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Exponential Stabilization of a Vectored-Thrust Vehicle Using Synergistic

Potential Functions

Pedro Casau, Christopher G. Mayhew, Ricardo G. Sanfelice and Carlos Silvestre

Abstract— In this paper, we design a hybrid controller based
on the concept of centrally synergistic potential functions on the
n-dimensional sphere to achieve global tracking of an attitude
reference as well as exponential stabilization of the position
and velocity of a vectored-thrust vehicle. The proposed hybrid
attitude controller renders a partial attitude reference globally
exponentially stable, and the full attitude reference globally
attractive and locally exponentially stable. This controller is
then combined with a position controller for the quadrotor
vehicle for tracking of a given reference. Simulation results are
provided so as to demonstrate the performance of the proposed
controller.

I. INTRODUCTION

Mechanical systems that have rotational degrees of free-

dom are often described by elements of the n-dimensional

sphere. These include, but are not limited to rigid-body

dynamics, robotic manipulators, and three-dimensional pen-

dulums. The book [1] has detailed descriptions of many

of these systems as well as continuous controller synthesis

techniques. However, it has been shown in [2] that given a

continuous vector field over a compact manifold, there exists

more than one equilibrium point, thus precluding global

asymptotic stabilization of a given setpoint for systems with

rotational degrees of freedom, via continuous feedback.

These topological obstructions have not deterred re-

searchers from applying continuous control laws to the

stabilization of complex systems involving rotational degrees

of freedom. A research subject that has drawn consider-

able attention over the last few years is that of control of

Unmanned Air Vehicles (UAVs). In particular, continuous

control strategies have been used in the stabilization of

vectored thrust aircraft, as described in [3], [4] [5], for

example. In these works, the undesired equilibrium point
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is avoided by means of a control law which grows without

bound near the undesired equilibrium point. In [6], a bounded

controller is proposed but, as shown therein, there exists a

submanifold of the rotation group which is invariant under

the influence of the vector field and it is such that the state

does not converge to the desired equilibrium point. Using

discontinuous quaternion feedback it has been possible to

overcome this limitation, as shown in [7]. The reader is

referred to [8] for an exhaustive summary on the advantages

and disadvantages of different control strategies for rigid-

body dynamics.

It has been recently shown in [9] that neither continuous

nor discontinuous controllers are able to provide robust

global asymptotic stabilization of a setpoint for system evolv-

ing on compact manifolds. The inherent limitations of both

continuous and discontinuous controllers have nurtured the

development of hybrid control techniques, since it has been

shown that hybrid systems satisfying the hybrid basic con-

ditions are endowed with robustness to small measurement

noise [10]. In particular, strategies for rigid-body stabilization

by means of hybrid feedback have been provided in [11]

and [12]. These controllers are instrumental in the recent

techniques for global trajectory tracking of a vectored thrust

vehicle, as illustrated in [13]. More recently, the controller

design in [14] employed synergistic potential functions on

S2 to achieve reduced attitude stabilization by means of a

potential-induced gradient-based feedback and appropriate

switching law that mitigated undesirable equilibria, achieving

global asymptotic stabilization. In [15], we developed the

ideas of synergistic potential functions on Sn to derive a

controller for the reduced attitude stabilization of a rigid body

such that the trajectories of the closed-loop system follow

paths of least distance upon switching. Using the aforemen-

tioned strategy, we were able to prove global exponential

stability of a given reference for the closed-loop system. In

this paper, we extend that controller to attitude tracking for

a rigid body. To accomplish this goal, we define the attitude

error and represent it by means of two orthogonal unitary

vectors and, using this representation of attitude, we show

that it is possible to apply the hybrid controller induced

by synergistic potential functions of S2 to track a given

attitude reference. We show that the partial attitude reference

is globally exponentially stable, the full attitude reference is

globally attractive and locally exponentially stable. We also

demonstrate how this strategy may be applied to the tracking

of a reference position trajectory for a quadrotor vehicle. The

proofs of the results in this paper are to appear elsewhere.

The paper is organized as follows. In Section II, we

present some notation that is used throughout the paper. In

sections III and IV, demonstrate the application of synergistic



potential functions to the attitude tracking of rigid body and

to position tracking for a vectored thrust vehicle, respectively.

Moreover, we review the properties of the synergistic poten-

tial function that was introduced in [15]. In Section V, we

provide a set of simulations, validating our results.

II. PRELIMINARIES & NOTATION

The set Rn denotes the n-dimensional Euclidean space,

equipped with the inner product 〈u, v〉 = u⊤v, defined for

each u, v ∈ Rn, and the norm |x| =
√
〈x, x〉. The set N

denotes the set of natural numbers and S
n := {x ∈ R

n+1 :
x⊤x = 1} denotes the n-dimensional sphere and x0+MB :=
{x ∈ Rn : |x− x0| ≤ M} denotes a ball with radius M > 0,

centered at x0 ∈ Rn. Cn(M ,N ) denotes a function from

M to N that is continuously differentiable up to order n.

For F ∈ Cn(M ,N ) with n ≥ 1, M ⊂ Rm, N ⊂ Rk and

F (x) := (F1(x1, . . . , xm), . . . , Fk(x1, . . . , xm)) for each

x ∈ M , we define

∂F

∂x⊤
:=




∂F1

∂x1

∂F1

∂x2

. . . ∂F1

∂xm

...
. . .

. . .
...

∂Fk

∂x1

∂Fk

∂x2

. . . ∂Fk

∂xm


 ,

and ∂F
∂x

:= ∂F
∂x⊤

⊤
. If F is a twice differentiable scalar

function, then we define ∂2F
∂x⊤∂x

:= ∂
∂x⊤

(
∂F
∂x

)
and ∇F :=

∂F
∂x

.

Given a continuously differentiable function V : Sn →
R≥0, its set of critical points is

crit(V ) := {x ∈ S
n : Π(x)∇V (x) = 0},

where Π(x) = In+1 − xx⊤. SO(3) denotes the set of

orthogonal matrices with determinant equal to 1, i.e. if

R ∈ SO(3) then R⊤R = I3 and det(R) = 1.

A hybrid system H = (C,F,D,G) defined in R
n is

defined as follows:

H :

{
x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G(x)
,

where C ⊂ Rn is the flow set, F : Rn ⇒ Rn is the flow

map, D ⊂ R
n denotes the jump set, and G : Rn ⇒ R

n

denotes the jump map, where ⇒ denotes a map from sets

in Rn to sets in Rn. A subset E ⊂ R≥0 × N is a compact

hybrid time domain if

E =

J−1⋃

j=0

([tj , tj + 1]× {j}) ,

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤
. . . ≤ tJ . It is a hybrid time domain if for all (T, J) ∈ E,

E ∩ ([0, T ]× {0, 1, ..., J}) is a compact hybrid domain.

Every solution (t, j) 7→ x(t, j) to a hybrid system is

defined on a hybrid time domain domx ⊂ R≥0×N0, where

R≥0 denotes the set of non-negative real numbers and N0

denotes the set of non-negative integers. A solution to a

hybrid system is said to be maximal if it cannot be extended

by flowing nor jumping, complete if its domain is unbounded,

and precompact if it is complete and bounded (the reader is

referred to [10, Chapter 2] for more information on solutions

to hybrid systems).

The so-called hybrid basic conditions [10, Assump-

tion 6.5] are reproduced next for the sake of completeness.

Definition 1. The hybrid system H satisfies the hybrid basic

conditions if:

(A1) C and D are closed subsets of Rn;

(A2) F : Rn ⇒ Rn is outer semicontinuous and locally

bounded relative to C, C ⊂ domF , and F (x) is convex

for every x ∈ C;

(A3) G : Rn ⇒ Rn is outer semicontinuous and locally

bounded relative to D, and D ⊂ domG.

Assuming that each maximal solution to H is complete,

a compact set A is said to be: globally stable for H, if for

each ǫ > 0 there exists δ > 0 such that each solution φ to H
with |φ(0, 0)|A ≤ δ satisfies |φ(t, j)|A ≤ ǫ for each (t, j) ∈
domφ; globally attractive for H if every maximal solution

x to H is complete and limt+j→∞ |x(t, j)|A = 0, where

|x|A := miny∈A |x− y|. A set A is globally asymptotically

stable for H if it is both globally attractive and stable for

H. We say that a compact set A is globally exponentially

stable in the t-direction if there exists k, λ > 0 such that, for

each maximal solution φ to the hybrid system, the following

holds:

|φ(t, j)|A ≤ k exp(−λt) |φ(0, 0)|A ,

for each (t, j) ∈ domφ and supt domφ := sup{t : (t, j) ∈
domφ} = ∞. When this property holds for all maximal

solutions starting from a neighborhood of A, we say that A
is locally exponentially stable.

III. TRACKING ON SO(3)

The attitude of a rigid-body can be represented by a

rotation matrix R ∈ SO(3) with kinematics

Ṙ = RS(ω), (1)

where ω ∈ R3 denotes the angular velocity and

S(ω) :=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

(c.f. [16]). Given attitude and angular velocity references

(Rd, ωd) satisfying

Ṙd = RdS(ωd), ωd ∈ MB (2)

for some M > 0, we may define the attitude error as

R̃ = R⊤Rd. (3)

Using (1) and (2), the derivative of (3) is given by

˙̃
R = −S(ω − R̃ωd)R̃. (4)

where we have used the facts S(ω)⊤ = −S(ω) for each

ω ∈ R3 and AS(v)A−1 = S(Av) for each non-singular

A ∈ R
3×3 and for each v ∈ R

3. Defining ω̃ := ω − R̃ωd, it

follows from (4) that, for a constant vector r ∈ S2, the time

derivative of x := R̃r is given by

ẋ = S(x)ω̃.

This is important because each element of SO(3) can be

represented by two orthogonal unitary vectors, thus we



are able to cast the tracking problem on SO(3) as the

stabilization of the system

ẋ1 = S(x1)ω̃, ẋ2 = S(x2)ω̃, (5)

where (x1, x2) := (R̃r1, R̃r2) and r1, r2 ∈ S2 are mutually

orthogonal, that is, r⊤1 r2 = 0. The controller design problem

that we address in this paper is provided below.

Problem 2. Given two mutually orthogonal vectors r1, r2 ∈
S2, design a hybrid controller Hc := (Cc, Fc, Dc, Gc) with

state xc ∈ Xc and input (x1, x2) := (R̃r1, R̃r2) such that

the set

Ar1 := {z ∈ Z : x1 = r1} (6)

with z := (x1, x2, xc) and Z := S2 × S2 × Xc, is globally

exponentially stable in the t-direction for the interconnection

between Hc and the system (5), and the set

AR := {z ∈ Z : x1 = r1, x2 = r2} (7)

is globally attractive and locally exponentially stable. �

To tackle this problem, we make use of the concept

of centrally synergistic potential functions on Sn that was

introduced in [14] and which we describe below.

Definition 3. Given r ∈ Sn and a compact set Qr ⊂ Rm,

for some m > 0, we say that Vr ∈ C1(Sn × Qr,R) is a

centrally synergistic potential function relative to Qr, if it is

positive definite relative to

AVr
:= {r} ×Qr (8)

and if there exists δ > 0 such that

µVr
(x, y) := Vr(x, y)− min

w∈Qr

Vr(x,w) > δ, (9)

for each (x, y) ∈ E(Vr), where E(Vr) := {(x, y) ∈ Sn×Qr :
r ∈ crit(V y

r )\{r}} with V y
r (x) := Vr(x, y). We also say that

Vr has synergy gap exceeding δ. �

Centrally synergistic potential functions of Sn satisfy the

following very important properties which are introduced

in [15].

Proposition 4. Let r ∈ Sn, let Qr ⊂ Rm be a compact

set, Vr ∈ C1(Sn ×Qr,R), and V y
r ∈ C1(Sn,R) be defined

as V y
r (x) = V (x, y) for each (x, y) ∈ Sn × Qr. Then, the

following holds: 1) If Vr is positive definite relative to (8),

then r ∈ crit(V y
r ) for each y ∈ Qr; 2) The function (9) is

continuous and the map

̺Vr
(x) := argmin{Vr(x, y) : y ∈ Qr}, (10)

defined for each x ∈ S2, is outer semicontinuous. �

As shown in [14] and [15], this class of functions induces

a natural hybrid controller for the global asymptotic sta-

bilization of a reference r ∈ Sn that uses a gradient-based

control law during flows and appropriate switching near

undesired equilibrium points of the closed-loop system. In

this paper, we propose an adaptation of the aforementioned

hybrid controller, given by

ẏ1 = 0
ẏ2 = 0

︸ ︷︷ ︸
z ∈ CR

y+1 ∈ ̺Vr1
(x1)

y+2 ∈ ̺Vr2
(x2)︸ ︷︷ ︸

z ∈ DR

(11)

with output

ω̃(z) := k1S(x1)∇V y1

r1
(x1) + k2x1x

⊤
1 S(x2)∇V y2

r2
(x2),

(12)

where k1, k2 > 0 are controller parameters, z :=
(x1, x2, y1, y2) belongs to

Z := {(x1, x2, y1, y2) ∈ S
2×S

2×Qr1×Qr2 : 〈x1, x2〉 = 0},
V yi

ri
(xi) := Vri(xi, yi) for each i ∈ {1, 2} and for each z ∈

Z , Vr1 and Vr2 are centrally synergistic potential functions

with respect to Qr1 and Qr2 , respectively, for orthogonal

unitary vectors r1, r2 ∈ S2. The flow and jump sets are given

by CR = CR1
∩ CR2

and DR = DR1
∪ DR2

, respectively,

where, for each i ∈ {1, 2},

CRi
:={z ∈ Z : µVri

(xi, yi) ≤ δ},
DRi

:=
{
z ∈ Z : µVri

(xi, yi) ≥ δ
}
,

(13)

for some δ > 0.
The interconnection between the controller (11)

and (5) yields the closed-loop hybrid system

HR = (CR , FR, DR , GR), given by

FR(z) := (S(x1)ω̃, S(x2)ω̃, 0, 0) ∀z ∈ CR ,

GR(z) := (x1, x2, ̺Vr1
(x1), ̺Vr2

(x2)) ∀z ∈ DR .
(14)

Note that the control law (12) has two components: the

first is normal to x1 and the second is collinear to it. As

a consequence, global exponential stability in the t-direction

is guaranteed for (6) but not (7), as shown next.

Theorem 5. Given r1, r2 ∈ S2 satisfying r⊤1 r2 = 0 and

synergistic potential functions relative to Qr1 and Qr2 ,

denoted by Vr1 and Vr2 , respectively, if, for each (x2, y2) ∈
S2 × Qr2 , r⊤1 S(x2)∇V y2

r2
(x2) = 0 and x⊤

2 r1 = 0 implies

that x2 = r2 or µVr2
(x2, y2) > δ, then the set (6) is globally

asymptotically stable for the hybrid system (14) and the

set (7) globally attractive.

Next we show that, if the centrally synergistic potential

function Vr1 and its derivative satisfy some quadratic bounds,

then the set (6) is globally exponentially stable in the t-
direction for the hybrid system (13).

Corollary 6. Let Vr1 denote a centrally synergistic potential

functions relative to r1. If there exist α, α, η > 0 such that

α |x1 − r1|2 ≤ Vr1(x1, y1) ≤ α |x1 − r1|2 ∀z ∈ Z (15a)
∣∣Π(x1)∇V y1

r1
(x1)

∣∣2 ≥ ηVr1(x1, y1) ∀z ∈ CR , (15b)

then the set (6) is globally exponentially stable in the t-
direction for the hybrid system (14).

Next, we provide particular examples of centrally synergis-

tic potential functions Vr1 and Vr2 , to be used in stabilization

on SO(3). The full description of these functions can be

found in [15]. Let V := S2 × (S2\{r}) and let us consider

the following function:

Vr(x, y) :=
1− r⊤x

1− r⊤x+ k (1− y⊤x)
, (16)

with k > 0 and defined for each (x, y) ∈ V , whose gradient

is given by

∇V y
r (x) =

kVr(x, y)y − (1− Vr(x, y))r

1− r⊤x+ k (1− y⊤x)
,



for each x ∈ S2 and satisfies

|Π(x)∇Vr(x, y)|2 =
2kVr(x, y) (1− Vr(x, y))

(
1− r⊤y

)

(1− x⊤r + k (1− y⊤x))
2 ,

for each x ∈ S2. Given r ∈ S2, γ ∈ R satisfying −1 ≤ γ <
1, we define the set Qr ⊂ S2 as

Qr =
{
y ∈ S

2 : r⊤y ≤ γ
}
. (17)

The boundary of Qr, denoted ∂Qr, is

∂Qr =
{
y ∈ S

2 : r⊤y = γ
}
.

The following result was introduced in [15].

Theorem 7. Given r ∈ S2 and γ ∈ [−1, 1), let Qr(r, γ)
be given by (17). Then, considering the definitions (10), the

following holds for the function Vr given in (16)

̺Vr
(x) =






Qr(r, γ) if x = r

−x if 1 > r⊤x ≥ −γ

γr −
√

1−γ2Π(r)x

|Π(r)x| if − 1 < r⊤x < −γ

∂Qr(r, γ) if r⊤x = −1.

(18a)

νVr
(x) =






1− r⊤x

1− r⊤x+ 2k
if r⊤x ≥ −γ

1− r⊤x

1− r⊤x+ k
(
1− γ +

√
1− γ2 |Π(r)x|

)

if r⊤x < −γ
(18b)

for each x ∈ S2, where νVr
(x) := miny∈Qr

V (x, y). �

For any given γ ∈ [−1, 1), the function (16) is a centrally

synergistic potential function relative to Qr with synergy gap

exceeding δ, for any

δ ∈
(
0,

1 + γ

2/k + 1 + γ

)
. (19)

Theorem 8. The function Vr ∈ C1(Sn × Qr given in (16)

satisfies (15) with

α =
1

2(1 + k +
√
1 + 2kγ + k2)

, (20a)

α =
1

2(1 + k −
√
1 + 2kγ + k2)

, (20b)

η =
2k(1− V ⋆)(1− γ)

(
1 + k +

√
1 + 2kγ + k2

)2 , (20c)

where V ⋆ := max{Vr(x, y) : µVr
(x, y) ≤ δ, (x, y) ∈ S2 ×

Qr}. �

The next result shows that, using the right controller pa-

rameters, it is possible to meet the conditions of Theorem 5.

Proposition 9. Given two mutually orthogonal unitary vec-

tors r1, r2 ∈ S2 and Vr2 given by (16), for each k > 0 and

γ ∈ (−1, 0), if

δ ∈
(
0,− 4kγ

4 + 4k + k(1− γ2)

)
(21)

then r⊤1 S(x2)∇V y2

r2
(x2) = 0 and x⊤

2 r1 = 0 implies that

x2 = r2 or µVr2
(x2, y2) > δ.

For the particular constructions of Vr1 and Vr2 given

in (16), we are able to assert a local stability property for

the system (5), in addition to the global exponential stability

property that was proved in Corollary 6.

Proposition 10. Given k > 0, γ ∈ (−1, 1) and centrally

synergistic potential functions with respect to Qr1 and Qr2 ,

denoted by Vr1 : S2 × Qr1 → R≥0 and Vr2 : S2 × Qr2 →
R≥0, respectively, and given by (16), the set

C := {(x1, x2) ∈ SO(3) : x1 = r1, x2 = r2}

is locally exponentially stable for the system (5) with ω given

by (12).

The proposed controller is particularly tailored for the sta-

bilization of the quadrotor vehicle presented in the following

section. It was shown in [15] that the proposed controller

tracks a reference vector in S2 through geodesics, thus it

is more appropriate for the application at hand than other

stabilization strategies such as the one in [17].

IV. EXPONENTIAL STABILIZATION OF A VECTORED

THRUST VEHICLE

In this section, we design a controller for a vectored thrust

vehicle that tracks a given reference, using the controller

presented in the previous section. The dynamics of this kind

of vehicles are described by the following equations:

ṗ = v (22a)

v̇ = Rr1u+ g (22b)

Ṙ = RS(ω), (22c)

where g ∈ R3 is the gravity vector, p ∈ R3 and v ∈
R3 denote the position and velocity, respectively, of the

body attached frame relative to the inertial reference frame,

expressed in inertial coordinates, r1 ∈ S2 is the thrust

direction which is fixed with respect to the body of the

vehicle, u ∈ R denotes the thrust force, R ∈ SO(3) is

the rotation matrix that maps vectors in body coordinates to

inertial coordinates, and ω ∈ R
3 represents the the angular

velocity, which is considered as an input. The model for

vectored thrust vehicles (22) can be found in [3] and [13],

for example.

To design the controller, we split the problem in two:

firstly, we consider u and R as inputs and stabilize the

position subsystem; secondly, we use the position controller

to define an attitude reference for the attitude tracking

controller and use the angular velocity as the input.

Assuming that the reference trajectory is a smooth path

t 7→ rd(t) = (pd, ṗd, p̈d,
...
pd)(t) satisfying

ṙd ∈ MpB

for some Mp > 0, we define the tracking errors

p̃ := p− pd ṽ := v − ṗd



which, using (22), are characterized by the following equa-

tions of motion:
˙̃p = ṽ,

˙̃v = Rr1u+ g − p̈d.
(23)

The stabilization of the position subsystem described by (23)

amounts to the stabilization of three double integrators in

parallel, hence we may use a linear controller of the form

w(p̃, ṽ) := K

[
p̃
ṽ

]
, (24)

for each (p̃, ṽ) ∈ R3 × R3. Then, if

u(p̃, ṽ, R) := r⊤1 R
⊤(w(p̃, ṽ) + p̈d − g), (25a)

Rr1 = ρ :=
w(p̃, ṽ) + p̈d − g

|w(p̃, ṽ) + p̈d − g| , (25b)

the error dynamics (23) can be rewritten as follows:

˙̃p = ṽ, ˙̃v = w(p̃, ṽ), (26)

meaning that the acceleration of the vehicle is equal to

the control law for the double integrator system. From the

definition of ρ in (25b) it is clear that

w(p̃, ṽ) + p̈d − g 6= 0 (27)

is a pivotal condition to guarantee that the controller is well

defined. To address this issue, we provide an auxiliary result

in Proposition 12 which guarantees that, for each compact

set of initial position and velocity tracking errors, there exists

a controller gain K such that the condition (27) is satisfied.
Since the full attitude reference Rd ∈ SO(3) to be tracked

by the attitude controller must satisfy (2) in addition to

Rdr1 = ρ, then

S(r1)ωd = S(r1)
2R⊤

d

ẇ + p
(3)
d

|w(p̃, ṽ) + p̈d − g| .

Let R̃ := R⊤Rd denote the attitude error and let the thrust

input be given by (25a). Then, it is possible to write the

dynamics of the error variables using (22) as follows:

˙̃p = ṽ (28a)

˙̃v = Rr1r
⊤
1 R

⊤ (w(p̃, ṽ) + p̈d − g) + g − p̈d (28b)

˙̃
R = −S(ω̃)R̃, (28c)

with ω̃ := ω − R̃ωd. Suppose that we are given a unitary

vector r2 ∈ S2 that is orthogonal to r1 ∈ S2, then it

is possible to represent R̃ by the two orthogonal vectors

x1 := R̃r1 and x2 := R̃r2, as done in Section III. Using

these definitions, it is possible to describe the full system as

follows:

ṙd ∈ MpB (29a)

Ṙd = RdS(ωd) (29b)

˙̃p = ṽ (29c)

˙̃v = Rdx1x
⊤
1 R

⊤
d (w(p̃, ṽ) + p̈d − g) + g − p̈d (29d)

ẋ1 = S(x1)ω̃ (29e)

ẋ2 = S(x2)ω̃ (29f)

where ω̃ ∈ R3 is the input and

ωd := S(r1)R
⊤
d

ẇ + p
(3)
d

|w(p̃, ṽ) + p̈d − g| .

Let ζ := (rd, Rd, p̃, ṽ, z) ∈ Z and Z := R12 × SO(3) ×
R

3×R
3×Z , where z and Z are given in Section III. Then the

interconnection between (28) and the attitude controller (11)

with the modified output

ω̃(ζ) := kp
S(x1)∇V y1

r1
(x1) |∇vVp| |w(p̃, ṽ) + p̈d − g|

|S(x1)∇V y1

r1 (x1)|
√
Vp(p̃, ṽ)

+ k1S(x1)∇V y1

r1
(x1) + k2x1x

⊤
1 S(x2)∇V y1

r2
(x2)

where kp > 0, Vp given by

Vp(p̃, ṽ) :=
[
p̃⊤ ṽ⊤

]
Pǫ

[
p̃
ṽ

]
,

for each p̃, ṽ ∈ R6, with P ∈ R6×6 positive definite, yields

the closed-loop hybrid system

ζ̇ ∈ F (ζ) :=




MpB

RdS(ωd)
ṽ

Rdx1u+ g − p̈d
FR(z)


 ζ ∈ C

ζ+ ∈ G(ζ) =




rd
Rd

p̃
ṽ

GR(z)


 ζ ∈ D

(30)

where C := {ζ ∈ Z : z ∈ CR}, D := {ζ ∈ Z : z ∈ DR}, u
is given by (25a).

Theorem 11. For each Mp < g, for each compact set U ⊂
R6, each k > 0, γ ∈ (−1, 0), δ ∈ R satisfying (21), there

exists K ∈ R3×6 satisfying (31) such that

A := Ap ×Ar1

is exponentially stable in the t-direction and the set

B := Ap ×AR

is attractive from U × Z for the hybrid system (30).

V. SIMULATION RESULTS

In this section, we provide simulation results for the

closed-loop hybrid system (30). In the simulations, we have

considered the normalized gravity vector g =
[
−1 0 0

]⊤
,

that is, the gravity is aligned with the x-axis of the inertial

reference frame. To design the position controller, we have

selected the controller gain K for the double integrator

system which minimizes

J =

∫ ∞

0

[
x(t) ẋ(t)

] ([1 0
0 0.01

]
+K⊤K

)[
x(t)
ẋ(t)

]
dt,

where x and ẋ denote the position and velocity along the

x-axis direction, respectively. The attitude controller param-

eters are kp = 1, γ = −0.5, k1 = 1, k2 = 1, k = 1 and

δ = 0.1, which satisfies (21) and (19). We have designed a

circular trajectory pd with radius equal to 1 m and such that

the vehicle performs 3 revolutions per minute with respect

to the z-axis.
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Fig. 1. Evolution of the tracking errors with time.

Figure 1 shows the evolution of position, velocity and

attitude error in time, for an initial condition

p0 =



2
1
1


 , v0 =




0
0.3
0


 , y10 ≈



0.59
0.18
0.79


 , y20 ≈




0.09
−0.07
0.99


 ,

R0 =




−1 0 0
0 −1 0
0 0 1



 .

It is possible to verify that the system behaves as desired

since it converges to the reference trajectory. In the first two

seconds, the vehicle exchanges its potential energy for kinetic

energy, increasing its velocity as it falls towards the refer-

ence. Throughout the first few seconds, the attitude controller

drives the orientation of the vehicle towards the desired

orientation. As the thrust vector converges to the commanded

thrust vector, the linear controller for the position subsystem

is able to regulate the position tracking error as well as the

velocity tracking error.1

VI. CONCLUSIONS

In this paper, we developed the concept of centrally

synergistic potential functions and showed that they can be

applied to the stabilization of an attitude reference for a rigid-

body vehicle. Moreover, we applied this controller to the

stabilization of both position and orientation of a vectored

thrust vehicle.
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APPENDIX

Proposition 12. For each Mp < g and for each compact set

U ⊂ R6, there exists K ∈ R3×6 satisfying

(A+BK)⊤P + P (A+BK) +Q � 0 (31)

for some positive definite symmetric matrices P ∈ R6×6 and

Q ∈ R6×6, with

A :=

[
0 0
0 I3

]
B :=

[
0
I3

]

such that

Ap := {(p̃, ṽ) ∈ R
6 : p̃ = ṽ = 0},

is exponentially stable from U for (26) and, for each solution

t 7→ (p̃, ṽ)(t) to the closed-loop system, |w(p̃(t), ṽ(t))| ≤
g −Mp for all t ≥ 0, where w is given by (24).




