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Abstract
Automated annotations of protein functions are error-prone because of our lack of knowledge of protein functions. For example, it is often 
impossible to predict the correct substrate for an enzyme or a transporter. Furthermore, much of the knowledge that we do have about the 
functions of proteins is missing from the underlying databases. We discuss how to use interactive tools to quickly find different kinds of 
information relevant to a protein’s function. Many of these tools are available via PaperBLAST (http://papers.genomics.lbl.gov). Combining these 
tools often allows us to infer a protein’s function. Ideally, accurate annotations would allow us to predict a bacterium’s capabilities from its genome 
sequence, but in practice, this remains challenging. We describe interactive tools that infer potential capabilities from a genome sequence or 
that search a genome to find proteins that might perform a specific function of interest.
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Introduction
For most species of bacteria, we have genome sequences but 
not much experimental data about their capabilities. So, to 
understand these bacteria, we look at their genomes and try 
to predict phenotypes such as how they make energy, which 
carbon sources they can use, or which amino acids or vitamins 
they require for growth. In practice, this means predicting 
the protein-coding genes in the genome and then guessing at 
those proteins’ functions based on their similarity to proteins 
of known function (i.e. whose function has been determined 
experimentally). This commentary describes how to use inter-
active tools to better predict the functions of proteins from 
diverse bacteria (and archaea) and the capabilities of those 
organisms.

Why are we focusing on interactive tools instead of fully 
automated annotations? We will show that automated anno-
tations are intrinsically unreliable because much of our knowl-
edge about proteins’ functions is missing from the underly-
ing databases. In practice, automated annotations are often 
erroneous, even for proteins whose function is known. Auto-
mated annotations are necessary because interactive tech-
niques require human attention and cannot be applied to 
every protein, but we view a protein’s automated annotation 
as a crude first guess. We focus on interactive tools—ideally, 
web-based tools that run in a few seconds in a web browser—
because these make it easier to consider the wide range of 
additional data and analyses that can give insight into a 

protein’s function or a bacterium’s capabilities. An overview 
of our recommendations is shown in Fig. 1.

This commentary will focus on enzymes and transporters, 
mostly because we have more experience with annotating 
metabolism than with other aspects of bacterial physiology. 
However, these approaches apply to other types of proteins as 
well. In any case, accurate annotation of enzymes and trans-
porters is central to understanding the metabolic capabilities 
of diverse bacteria.

Results
How accurate are gene annotations for enzymes 
and transporters?
To estimate the accuracy of gene annotations for enzymes 
and transporters, we needed a large set of metabolic genes 
of known function from diverse bacteria. We decided to 
focus on catabolic genes, as identified using randomly bar-
coded transposon sequencing (RB-TnSeq [1]). Catabolic genes 
can usually be identified from RB-TnSeq data because they 
should be important for fitness during growth with that spe-
cific carbon or nitrogen source, but not during growth in 
most other conditions. Furthermore, a specific molecular 
function can often be inferred from these mutant pheno-
types [2]. For example, if a transporter is specifically impor-
tant during growth on l-fucose, it is probably an l-fucose 
transporter. Similarly, if a putative sugar kinase is specifi-
cally important during growth on d-glucosamine, then the 
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Figure 1. Overview of interactive tools. If you are interested in whether 
the genome encodes a specific capability, look at pathway annotations 
from GapMind, or search for candidate proteins that might have a specific 
function using Curated BLAST for genomes. Once you are interested in a 
specific protein, search for homologs of known function or for homologs 
with mutant phenotypes. If data for close homologs are available, this will 
often suggest a role for the protein. Otherwise, look for protein domains, 
predicted localization, known functional residues, and conserved 
operons. These approaches can give complementary hints as to the 
protein’s function. For details and links, see Supplementary Table S1.

kinase is probably either a glucosamine kinase or an N-
acetylglucosamine kinase, depending on whether the organ-
ism catabolizes glucosamine via N-acetylglucosamine [3]; the 
correct pathway can usually be identified by examining the 
other genes that are specifically important for glucosamine
utilization.

We selected a random sample of 500 genes with specific 
phenotypes on carbon or nitrogen sources from the Fitness 
Browser (http://fit.genomics.lbl.gov [2]). A gene has a specific 
phenotype in an experiment if the abundance of its mutants 
changed by at least two-fold, the change is statistically 
significant, and little change was seen in most other exper-
iments [2]. (These genes are listed in Supplementary Dataset 
1.) For each of these 500 genes, we manually determined if the 
phenotype appeared to be due to a role in the uptake or enzy-
matic breakdown of that carbon source or nitrogen source. 
We found 186 enzymes and transporters with specific roles in 
catabolism whose molecular function could be inferred using 
the genetic data. The other 314 genes either did not appear to 
encode enzymes or transporters, or the gene was detrimental 
to fitness, or the phenotype did not seem so specific, or we 
could not assign a specific molecular function in catabolism.

Of the proteins with inferred functions in catabolism, 
about half (96/186) had previously been reannotated in the 
Fitness Browser [2], but while the Fitness Browser’s rean-
notations are biased toward novel biology, the 186 proteins 
represent a random sample of the catabolic functions in the 
bacteria that we have RB-TnSeq data for. These proteins are 
from 31 different bacteria. Most of the proteins are from the 
phylum Pseudomonadota (α,β,γ-proteobacteria), and about 
half (95/186) are from the genus Pseudomonas. These are 
well-studied taxa, so these proteins should be relatively easy 
to annotate.

We considered an automated annotation to be correct, or 
close enough, if it implied the same enzymatic or transport 
reaction to occur on the substrate that was implied by the 
mutant phenotype. If the mutant phenotypes implied multiple 
substrates, and the automated annotation included just one 
of those substrates, it was still deemed correct. Conversely, 
if the automated annotation listed additional substrates 
beyond what was expected from the mutant phenotypes, 
it was still considered correct: the protein may have other 
functions beyond those that were captured by the mutant
phenotypes.

We considered the lack of a specific annotation to be an 
error, as a missing annotation could wrongly imply that the 
organism lacks that activity. In particular, vague annotations 
such as “sugar kinase” or “multiple sugar transport system” 
that did not mention any specific substrates were considered 
as errors, even if the substrate that was inferred from the 
mutant phenotypes was a sugar. If the tool did not report 
any annotation, that was also considered an error. Similarly, 
for fusion proteins with two entirely different activities, the 
annotation was considered incorrect if it only included one of 
those activities. (Three of the 186 catabolic proteins are fusion 
proteins.)

We tested four approaches for automated annotation. First, 
we used the annotation of the closest homolog from Swiss-
Prot, which is a database of ∼570 000 curated annotations 
[4]. Most of the Swiss-Prot annotations are based on homol-
ogy, but a significant fraction is supported by experimental 
evidence. For Swiss-Prot homologs, we required the align-
ment to cover 70% of both proteins. Second, we used the 
GhostKOALA tool from Kyoto Encyclopedia of Genes and 
Genomes (KEGG), which is based on another large database 
of curated annotations [5]. Third, we used annotations from 
RefSeq, which are produced by the National Center for 
Biotechnology Information’s (NCBI’s) Prokaryotic Genome 
Annotation Pipeline (PGAP [6]). PGAP’s annotations are pri-
marily based on curated descriptions of protein families, as 
defined by hidden Markov models. Finally, we used CLEAN, 
which is a machine learning approach based on protein lan-
guage models and contrastive learning [7]. Since CLEAN is 
aimed at predicting enzyme function, we ran it on the 114 
enzymes only (Supplementary Dataset 1).

If we consider vague or missing annotations to be errors, 
then annotation errors were common, with accuracies of 
50%–69% (Table 1). If we ignore vague or missing annota-
tions, then the accuracy rises to 64%–88%. Enzyme annota-
tions were noticeably more accurate than transporter annota-
tions (79% vs. 54% for Swiss-Prot best hits). 

Not surprisingly, accuracy was higher when the annota-
tion was transferred from a closer homolog. For Swiss-Prot, 
if the best homolog was 80% or identical or more, then 
the annotation was almost always accurate (46/47 proteins). 
Annotations from homologs that were 50%–80% identical 
were mostly accurate (85%). However, if the best homolog 
in Swiss-Prot had under 50% identity, transferring the anno-
tation from the best hit was accurate just 61% of the time. 
Similarly, enzyme annotations from CLEAN were far more 
accurate if they were labeled as high confidence (91% vs. 34% 
otherwise).

The protein with a different function than expected given 
its close homolog in Swiss-Prot was HSERO_RS05250, which 
is a transporter subunit that is specifically important for

http://fit.genomics.lbl.gov
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Table 1. Accuracy of automated annotations for a random sample of catabolic enzymes and transporters whose function was inferred from mutant 
phenotypes

 Annotated correctly

Swiss-Prot best hit (%) KEGG (%) RefSeq (PGAP) (%) CLEAN (%)

All 186 69 69 50
Enzymes 114 79 77 61 51
Transporters 72 54 56 33
Ignore if missing or vague varies 80 84 88 64
Not Pseudomonadota 13 31 31 15

Figure 2. Identification of a L-fucose transporter using RB-TnSeq data and conserved gene neighbors. (a) In H. seropedicae SmR1, HSERO_RS05250 is 
specifically important for L-fucose utilization. This screenshot from the Fitness Browser shows the strongest fitness values for this gene from 96 
experiments. A gene’s fitness is the log2 change in the relative abundance of its mutants during an experiment (such as growth in L-fucose). Negative 
fitness values (dark blue) indicate that mutants are at a disadvantage. (b) Gene neighbors of homologs of HSERO_RS05250 confirm that it is involved in 
fucose catabolism. This screenshot from “fast.genomics” shows the gene neighborhoods for seven homologous proteins (72%–100% identity) from 
different genera. Genes are color-coded if similar proteins are present in more than one track. The labels at the top with the likely function of each gene 
were added by hand. L-fucose dehydrogenase, L-fucono-1,5-lactonase, and L-fuconate dehydratase are the initial steps in an oxidative pathway for 
fucose catabolism [74]. HSERO_RS05250 is the ATPase subunit of an ABC transporter. The putative permease and substrate-binding subunits are also 
encoded nearby.

l-fucose utilization (Fig. 2a). HSERO_RS05250 is 80% iden-
tical to A0B297, which Swiss-Prot annotates as acting on 
ribose, galactose, or methyl galactoside. Using PaperBLAST 
[8], we could not find any experimental data about the 
function of close homologs of HSERO_RS05250 or A0B297 
besides the RB-TnSeq data. This subfamily is usually encoded 
near fucose catabolism genes such as l-fucose dehydrogenase,
l-fucono-1,5-lactonase, and l-fuconate dehydratase (Fig. 2b). 
So, we believe that A0B297’s annotation in Swiss-Prot is erro-
neous. The misannotation of A0B297 is probably based on the 
experimentally supported functions of the RbsA and MglA 
proteins of Escherichia coli, which are 44%–47% identical to 
A0B297.

The accuracy of the automated annotations dropped dra-
matically if we excluded proteins from Pseudomonadota, 
which is the best-studied phylum of bacteria. The remain-
ing proteins are from Bacteroidota (10 proteins) or Desul-
fobacterota (3 proteins). Annotation accuracy for these other 
proteins was just 31%, either for Swiss-Prot best hits or 
for KEGG. The poor accuracy reflects the lower level of 
study of those phyla, which leads to a lower similarity 
of their proteins to characterized proteins. For proteins 
with homologs in Swiss-Prot, proteins from Pseudomon-
adota had a median identity to their best hit of 60%, 
while proteins from other phyla had a median identity of
just 39%.
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Table 2. Data sources for the PaperBLAST database

Database Topic No. of protein sequences No. of characterized proteins References

Text mining Papers about proteins 697 794 163 615
Swiss-Prot All proteins 103 035 102 037 [4]
GeneRIF Papers about proteins 82 935 [75]
BioLiP Ligands in structures 38 213 [32]
BRENDA Enzymes 29 304 29 304 [10]
MetaCyc Metabolism 12 665 12 664 [9]
ENA /experiment All proteins 8 775 [69]
CAZy Carbohydrate metabolism 8 629 8 629 [76]
TCDB Transporters 8 505 8 505 [70]
CharProtDB Characterized proteins 7 961 7 173 [77]
EcoCyc Escherichia coli 4 145 3 261 [78]
REBASE Restriction enzymes 3 818 3 818 [79]
RegPrecise Transcription factors 3 160 [71]
Fitness Browser reannotations Mutant phenotypes 1 758 1 757 [2]
PRODORIC Transcription factors 345 345 [72]

PaperBLAST’s text mining uses EuropePMC [80] to search scientific articles, including the full text of most articles, for protein identifiers. For most of the 
curated sources (except for EcoCyc and RegPrecise), only proteins with experimental evidence or literature references are included in PaperBLAST [8]. For 
example, 18% of Swiss-Prot entries have experimental evidence and are included. For TCDB, only transporters with a literature reference and a substrate 
are included [3]. For the ENA, annotations with the “experiment” tag are further filtered, see the Materials and methods section. To identify characterized 
proteins, only databases that usually include experimental evidence are included, and heuristics are used to remove uncharacterized proteins [50], such as 
proteins with functionally uninformative annotations.

How up-to-date are automated gene annotations?
The low accuracy of annotation of these 186 proteins is ironic, 
given that we had previously published the functions for about 
half of them and that most of the relevant RB-TnSeq data was 
published >5 years ago [2]. However, as of December 2023, 
none of these 186 proteins’ functions have been updated 
based on the RB-TnSeq data, either in Swiss-Prot or in other 
curated resources of metabolism, such as MetaCyc [9] or
BRENDA [10].

The low rate of curation of genes whose function was 
inferred using RB-TnSeq could reflect skepticism about our 
approach. To get a broader estimate of the rate at which 
papers about protein functions are curated, we considered a 
sample of 32 papers, published in mBio in late 2016, that 
make claims about protein function in their abstract. (This 
is the subset of the 54 papers analyzed in Price et al. [8] 
that mention the protein’s function in the abstract.) As of 
January 2024, none of these 32 papers are referred to by 
curated Swiss-Prot entries. We then asked whether the key 
proteins were listed as characterized in Swiss-Prot or in other 
curated databases of experimentally characterized proteins 
that are incorporated into PaperBLAST (Table 2). We consid-
ered not only the original paper but also whether other papers 
about those proteins’ function had been curated. We found 
that in 16 cases, the protein(s), or nearly identical orthologs 
from another strain of the same species, were curated. Over-
all, in >7 years, half of the characterized proteins have
been curated. 

The low rate of curation reflects the limited resources avail-
able. Swiss-Prot has roughly three full-time biocurators for all 
prokaryotic proteins, and “tens of thousands of publications 
remain to be curated for enzymes” [11].

Automated annotations may be even more out of date, rel-
ative to current knowledge, because the underlying reference 
databases may be years out of date. Two of the most popu-
lar tools for annotating bacterial genomes are Prokka and the 
RAST Server: each has >10 000 citations in Google Scholar 
[12, 13]. As of January 2024, Prokka’s reference database is 

based on the October 2019 release of Swiss-Prot. The RAST 
server’s reference databases date back to 2016 or earlier [14].

Finally, in practice, protein annotations are often obtained 
from RefSeq, GenBank, or TrEMBL (the non-curated part of 
UniProt). RefSeq updates its annotation pipeline (PGAP) and 
recomputes annotations every so often, but annotations in 
GenBank or TrEMBL are rarely updated. Furthermore, anno-
tations in GenBank or TrEMBL have high error rates, proba-
bly much higher than those of the automated approaches that 
we considered [15, 16].

Why is automated annotation difficult?
Most enzymes and transporters probably belong to known 
families. For instance, of the 186 catabolic proteins discussed 
earlier, 172 (92%) have homologs in Swiss-Prot, and even the 
vague annotations indicate a type of reaction (i.e. “uncharac-
terized oxidoreductase” or “sugar kinase”) or that the protein 
is a transporter. Just 10 of the 186 proteins (5%) could not 
be annotated as the correct type of enzyme, or as a trans-
porter, by using the best hit from Swiss-Prot. However, if a 
protein from a known family is not closely related to any 
characterized protein, it is difficult to identify the correct
substrate.

To quantify what fraction of bacterial proteins are similar 
to characterized proteins, we began with a random sample 
of 2000 protein-coding genes from diverse bacteria. These 
were taken from representative genomes in “fast.genomics” 
[17]. We compared these proteins to a database of 189 323 
experimentally characterized proteins from all kingdoms of 
life, which was compiled from 10 different databases in the 
December 2023 release of PaperBLAST (Table 2). We used 
ublast [18] to find alignments with an expectation value of 
≤10−10 and required the alignment to cover 70% of both 
proteins. We found that just 28% of bacterial proteins are 
≥40% identical to a characterized protein. Even at ∼40% 
identity, annotations for enzymes or transporters will have 
significant error rates. For instance, for catabolic proteins that 
were 35%–50% identical to their best hit in Swiss-Prot and 
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for which the best hit had a specific annotation, the error rate 
was 34%.

Of the bacterial proteins in our sample, most are 
from genomes of isolates, but 19% are from high-quality 
metagenome-assembled genomes (MAGs). (“Fast.genomics” 
uses an MAG as the representative for a genus if it is of high 
quality and if no high-quality isolate genome is available.) Not 
surprisingly, proteins from bacterial MAGs are less likely to 
be ≥40% identical to a characterized protein than proteins 
from bacterial isolates are (21% vs. 30%, P = .0004, Fisher’s
exact test).

Archaeal proteins are less likely than bacterial proteins 
to be similar to a characterized protein. We compared 
2000 random protein-coding genes from diverse archaea 
(again from representative genomes in “fast.genomics”) 
to our database of characterized proteins. Just 21% of 
archaeal proteins are ≥40% identical to a characterized
protein.

Discussion
Overall, most prokaryotic proteins do not have a close char-
acterized homolog in the curated databases, which makes it 
difficult to predict their functions accurately. This underscores 
the need for interactive tools.

Finding characterized homologs with PaperBLAST
To determine the likely function of a protein, our first stop 
is always PaperBLAST, which finds papers about homologs 
(http://papers.genomics.lbl.gov/ [8]). PaperBLAST takes just a 
few seconds to compare the query to proteins from 14 curated 
databases as well as to proteins that are mentioned in scien-
tific articles (Table 2). Ideally, a PaperBLAST search will lead 
to experimental data about a homolog with a known func-
tion, either from one of the curated databases or from a paper 
that has not been curated yet. As of a few years ago, the odds 
of finding useful information in PaperBLAST about a vaguely 
annotated bacterial protein was ∼22% [8]. However, we rec-
ommend using PaperBLAST for all proteins, as it can quickly 
reveal obvious errors in more-specific annotations, such as the
l-fucose transporter discussed earlier.

As another example, consider the dehydrogenase She-
wana3_2071 from Shewanella sp. ANA-3, which was one 
of the catabolic proteins in our annotation test. The best hit 
in Swiss-Prot is a sulfoquinovose 1-dehydrogenase (P0DOV5, 
46% identity), but Shewana3_2071 is specifically important 
for l-arabinose utilization. As shown in Fig. 3, several of 
the top results from PaperBLAST are informative as to its 
function. The top result is the reannotation from the Fitness 
Browser, based on the mutant phenotype. The second result is 
the crystal structure of a similar protein in the complex with 
NADH; this confirms that this is a family of dehydrogenases 
but does not have direct information as to the other sub-
strate. The third result is a paper about C785_RS21245 from 
Herbaspirillum huttiense; the snippet in PaperBLAST’s results 
mentions functional characterization. That paper shows that 
the homolog is a 1-aldose dehydrogenase, with a higher speci-
ficity constant (kcat/KM) for l-arabinose than for other plau-
sible substrates [19]. (The specificity constant for d-fucose 
was three-fold higher than for l-arabinose, but d-fucose is a 
rare compound in nature.) The similarity of Shewana3_2071 
(54% identity) to a biochemically characterized l-arabinose 

dehydrogenase (which was published after we made this rean-
notation) confirms that Shewana3_2071 is an l-arabinose 
dehydrogenase. On the other hand, the next-best substrate of 
C785_RS21245, d-xylose, has a specificity constant that is 
only 14-fold lower than that of l-arabinose. C785_RS21245 
itself probably does not contribute significantly to d-xylose 
degradation: H. huttiense has a different d-xylose-specific 
dehydrogenase whose expression is induced by d-xylose [19]. 
But in a different genetic context, C785_RS21245 proba-
bly could function in d-xylose degradation. This illustrates 
how enzymes’ annotations often simplify their biochemical 
capabilities.

To infer a protein’s function from a characterized homolog, 
the alignment should cover almost the full length of both 
sequences. If not, examine the domain content (see further). 
If the proteins are similar over their full length or contain the 
same domains, then how close is close enough to infer that 
the protein of interest has the same function as the charac-
terized homolog? As a rule of thumb, for enzymes, the most 
similar characterized sequence is likely to have the same func-
tion if it is >40% identity. (For example, in the annotation 
test, for enzymes whose best hit in Swiss-Prot was 35%–50% 
identical and had a specific annotation, the annotation was 
correct 72% of the time.) It is likely to have a similar function 
(but perhaps with a somewhat different substrate) if >30% 
identity. As discussed earlier, transporters are more difficult 
to annotate, and their specificity evolves more quickly, so a 
higher %identity is needed to reach the same confidence.

We update the PaperBLAST database every 2 months, 
so it is much more up-to-date than is possible with auto-
mated annotations. Specifically, for each update, we rerun 
PaperBLAST’s text mining, and we update its copies of Swiss-
Prot, GeneRIF, BioLiP, EcoCyc, and the Fitness Browser rean-
notations. We do not update the other curated databases 
in PaperBLAST as frequently. Also, PaperBLAST’s copy of 
MetaCyc is not being updated because it is no longer freely 
available, and CharProtDB is no longer being updated.

Viewing mutant phenotypes in the Fitness Browser
PaperBLAST also shows any similarity to proteins with 
mutant phenotypes from the Fitness Browser. We call this 
“Fitness BLAST” (see far right of Fig. 3). In particular, 
PaperBLAST highlights if a homolog has a strong pheno-
type in a condition (fitness under −2, meaning that mutants 
decreased in abundance by four-fold or more) or if it has a 
similar fitness pattern as other genes (“cofitness”).

The Fitness Browser includes RB-TnSeq data from diverse 
bacteria and archaea [2]. As of February 2024, the Fitness 
Browser contains 7552 genome-wide experiments from 46 
bacteria and two archaea. Most of these bacteria are from 
the phylum Pseudomonadota, but the Fitness Browser also 
includes data for four Bacteroidota, two Desulfurbacterota, 
one Actinomycetota, and one Cyanobacteriota.

We consider a protein to have a functional link, based on its 
mutant phenotypes, if it has a specific phenotype (as defined 
earlier, see Fig. 2a for an example) or if it is sufficiently cofit 
with another gene. Specific phenotypes or cofitness often indi-
cate a functional relationship, especially if they are conserved 
across similar proteins [2]. To quantify the cofitness of two 
genes, we use the linear correlation between their fitness pro-
files. Sufficient cofitness was defined as a correlation of at least 
0.8 or a correlation of at least 0.6, and similar proteins in 

http://papers.genomics.lbl.gov/
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Figure 3. Finding papers about a protein and its homologs with PaperBLAST. This screenshot shows the top results for Shewana3_2071. Experimentally 
characterized homologs are shown with curated annotations in bold. Homologs that are discussed in papers are shown with snippets of text from those 
papers. Within each snippet, the homolog’s identifier is highlighted. The top right shows links to other interactive tools.

another bacterium have a cofitness of at least 0.6 [2]. Overall, 
the Fitness Browser contains functional links for 33 261 bac-
terial proteins. Across the random sample of 2000 proteins 
from diverse bacteria, 25% have a homolog with a functional 
link that is >40% identity, with 70% coverage in both ways.

To go from a specific phenotype for a putative enzyme 
to the correct substrate, it is often necessary to consider the 
rest of the pathway. For example, consider the putative sugar 
kinase SM_b21217 from Sinorhizobium meliloti, which is 
specifically important for growth with glucosamine as the 
nitrogen source. Depending on which pathway S. meliloti uses 
to consume glucosamine, SM_b21217 might be a glucosamine 
kinase or an N-acetylglucosamine kinase (Fig. 4a [3]). If S. 
meliloti uses the acetylated pathway, then a transacetylase 
and a deacetylase would also be involved in glucosamine 
utilization, and the same transporter and the same kinase 
might be used during utilization of both glucosamine and 
N-acetylglucosamine (Fig. 4a). The relevant proteins can be 
found by homology (see Curated BLAST for genomes fur-
ther) or by using the fitness data. In particular, by exam-
ining the genes that are important for utilization of N-
acetylglucosamine but not glucosamine as the nitrogen source, 
we can see that N-acetylglucosamine kinase and a transporter 
are important for the utilization of N-acetylglucosamine only 
(Fig. 4b). This suggests that S. meliloti does not use the 
acetylated pathway for glucosamine utilization, and hence 
that SM_b21217 is a glucosamine kinase. (Another test of 
which pathway S. meliloti uses would be to search for the 
glucosamine N-acetyltransferase using Curated BLAST for 
genomes, which is described further.)

More broadly, reasoning about the expected phenotypes 
for a protein will often require examining which other func-
tionally related proteins are present and what their pheno-
types are. To support this style of reasoning, the Fitness 
Browser can render the fitness data in many different ways, 

including scatterplots for comparing genes’ fitness values, lists 
of cofit genes, lists of genes with specific phenotypes in a con-
dition, scatterplots for comparing experiments, lists of outlier 
genes (as in Fig. 4b), heatmaps, and comparisons of the fit-
ness data for similar proteins from different bacteria in the 
same condition. A related issue that often arises is isozymes. 
If there are two isozymes for one step in the pathway, then 
they may be genetically redundant so that neither gene shows 
the expected phenotype.

One caveat with RB-TnSeq data is the possibility of polar 
effects: transposon insertions within a gene that is in an 
operon may disrupt the expression of a downstream gene. If 
this occurs, then insertions in the gene can have a strong phe-
notype even though only the downstream gene is important 
for fitness in that condition. Polar effects are not predomi-
nant in the RB-TnSeq data, but they are not rare either [1]. 
A common sign that a phenotype is due to a polar effect is 
that the effect depends on which orientation the transposon 
is inserted in. If the antibiotic resistance marker’s promoter is 
in the same orientation as the disrupted gene, then the pro-
moter can drive expression of the downstream genes, so polar 
effects usually occur only for insertions in the opposite orien-
tation. On most pages in the Fitness Browser, clicking on a 
gene fitness value will show the strain fitness values for inser-
tions in and around the gene, along with the orientation of 
the antibiotic resistance marker in each strain. Because strain 
fitness values are much noisier than gene fitness values, the Fit-
ness Browser makes it easy to average the strain fitness value 
across replicate experiments.

Finally, in our experience, inferring a gene’s likely 
function from its phenotypes is more straightforward for 
metabolic genes and transporters than for other types of 
proteins. Many proteins have pleiotropic phenotypes that 
are difficult to rationalize, even if the protein is well
characterized.
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Figure 4. Using the Fitness Browser to consider alternate pathways. (a) Two potential roles for the putative sugar kinase SM_b21217 in glucosamine 
utilization (adapted from Price et al. [3]). (b) A comparison of fitness data from S. meliloti  with N-acetyglucosamine or glucosamine as the nitrogen 
source. In this screenshot from the Fitness Browser, genes that are important for utilization of N-acetyglucosamine (fitness <−2), but not glucosamine, 
are listed.

Checking a protein’s domain content or finding 
distant homologs
If homologs of known function are not available, or if the 
alignments do not cover the whole sequence (which suggests 
that the domain structure may have changed), then we rec-
ommend examining the domain structure of the protein of 
interest, using the Conserved Domain Database (CDD [20]) 
or InterPro [21]. Searching CDD is fast and can be run interac-
tively. Analyzing a sequence with InterPro is much slower, but 
precomputed results for all of UniProt (>250 million proteins) 
are available. For proteins from public bacterial genomes, an 
identical or nearly identical homolog is probably in UniProt, 
and these can be found quickly using SANSparallel [22]. 
Links to CDD and UniProt searches are included in the 
PaperBLAST results. Either CDD or InterPro will show any 
similarity of the protein sequence to profiles (hidden Markov 
models) of protein families, such as from PFam [23]. Profile 
comparisons are more sensitive than pairwise sequence com-
parisons, so these tools often find homology that is missed by 
BLAST-based tools.

Any domains that are present in the characterized homolog 
but missing from the protein of interest might indicate a loss 
of function. For example, the characterized protein might 
have two enzymatic activities, and the protein of interest 
might have kept just one of them. Conversely, any additional 
domains in the protein of interest could indicate an additional 
function. Although domain content is very useful for gener-
ating hypotheses about a protein’s function, many domains 
or families are so broad that they include proteins with very 
different functions.

Another approach to finding distant homologs is to use the 
predicted structure and to search for proteins of similar struc-
ture. AlphaFold predictions are available for most of the pro-
teins in UniProt [24], and FoldSeek can quickly compare these 
predictions to other structures and find remote homologs 
(https://search.foldseek.com/ [25]). Alternatively, if reliable 
BLAST-level homologs (down to 30% identity or a bit less) 
are available, then the Jackhammer tool from the HMMer 
web server can build a profile from the closer homologs and 
then use that profile to find more distant homologs (https://
www.ebi.ac.uk/Tools/hmmer/search/jackhmmer [26]).

If a remote homolog with a known function is found using 
a tool like FoldSeek, it is interesting to see if the functional 
residues are conserved. For help finding functional residues, 
see SitesBLAST further. For aligning distant homologs, we 
recommend RCSB’s pairwise structure alignment tool (https://
www.rcsb.org/alignment [27]).

Predicting a protein’s location in the cell
Another important aspect of a protein’s function is its location 
in the cell. In particular, the breakdown of oligosaccharides 
often begins outside of the cell or in the periplasm. Smaller 
sugars may also be oxidized or cleaved in the periplasm. Con-
versely, most other catabolic reactions, and most biosynthetic 
reactions, take place in the cytoplasm. Understanding where 
the metabolic enzymes are located is also critical for correctly 
understanding the role of transporters (Fig. 4a).

To predict a protein’s localization, we recommend using 
Phobius [28], which predicts signal peptides and transmem-
brane helices, and PSORTb, which uses a variety of factors 

https://search.foldseek.com/
https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer
https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer
https://www.rcsb.org/alignment
https://www.rcsb.org/alignment
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Figure 5. Checking functional residues with SitesBLAST. This screenshot shows the top result for the putative sugar kinase SM_b21217.

including the localization of homologs to predict the local-
ization of prokaryotic proteins [29]. Links to both tools are 
included in the PaperBLAST results page.

Finding functional residues with SitesBLAST
Although highly similar sequences are likely to have the same 
function, an enzyme’s function is not determined by %iden-
tity. Rather, most of the protein’s sequence serves to fold 
the protein into the correct overall shape, and the function 
is determined by a small number of residues that bind the 
substrate or participate in catalysis (sometimes called “active 
site” residues). Unfortunately, most of the popular auto-
mated tools for protein annotation do not consider functional 
residues. (The only exception we are aware of is UniProt’s
UniRule [30].)

Information about these functional residues may be avail-
able from SitesBLAST, which makes it easy to see if the 
functional residues are conserved [31]. For example, the 
SitesBLAST results for the glucosamine kinase SM_b21217 
show that all of the active site residues, and most of the ADP-
binding residues, are conserved (Fig. 5). This confirms that 
SM_b21217 is a kinase.

SitesBLAST takes just a few seconds and compares the 
input sequence to a database of 170 045 proteins with known 
functional residues. These functional residues include ligand-
binding and active-site residues in crystal structures, as com-
piled by the BioLiP database [32], and Swiss-Prot features 
with experimental evidence [4]. SitesBLAST can identify 
potential functional residues for around half of all proteins 
[31]. SitesBLAST is available from the PaperBLAST results 
page or at http://papers.genomics.lbl.gov/sites.

If SitesBLAST shows that the catalytic residues are not 
exactly conserved, but you still suspect that the protein might 
be catalytically active, then we recommend checking the 
Mechanism and Catalytic Site Atlas (https://www.ebi.ac.uk/
thornton-srv/m-csa/ [33]). This resource describes the cat-
alytic mechanisms of hundreds of different enzymes, which 

can help you reason about the potential activity of a protein.
SitesBLAST compares just two proteins. If you want to 

compare functional residues across many proteins, then we 
recommend a related tool, Sites on a Tree [31]. Sites on a Tree 
can indicate whether changes to functional residues are com-
patible with a conserved function or can identify subfamilies 
that are likely to have different functions.

Testing a protein’s function with its structure
If you have a specific hypothesis about the protein’s function, 
you may be able to use the predicted structure to test your 
hypothesis. Structural analysis methods are computationally 
intensive and so are usually not interactive.

Predicted protein complexes can be checked by running 
AlphaFold on two or three proteins together. We use Google 
Colab Pro+ to run ColabFold (https://github.com/sokrypton/
ColabFold [34]). (No programming is required.) If there are 
high-confidence contacts between two protein chains, then 
they probably do form a complex [34].

Docking methods such as AutoDock Vina [35] can in prin-
ciple be used to predict whether a small molecule binds and 
where the binding occurs, thereby constraining the substrate 
specificity of an enzyme or transporter. However, identify-
ing inhibitors or ligands by docking to AlphaFold models is 
not very accurate [36, 37]. AlphaFold 3 predicts the struc-
ture of both the protein and the ligand together, and it 
predicts the pose (conformation) of the ligand with 75% accu-
racy [38]. Unfortunately, as of June 2024, the AlphaFold 
server only supports ∼30 different ions or ligands (http://
alphafoldserver.com), and the source code is not available. 
Still, we hope that the accurate docking for diverse ligands 
will be available soon. Once poses of potential substrates are 
identified correctly, it remains challenging to select the cor-
rect substrate, as many nonsubstrates will also be predicted 
to bind [39]. Estimating the energy of binding for the tran-
sition state, instead of the substrate, can help to distinguish
substrates [39].

http://papers.genomics.lbl.gov/sites
https://www.ebi.ac.uk/thornton-srv/m-csa/
https://www.ebi.ac.uk/thornton-srv/m-csa/
https://github.com/sokrypton/ColabFold
https://github.com/sokrypton/ColabFold
http://alphafoldserver.com
http://alphafoldserver.com
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Figure 6. Comparing the presence/absence of two gene families. In this screenshot from “fast.genomics,” each point is a genome. The bit score ratio is 
the alignment score for the best hit divided by the highest possible alignment score; it is a measure of how similar the best hit (if any) in that genome is 
to the query. The x -axis shows the similarity to MesA from M. marburgensis. The y -axis shows the similarity to MtrA1 from M. marburgensis. Genomes 
that have one protein, but not the other, are shown in the gray zones below zero. The labels for MesA and MtrA1 were added by hand.

Inferring function from gene neighborhoods or 
gene presence/absence
Another way to generate hints about a protein’s function is to 
examine the genes encoded near homologs of the protein of 
interest. In particular, in bacteria and archaea, genes in con-
served operons often have related functions [40–42]. The gene 
neighborhoods of prokaryotic homologs of a protein of inter-
est can be viewed using “fast.genomics” (http://fast.genomics.
lbl.gov/ [17]). A conserved operon will show up as a group 
of genes that are encoded on the same strand and with a 
close spacing (usually under 100 nt) across multiple genera 
(see example in Fig. 2b).

If you have a specific hypothesis about a protein’s function, 
then which genomes it is found in may also be informa-
tive. For instance, an unusual type of methionine synthase 
was reported in Methanothermobacter marburgensis [43]. 
We will call it MesA [44]. In vitro, MesA uses methyl-
cobalamin instead of methyl-tetrahydrofolate as its methyl 
donor, but with a high KM (Michealis–Menten constant), 
it is expected that a corrinoid (cobalamin-binding) protein 
would be the physiological donor [43]. We noticed that 
MesA is found only in methanogens [44], which suggests that 
MtrA (the corrinoid subunit of tetrahydromethanopterin S-
methyltransferase) might be the donor protein. As shown in 
Fig. 6, genomes that contain reasonably close homologs of 
MesA, with a bit score of >30% of the maximum, almost 
always contain MtrA. Also, in a few genomes, the two genes 
are encoded near each other and on the same strand (filled 
green points in Fig. 6). This supports a functional relation-
ship between MtrA and MesA. Some genomes with MtrA 
(score ratio: >0.4) lack MesA; these encode another type of 
methionine synthase [44].

“Fast.genomics” can go from a protein sequence to 
homologs from diverse bacteria and archaea in a few sec-
onds. By default, it uses a database of 6377 representa-
tive genomes, each from a different genus of bacteria or 
archaea. Alternatively, it can search within a larger set of 
genomes (up to 10 representatives per species) within any 
given taxonomic order. Either way, once it has computed 
a list of homologs, it can show gene neighborhoods (as 
in Fig. 2b), compare presence/absence (as in Fig. 6), or 
show the taxonomic distribution of a gene or a pair of
genes.

We believe that “fast.genomics” is usually superior to 
other fast tools for these comparative genomics analyses 
because “fast.genomics” compares the query to all genes in the 
database on the fly (using mmseqs2 [45]). The other fast tools 
that we are aware of rely on ortholog groups or precomputed 
groups of similar proteins that ideally have the same function. 
In practice, ortholog groups are often either too broad—they 
mix together proteins with different functions—or too narrow 
so that similar proteins that probably have the same function 
are missing from the group [17]. Either way, this can lead to 
less accurate or confusing results. However, “fast.genomics” 
may not identify remote homologs (roughly, under 30% 
amino acid identity). For the comparative genomics of broad 
protein families, such as PFams, we recommend GeCoViz 
for gene neighborhood analysis (https://gecoviz.cgmlab.org/ 
[46]) and AnnoTree for co-occurrence analysis [47]. Finally, 
“fast.genomics” can only compare the presence/absence of 
two specified proteins. Given a protein family of interest, you 
can search for other protein families that have a similar occur-
rence across bacterial genomes using PhyloCorrelate (https://
phylocorrelate.uwaterloo.ca/ [48]).

http://fast.genomics.lbl.gov/
http://fast.genomics.lbl.gov/
https://gecoviz.cgmlab.org/
https://phylocorrelate.uwaterloo.ca/
https://phylocorrelate.uwaterloo.ca/
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Finding candidates for a function with curated 
BLAST for genomes
All the analyses so far began with a protein of interest. How-
ever, often we start with a question about a specific organism, 
such as does it have perchlorate reductase? Can it synthesize 
leucine or break down phenylacetate? Or maybe we know 
that it can grow on phenylacetate, and we would like to 
identify the pathway.

One way to look for a given protein function is to search the 
automated protein function annotations. However, a protein’s 
annotation is often nonspecific, even if the protein is simi-
lar to a protein that is known to have that function, because 
of uncertainty as to which of several related functions the
protein has.

Instead, Curated BLAST for genomes makes a list of char-
acterized proteins whose annotations match the query, such 
as “perchlorate” or an Enzyme Commission (EC) number 
(http://papers.genomics.lbl.gov/curated [49]). (The character-
ized proteins are taken from PaperBLAST’s database, see 
Table 2.) Then, it finds all homologs of these proteins in the 
genome of interest. Candidates can be checked further using 
PaperBLAST and other tools discussed earlier.

Also, sometimes proteins are missing from the genome 
annotation, either due to a misprediction of the open reading 
frame or due to a frameshift error in the genome sequence. 
After comparing the matching-characterized proteins to the 
annotated proteins, Curated BLAST for genomes searches the 
six-frame translation of the genome. This will occasionally 
find proteins that were not annotated. If there is a frameshift, 
it is difficult to know if it is a true frameshift that renders the 
gene nonfunctional (a pseudogene), an error in the sequence, 
or (less likely) a protein that splits into two pieces that still 
function. In our experience, frameshift errors are common in 
genomes that were sequenced solely using long reads (Pacific 
Biosciences or Oxford Nanopore).

Tools for annotating pathways
Searching for individual protein functions can be cumbersome 
if there are many steps in the pathway of interest, especially if 
there are multiple alternate pathways. For amino acid biosyn-
thesis and the catabolism of small carbon sources, GapMind 
annotates the known pathways from bacteria and archaea 
(http://papers.genomics.lbl.gov/gaps [3, 50]). GapMind does 
not predict if the capability is present or not; rather, it com-
pares the predicted proteins in the genome to all characterized 
proteins that carry out relevant enzymatic reactions or trans-
port steps and reports the best-supported path (Fig. 7). Each 
step is color-coded by whether there is a high-confidence can-
didate. (Roughly speaking, a high-confidence candidate is at 
least 40% identical to an experimentally characterized pro-
tein that has the function and is less similar to characterized 
proteins that have other functions.) GapMind is a web-based 
tool that takes 10–40 s per genome, so it is convenient to run 
when needed.

There are many other tools with similar goals that cover 
a different range of pathways than GapMind does. For 
example, KEGG’s BlastKOALA will annotate enzymes in a 
genome in ∼15 min (https://www.kegg.jp/blastkoala/ [5]), and 
the results page includes a pathway-level viewer. Similarly, 
Distilled and Refined Annotation of Metabolism (DRAM) 
predicts the presence of metabolic pathways in a prokaryote 

genome, mostly relating to energy production and cen-
tral metabolism [51]. DRAM is available within KBase 
([52]; http://kbase.us/) and takes ∼15 min.

Regardless of which pathway annotation tool you use, the 
results are often ambiguous. For instance, what does it mean 
if the first and third steps in serine synthesis are present, but 
there is no apparent protein for the second step (Fig. 7a)? In 
E. coli, disrupting any one of the three enzymes results in a 
requirement for serine for growth, so the missing enzyme is 
definitely necessary. We refer to these missing steps—which 
may well be encoded in the genome—as gaps. In some cases, 
we can infer that the missing step is indeed present: if the other 
two steps are confidently annotated, and they are not known 
to be part of a different pathway, then there is no other rea-
son for the two steps to be present. (This logic is stronger if 
multiple species or genera have the same gap; otherwise, it is 
possible that the third gene was lost recently and the other 
two genes, although now useless, have not been lost yet.) 
Also, GapMind for amino acid biosynthesis identifies “known 
gaps.” If a related bacterium (from the same family) is known 
to synthesize the amino acid, even though the gene for the step 
cannot be found, then the absence of the step should not be 
viewed as evidence that the pathway is absent. In Fig. 7a, the 
missing serC is a known gap because E. vietnamensis grows 
in a defined minimal medium without any amino acids [50]. 
serC was probably replaced by a non-homologous or distantly 
related protein that has not been identified yet. More broadly, 
analyses of gene fitness or gene neighborhoods, as described 
earlier, can sometimes identify the alternative proteins and fill 
the gaps [3, 53, 54].

If an organism has a metabolic capability, then at least 
some of the genes for that capability can usually be identi-
fied, but not always. As an extreme example, we have not 
been able to determine how most Desulfovibrionales make l-
serine, despite collecting large-scale genetic data from three 
representatives [50, 55, 56]. These bacteria do not have a 
high-confidence assignment for any of the three steps of serine 
synthesis, yet they grow in a defined minimal medium,

If the above-mentioned tools are not relevant to your ques-
tion, we recommend using MetaCyc (https://metacyc.org/ [9]) 
to browse the known metabolic pathways, followed by using 
Curated BLAST for Genomes to find candidates. Unfortu-
nately, MetaCyc is no longer freely available; if you do not 
have access, KEGG is an alternative (https://www.genome.jp/
kegg/ [57]).

Another way to annotate pathways is to use a genome-scale 
metabolic model. These models can work well if the model 
is curated to match the known physiology of the organism, 
but curation is laborious. Metabolic models that are gener-
ated entirely automatically are probably not accurate enough 
to be useful: in particular, the resulting predictions for amino 
acid auxotrophies or for carbon source utilization are not 
at all accurate [58, 59]. In our view, given the challenges 
of automated annotation discussed earlier, we should expect 
automatically generated models to be riddled with errors. In 
principle, automated gap-filling could be used to correct some 
of these errors, but in practice, automated gap-filling may 
introduce additional errors [60].

As an alternative to predicting capabilities from the 
genome, we can also consider the known capabilities of its 
relatives. For strongly conserved traits, such as many modes 
of energy production, the taxonomic classification of the 

http://papers.genomics.lbl.gov/curated
http://papers.genomics.lbl.gov/gaps
https://www.kegg.jp/blastkoala/
http://kbase.us/
https://metacyc.org/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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Figure 7. Annotating metabolic pathways with GapMind. (a) Amino biosynthesis in Echinicola vietnamensis DSM 17526. This screenshot shows 
biosynthetic pathways for five of the amino acids along with the key for the color coding. (b) Carbon catabolism in E. vietnamensis. This screenshot 
shows catabolic pathways (or the lack thereof) for nine compounds. Transporters, which are more challenging to annotate, are shown with a gray 
background.

organism could be as informative as the genome sequence. 
For instance, virtually all cyanobacteria can fix carbon diox-
ide. If a genome of a cyanobacterium appears to be missing a 
key gene for this pathway, it probably indicates an error in the 
genome or in the identification of open reading frames. Unfor-
tunately, we do not know of a convenient web-based tool to 
predict traits from taxonomy; we usually rely on literature 
searches.

The future
We expect the volume of high-throughput genetic data to 
increase dramatically. So far, Fitness BLAST finds reasonably 
close homologs (≥40% identity) with specific phenotypes or 
cofitness for about a quarter of all bacterial proteins. We hope 
to reach the point where useful genetic data are available for 
homologs of most bacterial and archaeal proteins, but this 
will require far more data as well as new genetic tools so that 
randomly barcoded transposon libraries become available for 
a greater diversity of bacteria and archaea.

We also expect that databases of the metabolic capabili-
ties of bacteria will grow dramatically. Besides enabling more 
accurate predictions of metabolic capabilities from genome 
sequences, this will enable the identification of gaps in inferred 
pathways on a much larger scale. It may also make it eas-
ier to fill gaps by comparing the phylogenetic distributions of 
candidate proteins to those of the gaps.

We hope that the databases of experimentally character-
ized proteins will improve to cover more of the knowledge 

that is not currently available to automated tools. Unfortu-
nately, curation is expensive: once a funding agency has spent 
∼$100 000 for scientists to characterize a protein, they are 
not willing to spend ∼$300 for a curator to enter this infor-
mation into a database [61]. In our view, this is penny-wise 
and pound-foolish. In any case, as automated text process-
ing improves, curation might become partly automated, and 
costs should drop. Focusing curator effort on proteins with 
many homologs, but without close homologs that are char-
acterized according to the curated databases, might also be a 
way to reduce costs. Alternatively, scientists could curate the 
functions of proteins when they publish papers about them 
(discussed in de Crécy-lLagard et al. [11]). Also, more papers 
could be linked to sequences via large-scale analysis of primer 
sequences, which are most often found in supplementary 
material [62].

Recently, high-quality structure predictions have become 
available for most proteins [24]. In principle, these struc-
tures could reveal the function of these proteins. So far, 
we have found structure prediction most useful for test-
ing putative protein complexes and for finding remote 
homologs. It is not yet clear how to use AlphaFold and 
related approaches to predict the substrates of enzymes. 
Assuming that docking improves but accurate substrate pre-
diction remains impossible, one strategy that may become 
broadly applicable is to combine docking with the gene 
neighbor method, also known as “pathway docking”
[63–65].
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Materials and methods
Inferring protein functions from specific 
phenotypes
Five hundred genes with specific phenotypes in carbon sources 
and nitrogen sources were taken from the December 2023 
release of the Fitness Browser and were checked manually. 
Many of them were quickly discarded because their pheno-
types were detrimental, their phenotypes did not show such a 
specific pattern when checked manually, or neither their anno-
tations (from KEGG or SEED [66]) nor their domain content 
(from PFam or TIGRFam [67], which are included in the 
Fitness Browser) suggested that they were enzymes or trans-
porters. Among the remaining proteins, inferred functions for 
96 proteins had previously been incorporated into the Fit-
ness Browser’s reannotations; most of these were reported in 
the supplementary material of Price et al. [2, 3]. For another 
90 proteins, we inferred functions using the Fitness Browser 
and the other interactive tools described earlier, especially 
PaperBLAST.

We double-checked the assigned functions for all pro-
teins that we classified as annotation errors (by any of 
the four automated methods). This led to two ambiguous 
cases. First, the putative transporter PfGW456L13_4770 
from P. fluorescens GW456-L13 is clearly important for
l-asparagine utilization, while Swiss-Prot best hit, KEGG, 
and RefSeq annotate it as a glutamate/aspartate transporter. 
Since the main asparaginase appears to be cytoplasmic 
(PfGW456L13_740), l-aspartate transport cannot explain 
the phenotype of PfGW456L13_4770. However, mutants of 
PfGW456L13_4770 may also have a subtle defect during glu-
tamate utilization (fitness = −0.9; we usually ignore effects 
with |fitness| < 1). Since the data suggested that asparagine 
is the primary substrate, this was still classified as an error 
for the automated methods. Second, the putative transporter 
AO356_14110 from P. fluorescens FW300-N2C3 is often 
annotated as “RarD” or as “chloramphenicol-sensitive pro-
tein RarD” because it is 48% identical to E.coli RarD. The 
molecular function on RarD is not known. Another member 
of this family (PA14_19160, 31% identical to AO356_14110) 
was proposed to be a citrate transporter, as it is genetically 
redundant with another citrate transporter during growth 
on citrate [68]. AO356_14110 is specifically important for 
growth with d-serine as the nitrogen source (fitness = −1.5). 
Also, a close homolog is specifically important for growth 
with d-serine as either the carbon source or the nitrogen 
source (PfGW456L13_1142, 93% identity, fitness = −3.3 to 
−4.4.) These mutant phenotypes suggest AO356_14110 and 
PfGW456L13_1142 are involved in d-serine uptake, rather 
than chloramphenicol resistance. On the other hand, both of 
these genomes encode dsdX-type d-serine permeases, which 
are also important for utilizing d-serine. Our preferred expla-
nation is that the rarD-type permeases are partially geneti-
cally redundant with dsdX-type permeases, but it is impos-
sible to be sure. In any case, since chloramphenicol resis-
tance seems unlikely to be the main role of these rarD 
homologs, we still classified those automated annotations
as errors.

Automated annotations
Annotations were derived from Swiss-Prot by using the best 
hit with E ≤ 10–5 and 70% coverage (both ways), as identi-
fied using NCBI protein BLAST+ against Swiss-Prot release 

2023_05 (downloaded on 12 January 2024). KEGG-based 
annotations were from GhostKOALA run against prokary-
otes + eukaryotes + viruses in January 2024. RefSeq annota-
tions were from the corresponding genomes in RefSeq, down-
loaded in January 2024. Three of the 186 catabolic proteins 
are from genomes that were not in RefSeq, so we used RefSeq’s 
annotations of close homologs instead.

When determining the substrates implied by the best hit in 
Swiss-Prot, we considered the description and also the “Func-
tion” field. For instance, the protein PGA1_c29700 is usually 
annotated as a glycolate dehydrogenase based on its similarity 
to the E. coli GlcF protein. In the fitness data, PGA1_c29700 
is important for the utilization of d,l-lactate or d-lactate (but 
not l-lactate), which suggests that it is a d-lactate dehydroge-
nase. The Swiss-Prot description for the best hit (which is E. 
coli GlcF) states that GlcF has similar activity with d-lactate 
as with glycolate, so activity on d-lactate should be expected; 
thus, the best-hit annotation from Swiss-Prot was considered 
correct. Similarly, for CLEAN, which reports only the Enzyme 
Classification (EC) number, we consulted the description of 
the EC number. In this case, CLEAN assigned the EC number 
1.1.99.14, whose description reports that it also acts on d-
lactate. Because users of protein annotations usually consider 
only the textual description, we may have slightly overstated 
the accuracy of Swiss-Prot best hits and CLEAN. In contrast, 
for KEGG and RefSeq, we did not look at further informa-
tion besides the text that was provided by GhostKOALA or 
by RefSeq itself.

PaperBLAST and related databases
Since the original publication describing PaperBLAST [8], we 
have incorporated additional resources into its database for 
linking proteins to papers. All of the resources are listed in 
Table 2. The additional resources are the following:

(1) BioLiP is a database of biologically relevant ligands in 
protein structures [32]. All of these ligand-binding pro-
teins are included in PaperBLAST’s database. Even if 
there is no link to a publication, the fact that the protein 
bound the ligand can be informative.

(2) MetaCyc is a database of metabolism [9]. Only proteins 
(or complexes) that link to both a sequence and one or 
more papers are included in PaperBLAST’s database.

(3) PaperBLAST incorporates a small subset of the Euro-
pean Nucleotide Archive (ENA [69]) with experimental 
evidence. PaperBLAST scans nucleotide entries from the 
“STD” class (roughly, small-scale sequencing projects) 
for coding sequences (CDS features) with the /experi-
ment tag. The corresponding proteins are included in 
PaperBLAST’s database if the nucleotide entry links to 
one or more papers in PubMed. Also, to filter out genes 
whose transcription or translation was detected, but 
whose function might not have been studied, entries 
with >25 such proteins, or papers that link to >25 
proteins in this way, are excluded.

(4) The incorporation of the experimentally characterized 
subset of TCDB, the transporter classification database 
[70], was described previously [3].

(5) RegPrecise is a database of predicted regulons, as recon-
structed by comparative genomics [71]. Because Reg-
Precise often includes predictions for several similar 
transcription factors from related species, we clustered 
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the predicted regulators at 70% identity and 80% cov-
erage with USEARCH [18]. One representative of each 
cluster is included in PaperBLAST’s database.

(6) The Fitness Browser reannotations are a collection of 
proteins whose function was inferred from RB-TnSeq 
data (mostly from Price et al. [2, 3]).

(7) PRODORIC is a database of experimentally character-
ized regulons [72]. The regulators that have UniProt 
identifiers were incorporated into PaperBLAST.

The database of characterized proteins (Table 2) is a sub-
set of the full PaperBLAST database. Heuristics for removing 
uncharacterized proteins were described previously [50].

SitesBLAST uses a separate database, based on BioLiP and 
Swiss-Prot entries whose sequence features have experimental 
evidence. To incorporate BioLiP into SitesBLAST, we cluster 
the protein sequences at 90% identity and 80% coverage with 
CD-HIT [73]. From each cluster, we select representatives 
so that every ligand that binds any member of the cluster is 
included in a structure.
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Supplementary data is available at Database online.
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