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Abstract

We developed a large-scale dynamical model of the macaque neocortex, which is based on 

recently acquired directed- and weighted-connectivity data from tract-tracing experiments, and 

which incorporates heterogeneity across areas. A hierarchy of timescales naturally emerges from 

this system: sensory areas show brief, transient responses to input (appropriate for sensory 

processing), whereas association areas integrate inputs over time and exhibit persistent activity 

(suitable for decision-making and working memory). The model displays multiple temporal 

hierarchies, as evidenced by contrasting responses to visual versus somatosensory stimulation. 

Moreover, slower prefrontal and temporal areas have a disproportionate impact on global brain 

dynamics. These findings establish a circuit mechanism for “temporal receptive windows” that are 

progressively enlarged along the cortical hierarchy, suggest an extension of time integration in 

decision-making from local to large circuits, and should prompt a re-evaluation of the analysis of 

functional connectivity (measured by fMRI or EEG/MEG) by taking into account inter-areal 

heterogeneity.

Introduction

The receptive field is a central concept in Neuroscience, defined as the spatial region over 

which an adequate stimulus solicits rigorous response of a neuron (Sherrington, 1906). In 

the primate visual cortical system the receptive field size of neurons progressively enlarges 

along a hierarchy (Hubel and Wiesel, 1962; Hubel, 1988; Wallisch and Movshon, 2008). As 
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a result, higher areas can integrate stimuli over a greater spatial extent, which is essential for 

such functions as size-invariance of object recognition in the ventral (“what”) stream for 

visual perception (Kobatake and Tanaka, 1994).

Accumulating evidence suggests that the brain also displays a hierarchy in the temporal 

domain. This allows neurons in higher areas to respond to stimuli spread over a greater 

temporal extent and to integrate information over time, while neurons in early sensory areas 

rapidly track changing stimuli. In human studies, preserving the short timescale structure of 

stimuli while scrambling long timescale structure changes responses in association areas but 

not early sensory areas (Hasson et al., 2008; Lerner et al., 2011; Honey et al., 2012; Gauthier 

et al., 2012; Stephens et al., 2013). Notably, using ECoG, Honey et al. (2012) found that 

cortical areas sensitive to long time structure in the stimulus also show slower decays in 

their temporal autocorrelation (and hence slower dynamics), and Stephens et al. (2013) 

made a similar observation with fMRI. In the macaque, Murray et al. (2014) found a 

hierarchical organization in the timescales of spontaneous fluctuations of single neurons 

across 7 cortical areas, and an area’s timescale was well-predicted by its position in the 

anatomical hierarchy of Felleman and Van Essen (1991). Similarly, temporal correlations in 

neural activity reveal slower decay rates in the frontal eye fields than area V4 (Ogawa and 

Komatsu, 2010), the timescales of reward memory lengthen from parietal to dorsolateral 

prefrontal to anterior cingulate cortex (Bernacchia et al., 2011), and, more generally, 

persistent activity after a brief stimulus can last for seconds, even across inter-trial intervals, 

in association areas (Amit et al., 1997; Histed et al., 2009; Curtis and Lee, 2010). Finally, 

normative theories of predictive coding suggest that a hierarchy of timescales would allow 

animals to form a nested sequence of predictions about the world (Kiebel et al., 2008).

What underlying neurobiological mechanisms might give rise to such a range of temporal 

dynamics? For example, spatial patterns of convergence can produce increasing receptive 

field sizes in the visual hierarchy. Are there basic anatomical motifs that produce a hierarchy 

of timescales?

Here we report a large-scale circuit mechanism for the generation of a hierarchy of temporal 

receptive windows in the primate cortex. This hierarchy naturally emerges in a dynamical 

model based on a recent quantitative anatomical dataset containing directed and weighted 

connectivity for the macaque neocortex (Markov et al., 2011, 2013b, 2014a; Ercsey-Ravasz 

et al., 2013). The data were obtained using the same experimental conditions and measures, 

ensuring a consistent database (Kennedy et al., 2013), and include both the number of 

projections between areas and their laminar origins. Based on a separate anatomical study 

(Elston, 2000; Elston et al., 2011), we introduced heterogeneity across cortical areas in the 

form of a gradient of excitatory connection strengths. Strong recurrent excitation has been 

proposed as a mechanism by which prefrontal cortex could implement “cognitive-type” 

computations, like information integration and memory-related delay activity; we 

hypothesized that differences in recurrent excitation might allow the generation of a 

temporal hierarchy.

The model thus incorporates anatomically-constrained variation in both within-area and 

inter-areal connectivity, and enables us to probe the interplay of local microcircuitry and 
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long-range connectivity that underlies a hierarchy of timescales. Using different sensory 

inputs we demonstrate the existence, in our model, of multiple dynamical hierarchies 

subserved by a single integrated global and local circuit. We then investigate the 

implications of local circuit heterogeneity for macroscopic dynamics measured by functional 

connectivity (i.e. correlations in activity across areas). Here we find a disproportionate role 

for slow dynamics in the prefrontal and other association cortices in shaping resting-state 

functional connectivity. This role is not predicted by long-range connections, suggesting that 

interpretations of brain imaging data will need to be revised to account for inter-areal 

heterogeneity.

While we have used the model to investigate the origin of a hierarchy of timescales, it can 

be a platform for future models relating connectivity to dynamics and the functions of 

cortical areas. Most statistical analyses of connectivity (Bullmore and Sporns, 2009; Sporns, 

2014) and computational models (Ghosh et al., 2008; Deco and Corbetta, 2011; Honey et al., 

2007, 2009; Deco et al., 2014) have lacked comprehensive high-resolution data, relying 

either on collating qualitative tract-tracing data across disparate experiments and conditions 

or on diffusion tensor imaging (DTI), which is noisy and cannot reveal the direction of a 

pathway. Moreover, such models typically treat cortical areas as identical nodes in a 

network, distinguished by connection patterns but not by local properties or computational 

capabilities. While this approach is reasonable for certain purposes, it is doubtful that 

functional specialization of cortical areas can be elucidated without considering 

heterogeneity. Our model provides a framework to explore how dynamical and functional 

specialization can emerge from inter-areal pathways coupled with local circuit differences.

Results

We developed the model in three steps. First, we used recent connectivity data for the 

macaque neocortex (Markov et al., 2014a), designed to overcome the limitations of collated 

anatomical data sets, and collected by the same group under similar conditions, with 

quantitative measures of connectivity. The connectivity weights are directionally specific 

and cover 29 widely-distributed cortical areas, with 536 connections whose strengths span 

five orders of magnitude (Figure 1). The presence or absence of all projections in this 

network has been established; thus there are no unknown pathways.

Second, each cortical area was described by a threshold-linear recurrent network with 

interacting excitatory and inhibitory populations and calibrated by the neurophysiology of 

the primary visual cortex (Binzegger et al., 2009), but rescaled as described below. This is a 

highly simplified description of the dynamics of an area and ignores most within-area 

variability. In particular, note that the model is large-scale in that it addresses macroscopic 

cortical dynamics but is not large-scale in the sense of having millions of neurons or very 

high-dimensional activity. However, this level of complexity allows us to parsimoniously 

capture essential requirements for a hierarchy of timescales. We extend our results in Figure 

7, and suggest further extensions in the Discussion.

Third, we hypothesized that the local microcircuit is qualitatively canonical (Douglas and 

Martin, 1991), i.e. the same across areas, but that quantitative inter-areal differences are 
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crucial in generating the timescales of areas. Specifically, the number of basal dendritic 

spines on layer 3 pyramidal neurons increases sharply from primary sensory to prefrontal 

areas (Elston, 2000; Elston et al., 2011). Taking spine count as a proxy for excitatory 

synapses per pyramidal cell, we introduced a gradient of excitatory input strength across the 

cortex. We modeled this by scaling the strength of excitatory projections in an area 

according to the area’s position in the anatomical hierarchy described below.

Gradient of excitation along the cortical hierarchy

The laminar pattern of inter-areal projections can be used to place cortical areas in a 

hierarchy: neurons mediating feedforward connections from one area to another tend to 

originate in supragranular layers of the source area, whereas feedback projections tend to 

originate in infragranular layers (Felleman and Van Essen, 1991; Barbas and Rempel-

Clower, 1997). This was quantified by Barone et al. (2000), who observed that the fraction 

of projecting neurons located in the supragranular layers of the source area defines a 

hierarchical distance between two areas; this allowed them to reproduce the hierarchy of 

Felleman and Van Essen (1991) using data from connections to only two areas (V1 and V4).

The laminar data included with this paper (see Table S1) contain hierarchical distance 

measured this way for all pairs of cortical areas included in the model (Fig. 2A). We follow 

the approach of Markov et al. (2014b), and use these to estimate each area’s position in an 

underlying hierarchy. We found that an area’s position in this anatomical hierarchy is 

strongly correlated with counts of spines on pyramidal neurons in that area (Elston, 2007). 

This allowed us to introduce a systematic gradient of excitatory connection strength per 

neuron along the cortical hierarchy, and to explore how such heterogeneity interacts with the 

pattern of long-range projections to produce large-scale dynamics.

As a visual and conceptual aid, in Figure 2C we use a two-dimensional embedding to plot 

hierarchy and connectivity for the 29 areas. The angle between two areas reflects connection 

strength (closer areas have stronger connections), and the distance of an area from the center 

reflects hierarchy (higher areas closer to the center). The low-dimensional embedding is 

approximate but captures broad features of cortical organization and provides intuitive 

understanding of the model’s behavior. It suggests two hierarchical streams of sensory input 

originating in area V1 (primary visual cortex) and area 2 (part of primary somatosensory 

cortex) respectively, and converging on densely-connected association areas. We next 

explored the response of the network to these sensory inputs.

Response to visual inputs

We simulated the response of the network to a pulsed input to primary visual cortex (area 

V1). The response is propagated up the visual hierarchy, progressively slowing as it 

proceeds (Fig. 3A). Early visual areas, such as V1 and V4, exhibit fast, short-lived 

responses. Prefrontal areas, on the other hand, exhibit slower responses and longer 

integration times, with traces of the stimulus persisting several seconds after stimulation. As 

with the response to a pulse of input, white-noise input is integrated with a hierarchy of 

timescales: the activity of early sensory areas shows rapid decay of autocorrelation with time 

whereas cognitive areas are correlated across longer periods (Figs. 3B and C). Thus, a 
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hierarchy of widely disparate temporal windows or timescales emerges from this 

anatomically-calibrated model system.

To quantitatively compare areas, we fit single or double exponentials to the decay of each 

area’s autocorrelation function (see Figure S2 for plots of the fits). These fits capture a 

dominant characteristic timescale for each area in our model in response to visual 

stimulation. The time constants from the fits are plotted in Figure 3D, with areas ordered by 

position in the anatomical hierarchy. As can be seen from the bar plot, the dominant 

timescale of an area tends to increase along the hierarchy (i.e. left to right), suggesting an 

important role for a gradient of excitation in generating the temporal hierarchy.

Nevertheless, an area’s timescales are not entirely determined by its hierarchical position, 

and the plotted timescales do not increase monotonically with hierarchy. To gain some 

intuition for the role of long-range projections in the model, consider area 8m (part of the 

frontal eye fields), which is low in the hierarchy and would show a rapid decay of 

correlation in the absence of long-range projections (far-right panel of Figure 5A) but 

instead demonstrates long timescales in the model (and in the empirical observations of 

Hasson et al. (2008)). As can be seen from Figure 2C, area 8m participates in a strongly-

connected core of prefrontal and association areas (Ercsey-Ravasz et al., 2013; Markov et 

al., 2013b), allowing it to show long timescales that emerge from inter-areal excitatory loops 

(these timescales are strongly attenuated in the absence of feedback projections). The shared 

slower timescales are particularly characteristic of prefrontal areas in our model (see Figure 

S2, especially areas best fit by two timescales). Conversely, while area TEpd is high in the 

hierarchy it does not participate in this core and is instead strongly-coupled to ventral stream 

visual areas. Thus, it reflects the faster timescales of visual input.

Multiple functional hierarchies

The response to visual input reveals an ascending hierarchy of timescales in the visual 

system. We next stimulated primary somatosensory cortex (area 2), which is weakly 

connected to the visual hierarchy and strongly connected to other somatosensory and motor 

areas (Fig. 2C). As previously, input propagates up a hierarchy of timescales (Fig. 4A). 

However, the somatosensory response uncovers a different dynamical hierarchy to visual 

stimulation. Primary somatosensory cortex shows the fastest timescale, followed by primary 

motor cortex (area F1) and somatosensory association cortex (area 5). Parietal and premotor 

areas show intermediate timescales and, as with visual stimulation, prefrontal areas show 

long timescales. Visual areas demonstrate much weaker responses than before, and are 

mostly driven by top-down projections from association areas. Thus, in the absence of direct 

input they reflect the slower timescales of a distributed network state. In Figure 4B, we 

contrast time-constants for visual and somatosensory stimulation across areas.

An area’s timescales emerge from a combination of local circuit properties, the specificity of 

long-range projections, and the particular input to the network. Our model allows us to 

examine the contribution of each. These can be intuitively summarized by noting that each 

area in Figure 2C shows timescales approximately determined by its distance from the 

periphery (hierarchical position), proximity to the central clusters (long-range connectivity) 

and distance from the source of input.
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Role of local and long-range projections

To further dissect the contributions of local and long-range projections, we examined time 

constants in response to visual input after removing either differences in local microcircuitry 

or inter-areal projections. In the second panel of Figure 5A, we show that the range of 

timescales is drastically reduced in the absence of differences in the microcircuit across 

areas. Moreover, there is no longer a relationship to an area’s position in the anatomical 

hierarchy. Thus, while differences in long-range inputs and outputs to each area are 

significant, they are insufficient to account for disparate timescales and local heterogeneity 

is needed.

In the third panel of Figure 5A, we show the effect of removing long-range feedback 

projections, and for the far right panel we remove all long-range projections and stimulate 

individual areas separately. The range of time-constants is lower, reflecting the propensity of 

slow areas to form long-range excitatory loops with each other. More significantly, once 

long-range projections are removed an area’s time-constant simply reflects its position in the 

hierarchy.

We extend our investigation of the role of long-range projections by contrasting the resting-

state response (i.e., equal white-noise input to all areas) of the intact network to networks 

where long-range connections are scrambled while preserving the gradient of excitation. A 

number of these networks show responses that are poorly-fit by exponentials, so we measure 

timescale non-parametrically as the time after pulse offset for activity to decay to within 5% 

of baseline. In Fig. 5B, we show that scrambling almost entirely removes the hierarchy of 

timescales, further confirming that a gradient of excitation alone is insufficient to separate 

timescales.

The connectivity data show specificity both in which projections exist and in their strengths, 

and both connection probability and strength decay exponentially with inter-areal distance 

(Markov et al., 2011, 2013b, 2014a; Ercsey-Ravasz et al., 2013). In Fig. 5C we preserve 

network topology (i.e. which areas are connected), but scramble the strengths of non-zero 

projections. Here the separation of timescales is strongly attenuated for most areas, 

suggesting that specificity in projection strengths and not just network topology is required 

for the timescales we see.

Localized eigenvectors and separated timescales

The model for a single area is threshold-linear, meaning we ignore nonlinearities besides the 

constraint that firing rates be positive. This allowed us to explore the genesis of separated 

timescales with linear systems analysis. The activity of a linear network is the weighted sum 

of characteristic activity patterns, called eigenvectors (Rugh, 1995). Each eigenvector 

evolves on a timescale given by a corresponding eigenvalue, and is differently driven by 

different inputs.

The eigenvectors of the linearized network are localized: those with short timescales are 

broadly concentrated around sensory areas and those with long timescales are concentrated 

at frontal areas (Fig. 6). In general, if an eigenvector is small at a node then its amplitude at 

that node in response to input will also be small, and the corresponding timescale will be 
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weakly expressed. Thus localization means that for most inputs network dynamics will be 

dominated by rapid timescales at sensory areas and slower timescales at cognitive areas. In 

previous theoretical work, we have shown how localized eigenvectors can arise in networks 

with gradients of local properties and produce a diversity of timescales (Chaudhuri et al., 

2014).

Extension to nonlinear dynamics and multistability

The threshold-linear local circuit let us highlight the requirements for a hierarchy of 

timescales and provide intuition from linear systems theory. Moreover, many systems can be 

linearly approximated, and neural responses are often near-linear over a wide range of inputs 

(Wang, 1998; Chance et al., 2002), making linear and threshold-linear models useful for 

neural circuits (Dayan and Abbott, 2001).

Nevertheless, linear models show limited dynamics and cannot capture features such as 

persistent activity or multistability, which are thought to be important for cognitive 

capabilities in higher areas (Wang, 2013). We thus replaced our local circuit with a firing 

rate (“mean-field”) version of a spiking network with more realistic synaptic dynamics 

(Wang, 2002; Wong and Wang, 2006). When isolated, an area in this network can display 

qualitatively different regimes (Figure 7A). For relatively weak recurrent connections, an 

area shows a single stable state. As recurrent excitation is increased, there is a transition to a 

regime with two stable states, with low and high firing rates that correspond to a resting state 

and a self-sustained persistent activity state. In this regime, an area can integrate inputs over 

time and maintain activity in the absence of a stimulus. Such dynamical regimes have been 

proposed to underlie “cognitive-type” computations such as working memory and decision-

making (Wang, 2002, 2013).

With this model for each area in the large-scale network, we introduced the previous 

gradient of excitation. Consequently, sensory areas show single stable states while areas 

further up the hierarchy can also show persistent activity when driven by strong inputs 

(Figure 7B). Small perturbations are insufficient to shift the state of a node but take longer to 

decay away in areas further up the hierarchy (Figure 7C).

For small inputs the network response resembles the threshold-linear model: a brief input to 

V1 is propagated up the hierarchy, with rapid decays in sensory areas and slow decays in 

association areas (Figure 7D). Thus, the previous results extend to a nonlinear model with a 

larger dynamical repertoire. Exploring the complex dynamical behaviors that this network 

can show is beyond the scope of this paper, but one interesting consequence of the extended 

model is that the timescales of small fluctuations around baseline predict the ability of an 

area to show much longer timescales in response to larger inputs (Figure 7C, and see 

Discussion), as observed in Honey et al. (2012) and Murray et al. (2014).

Functional connectivity

We now investigate the implications of local heterogeneity for network organization as 

measured by correlations in resting-state activity (resting-state functional connectivity). In 

our model, frontal and association areas reflect a slowly varying network state, and we 

hypothesized that this state should strongly shape functional connectivity.
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In Figure 8A we show functional connectivity in our threshold-linear model with 

heterogeneity in local area properties, or without it (as typically assumed in models relating 

functional to anatomical connectivity). The inclusion of a gradient of local excitation 

reduced the correlation (r2) between functional and anatomical connectivity from 0.83 to 

0.53 (Figure S6 shows results using a BOLD kernel (Boynton et al., 1996)).

Multiple studies find that the strength of an anatomical connection between areas 

(“structural connectivity”) partially predicts correlations in neurophysiological signals from 

those areas (functional connectivity), but there are significant differences (Hagmann et al., 

2008; Honey et al., 2009; Damoiseaux and Greicius, 2009; Honey et al., 2010; Deco and 

Corbetta, 2011; Deco et al., 2014). Our results also suggest that inter-areal connections are 

insufficient to predict functional connectivity. However, we find that heterogeneity in local 

connectivity could help account for the previously unexplained variance.

In our model slower frontal and temporal areas in particular show enhanced functional 

connectivity. Consequently, areas with slow timescales play a predominant role in the 

network, as shown by “lesioning” individual areas (Figure 8B, left panel). For the simple 

case of identical input to each area, the effect of lesioning an area is well predicted by the 

time constant of intrinsic fluctuations (Figure 8B, right panel). Note that areas most 

important for functional connectivity are not simply those at the highest positions in the 

hierarchy (i.e., with the most recurrent connections), and hierarchy alone poorly predicts 

impact on functional connectivity (r2=0.18). For instance, the caudal superior temporal 

polysensory region (STPc) and the rostral parabelt (PBr) are at intermediate hierarchical 

positions but have strong connections to other parts of STP (darker lines in Figure 8B) 

forming a cluster that shapes functional connectivity. In general, areas combining 

intermediate to high hierarchical position and strong connections to slow areas have the 

strongest influence on global activity patterns.

Discussion

The main findings of this work are threefold. First, it establishes a circuit mechanism for a 

hierarchy of temporal receptive windows, which has received empirical support in recent 

human (Hasson et al., 2008; Lerner et al., 2011; Honey et al., 2012; Gauthier et al., 2012; 

Stephens et al., 2013) and single-unit monkey experiments (Murray et al., 2014). The model 

extends time integration in decision-making from local circuits (Wang, 2008) to a large-

scale system across multiple timescales (Hasson et al., 2015). Second, inter-areal 

heterogeneity implies that areas cannot be treated as identical nodes of a network and slow 

dynamics in association areas can play a disproportionate role in determining the pattern of 

functional connectivity. This suggests that functional connectivity analyses be revised. And 

third, this is the first large-scale dynamical model of the macaque cortex based on weighted 

and directed connectivity and incorporating heterogeneity across areas.

The ability to integrate and hold information across time is critical for cognition. On the 

other hand, the brain must rapidly and transiently respond to changing stimuli. Complex 

behavior thus requires a multitude of coexisting timescales. We demonstrate how such 

timescales (or temporal receptive windows) naturally emerge in a model of primate cortex, 
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built with quantitative anatomical data. Our work reveals multiple functional hierarchies 

converging on a slow distributed network of densely-connected frontal and other association 

areas.

A long-standing observation is that strong recurrent connections can produce slower 

dynamics (Wang, 2008), and we show how this basic anatomical motif can interact with the 

pattern of long-range connections to produce a hierarchy of timescales. The hierarchies we 

observe with different stimuli thus emerge from a combination of heterogeneity in excitatory 

connection strengths across areas and the profile of long-range connectivity (which is highly 

specific to each area (Markov et al., 2013a)), and neither alone can predict an area’s 

timescales. For example, while differences in local recurrence play a crucial role in 

generating timescales, the correlation between anatomical hierarchy and timescale is 

relatively weak (r2=0.25, 0.14, 0.22 in the visual, somatosensory and resting-state conditions 

respectively). Moreover, areas can show quite different timescales in response to different 

inputs: as seen in Figure 4B, even early visual areas with relatively weak recurrence can 

have slower timescales. To characterize the dependence of timescales on local and long-

range properties, we first removed the gradient of local properties and observed that the 

hierarchy of timescales vanishes. Separately, we preserved the local properties of areas and 

either removed (Fig. 5A, right panels) or scrambled the long-range projections both globally 

and while preserving network topology (Fig. 5B and C).

It will be important to further probe the interaction of local and long-range connectivity. 

This will require additional anatomical and physiological data, and our model can be a 

platform to explore the consequences of these data for large-scale dynamics. For example, 

following the finding of Markov et al. (2011) that the proportion of local to long-range 

synapses is roughly conserved across areas, we have chosen to scale both local and long-

range projections by an area’s position in the hierarchy. Nevertheless, local and long-range 

synapses may have different strengths and properties and may differentially target cell types 

and dendritic locations. Relatedly, long-range inputs may be differentially gated depending 

on task demands and the local circuit regime. Conversely, in the nonlinear model, long-

range input can shift the dynamical regime of the local circuit: an area that lacks persistent 

activity when isolated may show persistent activity in the presence of a weak long-range 

control signal. These interactions can provide the network with an enhanced computational 

repertoire.

To examine timescales in the clearest way possible, we modeled individual areas with a 

threshold-linear rate model, where time constants are mathematically well defined. 

However, the results hold for a nonlinear local circuit with multiple stable states. Note that 

this work did not focus on the latency of neural responses (Schmolesky et al., 1998; Bullier, 

2001), for which a spiking model is needed. Nevertheless, single neurons in the monkey 

cortex display slow responses during stimulus presentation as shown in the model; for 

example, in decision tasks prefrontal and parietal neurons can show quasi-linear ramping 

with a time constant that may appear effectively infinite (Smith and Ratcliff, 2004; Gold and 

Shadlen, 2007; Wang, 2008; Brunton et al., 2013). Thus the model is the simplest that is 

adequately designed to reveal a hierarchy of timescales in the cortex.
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We systematically introduced heterogeneity into our model by assigning each cortical area a 

hierarchical position determined by its pattern of feedforward and feedback projections. A 

priori, there is no reason why excitatory input would vary systematically along this 

anatomical hierarchy. However, we find that hierarchical position correlates very strongly 

with the number of spines per neuron in an area (Fig. 2B). This suggests an underlying 

cortical organizational principle, which could be explored in future (see Scholtens et al. 

(2014) for a similar observation and Barbas and Rempel-Clower (1997) and Hilgetag et al. 

(2002) for correlation of hierarchy with lamination and relative density of an area).

There are no systematic measurements of the timescales of areas in response to different 

stimuli, but recent studies have compared temporal responses and integration timescales 

across areas and report a hierarchical organization (Hasson et al., 2008; Ogawa and 

Komatsu, 2010; Lerner et al., 2011; Bernacchia et al., 2011; Honey et al., 2012; Gauthier et 

al., 2012; Stephens et al., 2013; Murray et al., 2014). Notably, Honey et al. (2012) connected 

a functional hierarchy in the timescales of preferred stimuli to a dynamical hierarchy in the 

timescales of correlation in network activity, and found autocorrelation timescales similar to 

those we model (in particular, see Fig. 6 of Honey et al. (2012)). Similarly, Murray et al. 

(2014) found that autocorrelation traces were well-described by exponentials, the 

hierarchical ordering of areas they observe agrees with our model, and the timescales of 

small fluctuations in that study are close to the intrinsic time-constants of areas in the model 

(i.e., in the absence of long-range projections such as Fig. 5A, far right panel).

Our model has several testable predictions. Though there are multiple combinations of local 

time constants and network connection strengths that could produce a particular set of 

observed timescales, the model suggests that timescales of small fluctuations should reflect 

the intrinsic properties of areas (far right panel of Fig. 5A), while larger responses should 

reflect time constants that emerge from the entire system (far left panel of Fig. 5A). In the 

model, slow network timescales are driven by strongly-connected frontal and temporal 

areas, corresponding to a slowly varying global state. Inactivating these areas should 

decrease slow dynamics in connected areas lower in the hierarchy. The differential 

responses to visual and somatosensory input suggest that when a particular input is not 

involved in a task, the corresponding sensory areas better reflect slow changes in global 

cortical state. This may explain decreases in low-frequency ECoG power (i.e. slow modes) 

when a subject engages in a task (He et al., 2010; Honey et al., 2012), as well as the 

observation of Stephens et al. (2013) that, despite fast timescales in response to visual input, 

early visual areas have slow timescales during auditory processing. Finally, we predict that 

areas with longer timescales, such as prefrontal and superior temporal areas, can shape 

functional connectivity to a greater degree. This highlights the importance of incorporating 

heterogeneous local dynamics in studying the determinants of functional connectivity and, 

intriguingly, suggests that functional connectivity might be used to probe local properties. 

While there is some evidence that frontal and association areas show enhanced functional 

connectivity (Sepulcre et al., 2010) and of a correlation between enhanced functional 

connectivity and slow timescales (Baria et al., 2013), it would be interesting to use 

functional imaging to better understand the link between functional connectivity and 

response timescales (for example, as determined by the approach of Hasson et al. (2008); 

Lerner et al. (2011); Honey et al. (2012); Gauthier et al. (2012)). The link between slow 
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timescales and enhanced functional connectivity might also explain observations that 

functional connectivity is greater at low frequencies (Salvador et al., 2005). Moreover, since 

distant areas tend to lack strong direct connections their functional connectivity will be 

primarily driven by slow distributed network modes and will be further biased towards low 

frequencies, as previously observed (Salvador et al., 2005).

We mostly used a threshold-linear model for local areas, but the hierarchy of timescales 

holds when areas are modeled by a nonlinear microcircuit, similar to one proposed as a 

model for general “cognitive-type” computations (Wang, 2002, 2013). Depending on 

connectivity and input parameters, such networks show a single stable state, multistability 

with persistent firing, or continuous slow fluctuations between metastable states. While we 

do not explore this broader range of behaviors, note that in the nonlinear model the 

timescales of small fluctuations around baseline predict an area’s ability to show much 

longer timescales in response to larger inputs. This can be seen by comparing the timescales 

of Figure 7C with the steady-states of Figure 7A, and by contrasting responses to large and 

small perturbations in Figures 7B and D (also note that timescales in response to large 

perturbations tend to be slower than those from small perturbations even if the area is not 

bistable). This may explain why the timescales of spontaneous fluctuations in an area (on the 

order of hundreds of milliseconds) correlate with its sensitivity to temporal structure in 

stimuli across seconds (Honey et al., 2012) as well as with slow drifts in baseline neural 

activity and the timescales of reward memory (Murray et al., 2014).

Our model is parsimonious, designed to capture a basic mechanism underlying a hierarchy 

of timescales, and can be extended in several ways. First, the local area model could be 

made more complex, and an interesting direction is using the SLNs to incorporate a laminar 

structure. Second, in our model activity propagates along the hierarchy with significant 

attenuation. This attenuation can be substantially decreased by changing model parameters 

(M. Joglekar & X.-J. Wang, personal communication), and may also be removed by 

synchronous firing (Diesmann et al., 1999) or more sophisticated feedback projections 

(Moldakarimov et al., 2015). Third, we only consider cortico-cortical connections. While 

these form the major input to a cortical area (Markov et al., 2011), subcortical projections 

will play an important role. For example, incorporating thalamo-cortical projections would 

allow us to more realistically model input and may help set network state and gate inter-

areal interactions, while neuromodulators such as acetylcholine might modulate the 

excitability of local populations and enhance information transmission at other synapses. 

Fourth, as a first step we used two global parameters to scale long-range connection 

strengths but emerging data relating long-range anatomy and physiology should be 

incorporated. Fifth, extensions should include other inter-areal heterogeneities, such as in 

interneuron types and densities (Medalla and Barbas, 2009) and in neuromodulatory 

signaling (Hawrylycz et al., 2012). For example, it would be interesting to model the higher 

numbers of dopaminergic projections to prefrontal areas. Finally, while we have focused on 

how areas are able to accumulate incoming information on different timescales, processing 

input requires synthesizing it with previous input. Future work should explore how different 

areas in our model integrate information from more realistic time-varying stimulation such 

as a movie or a song and to probe how these responses change when the correlation structure 

of the input is disrupted (for example, by scrambling).
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In conclusion, we report a novel, quantitatively-calibrated, dynamical model of the macaque 

cortex with directed and weighted connectivity. The identification of a specific circuit 

mechanism for a hierarchy of timescales (temporal receptive windows) represents a key 

advance towards understanding specialized processes and functions of different (from early 

sensory to cognitive-type) cortical areas. Our findings demonstrate the importance of 

heterogeneity in local areal properties, as well as the specific profile of long-range 

connectivity, in sculpting the large-scale dynamical organization of the brain.

Experimental Procedures

Anatomical data

Connectivity data are from an on-going project to quantitatively measure all connections 

between cortical areas in the macaque (Markov et al., 2014a). Inter-areal connection 

strengths are measured by counting projecting neurons labeled by retrograde tracer 

injections and normalizing by the total number of neurons labeled in the injection, yielding a 

fractional weight or FLN (Fraction of Labeled Neurons) for each pathway:

So far, 29 areas have been injected and we use the subnetwork consisting of these areas. The 

presence or absence of all connections is known bidirectionally, and 66% of possible 

connections exist, with widely varying strengths.

We also use data on the fraction of neurons in each projection that originate in the upper 

layers of the source area (SLN, for Supragranular Layer Neurons (Markov et al., 2014b)) 

defined as

Data are in Table S1.

Hierarchy and connectivity embedding

To extract the hierarchy, we follow observations from the visual system that the fraction of 

projections originating in the supragranular layers of the source area (the SLN) measures 

hierarchical distance between the source and target areas (Felleman and Van Essen, 1991; 

Barone et al., 2000; Markov et al., 2014b). We use a generalized linear model to assign 

hierarchical values to areas such that the differences in hierarchical values predict the SLNs 

(similar to the method in Markov et al., 2014b).

For Figure 2C, we compute angles θi such that the angular distances between areas Ai and 

Aj correspond to dissimilarity measured as −Log(FLN(Ai, Aj)). We then plot the areas on a 

polar plot with θ(Ai)=θi and .
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See the Supplemental Experimental Procedures and Figure S1 for an expanded discussion of 

the hierarchy and the circular embedding.

Model architecture

Each area consists of an excitatory and an inhibitory population described by

 is the firing rate of the i-th excitatory population, with intrinsic time constant τΕ, 

couplings wEE and wEI from the local excitatory and inhibitory population, and external 

input  (both stimulus input and any noise we add to the system). The inhibitory 

population has corresponding parameters τI, wIE, wII and . The f-I curves are threshold 

linear, with slope βE and βΙ. FLNij is the FLN from area j to area i. μEE and μIE control the 

strengths of long-range input to the excitatory and inhibitory populations, and do not vary 

between connections: all specificity comes from the FLNs. η scales both local and long-

range excitatory inputs to an area by its position in the hierarchy, hi. We set τE=20 ms, τI=10 

ms, βE=0.066 Hz/pA, βI=0.351 Hz/pA, wEE=24.3 pA/Hz, wIE=12.2 pA/Hz, wEI=19.7 

pA/Hz, wII=12.5 pA/Hz, μEE=33.7 pA/Hz, μIE=25.3 pA/Hz and η=0.68. For more details 

see Supplemental Experimental Procedures.

We mostly ignore inter-areal conduction delays, but see Figure S3 for a network with 

conduction delays.

Pulse input, autocorrelation and fitted time constants

For Figures 3, 4, 5 and 8, we choose the background input for each area so that the 

excitatory and inhibitory populations have rates of 10 and 35 Hz respectively.

In Figure 3A, V1 receives a 250 ms pulse of input that drives its rate to 100 Hz. For the 

remaining panels of this figure and Figure 5A, the stimulus to V1 is white-noise with a mean 

of 2 Hz and a standard deviation of 0.5 Hz. The other areas receive a small amount of 

background input (standard deviation on the order of 10−5), but are primarily driven by 

long-range input propagating out from area V1. For Figure 4, the currents are the same 

except that area 2 receives the stimulus rather than V1.

For each area we extract time constants by fitting both one and two exponentials to the part 

of the autocorrelation function that decays from 1 to 0.05. If the sum of squared errors of the 

single exponential fit is less than 8 times that of the double exponential, then we report that 

time-constant. Otherwise we use the sum of time-constants from the double exponential fit, 
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with each weighted by its amplitude. Fits in response to V1 and area 2 input and for resting 

state activity are shown in Figures S2, S4 and S5.

For Figure 4B, we map the time-constants logarithmically to a heat map and plot them using 

Caret (Van Essen et al., 2001).

Functional connectivity

To highlight the effect of intrinsic hierarchy, in Fig. 8A we contrast a network without 

hierarchy with a network that has a gradient of local excitatory connections but, unlike in the 

remaining figures, no gradient in the long-range projection strengths (thus these networks 

have the same long-range connection strengths and differences emerge from local 

properties). We replace  with 

 for the excitatory population, and similarly for the 

inhibitory population. For Figure 8B we use the same network as elsewhere, so that all 

incoming excitatory projections are scaled by an area's hierarchical position.

We calculate functional connectivity as the correlation matrix of area activity in response to 

equal white-noise input to all areas. For Figure 8B we determine this correlation matrix 

analytically (see Supplemental Experimental Procedures). The effect of lesioning an area, A, 

is measured as ‖Cl,A−Crs,A‖/‖Crs,A‖, where Cl,A is the correlation matrix after lesioning A, 

Crs,A is the intact correlation matrix without the row and column corresponding to A, and 

the double lines indicate the norm. The values are then scaled to lie between 0 and 1.

Nonlinear network

The nonlinear single area model is a variant of a model proposed in Wong and Wang (2006) 

as an approximation to a spiking network with AMPA, GABA and NMDA synapses (Wang, 

2002). Each area is described by:

νE and νI are excitatory and inhibitory firing rates, sN is a gating variable corresponding to 

NMDA synapses (with decay timescale τN) and φ is a simplified f-I curve from Abbott and 
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Chance(2005). We set τN=60 ms, τI=10 ms, γ=0.641, wEE=250.2 pA, wEI=8.110 pA/Hz, 

wIE=303.9 pA and wII=12.5 pA/Hz.

For Figures 7A–C we remove long-range connections and characterize an isolated area. The 

bifurcation diagram of Figure 7A shows network steady-states as we vary the hierarchy 

scaling (i.e., 1+ηhi), while Figure 7C shows the slowest timescale of the Jacobian around the 

low firing state.

For Figure 7B we set η=3.4 and give a 100 Hz pulse of input for 250 ms to the two 

disconnected areas at opposite ends of the hierarchy (V1 and 24c). For Figure 7D we 

consider a connected network, with long-range projections only targeting excitatory 

subpopulations, for simplicity, and set μEE=125.1 pA. We give a 200 Hz pulse of input to 

area V1 for 250 ms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Large-scale model of the macaque cortex with a gradient of synaptic 

excitation

- Sensory areas show fast responses while cognitive areas show slow 

integrative activity

- Multiple temporal hierarchies in the same anatomical network

- Functional connectivity analysis needs to incorporate inter-areal 

heterogeneity
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Figure 1. 
The network consists of 29 widely-distributed cortical areas. (A) Lateral (left) and medial 

(right) plots of the macaque cortical surface with areas in color. Plots generated with Caret 

(Van Essen et al., 2001). (B) Connection strengths between all 29 areas. The strength of the 

projection from area A to area B is measured by the Fraction of Labeled Neurons or FLN 

(see Experimental Procedures and Table S1). (C) Three dimensional positions of areas along 

with strongest connections between them (FLN > 0.005). Connection strength is indicated 

by line width.
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Figure 2. 
Hierarchical organization of the cortex. (A) Fraction of neurons in a projection originating 

from the supragranular layers of the source area (SLN). Areas are arranged by hierarchical 

position. Thus most feedforward projections (SLN>0.5) lie below the diagonal and most 

feedback projections (SLN < 0.5) lie above the diagonal. Absent projections shown in grey. 

(B) Hierarchical position of an area is well-correlated with the number of spines on 

pyramidal neurons in that area (Elston, 2007). For details on area labels in this panel see 

Supplemental Experimental Procedures. (C) Two-dimensional plot of areas determined by 
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long-range connectivity and hierarchy. The distance of an area from the edge corresponds to 

its hierarchical position, while the angular distance between two areas is inversely related to 

their connection strength. Areas are colored by cortical lobe. See also Figure S1, and Table 

S1 for the data.
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Figure 3. 
The network shows a hierarchy of timescales in response to visual input. (A) A pulse of 

input to area V1 is propagated along the hierarchy, displaying increasing decay times as it 

proceeds. In all panels, areas are arranged (and colored) by position in the anatomical 

hierarchy. (B) Traces contrasting the activity of area V1 and dorsolateral prefrontal cortex in 

response to white-noise input to area V1. (C) Autocorrelation of area activity in response to 

white-noise input to V1. The autocorrelation decays with different time constants in 

different areas, showing a functional hierarchy ranging from area V1 at the bottom to 

prefrontal areas at the top. (D) The dominant time constants in various areas of the network, 

extracted by fitting exponentials to the autocorrelation (colors as in C). Time constants tend 

to increase along the hierarchy but depend on the influence of long-range projections (for 

example, contrast area 8m with area TEpd). See also Figures S2 and S3.
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Figure 4. 
The response to somatosensory input reveals a different functional hierarchy subserved by 

the same anatomical network. (A) Autocorrelation of activity for areas that show strong 

responses to input to area 2 (part of primary somatosensory cortex). Area labels are arranged 

according to position in the underlying anatomical hierarchy. Inset: time constants fitted to 

the autocorrelation function for each area. (B) Timescales in response to visual (left) and 

somatosensory input (right) shown with lateral (top) and medial (bottom) views of the 

cortex. See also Figure S4.
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Figure 5. 
Role of local and long-range projections in determining timescales. (A) Time-constants fit to 

network activity after removing gradient of excitation or long-range projections. Far left: 

time constants for intact network. Center left: network with no gradient of excitatory 

synapses across areas. Center right: network with feedback projections lesioned. Far right: 

network with all long-range projections lesioned. (B) Effect of scrambling long-range 

connectivity on resting-state network dynamics, measured by the time taken for an area’s 

activity to return to 5% of baseline after a 250 ms pulse of input. Distribution of timescales 

when all connection strengths are randomly permuted. Dark blue, lighter blue and very light 

blue circles indicate median value, 10th to 90th percentiles and 5th to 95th percentiles 

respectively. Intact network shown in black, for comparison. Timescales for scrambled 

networks are much more similar to each other (compare black to blue), and fast visual areas 

show the greatest disruption. (C) Distributions when only non-zero connection strengths are 

permuted, thus preserving the connectivity pattern but not strengths.
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Figure 6. 
Eigenvectors of the network coupling matrix are weakly localized, corresponding to 

segregated temporal modes. Each column shows the amplitude of an eigenvector at the 29 

areas, with corresponding timescale labeled below. The 29 slowest eigenvectors of the 

system are shown.
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Figure 7. 
Hierarchy of timescales in a nonlinear model. (A) Possible steady-states (bifurcation 

diagram) for an area as a function of recurrent strength (normalized by value at V1). Stable 

steady-states are shown with solid lines. Areas with comparatively low recurrent strength 

display only a single steady-state. Increasing the recurrent strengths leads to a regime with a 

high-activity steady-state. The dashed line is an unstable intermediate steady-state. The thick 

blue line shows the parameter range supporting bistability, while the light blue shaded 

region indicates the range used for areas in the model. Steady-states shown as fractional 

activation of NMDA conductance. (B) Response of disconnected areas to a strong pulse of 

input. As in (A), V1 only shows a single stable state, while area 24c shows sustained delay 

activity. (C) The timescales of responses to a small perturbation serve as a probe of the 

recurrent strength of a local area. These timescales are much smaller than those in response 

to a larger input but emerge from the same underlying gradient in recurrent strengths. (D) 

Response of connected network to a brief pulse of input to area V1. As in Figure 3, the input 

is propagated up the hierarchy, slowing down as it proceeds. Note that the input is not strong 

enough to switch any area into the high-activity stable state.
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Figure 8. 
Functional connectivity depends on local microcircuitry. (A) Functional connectivity for two 

networks with identical long-range connectivity. The network on the left has the same 

properties at each area, while that on the right has a gradient of local recurrent strengths. 

Top panel: correlations in area activity for uncorrelated background input to each area. 

Bottom panel: functional connectivity (correlation) vs. structural connectivity (FLN) for 

non-zero projections. The network with a gradient of local recurrence has enhanced 

functional connectivity for slow areas, and a smaller overall correlation between functional 
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and anatomical connectivity (showing that long-range connections alone cannot predict 

global brain activity patterns). (B) Effect of lesioning areas, one at a time, on functional 

connectivity. Left panel: Darker areas are those with a greater influence on resting-state 

functional connectivity. Right panel: The effect of lesioning an area on functional 

connectivity is well-correlated with the time constant of spontaneous fluctuations in that 

area. See also Figures S5 and S6.
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