Zeeman field onto the Néel

vector that influences the polarization of the eigenmodes; 2) Deviation of the Néel vector

from the easy axis without a corresponding adjustment in hrf leads to diminished microwave

absorption.
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Figure 3.1: (a) eigenfrequencies and (b) polarization of the eigenmodes for NiO, compared

with (c) and (d)—their counterparts in MnF2. (e) Zoom-in plot of (b) in the vicinity of the

critical point with illustrations of precession trajectories. Inset: dependence of the critical

field on the hard-axis anisotropy. Parameters: for NiO, ωJ = 1.7 × 1013, ωK = 1.4 × 1010,

ωA = 5.2× 108 (rad/s), and α = 5× 10−4;
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Figure 3.2: Figures (a) and (b) illustrate the acoustic mode in NiO at zero and non-zero

magnetic fields, respectively, with an emphasis on the critical point where a chirality flip

occurs. The depictions exaggerate the precession trajectories to enhance visual understand-

ing. In (a), the absence of a magnetic field results in antiparallel precessions with opposite

chirality, while in (b), the introduction of a magnetic field beyond the critical point induces

a chirality flip, showcasing the altered dynamics.
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Figure 3.3: Strength of DC spin pumping as a function of the applied magnetic field at

different driving frequencies in the acoustic branch. Inset: the output voltage varies with

the driving frequency ranging from 90 to 180GHz.
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Figure 3.4: Figures (a) and (b) depict the real and imaginary components of the eigen-

frequencies for NiO, respectively, as functions of the STT strength ωs. The analyses are

conducted for both zero magnetic field (black curves) and µ0H = 2T (red curves). The

STT thresholds in scenarios with (①) and without (②) an applied magnetic field are in-

dicated. Notably, ② occurs just slightly above the bifurcation point. Panels (c) and (d)

provide schematic representations of the eigenmodes at thresholds ① and ②, elucidating

the system’s behavior at these critical junctures. Finally, panels (e) and (f) illustrate the

variations in STT threshold values and the resultant auto-oscillation output frequency as a

function of the applied magnetic field, across different Gilbert damping constants.
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Chapter 4

Spin Pumping in Ferrimagnets

4.1 From Antiferromagnets to Ferrimagnets

Although many advantages make AFM a good candidate for developing next-

generation, multifunctional devices, there is still one intractable problem hindering the

progress of AFM spintronics, and that is the vanishing magnetization. Despite the potential

to manipulate AFM materials with extremely high currents, the lack of a net magnetization

complicates the reading mechanisms in device engineering, rendering commercialization a

formidable task[34].

A promising solution to this dilemma lies in the utilization of ferrimagnets (FIMs).

FIMs exhibit magnetic moments that are antiparallel, akin to their AFM counterparts, yet

they retain a remnant magnetization. This residual magnetization facilitates easier detec-

tion and manipulation of FIMs, making them more amenable to practical applications in

spintronics. By leveraging the advantageous properties of FIMs, researchers can circumvent

the challenges associated with the vanishing magnetization in AFMs, paving the way for
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the development of more efficient and commercially viable spintronic devices.

FIMs hold the potential to function as high-frequency antiferromagnets while re-

taining the ease of detection characteristic of ferromagnets. This dual nature offers un-

precedented opportunities for the development of ultrafast device applications, bridging the

gap between the dynamic capabilities of antiferromagnets and the practical advantages of

ferromagnets.

However, a comprehensive understanding of FIMs that encompasses the entire

spectrum between the ferromagnetic and antiferromagnetic limits is still lacking. Develop-

ing such a generalized framework is crucial for unveiling unique characteristics that may not

be apparent near the compensation points. Moreover, it would provide a unified perspective

on the spin dynamics in FIMs, aligning them with those observed in purely ferromagnetic

and antiferromagnetic materials. By exploring the full potential of FIMs, we can unlock

new avenues for spintronic devices that leverage the best of both ferromagnetic and anti-

ferromagnetic properties.

4.2 Static Properties

Considering a two-sublattice FIM characterized by macrospin variables S1 and S2

that are antiferromagnetically coupled. The corresponding sublattice magnetic moments are

M1 = γ1S1 and M2 = γ2S2, where the gyromagnetic ratios γ1 and γ2 may generally differ.

This disparity in magnetizations leads to a competition that switches at the temperature

of angular momentum compensation [36, 56]. However, in typical FIMs composed of Fe,

Co, and Gd ions, γ1 and γ2 differ by only a few percent. Thus, for simplicity, assume
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γ1 = γ2 = γ, capturing the essential behavior of FIMs. Consequently, the ratio of sublattice

spins and magnetizations can be represented by the same parameter ξ = |S2/S1| = |M2/M1|.

The total spin S = |S1|+ |S2| remains constant, implying that the total magnetic moment

Ms ≡ γS = |M1|+ |M2| is also constant. Accordingly:

|M1|
Ms

=
1

ξ + 1
, (4.1a)

|M2|
Ms

=
ξ

ξ + 1
. (4.1b)

The parameter ξ can continuously vary from 0 to 1. When ξ → 0, one sublattice vanishes,

and the system effectively behaves as a ferromagnetic material. Conversely, when ξ → 1, the

two sublattices fully compensate, rendering the system antiferromagnetic. The broad range

of ξ encompasses a wide variety of FIMs with different chemical compositions and allows

exploration of physically interesting regions beyond the reach of temperature variations,

uncovering profound implications not necessarily achievable in real materials.

By analyzing the ground state using two dimensionless vectors m1 = M1/Ms and

m2 = M2/Ms (note: these are not unit vectors). The free energy density is given by:

ϵ =Jm1 ·m2 −
A

2
[(m1 · x̂)2 + (m2 · x̂)2]

+
K

2
[(m1 · ẑ)2 + (m2 · ẑ)2]−MsH0 · (m1 +m2), (4.2)

where H0 is the external magnetic field, and J , A, and K represent the antiferromagnetic

(AFM) exchange coupling, easy-axis, and hard-axis anisotropy, respectively. These con-

stants are taken to be positive and have absorbed the factor of S. Given the difficulty in

deriving sublattice-specific anisotropy forms in FIMs and their lack of universality, a com-

mon simplification that treats the anisotropy energies for both sublattices equally [35, 33]
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can be adopted. Additionally, due to the typical dominance of K over A, inducing an out-

of-plane rotation necessitates an impractically large magnetic field. Thus, in-plane fields are

focused on, parameterized by the azimuthal angle ϕ, as depicted in Fig. 4.1(a). As ϕ varies,

m1 and m2 undergo in-plane rotations characterized by angles θ1 and θ2, respectively. This

allows us to express the free energy density ϵ as a function of three angles:

ϵ =
h̄ξ

(ξ + 1)2

[
ωJ cos(θ1 − θ2)−

ωA

2
(cos2 θ1 + ξ2 cos2 θ2)

]
− h̄ωH

ξ + 1
[cos(ϕ− θ1) + ξ cos(ϕ− θ2)], (4.3)

where h̄ωJ = J , h̄ωA = A, h̄ωH = H0Ms, and a constant term proportional to K has been

omitted. The equilibrium state is obtained by minimizing ϵ with respect to θ1 and θ2 under

given field strength ωH and field angle ϕ. For convenience in simulating spin dynamics, all

parameters are scaled into angular frequencies, and we set ωJ = 1 so that ωA and ωH are

normalized to the exchange energy.

Before exploring variations in ξ, the system’s response to an increasing magnetic

field and its distinction from the antiferromagnetic (AFM) case for a specific value of ξ = 0.5

(i.e., S2 = S1/2) are examined firstly. Figure 4.1(b) illustrates the angles θ1 and θ2 as

functions of the field strength ωH at various field angles. When ϕ = 0, meaning that

H0 is aligned with the easy axis, the two spins remain unchanged until a spin-flop (SF)

transition occurs around ωH = 0.4. At this point, they abruptly rotate towards a canted

configuration. Beyond the SF transition, the spins increasingly align with the field direction

until full polarization is achieved at approximately ωH = 0.95, marking the onset of the spin-

flip phase [3]. This behavior closely resembles that observed in AFM systems. However, a
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Figure 4.1: (a) Schematic illustration of system geometry. The vectors m1, m2, and B are

characterized by θ1, θ2, and ϕ relative to the positive x̂ direction. The unit vector of total

magnetization m = (m1 +m2)/2 and the Néel vector n = (m1 −m2)/2 are represented

by orange and purple arrows. (b) θ1 (red) and θ2 (blue) as functions of the field strength

ωH along different field angle ϕ, where a SF phase (shaded) is clearly seen for ϕ = 0. (c)-(f)

The perpendicular and parallel components of m and n with respect to the field direction

when ϕ varies from 0 to 2π at different field strengths. Orange and blue curves are below

the SF transition, red curves are within the SF phase, and green curves are in the spin-flip

phase. ξ = 0.5 and ωA = 0.08 are used for all plots.
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notable difference is that θ1 and θ2 are continuous across the entire range, including the SF

transition, whereas in the AFM limit, they both exhibit a near π/2 jump at the SF point.

For non-zero field angles, the SF phase boundaries become blurred, resulting in continuous

changes in both θ1 and θ2, as well as their derivatives with respect to ωH .

Subsequently, the ground state configuration by varying the field angle ϕ contin-

uously from 0 to 2π are explored. Figures 4.2(a)-4.2(d) present the absolute values of the

parallel and perpendicular components of m = (m1 +m2)/2 and n = (m1 −m2)/2 rela-

tive to the field direction as functions of ϕ for four distinct field strengths: two below the

spin-flop (SF) transition, one within the SF phase, and one in the spin-flip phase. While

the parallel components m∥ and n∥ exhibit minimal variation with ϕ, the perpendicular

components m⊥ and n⊥ display characteristic patterns in different phases: two lobes in

the collinear phase, a single lobe in the SF phase, and four diminutive lobes in the spin-flip

phase. Notably, irrespective of the field strength, all components exhibit periodic behavior,

repeating themselves in the intervals ϕ ∈ [0, π] and ϕ ∈ [π, 2π]. Therefore, for subsequent

analyses, we will focus solely on the range ϕ ∈ [0, π].

To gain deeper insights into the equilibrium properties, the perpendicular compo-

nent m⊥ should be concentrated on, where the spin-flop (SF) phase is more pronounced.

Figure 4.3 expands upon Figure 4.2(c) to cover arbitrary field strengths ωH for different

values of ξ. The horizontal and vertical cuts in the specific case of ξ = 0.5 correspond to

the curves depicted in Figure 4.2(b) and Figures 4.2(c)-4.2(f), respectively. It is evident

that the SF phase is delimited by an ear-shaped contour near ϕ = 0 and π, which expands

(contracts) with increasing (decreasing) ξ. For ξ = 0.1, the SF phase is nearly indiscernible.
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Figure 4.2: (a)-(d) The perpendicular and parallel components of m and n with respect to

the field direction when ϕ varies from 0 to 2π at different field strengths. Orange and blue

curves are below the SF transition, red curves are within the SF phase, and green curves

are in the spin-flip phase. ξ = 0.5 and ωA = 0.08 are used for all plots.
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As the ferromagnetic (FM) limit ξ → 0 is approached (not shown), the SF phase vanishes

entirely. The variation of ξ showcased in Figure 4.3 intuitively illustrates how ferrimagnets

(FIMs) inherently bridge their FM and antiferromagnetic (AFM) limits at equilibrium.

4.3 Dynamical Properties

With the equilibrium spin configuration of the model FIM established, attention

shifts to the dynamical eigenmodes, specifically how magnetic moments precess around

their equilibrium positions. While determining the ground state can be simplified to a two-

dimensional problem when the external magnetic field H0 is confined to the easy plane,

dynamical properties are inherently three-dimensional due to the unavoidable out-of-plane

motions involved in spin precessions. The presence of a magnetic field can induce non-

collinearity between m1 and m2. Therefore, two local coordinate frames are introduced

to describe their dynamical precessions around their individual equilibrium positions [69,

44], as schematically illustrated in Figure 4.4(a). Under this geometry, the free energy in
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Figure 4.3: Density plot of |m⊥| as a function of ωH (relative to ωJ) and ϕ for nine different

values of ξ. For ξ = 0.5, the red and the green cuts correspond to the curves plotted

in Fig. 4.1(b) and Figs. 4.2(a)-4.2(d), respectively. The SF phase is enclosed by an ear-

shaped contour near ϕ = 0 and π, which expands (shrinks) with an increasing (decreasing)

ξ towards the AFM (FM) limit.
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Eq. (4.3) can be reformulated as:

ϵ =
h̄ωJξ

(ξ + 1)2
[Z1Z2 + (X1X2 + Y1Y2) cos (θ1 − θ2)

+(X1Y2 − Y1X2) sin (θ1 − θ2)] +
h̄ωK

2(ξ + 1)2
(Z2

1 + ξ2Z2
2 )

− h̄ωA

2(ξ + 1)2
[
X1 cos

2 θ1 + Y1 sin
2 θ1

+ ξ2(X2 cos
2 θ2 + Y2 sin

2 θ22)

−2(X1Y1 cos θ1 sin θ1 + ξ2X2Y2 cos θ2 sin θ2)
]

− h̄ωH

ξ + 1

[
X2

1 cos(ϕ− θ1) + ξX2
2 cos(ϕ− θ2)

−Y 2
1 sin(ϕ− θ1) + ξY 2

2 sin(ϕ− θ2)
]
, (4.4)

whereXi, Yi, and Zi represent the components ofmi (i = 1, 2) normalized in their respective

local coordinate frames. By expressing the Landau-Lifshitz-Gilbert (LLG) equation ṁi =

fi × mi with fi = − δϵ
h̄δmi

in terms of Xi, Yi, and Zi, we can linearize the spin dynamics

to determine the eigenfrequencies and eigenmodes. While the inclusion of Gilbert damping

αmi×ṁi leads to a slight frequency shift, the fundamental characteristics of the spectrum

remain intact. Therefore, for the sake of simplicity, we neglect the damping effect in this

section.

The analysis commences with a simple case where the hard-axis anisotropy is

negligible (ωK = 0) and the external magnetic field H0 is aligned along the easy axis

(ϕ = 0). Under these conditions, the system exhibits rotational symmetry around the easy

axis, leading to a collinear ground state. Similar to collinear antiferromagnets (AFMs),

this symmetry gives rise to two circularly polarized modes with eigenfrequencies (in the
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Figure 4.4: (a) Schematics of the model FIM in the presence of an in-plane magnetic

field, where two local coordinates are defined based on the equilibrium orientations of m1

and m2. (b) Illustration of the two circularly-polarized eigenmodes in an easy-axis FIM

(ωK = 0) when H0 is applied along x̂. Panels(c) and (d) plot the two eigenfrequencies as

functions of the applied field along three different directions for easy-axis and easy-plane

FIM, respectively, for ξ = 0.5 (or β = 1/3) and ωA = 0.08. The FM mode (solid curves)

and the exchange mode (dashed curves) become degenerate at a critical field below the SF

threshold if and only if ωK = 0 and ϕ = 0. Either a finite hard-axis anisotropy ωK or a

nonzero field angle ϕ (or both) will lift the degeneracy.
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exchange approximation ωA ≪ ωJ) given by:

ωF =

√
ω2
A + 2ωJωA + β2ω2

J

2
− β

2
(ωJ − ωA) + ωH , (4.5a)

ωex =

√
ω2
A + 2ωJωA + β2ω2

J

2
+

β

2
(ωJ − ωA)− ωH , (4.5b)

where the subscript “F” (“ex”) denotes the ferromagnetic (FM) (exchange) mode, typically

in the GHz (sub-THz) regime. The parameter β ≡ 1−ξ
1+ξ ranges from 0 (AFM limit) to 1

(FM limit). In the AFM limit β → 0 (or ξ → 1), the eigenfrequencies reduce to ω± =√
ω2
A + 2ωJωA/2± ωH , consistent with Kittel’s formula for AFM materials. Conversely, in

the FM limit β → 1 (or ξ → 0), the eigenfrequencies become ωF = ωH and ωex = ωJ − ωH

if ωA → 0.

When the magnetic field deviates from the easy axis, the rotational symmetry is

disrupted, leading to a hybridization of the two circularly polarized modes as their eigen-

frequencies converge. This interaction results in an avoided crossing, as depicted by the

blue and black curves in Fig. 4.4(c). Furthermore, a finite hard-axis anisotropy ωK can

significantly widen this anti-crossing gap, as it also disrupts the rotational symmetry, as

shown in Fig. 4.4(d).

To elucidate the hybridization of chiral eigenmodes in the absence of rotational

symmetry, the vicinity of the anti-crossing gap is examined in detail, revealing the evolu-

tion of chirality for each magnetic moment in their respective local frames. Figures 4.5(a)

and 4.5(b) illustrate this behavior. In the ferromagnetic (FM) mode, the chirality of m1

flips as the magnetic field crosses point ④, delineating regions of opposite chirality. Sim-

ilarly, m2 undergoes a chirality flip at point ②. Conversely, in the exchange mode, m1
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Figure 4.5: (a) and (b) are zoom-in plots of the avoided crossing corresponding to (c) and (d)

for ϕ = π/3, respectively. Here, the chirality of m1 (m2) is illustrated by red (blue) ellipses

as seen from the +x1 (−x2) direction. In the FM mode, m1 (m2) becomes linearly polarized

when the magnetic field reaches point ④ (②), across which m1 (m2) flips its chirality of

precession. The ④ and ② points separate regions of distinct elliptical precessions colored

differently. The exchange mode follows a somewhat reversed pattern, which is marked by

⑥ to ⑩.
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experiences a chirality flip first, followed by m2 as the magnetic field strength increases.

The presence of a hard-axis anisotropy ωK not only enlarges the anti-crossing gap but also

extends the range where the two magnetic moments exhibit opposite chirality. This effect

is denoted by ③ for the FM mode and ⑧ for the exchange mode. The interplay between

the magnetic field and anisotropy thus plays a crucial role in dictating the chiral dynamics

of the magnetic moments in ferrimagnetic systems.

The influence of the central parameter in our model, ξ, on the eigenmodes is

examined in the final analysis. Figure 4.6(a) displays the two eigenfrequencies as functions of

a sweeping magnetic field along various in-plane directions for ξ = 0.2, 0.5, and 0.8. For the

case of ξ = 0.5, the collinear, spin-flop (SF), and spin-flip phases are color-coded for clarity.

In Figure 4.6(b), the polarization of each sublattice magnetic moment is characterized by

the ratio of principal axes of the elliptical trajectory in the local frame, ϵy/ϵz, for ϕ = π/3 at

the three corresponding values of ξ. The points of divergence (zero) correspond to locations

where the magnetic moment becomes linearly polarized along the in-plane Y (out-of-plane

Z) direction in the local frame. As the field range extends significantly higher than in

Figure 4.4, an additional chirality flip occurring within the SF phase is revealed, further

illustrating the complex interplay between the magnetic field, anisotropy, and the parameter

ξ in shaping the dynamical behavior of ferrimagnetic systems.
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Figure 4.6: (a) Eigenfrequencies versus magnetic field along different in-plane directions for

ξ = 0.2, 0.5, and 0.8. The collinear, SF, and spin-flip phases are shaded in different colors

for the case of ξ = 0.5 and ϕ = 0. (b) Polarization of each sublattice magnetic moment

expressed as the ratio of the principal axes of elliptical trajectory in the local frame for

ϕ = π/3 at corresponding values of ξ. The diverging (vanishing) locations indicate linear

polarization along the local in-plane Y (out-of-plane Z) direction. The first two divergences

correspond to the two chirality flips depicted in Fig. 4.4. The third one takes place inside

the SF phase.
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Chapter 5

Van der Waals Antiferromagnets

5.1 Introduction

Van der Waals (vdW) antiferromagnets represent a fascinating class of materials

within the broader context of two-dimensional (2D) layered systems. These materials are

distinguished by their weak interlayer van der Waals forces, which facilitate easy exfoliation

into atomically thin layers, like the widely recognized graphene. The antiferromagnetic

nature of these materials adds an extra layer of intrigue, as they exhibit magnetic ordering

without a net magnetization.

The exploration of vdW AF has accelerated in recent years, fueled by the dis-

covery of new materials and the advancement of experimental techniques. These materials

provide a unique platform to investigate fundamental physics, such as the interplay between

magnetism, electronic structure, and topology. Furthermore, their 2D nature creates oppor-

tunities for integrating magnetism into heterostructures with other 2D materials, leading

to innovative device concepts and functionalities.
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5.2 MnBi2Te4(Bi2Te3)n Family

MnBi2Te4(Bi2Te3)n (with n = 0, 1, 2) serves as exemplary instances of vdW AF,

being identified as a vdW magnetic topological insulator (MTI) with A-type antiferro-

magnetic ordering below their respective transition temperatures. The crystal structure of

MnBi2Te4(Bi2Te3)n features an A-B-C stacking along the c-axis, which can be visualized

as the insertion of non-magnetic quintuple Bi2Te3 layers into magnetic MnBi2Te4 layers

demonstrated in Fig. 5.1. These layers are loosely bound by van der Waals exchange forces.

As the number of quintuple layers increases, the van der Waals exchange interaction weak-

ens, subsequently decreasing the magnetic field strength required to drive the resonance.

The MBT family provides a unique platform for structural tuning of the interlayer ex-

change interaction by incorporating quintuple layers (QLs) to separate the ferromagnetic

single layers (SLs). The electronic, magnetic, and thermodynamic properties of the MBT

family have been extensively explored using techniques such as angle-resolved photoemis-

sion spectroscopy (ARPES), transport and magnetometry, magnetic force microscopy, and

high-frequency electron spin resonance measurements. However, a comprehensive investiga-

tion through low-frequency magnetic resonance spectroscopy remains unreported. Previous

high-frequency, high-field electron spin resonance (ESR) experiments demonstrated antifer-

romagnetic (AFM) spin excitations in MnBi2Te4 at fields up to saturation (approximately

6T), whereas only ferromagnetic (FM) excitations were observed in MnBi4Te7. The reso-

nant field conditions in these sub-terahertz experiments, exceeding the spin-flip threshold.
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Figure 5.1: Crystal structures of MnBi2Te4, MnBi4Te7, and MnBi6Te10 with the growth

direction or easy-axis aligned along the [0001] direction (c-axis). The magnetic layer con-

taining Mn atoms is highlighted in orange, and the net magnetization of each Mn layer is

indicated by an adjacent arrow. The non-magnetic quintuple Bi2Te3 layers and magnetic

septuple MnBi2Te4 layers are labeled as QL and SL, respectively.

5.3 Field Rotations at Low Frequency

Our low-frequency spectroscopy measurements were conducted on single crystals

of MnBi4Te7 and MnBi6Te10 at a temperature of T = 7 K, which is below the respective

Néel temperatures of these compounds (reported to be 13 K and 11 K, respectively [72,

64]). The magnetic field was systematically applied at various angles within each of the

three planes defined by the principal crystallographic axes, aiming to probe the anisotropic

magnetic properties of these materials. Specific frequencies of 7 GHz for MnBi4Te7 and 8
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GHz for MnBi6Te10 were employed to observe the resonant behavior associated with their

antiferromagnetic ordering.

The geometry and orientation of the sample relative to the applied magnetic field

are pivotal in interpreting the spectroscopic data. As depicted in Figure 5.2, the sample is

positioned such that the a-b plane aligns with the y-z plane of the coordinate system, with

the x-axis perpendicular to the sample plane. This configuration facilitates a systematic

investigation of the impact of the magnetic field’s orientation on the spin dynamics by

varying the field direction within the defined planes.

Figure 5.3 presents the results obtained from the low-frequency spectroscopy mea-

surements, both experimentally and theoretically, for MnBi4Te7. Rotations within the x-y

and x-z planes correspond to out-of-plane (OOP) rotations with respect to the planar sam-

ples, while a rotation within the y-z plane corresponds to an in-plane (IP) rotation. These

measurements were performed at T = 7 K, with the magnetic field swept from 0 to 1.2 T

at various angles. A representative resonance curve, obtained for the field applied along the

+y-axis, is shown in the inset of Figure 5.3(b) for reference.

The OOP field rotation on MnBi4Te7 in Figure 5.3(a) demonstrates a significant

modulation of the resonance signal with respect to the applied field angle, showing a change

of approximately 0.8 T in the resonance field position. An intense resonance occurs at a

maximum field value of H = 0.93 T when the field is applied along the hard-axis (IP

direction), and a minimum around H = 0.17 T when aligned with the easy magnetic x-axis

(OOP direction).

This modulation of the resonance signal highlights the axial nature of the system,

57



consistent with the A-type easy-axis AF classification of this compound. When the magnetic

field is aligned with the easy axis, the system enters a collinear phase. In this phase, as

discussed in Chapter 3, the Néel vector contributes to spin pumping, requiring only a low

magnetic field to achieve resonance. Conversely, when the magnetic field is applied along

the y-direction, the system transitions to a non-collinear phase, detailed in Chapter 2. Here,

the net magnetization, induced by canted magnetic moments, precesses in a more circular

manner, enhancing spin pumping and requiring a higher external field to reach resonance.

5.4 Theoretical Analysis

The theoretical framework underpinning the results in Fig. 5.3 is based on the

LLG equation, adapted for vdW AFs:

ṁ1 =ωJm1 ×m2 − ωAm1 × (m1 · x̂)x̂+ ωKm1 × (m1 · ŷ)ŷ

− ωHm1 × Ĥ + αm1 × ṁ1, (5.1a)

ṁ2 =ωJm2 ×m1 − ωAm2 × (m2 · x̂)x̂+ ωKm2 × (m2 · ŷ)ŷ

− ωHm2 × Ĥ + αm2 × ṁ2, (5.1b)

where Ĥ is the unit vector of the magnetic field H, α represents the Gilbert damping

constant, ωJ = J/h̄ denotes the exchange energy, which can be deduced from the Néel

temperature or through first-principles calculations, both methods providing consistent

outcomes. ωA = A/h̄ and ωK = K/h̄ represent the out-of-plane easy-axis and in-plane

hard-axis anisotropy constants, respectively. Notably, in van der Waals materials, the ex-

change energy can be comparable to or even much smaller than the easy-axis anisotropy.
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Therefore, by aligning characteristic values from experimental results, we can approximate

the anisotropy parameters for MnBi4Te7 at T = 7 K as ωA = 3.5ωJ and ωK = 1.6ωJ .

For magnetic field scanning in the x-y and x-z planes, the strong easy-axis anisotropy

aligns with the magnetic field within a common plane, simplifying the problem to two di-

mensions. The inductions and results for these cases have been extensively discussed in

Chapter 3, with the primary consideration being the variations in parameter values. How-

ever, the scenario differs significantly when scanning within the y-z plane. In this special

case, the field-rotated plane is perpendicular to the easy axis, necessitating the treatment

of a three-dimensional problem to adequately address the canting behavior of the magnetic

moments.

The experimental reference frame is projected into the ground state local frame,

which is determined by the magnetic field and the easy axis as illustrated in Fig. 5.4. For

m1, the transformations are:

x̂ = x̂1 cos θ − ŷ1 sin θ,

ŷ = x̂1 sin θ + ŷ1 cos θ,

ẑ = ẑ1.

For m2, the transformations are:

x̂ = −x̂2 cos θ − ŷ2 sin θ,

ŷ = x̂2 sin θ − ŷ2 cos θ,

ẑ = ẑ2.

In this new geometry, the exchange energy and easy-axis retain similar forms, but
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the anisotropy and Zeeman energy need to be reformulated for m1 and m2 as follows:

Hard axis anisotropy: ωK (x1 sin θ − y1 cos θ) cos
2 ϕ+ ωK (x2 sin θ + y2 cos θ) cos

2 ϕ,

Zeeman energy: − ωH (x1 sin θ + y1 cos θ) cos (ϕ− ϕB) + ωHz1 sin (ϕ− ϕB)

− ωH (x2 sin θ − y2 cos θ) cos (ϕ− ϕB) + ωHz2 sin (ϕ− ϕB) .

Where ϕ is the angle of the canting plane with respect to the y-axis. If there is

no hard-axis anisotropy or the system holds rotational symmetry, then ϕ = ϕB. From this

configuration, the 4×4 dynamical susceptibility tensor driven by the y-directional resonance

field can be derived for the context of in-plane scanning.

Column 1:



iαω + ωA cos(2θ) + ωJ cos(2θ) + ωK cos(2θ) cos2(ϕ)

+ ωH sin(θ) cos(ϕ− ϕB)


−ωJ cos(2θ)

iω

0


(5.2)

Column 2:



−ωJ cos(2θ)iαω + ωA cos(2θ) + ωJ cos(2θ) + ωK cos(2θ) cos2(ϕ)

+ ωH sin(θ) cos(ϕ− ϕB)


0

iω


(5.3)
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Column 3:



−ωJ cos(2θ)

0iαω + ωA cos2(θ) + ωJ cos(2θ)− ωK sin2(θ) cos2(ϕ)

+ ωH sin(θ) cos(ϕ− ϕB) + ωK sin2(ϕ)


ωJ


(5.4)

Column 4:



0

iω

ωJiαω + ωA cos2(θ) + ωJ cos(2θ)− ωK sin2(θ) cos2(ϕ)

+ ωH sin(θ) cos(ϕ− ϕB) + ωK sin2(ϕ)




(5.5)

Next, the spin current signal generated by an x-polarized (laboratory frame) mi-

crowave magnetic field will be obtained in Fig. 5.3(f), where a crescent-shape signal can be

found along the in-plane z-axis, consistent with the experimental observation.
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Figure 5.2: Sketch of a coplanar waveguide (CPW) with a ground-source-ground configu-

ration utilized in the measurement setup. The sample is positioned on top of the highly

sensitive constricted central region of the CPW. The chosen coordinate system with respect

to the CPW is also depicted. The a-b plane of the sample aligns with the y-z plane of the

chosen coordinate system, with the x-axis perpendicular to the sample plane. The y-axis

corresponds to the direction parallel to the microwave AC field. The polar angles θ and ϕ

account for the direction of the applied DC magnetic field H.
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Figure 5.3: Results for in-plane (IP) field rotations (a-b) and out-of-plane (OOP) field

rotations (c) measured on MnBi4Te7 at T = 7 K and frequency f = 7 GHz. Corresponding

theoretical results are illustrated in (d-f). A representative sample resonance signal is shown

in the inset of (b).
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Figure 5.4: Illustration of the ground state local frame determined by the magnetic field

and the easy axis. Here, ϕB represents the angle of the external magnetic field with respect

to the y-axis, and θ is the cant angle of the magnetic moments with respect to the easy

axis.
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Chapter 6

Conclusions

6.1 Summary and Conclusion

We are now in a good position to conclude the long journey of antiferromagnetic

spintronics. We have explored the intricate dynamics of spin pumping and spin transfer

torque in antiferromagnetic and ferrimagnetic materials, shedding light on the fundamental

mechanisms that govern these phenomena. Our investigation into van der Waals antiferro-

magnets has unveiled their unique properties and potential for integration into spintronic

devices.

Through a combination of theoretical analysis and experimental observations, it

has demonstrated how the interplay between magnetic anisotropies, exchange interactions,

and external magnetic fields influences the behavior of magnetic moments in these materials.

The findings reveal the critical role of the Dzyaloshinskii-Moriya interaction in enhancing

spin pumping efficiency and the significant impact of magnetic field orientation on the

detection of antiferromagnetic resonance signals.
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Moreover, our study extends to the realm of ferrimagnets, where we have iden-

tified the advantages of utilizing these materials in spintronic applications due to their

non-vanishing magnetization. By tuning the ratio of sublattice spins, we have established

a generic picture that bridges the gap between ferromagnetic and antiferromagnetic limits,

offering insights into the spin dynamics across a wide range of ferrimagnetic systems.

In summary, this research contributes to a deeper understanding of spin dynamics

in antiferromagnetic and ferrimagnetic materials, paving the way for the development of

high-speed, energy-efficient spintronic devices. The unique properties of van der Waals

antiferromagnets open up new avenues for exploring topological phenomena and integrating

magnetism into two-dimensional heterostructures. Further advancements in the field of

spintronics are anticipated, with potential applications in information storage, quantum

computing, and beyond.

6.2 Outlook

Future research directions in antiferromagnetic spintronics are rich with potential,

building on the foundations laid by the investigations presented in this dissertation.

One intriguing aspect of antiferromagnetic spintronics is the propagation of spin

currents across interfaces between ferromagnets and antiferromagnets. The atomic-scale

interactions at these interfaces can give rise to unique properties that are not observed

in bulk materials. For instance, the interplay between spin-transfer torque and exchange

bias at the interface can lead to novel phenomena such as spin current-induced switching

in antiferromagnets. Investigating these effects at the atomic level will provide insights
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into the mechanisms governing spin current propagation and open up new possibilities for

spintronic device engineering.

The emergence of van der Waals antiferromagnets has opened up new opportu-

nities for integrating magnetism into two-dimensional heterostructures. These materials

offer a unique platform for studying the interplay between magnetism, electronic structure,

and topology in atomically thin layers. Future research will focus on understanding the

fundamental properties of van der Waals antiferromagnets and exploring their potential for

applications in spintronic devices, sensors, and quantum computing.

While the single-electron approximation has been a useful starting point, incorpo-

rating many-body effects and non-adiabatic dynamics into theoretical models is essential

for a more comprehensive understanding of spintronics. These effects are particularly rele-

vant in materials with strong electron-electron interactions and in systems where the spin

dynamics occur on timescales comparable to the electronic relaxation times. Developing

models that account for these complexities will enable more accurate predictions of spin-

tronic device behavior and guide the design of new materials and structures.

The field of antiferromagnetic spintronics is poised for significant advancements,

with a wide range of promising research directions. Our study guides through a variety of

ways to realize the novel functioning of antiferromagnetic materials in different situations.

We can expect to uncover new physical phenomena and develop innovative technologies

that harness the unique properties of antiferromagnetic materials.
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