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SUMMARY

Naive CD4+ T cells are an example of dynamic cell homeostasis: T cells need to avoid 

autoreactivity while constantly seeing self-peptides, yet they must be primed to react to foreign 

antigens during infection. The instructive signals that balance this primed yet quiescent state are 

unknown. Interactions with self-peptides result in membrane-proximal, tonic signals in resting T 

cells. Here we reveal selective and robust tonic mTORC1 signals in CD4+ T cells that influence T 

cell fate decisions. We find that the Ras exchange factor Rasgrp1 is necessary to generate tonic 

mTORC1 signals. Genome-wide ribosome profiling of resting, primary CD4+ T cells uncovers a 

baseline translational landscape rich in mTOR targets linked to mitochondria, oxidative 

phosphorylation, and splicing. Aberrantly increased tonic mTORC1 signals from a Rasgrp1Anaef 

allele result in immunopathology with spontaneous appearance of T peripheral helper cells, 

follicular helper T cells, and anti-nuclear antibodies that are preceded by subtle alterations in the 

translational landscape.
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In Brief

Myers et al. evaluate a mouse model of autoimmunity, Rasgrp1Anaef. They find that T cells with 

the Rasgrp1Anaef allele exhibit altered signaling from Rasgrp1 to the mTORC1 pathway in the 

basal state. They show that increased basal Rasgrp1Anaef-mTORC1 signals lead to an altered 

translational landscape in T cells and immunopathology.

INTRODUCTION

Under healthy homeostatic conditions, patrolling T cells encounter self-peptides (self-p). 

Importantly, these contacts with self-p-MHC must not trigger full T cell activation to avoid 

autoimmunity (Hogquist et al., 2003, 2005). Both CD4+ and CD8+ primary T cells exhibit 

sub-threshold signaling, which we here term “tonic signaling” (Myers et al., 2017b). 

Continuous interactions of the T cell receptor (TCR) with self-p-MHC are critical for the 

generation of these tonic signals, as administration of a blocking antibody to MHC class II 

or transfer of cells into class II-deficient hosts led to reduced T cell responses upon 

stimulation (Stefanová et al., 2002). Work from the early 1990s revealed that proximal 

signaling molecules such as the TCR zeta chain (TCRζ) immunoreceptor tyrosine-based 

activation motifs (ITAMs) (van Oers et al., 1993) are phosphorylated in the basal state, and 

the Syk family kinase Zap70 associates with pTCRζ (van Oers et al., 1994). The cell surface 

molecule CD5 has been used as a marker of tonic proximal TCR signaling (Azzam et al., 

1998). In follow-up studies more than a decade later, it was demonstrated that CD4+ T cells 

as well as CD8+ T cells with the highest CD5 expression (and thus highest tonic signals) are 

the best T cell responders during bacterial and viral infections (Fulton et al., 2015; Mandl et 

al., 2013). On the basis of these studies, a hypothesis formed that tonic signals may establish 

a primed yet controlled state in primary T cells (Mandl et al., 2013; Myers et al., 2017a, 

2017b; Persaud et al., 2014), but molecular insights into tonic signaling pathways and 

functional outputs have been lacking. Rasgrp1 (Ras guanyl nucleotide releasing protein 1) is 

a Ras guanine nucleotide exchange factor (RasGEF) (Ksionda et al., 2013). In resting cells, 
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Rasgrp1 predominantly takes on an autoinhibited homodimer conformation (Iwig et al., 

2013). We previously reported a mouse model carrying a point-mutated Rasgrp1 allele 

(Rasgrp1Anaef; R519G substitution, hereafter termed “Anaef”). Our studies on the Anaef 

mouse model with immunopathology suggested that basal mTOR activity may affect the 

resting state in vivo (Daley et al., 2013).

mTOR (mechanistic-mammalian target of rapamycin) is a serine-threonine kinase that is a 

well-defined sensor of environmental cues: its activity is known to be induced by input from 

receptors, soluble factors such as cytokines, and amino acids (Laplante and Sabatini, 2012; 

Powell and Delgoffe, 2010; Saxton and Sabatini, 2017). There is increased interest in the 

role of mTOR signaling in CD4+ T cell biology (Chi, 2012; Delgoffe et al., 2009, 2011; 

Heikamp et al., 2014; Piccirillo et al., 2014; Powell et al., 2012; So et al., 2016; Waickman 

and Powell, 2012; Yang et al., 2013, 2016; Zeng et al., 2016; Zhang et al., 2011). Whether 

mTOR has important functions in the basal state, under conditions of tonic signaling, is not 

known.

mTOR associates with cofactors and accessory proteins to form two distinct, active kinase 

complexes, mTORC1 and mTORC2 (Zoncu et al., 2011). Known mTORC1 substrates are 

S6K1/2 and 4E-BP1/2/3, while mTORC2 phosphorylates Akt and other SGK family 

members. mTOR signaling downstream of these substrates regulates processes such as cell 

growth, metabolism, and translation of mRNAs into proteins (Chi, 2012; Laplante and 

Sabatini, 2012). The role of mTOR signaling in translation has been investigated using in 
vitro proliferating cells or transformed cancer cell lines. In 2012, two studies established 

mTOR translation signatures using ribosome profiling. Capitalizing on a Torin 1 kinase 

inhibitor, mTORC1-mediated regulation of mRNA translation was revealed in proliferating, 

P53-deficient mouse embryonic fibroblasts (MEFs) (Thoreen et al., 2012), and ribosome 

profiling of a proliferating human prostate cancer cell line PC3 revealed 144 target mRNAs 

that changed upon INK128 kinase inhibitor treatment (Hsieh et al., 2012).

Here, we demonstrate that primary naive CD4+ T cells display robust and selective tonic 

activity through the mTORC1-S6 signaling pathway that shapes the baseline translational 

landscape in resting T cells in vivo. Subtle alterations in this landscape in Rasgrp1Anaef T 

cells precede spontaneous cell fate trajectories toward T peripheral helper cells and follicular 

helper T cells, as well as other immunopathological features.

RESULTS

Aberrant Rasgrp1Anaef-mTORC1 Signals and T Cell-Mediated Autoimmunity

Tonic signaling relies on frequent, transient contacts of TCRs with self-p-MHC in lymphoid 

organs (Fulton et al., 2015; Hogquist et al., 2003; Mandl et al., 2013; Markegard et al., 2011; 

Myers et al., 2017b; Oki-Idouchi and Lorenzo, 2007; Stefanová et al., 2002; van Oers et al., 

1993, 1994). A major challenge in tonic signaling studies has been that the molecules and 

therefore mechanisms that control the “fitness” or “primed state” have remained elusive 

(Myers et al., 2017b). We recently described how tonic signals put the brake on naive T cells 

to prevent aberrant basal activity through a tonic linker for activation of T cells (LAT)-

HDAC7 signal that maintains mRNA expression of a cluster of genes that are negative 
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regulators of T cell proliferation and differentiation (Myers et al., 2017a). A Rasgrp1Anaef 

mouse pointed us to a possible counterbalancing function of tonic signaling: promoting T 

cell activity in the basal state. We also identified a possible role for mTORC1 signaling in 

this “promoting” function (Daley et al., 2013).

Two studies suggested that the RasGEF Rasgrp1 might be involved in mTORC1 signaling 

(Daley et al., 2013; Gorentla et al., 2011). Naive CD4+ Rasgrp1Anaef T cells exhibit elevated 

basal mTORC1 signaling and a selective increase in CD44 expression (Figure 1A; Daley et 

al., 2013), likely through reduced autoinhibition in the Rasgrp1Anaef molecule. These mice 

exhibit immunopathology such as serum anti-nuclear antibodies (ANAs) and aberrantly high 

expression of the activation marker CD44. These features are also penetrant when B cells in 

the Rasgrp1Anaef model carry a wild-type Rasgrp1 allele, implying a Rasgrp1Anaef T cell-

intrinsic effect (Daley et al., 2013).

Examining serum from wild type (WT) and Anaef mice in a new, longitudinal analysis, we 

first determined that the spontaneous appearance of ANAs already becomes fully penetrant 

in Anaef mice on a C57BL/6 background at 28 weeks of age, though ANAs can be observed 

as early as 8 weeks (Figure 1B). H&E-stained sections of kidneys, a target organ in lupus 

nephritis, revealed prominent lymphoid aggregates in three of five 66-week-old Anaef mice 

(data not shown). We observed an increase in isotype-switched serum antibodies in Anaef 

mice (immunoglobulin G 1 [IgG1], IgG2, IgG3, and IgE), increases in IgM levels, but no 

differences in IgA (Figure S1A). Thus, B cells in Anaef mice have undergone class 

switching from IgM to other isotypes, a process that requires T cell help, to a greater extent 

than in WT mice.

Thymocyte development is mostly intact in Anaef mice, and as such these animals are never 

lymphopenic. Thymocyte subsets and residence time in the thymus are undistinguishable 

from WT (Daley et al., 2013). There is a very modest decrease in positive selection and no 

change in negative selection (Daley et al., 2013). The Anaef allele leads to reduced in vitro 
TCR-induced Erk signaling, and Ras-Erk signaling is known to drive positive selection 

(Fischer et al., 2005). We wanted to explore if developing Anaef thymocytes select for a 

more highly self-reactive TCR repertoire, as a means of compensating for the weaker TCR-

induced Erk signaling. We crossed Anaef mice to Nur77-GFP reporter mice and analyzed 

these on both a polyclonal TCR repertoire and on a fixed repertoire (the OTII transgenic 

TCR). Nur77 expression relies on Erk signaling (van den Brink et al., 1999), and antigen 

receptors with higher affinity for self drive higher Nur77-GFP expression (Moran et al., 

2011; Zikherman et al., 2012). Single-positive (SP) CD4+ thymocytes from Anaef mice on a 

polyclonal TCR repertoire displayed reduced levels of Nur77-GFP compared with WT 

counterparts (Figure 1C), in agreement with the previously reported Erk signaling defect in 

Anaef cells (Daley et al., 2013). Analyzing mature CD4+ T cells in the spleen, we found that 

Nur77-GFP levels are not reduced but in fact are subtly higher in Anaef CD4+ T cells 

compared with WT (Figure 1D). This suggests that Anaef T cells select for higher affinity 

TCRs, which compensates for the reduced GFP expression in developing thymocytes. The 

compensation in Nur77-GFP expression in peripheral T cells is not seen when the TCR 

repertoire is fixed so that all T cells bear the same receptor with identical affinity for antigen. 

In the context of the OTII TCR transgene, the magnitude of decrease in Nur77-GFP 
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expression levels was even lower in Anaef thymocytes than in a polyclonal context, and 

splenic Rasgrp1Anaef T cells also exhibited reduced Nur77-GFP levels compared with WT 

(Figures 1E and 1F). It is formally possible that this difference in Nur77-GFP signal is due 

to differences in expression of intracellular signaling molecules, though the RNA sequencing 

data in Figure 7 argue against this interpretation. Overall, in agreement with the T cell-

dependent ANA and class-switching features, the T cells in the Anaef mice display a 

compensation for Nur77-GFP levels that suggest an altered, high-affinity TCR repertoire.

We previously reported that an increased proportion of Anaef T cells express PD-1 and 

Helios, markers for a follicular helper T cell (Tfh)-like population (Daley et al., 2013), but 

we never characterized these cells in greater detail. Here we found that Anaef CD4+CD25− 

T cells in the spleen expressed higher levels of PD-1 and ICOS (Figure 1G), markers 

typically expressed on activated, but not resting, T cells (Wikenheiser and Stumhofer, 2016). 

The increased PD-1 and ICOS levels further increased with age of the Anaef mice (Figure 

1H). CXCR5 and Bcl6 expression were more mildly increased on Anaef CD4+ T cells 

(Figure 1G). This pattern of PD-1highICOShighCXCR5lowBcl6low expression on Anaef CD4+ 

T cells is reminiscent of a recently described T peripheral helper (Tph) cell subset that is 

expanded in joints of rheumatoid arthritis patients (Rao et al., 2017). Thus, Anaef mice 

display features of activated T cells and helper T cell-dependent immunopathology. We were 

interested in more fully characterizing the aberrant peripheral helper T cell populations in 

the Anaef model.

Peyer’s patches (PPs) represent a natural anatomical site for germinal centers, where Tfh 

cells reside and provide help for B cell affinity maturation and isotype switching. Tfh cell 

differentiation is known to be affected by mTOR signaling (Yang et al., 2016; Zeng et al., 

2016). Given that the Anaef allele increases tonic mTORC1 signals, we examined the PPs in 

unimmunized WT and Anaef mice. We found that Anaef mice have increased percentages of 

PD1hiCXCR5hi Tfh cells in the PPs (Figure 1I). This population expands in an mTORC1-

dependent manner, as treating mice with rapamycin in vivo reduced the percentage of Tfh in 

the PPs compared with vehicle treatment (Figure 1J). Rapamycin also decreases the 

percentage of Tfh cells in WT mice (Figure S1B), indicating that tonic mTORC1 signaling 

promotes Tfh under normal homeostasis.

Tonic Signals in CD4 T Cells Preferentially Couple to the mTORC1 Pathway

Tonic TCR signals lead to low-level phosphorylation of proximal signaling molecules such 

as TCRζ (Stefanová et al., 2002) and Lck (Zikherman et al., 2010) in CD4+ T cells isolated 

from lymph node (LN), but this basal phosphorylation is not observed in CD4+ T cells from 

blood, where TCR contact with self-p-MHC is limited (Figure 2A). These tonic signals are 

dynamically maintained in vivo, as resting cells maintained ex vivo under non-stimulatory 

conditions reduce global basal tyrosine phosphorylation as well as phosphorylation of 

specific targets such as TCRζ (Daley et al., 2013; Myers et al., 2017a; Stefanová et al., 

2002). Whereas the tonic signals proximal to the TCR have been well documented (Fulton et 

al., 2015; Hogquist et al., 2003; Mandl et al., 2013; Markegard et al., 2011; Stefanová et al., 

2002; van Oers et al., 1993, 1994; Zikherman et al., 2010), it is largely unknown whether 
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and how these proximal tonic signals connect to downstream effectors kinase pathways such 

as Ras-Erk, mTORC1-S6, and mTORC2-Akt (Figure 2B).

To determine the low-level activity in resting primary cells in a robust and quantitative 

manner, we coupled fluorescent cellular barcoding to phospho-flow cytometry on freshly 

isolated cells from LNs so that staining with antibodies to phosphorylated proteins is 

internally controlled (Krutzik and Nolan, 2006; Ksionda et al., 2018) (Figure 2C). Using this 

platform, we observed a strikingly robust P-S6 signal in CD4+ T cells (roughly 12-fold over 

background) when LN cells were fixed immediately upon dissection (Figure 2D). Note that 

we used P-S6S235/236 as readout of mTORC1 activity because expression levels of the 4EBP 

proteins, canonical mTORC1 substrates, are very low in naive CD4+ T cells (data not 

shown). This P-S6S235/236 signal dissipates to nearly background levels if cells are rested at 

low density to limit cell-cell contact in medium containing glucose and amino acids but 

without serum (Figure 2D). By contrast, Ras-Erk and mTORC2-Akt signals appear to be 

much less tonically active; P-AktS473 signals (mTORC2 activity) only modestly decreased 

with a 2 h rest, and p-ErkT202/Y204 (Ras activity) did not decrease in this time frame (Figure 

2D; Figure S2A). Freshly isolated and fixed CD4+ T cells from blood, where interactions 

with self-p-MHC are limited, demonstrated little mTORC1-S6 signal compared with CD4+T 

cells from LN (Figure 2E), in agreement with the model in Figure 2A. CD44 is a cell surface 

marker reported to be a translational target of mTORC1 signaling in prostate cancer cells 

(Hsieh et al., 2012) and CD4+T cells (Daley et al., 2013). Treatment of mice in vivo with a 

low dose of rapamycin for 1 week (Daley et al., 2013) resulted in reduced levels of CD44 on 

naive CD4+ T cells (Figure 2F), demonstrating that tonic mTORC1 signals occur in T cells 

in vivo and affect CD44 expression levels.

Rasgrp1 Signals to mTORC1 in a Tonic Fashion

Rasgrp1 exists as an autoinhibited dimer in the basal state, but autoinhibition is not absolute 

(Iwig et al., 2013), and we postulated that Rasgrp1 could signal to mTORC1 in lymphocytes 

in a tonic manner. Data supporting this can be found in a study in which unstimulated 

Rasgrp1-deficient thymocytes were analyzed as a control (Gorentla et al., 2011). To test our 

hypothesis, we first used a DT40 chicken B cell line with genetic deletion of all Rasgrp1 and 

Rasgrp3 alleles (double knockout [DKO]), which we used previously (Das et al., 2009). In 

the absence of any stimulation, WT DT40 cells exhibited robust basal phosphorylation of 

S6, whereas P-S6 is reduced in DKO cells (Figure 3A). Transient reconstitution of DKO 

cells with WT Rasgrp1-EGFP was sufficient to rescue the tonic P-S6 defect in a Rasgrp1 

dose-dependent manner (Figure 3B). Rasgrp1 catalytic activity is required, as we observed 

very little rescue of P-S6S235/236 in cells transfected with a catalytically inactive 

Rasgrp1R271E, even in cells with highest Rasgrp1 expression (Figure 3B). Rasgrp1 induced a 

modest increase in basal Ras-Erk signals but did not affect mTORC2-Akt signals (Figure 

3B). The Rasgrp1 signal to S6 could be blocked with the mTORC1 inhibitor rapamycin but 

not with the Rsk inhibitor BI-D1870 (Figure S2B), indicating that the P-S6 signal was due to 

Rasgrp1-mTORC1-S6K-S6 signaling and not an Erk-Rsk-S6 pathway (Roux et al., 2007).

Transfection of DT40 DKO cells with a Rasgrp1R519G-EGFP construct revealed that the 

Rasgrp1Anaef allele is moderately hypermorphic in its basal signaling capacity to P-
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S6S235/236 (Figure 3C) but not to Ras-ERK or mTORC2-Akt (Figure 3C). Rasgrp1Anaef 

mice exhibit autoimmune features (Figure 1B), and we demonstrated that crossing these 

mice to a hypomorphic mTOR allele corrects these features (Daley et al., 2013). When we 

analyzed CD44 expression levels on CD4+ T cells as a function of age, we noted that CD44 

levels continued to rise on Anaef T cells (Figure 3D), illustrating the cumulative effects of 

elevated tonic mTORC1 signals over time. Treating a cohort of Anaef mice with a low dose 

of rapamycin in vivo restored the elevated expression levels of the mTORC1 target CD44 on 

CD4+ LN T cells to WT levels (Figure 3E).

Cells with High Tonic mTORC1 Signaling Exhibit Increased Th2 Differentiation

Given that Tfh cells accumulate in naive Rasgrp1Anaef mice in an mTORC1-dependent 

manner and that Rasgrp1Anaef mice exhibit other immunopathology, we were interested in 

determining what other helper T cell features were affected by Anaef-mTORC1 tonic 

signals. Most studies to date have analyzed TCR-induced mTOR signaling and have relied 

on genetic perturbation. Genetically deleting mTOR complex components in mice alters T 

cell differentiation driven by TCR and cytokine stimulation (summarized in Figure 4A). 

Deletion of Rheb (Delgoffe et al., 2011) or Raptor (Yang et al., 2013) revealed requirements 

for mTORC1 signals in Th1, Th2, and Th17 differentiation, whereas deletion of Rictor to 

abrogate mTORC2 signaling reduced the ability to generate Th2 cells (Delgoffe et al., 2011; 

Yang et al., 2013). Loss of mTOR does not affect differentiation to the regulatory T cell 

(Treg) lineage (Delgoffe et al., 2009), but Raptor deletion in FoxP3+ Treg cells revealed that 

mTORC1 is required for suppressive capacity in vivo (Zeng et al., 2013). Last, both 

mTORC1 and mTORC2 are required for generation of Tfh (Yang et al., 2016; Zeng et al., 

2016).

In contrast, the Anaef model provided an unique opportunity to investigate how tonic 

mTORC1 signals in T cells in vivo may affect the potential of naive T cells to differentiate 

into effector T cell subsets when stimulated in vitro. Importantly, the Anaef model allows 

this assessment without perturbing the mTOR complexes through genetic deletion. We 

performed in vitro differentiation assays with WT and Anaef CD4+ cells. Interestingly, 

Anaef CD4+ T cells displayed enhanced ability to differentiate into Th2 cells and produce 

interleukin (IL)-4 (Figure 4B). This phenotype was cell intrinsic, as we observed enhanced 

Th2 differentiation when congenically marked WT and Anaef cells were co-cultured and 

differentiated in the same well (Figure 4C). The differentiation phenotype was specific to 

Th2, as Anaef and WT cells were equally fit to generate inferno (IFN)γ-producing Th1 cells 

as well as IL-17-producing Th17 cells and FoxP3+/CD25+ iTreg cells (Figure S3). In sum, 

these data demonstrate that increased tonic Anaef-mTORC1 signals enhance the potential to 

differentiate to the Th2 fate. The data imply that levels of tonic mTORC1 signals prime the 

basal state of CD4+ T cells, a feature we further investigated functionally and 

mechanistically.

CD5 has been used as a marker of tonic proximal TCR signaling in thymocytes and T cells 

(Azzam et al., 1998; Fulton et al., 2015; Mandl et al., 2013). We used CD5 to examine tonic 

mTORC1 signals in WT naive CD4+ T cells, extending our findings beyond the Anaef 

model. First, to determine whether mTORC1 signaling is also selectively robust in the 
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heterogeneous WT T cell pool, we immediately fixed LN cells and performed phospho-flow 

cytometry to analyze basal signaling in naive (CD25− CD44low) CD4+ T cells gated into 

populations with the 30% highest and 30% lowest CD5 expression (Figure 4D). CD5high 

cells exhibited increased P-S6S240/244 and P-S6s235/236 compared with the 30% lowest CD5 

expressing cells (Figure 4E). In agreement with our findings that Ras-Erk and mTORC2-Akt 

pathways do not appear tonically active (Figure 2D; Figure S2A), we did not observe 

differences in P-ErkT202/Y204 or P-Akts473 in cells with different CD5 levels (Figure 4E). 

This is consistent with an independent study, which also showed that levels of tonic P-

ErkT202/Y204 did not change as a function of CD5 level (Persaud et al., 2014).

We next set out to test whether the level of tonic signal a WT cell receives affects its 

differentiation into effector subsets. In Th2 polarizing assays, sorted, naive CD4+CD5high 

cells (highest tonic signaling) yielded more IL-4-producing Th2 cells than CD4+CD5low 

counterparts from the same sort (Figure 4F). In Th1 polarizing conditions, we found that 

cells with CD5high cells differentiated slightly less robustly into IFNg-producing Th1 cells 

compared with CD5low cells (Figure 4F). The increased fitness of naive CD4+CD5high cells 

to polarize to Th2 was cell intrinsic (Figure 4G). In sum, the CD5 platform validates the 

finding that tonic mTORC1 signals are uniquely robust in naive CD4+ T cells and prime the 

efficiency of Th2 differentiation.

Tonic mTORC1 Signaling and Translation of Target Genes in Naive CD4+ T Cells

We next sought to understand how mechanistically tonic mTORC1 signals affect naive T 

cell differentiation into specialized subsets. We hypothesized that translation may be 

regulated in a tonic manner in naive T cells, because mTOR is known to be a key regulator 

of mRNA translation (Araki et al., 2017; Chi, 2012; Powell et al., 2012; Tan et al., 2017; 

Waickman and Powell, 2012). Translational targets of mTOR often contain specific 

sequence elements in their 5′ UTR, such as a 5′ terminal oligopyrimidine tract (5′TOP) or 

a pyrimidine-rich translational element (PRTE) (Gentilella and Thomas, 2012; Hsieh et al., 

2012; Thoreen et al., (2012). A prostate cancer cell screen demonstrated that 89% of mTOR 

target mRNAs have either a 5′TOP or a PRTE, and 63% of these have only a PRTE (Hsieh 

et al., 2012).

The transcription factor Gata3, the cytokine IL-4, and the costimulatory molecule ICOS are 

examples of Th2- and Tfh-relevant genes that are regulated at the translational level (Cook 

and Miller, 2010; Gigoux et al., 2014; Piccirillo et al., 2014; Scheu et al., 2006). Gata3 is 

critical for Th2 differentiation (O’Shea and Paul, 2010) and plays a role in Tfh biology (Liu 

et al., 2013). We found that the mouse Gata3 5′UTR contains PRTEs (Figure 5A). 

Consistent with the findings that CD44 levels on Anaef CD4+ T cells rise over time (Figure 

3D) and that rapamycin reduces CD44 levels on CD4+ T cells (Figures 3E), we also detected 

PRTEs in the 5′UTR of murine CD44 (Figure 5A). The human prostate cancer cell study 

revealed both a 5′TOP and PRTE in human CD44 (Hsieh et al., 2012).

We next compared Gata3 and CD44 mRNA levels using qPCR and their protein levels using 

barcoding flow cytometry and immunoblot. In these comparisons, we analyzed both CD4+ T 

cells from Anaef compared with WT mice (Figures 5B–5E) and WT CD4+ T cells subsetted 

into CD5high and CD5low (Figures 5F–5I). These independent platforms revealed that Gata3 
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and CD44 are under tonic translational control. Although the fold increase in translation of 

Gata3 and CD44 in Anaef or CD5high CD4+ T cells may seem modest, one must keep in 

mind that tonic signaling is constantly occurring and thus can lead to cumulative increases in 

protein levels over time, as demonstrated in Figures 1H and 3D.

Increased percentages of Anaef CD4+ T cells (compared with WT) and WT CD5high cells 

(compared with CD5low) expressed Gata3 early on during initiation of the Th2 fate and 

sustain Gata3 during the first 24 h of culture (Figures 5J and 5K). Our results reveal that 

cells with high tonic signaling and elevated Gata3 are biased toward Th2 lineage 

commitment, which fits with Gata3 as an auto-amplifying Th2 master switch (Ouyang et al., 

2000) as well as with a well-accepted IL4-Gata3-IL4 positive feedback loop during Th2 

differentiation (Ansel et al., 2006; Paul, 2010).

The Translational Profile of Naive CD4 T Cells Reveals an mTOR Signature

To examine tonic translational control at a genome-wide level, we used ribosome profiling, a 

method in which ribosome-protected fragments (RPFs) are isolated and subjected to high-

throughput sequencing. The RPF sequences are compared with total mRNA in the cells to 

calculate translation efficiency (Brar and Weissman, 2015; Ingolia et al., 2013). Translation 

occurs at a low level in CD4+ T cells of unimmunized mice (Araki et al., 2017; Bjur et al., 

2013; Tan et al., 2017). We performed ribosome profiling and total mRNA sequencing on a 

>97% pure population of CD4+CD25− T cells isolated from LN of 12-week-old, healthy, 

unimmunized WT mice. In parallel, we analyzed 12-week-old unimmunized Anaef mice, an 

age when changes in CD44 expression and ANAs only just start to appear (Figure 6A; 

Figure S4A).

Ribosome profiling with a focus on mTOR has been performed on proliferating cells (Hsieh 

et al., 2012; Thoreen et al., 2012) but is uncommon for resting cells, and as such we first ran 

a number of quality controls. In order to obtain sufficient material for sequencing, LNs were 

pooled from mice with the same genotype (Figure 6A). In total we obtained 50 million to 67 

million reads from each WT RPF biological replicate and approximately 40 million reads 

from each Anaef replicate. We removed rRNA reads (roughly 43%–55% of reads per 

sample), discarded reads that map to multiple places in the genome, and masked reads that 

mapped to the first or last five codons. Keeping only annotated transcript-mapping reads, we 

used 2.9 million to 7.0 million reads per sample for further analysis. We observed that the 

majority of ribosome-protected fragment (RPF) lengths were between 27 and 31 nt, 

consistent with the size of a standard RPF (Brar and Weissman, 2015; Ingolia et al., 2013; 

Figure S4B). As expected, the majority of RPF reads mapped to the 5′ end of genes relative 

to the coding sequence, and very few reads mapped to the 3′UTR (Figures S4C and S4D). 

In contrast, total RNA sequencing (RNA-seq) reads mapped throughout the transcripts, 

including the 5′ and 3′UTRs (Figures S4C and S4D). Thus, this approach worked 

technically, yet we did note that the purity for WT CD4+CD25− T cells was slightly lower 

than for Anaef cells (Figure S4A).

To determine how many targets were preferentially bound by ribosomes in resting WT CD4+ 

T cells, we performed differential expression analysis using DESeq2, comparing our RPF 

and total RNA datasets from WT mice. A total of 3,332 genes were significantly enriched 2-
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fold or more in RPFs relative to mRNA, whereas 11,009 genes were more significantly 

enriched 2-fold or more in the mRNA relative to the RPF (Figure 6B). The small number of 

genes differentially bound to ribosomes is consistent with relatively low translation in 

resting T cells (Araki et al., 2017; Bjur et al., 2013; Tan et al., 2017). Histone genes, which 

are not polyadenylated (Marzluff et al., 2008) and thus would not be included in our total 

RNA-seq as we purified total RNA by oligo-deoxythymine (oligo-dT) hybridization, were 

highly enriched in our RPF data (Figure 6C, orange histogram). In contrast, long intergenic 

noncoding RNAs (lincRNAs; Ensembl mouse dataset), which are not translated (Guttman et 

al., 2013), were more enriched in the total mRNA fraction (Figure 6C, green histogram). 

Thus, there is a translational landscape in resting CD4+ T cells. To obtain an initial 

impression of the types of targets in the 3,332 genes, we compared these with a published 

list of mTOR target genes from proliferating P53-deficient MEFs treated with the mTOR 

inhibitor Torin 1 (Thoreen et al., 2012). Of the 232 Torin-sensitive genes in MEFs (Thoreen 

et al.,2012 , 128 also appeared in our WT CD4+ T cell RPF dataset. Gata3 and CD44, genes 

we identified as translational targets of mTOR in T cells (Figure 5), were also enriched in 

the RPF dataset relative to total RNA (Figure 6B).

We subsequently took a more unbiased approach to understand the types of target genes that 

were bound by ribosomes in the basal state. We used the Database for Annotation, 

Visualization and Integrated Discovery (DAVID; version 6.8) to perform functional 

annotation clustering on the 3,000 most upregulated and 3,000 most downregulated genes in 

our WT dataset. Enrichment scores are listed as positive for pathways that were over-

represented in the RPF fraction and negative for pathways over-represented in the mRNA. 

Remarkably, mitochondrial genes and genes involved in oxidative phosphorylation were 

among pathways enriched among mRNAs being translated (Figures 6D–6F). In agreement 

with our discovery of robust tonic mTORC1 signals in resting CD4+ T cells, mTOR-

regulated processes of translation and protein biogenesis were enriched in the RPF fraction 

(Figure 6D). Perhaps more unexpectedly, spliceosome and cell-cell adhesion were also in the 

top four functional annotation clusters (Figures 6G and 6H). RNA binding proteins, 

including splicing proteins, are typically regulated at the RNA level (such as through 

translation) (Fu and Ares, 2014; Martinez and Lynch, 2013. The spliceosome genes mostly 

encode core spliceosome proteins, and without these, splicing does not occur (Fu and Ares, 

2014; Martinez and Lynch, 2013). CD44 is a migration receptor; CD44 binding to ligands 

such as the extracellular matrix component hyaluronic acid can affect T cell proliferation 

and cytokine production (Baaten et al., 2013). In sum, we established that there is a 

translational landscape in resting CD4+ T cells that is rich in mTOR-regulated targets, as 

well as targets that affect processes such as mitochondrial metabolism and splicing.

Rasgrp1Anaef CD4 T Cells Reveal Subtle Changes in Translational Landscape before Onset 
of Autoimmunity

Last, we aimed to understand how Anaef T cells might alter their cell biology and lineage 

fate before the onset of the described immunopathology. To do this, we examined CD4+ T 

cells isolated from young (12-week-old) Anaef mice, and not from older (>28 weeks) mice, 

when autoimmunity is prevalent and Tph and Tfh cells have begun to accumulate (Figure 1). 

Comparison of the WT and Anaef total RNA datasets revealed that WT and Anaef CD4+ 
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cells are very similar at the transcriptional level, with a Pearson’s correlation coefficient of 

0.997 (Figure 7A). We noted that some B cell-specific transcripts appeared in some WT 

replicates (approximately 3% non-CD3+CD4+ cells; Figure S5A); given that these were 

contaminants, we excluded them from our analysis (Figure 7A; Figure S5A). Profiled 

ribosomes from Anaef CD4+ T cells revealed that 3545 genes in resting Anaef CD4+ T cells 

were enriched 2-fold or greater in the RPF dataset relative to Anaef total RNA (Figure 7B). 

Functional annotation of these genes (DAVID) demonstrated that resting CD4+ T cells from 

12-week-old Anaef mice also revealed a ribosome landscape enriched for targets that fall 

into mitochondria, spliceosome, oxidative metabolism, and translation initiation pathways, 

as seen for WT CD4+ T cells (Figure 7C). In addition, chromatin remodeling and 

glutathione metabolism were enriched pathways unique to the Anaef dataset (Figure 7C). 

Glutathione functions as an antioxidant that controls oxidative stress (Mak et al., 2017; 

Meister, 1983). Together, these studies indicate a connection between mTOR, glutathione 

metabolism, and regulation of T cell responses.

Focusing on the specific translated target genes, the identity of the ribosome profiles 

between WT and Anaef resting CD4+ T cells showed a high degree of similarity, with 2921 

overlapping gene targets (Figure 7D), but also revealed a small subset of genes that were 

more highly enriched in Anaef CD4+ T cells compared with WT (Figures 7D, 7E, and S5B). 

Thus, the Anaef translational landscape displayed unique features. Further interrogating the 

624 uniquely translated genes in Anaef T cells (Figure 7D), we compared the log2 fold 

change (FC) of the RPF RPMs for each genotype and plotted these against the log2FC of the 

total RNA RPMs for each genotype to assess which target genes were affected at the 

translational versus transcriptional level (Figure 7E). Genes such as Stfa3 (stefin A3) were 

regulated at the level of translation, but some other genes, such as Gm10722, which mapped 

to un-annotated regions, are likely artifacts because of low reads per million in both Anaef 

replicates (Figure 7E). In sum, there are subtle alterations in the translational landscape of 

naive Anaef CD4+ T cells in young animals, prior to the onset of immunopathology (Figure 

7F).

DISCUSSION

Over the past decade a hypothesis formed that tonic signals generate low-level 

phosphorylation to reduce the threshold for T cell activation, priming T cells to respond to 

infection (Bhandoola et al., 2002; Myers et al., 2017b; Stefanová et al., 2002). However, 

exclusively reducing the threshold for activation could come at the price of spontaneous 

autoreactivity. In a previous study, we demonstrated that tonic TCR-LAT signals function as 

an intrinsic brake. Tonic LAT signals connecting to the epigenetic regulator HDAC7 

maintain expression of a set of genes that are negative regulators of T cell proliferation and 

differentiation (Myers et al., 2017a). In the present study, we establish how tonic Rasgrp1-

mTORC1 signals prime the basal state of resting CD4+ T cells by shaping a basal 

translational landscape. Through genome-wide ribosome profiling, we show that resting 

primary CD4+ T cells are not at a translational “ground-zero” state during homeostasis but 

instead have specific translational programs rich in mTOR targets. Our study provides a 

molecular mechanism for how tonic signals prime the basal state of resting T cells and helps 

understand published work describing that T cells with the highest tonic signaling and CD5 
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expression are the best T cell responders during bacterial and viral infections (Fulton et al., 

2015; Mandl et al., 2013).

mTOR is known to play a role when the TCR recognizes foreign peptide, leading to T cell 

activation and differentiation. The cell-biological changes that promote full T cell activation 

include transcription of mRNAs such as the mTOR target and transcription factor c-Myc 

(Macintyre et al., 2014; Preston et al., 2015; Verbist et al., 2016; Yang et al., 2013), 

translation (Chi, 2012; Laplante and Sabatini, 2012), and metabolic reprogramming 

(MacIver et al., 2013; Pearce et al., 2013). mTOR also relies on input from nutrients such as 

glucose and amino acids, and this additional input is essential for optimal T cell activation 

(Macintyre et al., 2014; Sinclair et al., 2013; Zoncu et al., 2011). Here we discovered that 

the mTORC1 pathway is selectively robust in the basal state in CD4+ T cells in vivo. DAVID 

analysis of pathways points to increased glutathione metabolism at baseline in Anaef T cells, 

which is an attractive candidate mechanism for how Anaef naive T cells spontaneously take 

on autoreactive features and cell fates such as Tfh and Tph. In this list of translated target 

genes unique for Anaef T cells, we noted seven members of the solute carrier family, which 

are involved in nutrient transport (Table S1). The seven genes have largely been unstudied in 

T cells, and future work is required to mechanistically link them to immune function in both 

WT mice and the Anaef model.

T cells with this highest tonic mTORC1 signals polarized more efficiently to Th2 effector 

cells. Type 2 cell-mediated immunity is associated with protection against helminth 

parasites. However, because most vertebrates are constantly colonized by helminths (Dobson 

et al., 2008), type 2 cell immunity may have other functions. Recently, it has become clear 

that type 2 immunity has important roles in tissue homeostasis (Harris and Loke, 2017). 

Neonates exhibit exaggerated type 2 immune responses, which aid in the adaptation to the 

new environment after birth (Torow et al., 2017). This Th2 bias is then likely 

counterbalanced by subsequent microbial colonization in early childhood (Gollwitzer et al., 

2014; Herbst et al., 2011) and reset once again upon helminth infection (Dobson et al., 

2008). An interesting concept for future research would be to determine how tonic mTORC1 

signals connect to dynamic tissue homeostasis.

Our results here also demonstrate that aberrantly increased tonic mTORC1 signals result in 

subtle changes in the translational landscape of resting CD4+ T cells and that over time 

increased tonic mTORC1 signals lead to penetrant immunopathology. This included the 

development of Tph and Tfh cells over time. Dysregulation of mTORC1 signaling has been 

previously implicated in autoimmune diseases. T cells from patients with systemic lupus 

erythematosus (SLE) exhibit mTORC1 activation (Perl, 2016). Rasgrp1 has been implicated 

in human autoimmune disease as well, as splice variants have been reported in SLE (Yasuda 

et al., 2007), and single-nucleotide variants were identified from genome-wide association 

studies (GWAS) on patients with type 1 diabetes and Graves’ disease (Plagnol et al., 2011; 

Qu et al., 2009). The mTORC1 inhibitor rapamycin has been shown to block T cell 

activation in SLE patients and has therapeutic efficacy in SLE (Perl, 2016). Inhibition of 

mTORC1 signaling via rapamycin reduced autoimmune features in the Anaef model (Daley 

et al., 2013) and has been shown to do the same in several other well-established mouse 

models of SLE (Perl, 2016). Interestingly, a recent study implicated aberrant T cell 
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metabolism, a process regulated by mTOR, as a driver of disease pathology in a mouse 

model of SLE. Treating mice with both 2-deoxy-D-glucose to block glucose metabolism and 

metformin to block mitochondrial metabolism restored T cell metabolism to WT levels and 

led to reduced autoantibodies and lessened kidney pathology (Yin et al., 2015). We saw 

increased translation of targets in “mitochondria” and “oxidative phosphorylation” cluster; 

basal translation of these likely support the metabolic state of resting CD4+ T cells, which 

use mitochondrial oxidative metabolism in the basal state (Gerriets and Rathmell, 2012; 

MacIver et al., 2013; Pearce et al., 2013). Whether increased tonic mTORC1 signals in T 

cells is a common feature in different autoimmune diseases is an interesting avenue for 

future study, and could benefit from mouse models such as the Rasgrp1Anaef mouse 

presented here.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jeroen Roose (Jeroen.Roose@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—WT C57BL/6 mice and OT-II TCR transgenic mice were bred in house at UCSF. 

Nur77-GFP mice were obtained from Drs. Arthur Weiss and Julie Zikherman and have been 

described previously (Zikherman et al., 2012). Rasgrp1Anaef mice have been described 

previously (Daley et al., 2013) and were bred at UCSF. Mice used in experiments were 

between 8 and 12 weeks unless otherwise indicated. For in vivo studies with rapamycin 

treatments, mice were 12 weeks of age. Both male and female mice were used, with 

approximate weights of 20 g and 27 g, respectively. Littermates of the same genotype were 

randomly assigned into vehicle and rapamycin treated groups. Animals had not previously 

had any drug treatments or procedures performed on them. Mice were housed and treated in 

accordance with the guidelines of the Institutional Animal Care and Use Committee 

(IACUC) guidelines of the University of California, San Francisco (AN098375-03B).

Murine Primary Cell Culture—Cells were isolated from cervical, brachial, axillary, 

inguinal, and mesenteric lymph nodes of mice, with both male and female mice being used 

in experiments. CD4+ T cells were isolated by MACS negative isolation (Miltenyi) or by 

fluorescent activated cell sorting (FACS; staining for CD4, CD25, CD44, and CD5) in the 

UCSF Flow Cytometry Core. Cells were counted and plated on 96 well plates that had been 

pre-coated with 2ug/ml α-CD3 and 2ug/ml α-CD28 unless otherwise indicated. T cells were 

cultured in RPMI (Hyclone) supplemented with 10% fetal calf serum, 1% sodium pyruvate, 

1% nonessential amino acids, 1% HEPES, 1% pen-strep-glutamine, and 0.1% beta 

mercaptoethanol, at 37°C. For differentiation assays, cells were cultured in media 

supplemented with cytokines and blocking antibodies as follows: Th1 conditions 10ng/ml 

rIL-12 (Peprotech) and 10ug/ml anti-IL-4 clone 11B11 (UCSF mAb core); Th2 conditions 

(10ng/ml rIL-4 (Peprotech) and 10ug/ml anti-IFNγ clone XMG1.2 (UCSF mAb core); Th17 

conditions 1ng/ml TGFb (R&D Systems), 40ng/ml rIL-6 (Peprotech), 10ug/ml a-IFNγ clone 

XMG1.2; iTreg conditions 2ug/ml TGFb. Th1 and Th2 cells were cultured for 3 days on 
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plate-bound stimulation, then rested in complete media without stimulation for two days 

prior to intracellular cytokine staining. Th17 and iTreg cells were cultured for 4 days on 

plate-bound stimulation prior to intracellular cytokine or transcription factor staining.

DT40 Cell Culture—Rasgrp1-WT and Rasgrp1/3-deficient DT40 chicken B cells were 

maintained in RPMI supplemented with 10%FBS, 1% chicken serum, 1% pen-strep-

glutamine, and 2.5% HEPES at 37°C. Cells were cultured between 0.2 and 1 million / mL. 

DT40 cells are female (ZW). These cell lines were originally described in Oh-hora et al. 

(2003). The lines used in this study were authenticated are tested negative for Mycoplasma.

METHOD DETAILS

HEp-2 ANA Assays—HEp-2 assays were performed utilizing the Nova-Lite kit from 

INOVA diagnostics. Serum was applied to slides, stained with IgG-FITC (Jackson Labs) and 

DAPI (500ng/ml, Thermo Fisher Scientific). Slides were imaged on a Keyensce BZ-X710 

microscope. Sera were scored as ANA negative or ANA positive based on a no serum 

negative control or a CD45 Wedge B6-129 F1 positive control serum (a gift from Michelle 

Hermiston’s lab) present on each slide.

Enzyme-Linked Immunosorbent Assay (ELISA)—Plates were pre-coated with Goat 

anti-Mouse Ig (Southern Biotech), blocked with PBS-BB (PBS + 0.05% Tween 20 + 1% 

BSA) and serum was applied. HRP conjugated secondary antibodies anti-IgA-HRP, anti-

IgG3-HRP, anti-IgG1-HRP, anti-IgM-HRP, anti-IgG2b-HRP, and anti-IgG-HRP (all from 

Southern Biotech) were applied and subsequently exposed with a slow kinetic TMB solution 

(Sigma). The reaction was terminated with 1N HCL and absorbance was measured at 450 

nm on a SpectraMax 340 PC plate reader and analyzed using SoftMax Pro 4.8 Software.

Flow Cytometry

Antibodies: Fluorophore-conjugated ICOS, PD1, CXCR5, CD4, CD8, TCRb, CD44, 

CD62L, CD25, CD69, CD5, CD11b, CD11c, CD19, B220, Ter119, DX5, Gr1, IFNγ, IL-4, 

IL-17A, FoxP3, Gata3, and Bcl6 were purchased from eBioscience, BD Biosciences, 

BioLegend, and Tonbo Biosciences. Primary antibodies for phospho-flow cytometry were 

purchased from Cell Signaling Technologies: P-S6 S235/236 (2211), P-S6 S240/244 (2215), 

P-ERK (4377), and P-Akt (4058). Secondary antibody for phospho-flow cytometry was R-

Phycoerythrin AffiniPure F(ab’)2 Fragment Donkey Anti-Rabbit IgG (Jackson 

Immunoresearch).

Tfh cell analysis: Peyer’s Patches were isolated from mice and stained with antibodies to 

B220, CD4, PD-1, CXCR5 (Biolegend, clone L138D7) for 1 hour at room temperature prior 

to analysis by flow cytometry.

Intracellular cytokine staining: Cells were harvested, restimulated in complete media 

supplemented with 5ng/ml PMA (EMD Millipore) and 500ng/ml ionomycin (Sigma 

Aldrich) for 1 hour at 37°C, and then in the same media supplemented with monensin (BD 

Golgi Stop) for an additional 3 hours. Restimulated cells were washed, stained with Live/

Dead Fixable Violet dye (Thermo Fisher Scientific), stained for relevant surface markers 
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where applicable, and then fixed in BD Cytofix/Cytoperm buffer. Membranes were 

permeabilized with BD Perm/Wash buffer and stained with anti-cytokine antibodies 

(eBioscience IFNγ clone XMG1.2; BD IL-4 clone 11B11; eBioscience IL-17A clone 

eBio17B7) prior to analysis by flow cytometry.

Phospho-flow cytometry and fluorescent cellular barcoding: Cells were harvested at 

indicated time points, washed, and either rested in full culture media (but lacking FCS) for 

the indicated time points or directly fixed in 2% PFA. Membranes were permeabilized with 

ice-cold 90% methanol at −20°C, and subsequently cells were barcoded with Alexa Fluor 

488 (final dye concentrations of 15, 5, 1.3, 0.3, 0.075 ug/ml) and Pacific Blue (final dye 

concentrations of 40, 6.5, 0.6, 0.075 ug/ml) succinimidyl esters (Thermo Fisher / Molecular 

Probes). Barcoded cells were pooled and the bulk population was stained with antibodies to 

P-S6 S235/236, P-S6 S240/244, P-44/42 MAPK (Erk1/2), and P-Akt S473 (Cell Signaling), 

and where applicable stained with donkey anti-rabbit APC (Jackson Immunoresearch) 

secondary prior to flow cytometry.

Transcription factor staining: In cellular barcoding and Gata3 time course experiments, 

cells were harvested at indicated time points, washed once, and fixed in FoxP3 Fixation 

buffer (eBiosciences). Cells were permeabilized with FoxP3 permeabilization buffer 

(eBiosciences). Where applicable cells were barcoded by staining with Pacific Blue 

succinimidyl ester (Thermo Fisher / Molecular Probes), and washed. Cells were stained with 

antibodies to Gata3, Foxp3, and Bcl6 and analyzed by flow cytometry.

DATA ANALYSIS

All flow cytometry data was acquired on a BD LSRII or Fortessa and analyzed using FlowJo 

(Treestar).

DT40 Transfections—20 million cells were resuspended in a 0.4 cm cuvette (Invitrogen) 

info transfection media (DT40 culture media excluding pen-strep). 67ug/ml of plasmid 

(pEGFP-N1-Rasgrp1-EGFP, with either WT Rasgrp1 or the point mutations for R271E or 

R519G) was added to the cuvette and cells were electroporated using a Biorad Gene Pulser 

XCell. Plasmids were originally described in Iwig et al. (2013). After a 6 hour recovery, 

cells were treated with vehicle or the indicated inhibitor for 30 minutes, fixed with 2% 

paraformaldehyde, washed, and permeabilized overnight at −20°C in 90% methanol. The 

following day cells were prepared for flow cytometry as described above.

Inhibitors—Rapamycin was purchased from EMD Millipore. For in vivo experiments was 

diluted in DMSO (15.4%), Cremophor (15.4%) and water (69.2%); mice were injected 

intraperitoneally with 0.4mg/kg rapamycin on days 0, 1, 2, 3, 5, and 7, and cells were 

harvested on day 8. For in vitro experiments, rapamycin (EMD Millipore) was diluted in 

DMSO and used at 20 nM. BI-D1870 was purchased from Enzo Life Sciences (BML-

EI407-0001) and used at 2uM.

Immunoblotting—Relevant murine primary cell populations were isolated by MACS 

purification (Miltenyi Biotec) or sorting (BD FACS Aria) as indicated. Cells were kept ice-
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cold throughout the entire procedure. Following purification of the cell population of 

interest, cells were washed and cell suspensions in PBS were directly lysed in 4X Laemmli 

buffer. Lysates were clarified by ultracentrifugation (30 minutes at 100,000rpm). Lysates 

were run 4%–12% gradient Bis-Tris gels (Thermo Fisher), transferred to PVDF membranes, 

blocked in 3% BSA, and probed for indicated proteins with primary antibodies. Primary 

antibodies were purchased from Cell Signaling (TBP) and Santa Cruz Biotechnologies 

(Gata3). Signal was detected using HRP-conjugated secondary antibodies and blots were 

developed using Supersignal West Pico Chemiluminescent Substrate (Pierce). Images were 

recorded using a chemiluminescent imager (Fuji LAS-4000).

qPCR—Lymph nodes from 3 mice per genotype were extracted and pooled. Naive CD4+ T 

cells were sorted as described to > 95% purity by CD5 protein level, 30% CD5low and 30% 

CD5high. Total RNA was extracted from sorted cells using Trizol, the PicoPure® RNA 

Isolation Kit (ThermoFisher Scientific, KIT0214), and treated with DNase I (ThermoFisher 

Scientific, 12185010). cDNA was generated by reverse transcriptase using the Super Script 

IV first-strand synthesis kit (ThermoFisher Scientific, 18091050). For mRNA gene 

expression assays, TaqMan primers/probes were purchased from Life Technologies (CD44 
(Mm01277161_m1), and Gata3 (Mm00484683_m1)), and were normalized to an 

endogenous control (primer/probe for Ppia (Mm02342430_g1). TaqMan real-Time PCR was 

performed using TaqMan Fast Advanced Master Mix (Applied Biosciences, 4444963). 

Multiplex Taqman reactions were run on a QuantStudio 12K Flex Real-Time PCR System 

(ThermoFisher) in triplicate. The level of transcript expression is presented as a comparison 

of between CD5low and CD5high populations, of the same sort, calculated as 2−ΔCT, where 

ΔCT is equal to the difference of the proband cycle threshold (CT) between CD5high - 

CD5low, after being normalized to Ppia levels respective to each sample.

Total RNA Sequencing and Ribosome Profiling

Cell Isolation: CD4+ CD25− T cells from pooled from LN of multiple WT and Anaef mice 

were isolated to high purity (> 97%) with the MACS mouse naive CD4+ T cell isolation kit 

(Miltenyi Biotec).

Total mRNA Sequencing: Total RNA was isolated from 20,000 cells per sample using the 

Dynabeads mRNA DIRECT Purification Kit (Thermo Fishcer Scientific) following 

manufactors protocol. Libraries were prepared using the Nugen/Nextera XT kit (Illumina) 

and single-end 50pb RNA sequencing was performed using a HiSeq 4000 (Illumina).

Ribosome Profiling: The bulk pool of purified CD4+ T cells (60-100 million cells) were 

washed in RNase-free PBS, treated with 100ug/ml cycloheximide (CHX) for 1 minute, and 

then lysed in polysome lysis buffer (20mM Tris 7.5, 250mM NaCl, 15mM MgCl2, 1mM 

dithiothreitol, 8% glycerol, supplemented with 0.5% triton, 30 U/ml Turbo DNase (Ambion) 

and 100μg/ml cycloheximide), as described in Stern-Ginossar et al. (2012). Lysate was 

clarified by centrifugation (10 minutes, 20000 g, 4°C), snap-frozen, and RNA content was 

measured using the Qubit RNA HS Assay Kit (Thermo Fisher Scientific). Ribosome 

protected fragments (RPFs) were prepared by digesting samples for 1 hour at room 

temperature with 8ug micrococcal nuclease (MNase) per ug of RNA, 5mM CaCl2, 1:10 
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SuperAseIn (Invitrogen), and reactions were stopped with 6.25mM EGTA. RPFs were 

purified by sucrose cushion by overlaying MNase-digested lysate onto sucrose solution 

(34% sucrose, 5X polysome buffer, 50mg/ml CHX, 1M DTT) and ultracentrifugation was 

performed in a TLA-100.3 rotor (Beckman-Coulter) for 1 hour at 100,000rpm, 4°C. 

Subsequent sample clean up and library preparation was performed using the TruSeq Ribo 

Profile (Mammalian) kit (Illumina) and libraries were sequenced on a HiSeq 4000 (Illumina) 

in the UCSF Center for Advanced Technology Core.

Data Analysis: Total RNA was aligned to the mouse genome (NCBI build 38, GRCm38) 

using TopHat v1.4.1 (Trapnell et al., 2009). Ribosome Protected Fragment sequences were 

aligned to the mouse genome (NCBI build 38, GRCm38) using TopHat v1.4.1 (Trapnell et 

al., 2009) following rRNA contaminant removal using Bowtie v0.12.7 (Langmead et al., 

2009). Length distribution was determined using Samtools v0.1.18 (Li et al., 2009); 

metagene analysis, masking of first and last 5 codons, and RPKMs (reads per kilobase 

million) were calculated using Plastid (Dunn and Weissman, 2016). Differential expression 

was performed using DESeq2 (Love et al., 2014). Functional annotation clustering was 

performed using DAVID v6.8 (Huang et al., 2009). The 3000 genes highest and lowest 

log2FC in a given list were input and compared to background, which was set as all the 

genes in that given list. Pathways shown had an enrichment score of 2 or greater.

QUANTIFICATION AND STATISTICAL ANALYSIS

Information on statistical tests, the value of “n,” what “n” consists of, and the precision 

measures for each experiment can be found in the corresponding figure legends for each 

experiment. Statistical tests were carried out in Prism, with ns defined as p > 0.05; * as p ≤ 

0.05, ** as p ≤ 0.01, *** as p ≤ 0.001, and **** as p ≤ 0.0001.

For mouse studies, within an experiment animals of the same age were used unless 

otherwise indicated in the figure legend, and both male and female animals were used. For in 
vivo experiments, littermate controls of both genders were randomized into vehicle and 

rapamycin treatment groups such that equivalent numbers of mice of each gender received 

each type of dosing.
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Highlights

• Naive, resting CD4+ T cells display selective, robust tonic mTORC1 signals

• The Ras exchange factor Rasgrp1 is necessary to drive tonic mTORC1 signals

• Tonic mTORC1 signals affect the baseline translational landscape of primary 

T cells

• Rasgrp1Anaef causes immunopathology and translation changes in T cells
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Figure 1. Aberrant Rasgrp1Anaef Signals and T Cell-Mediated Autoimmunity
(A) Cartoon summarizing the phenotype of the Rasgrp1Anaef mouse, which has elevated 

CD44 on CD4+ T cells and increased basal mTORC1 signaling.

(B) HEp-2 anti-nuclear antibody (ANA) assay on serum from WT and Anaef mice at the 

indicated ages. Data are percentage of mice at each age that scored positive for ANAs. Data 

are from one experiment with two to six mice per genotype per age.

(C) Flow cytometric analysis of CD4 single-positive (SP) thymocytes from WT and Anaef 

Nur77-GFP mice with a polyclonal T cell receptor (TCR) repertoire. Total thymocytes were 
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first gated to exclude non-T-lineage cells, then on CD4+ CD8− cells. Data are representative 

of three independent experiments with three to five mice per group, and error bars represent 

SEM.

(D) Flow cytometric analysis of splenic CD4+ CD25− T cells from WT and Anaef Nur77-

GFP mice with a polyclonal TCR repertoire. Data are representative of five independent 

experiments with three to five mice per group. Error bars represent SEM.

(E) As in (C) but with WT and Anaef mice carrying the OT-II TCR transgene to fix the TCR 

repertoire. Data are representative of three independent experiments with three to five mice 

per group. Error bars represent SEM.

(F) As in (D) but with all mice carrying the OT-II TCR transgene. Data are representative of 

three independent experiments with three to five mice per group. Error bars represent SEM.

(G) Flow cytometric analysis of ICOS, PD-1, CXCR5, and Bcl6 protein levels (mean 

fluorescence intensity [MFI]) on splenic WT and Anaef CD4+ T cells from 28-week-old 

mice. Data are representative of one experiment with four mice per genotype.

(H) As in (G) but with MFI calculated for mice at the indicated ages. Statistical significance 

for each age was determined using an unpaired t test, and error bars represent SEM. Data are 

from one experiment with two to six mice per genotype per age.

(I) Flow cytometric analysis of Tfh cells (gated on CD4+ CD25− PD1hi CXCR5hi) isolated 

from Peyer’s patches of 28-week-old WT and Anaef mice. Data are representative of four 

independent experiments with two or three mice per genotype per experiment. Statistics 

were calculated using unpaired t test; mean ± SEM.

(J) Flow cytometric analysis of Tfh cells (gated on CD4+ CD25− PD1hi CXCR5hi) isolated 

from Peyer’s patches of 12-week-old Anaef mice treated for 1 week with vehicle or 

rapamycin (0.4 mg/kg, intraperitoneal [i.p.]). Data are representative of three independent 

experiments with three mice per genotype per treatment arm per experiment. Statistics were 

calculated using unpaired t test; mean ± SEM.
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Figure 2. Tonic Signals in CD4 T Cells Preferentially Couple to the mTORC1 Pathway
(A) Schematic summarizing level of tonic signaling in lymphocytes in different anatomical 

locations.

(B) Schematic of signaling pathways proximal to the TCR and downstream effector kinase 

pathways, including mTORC1-S6K-S6, Ras-Erk, and mTORC2-Akt.

(C) Schematic of fluorescent cellular barcoding technique used in phospho-flow assays. 

Cells from individual mice or tissues are labeled with different concentrations of fluorescent 
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succinimidyl esters, pooled, and stained for markers of interest. The pool is run on a flow 

cytometer, and data are deconvolved so signaling in each population can be analyzed.

(D) Phospho-flow cytometry on lymph node cells from WT mice immediately fixed upon 

dissection or rested for 2 h prior to fixation. Fixed cells were barcoded as in (C) and stained 

with antibodies to CD4 and the indicated phospho-proteins. Background (gray histogram) is 

cells stained with secondary antibody without primary antibody. Statistical significance was 

calculated using an unpaired t test, and error bars represent SEM. Data are representative of 

two to six independent experiments. Statistics were calculated using unpaired t test; mean ± 

SEM.

(E) Phospho-flow cytometry on lymph node and blood cells from WT mice immediately 

fixed upon dissection. Cells from individual tissues were barcoded as in (C) and stained with 

antibodies to CD4 and P-S6S240/244. Gray histogram is background, as in (D). Data are 

representative of four independent experiments with three to five mice per experiment.

(F) Flow cytometric analysis of CD44 levels on naive CD4+ T cells from 12-week-old WT 

mice treated for 1 week with vehicle or rapamycin (0.4 mg/kg, i.p.). CD44 MFI was 

calculated for TCRβ+ CD4+ CD62Lhi naive T cells, and statistics were calculated using 

unpaired t test; mean ± SEM. Data are representative of three independent experiments with 

three mice per genotype per treatment arm per experiment.
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Figure 3. Rasgrp1 Signals to mTORC1 in a Tonic Fashion
(A) Phospho-flow cytometry on WT and Rasgrp1−/− Rasgrp3−/− (DKO) DT40 cells 

immediately fixed from culture. Histogram is representative of three independent 

experiments. Data were normalized and pooled by setting the DKO MFI from each 

experiment to 1, and statistical significance was calculated using an unpaired t test.

(B) Phospho-flow cytometry on DKO DT40 cells transiently transfected with Rasgrp1WT-

EGFP or Rasgrp1R271E-EGFP constructs. Cells were gated on the basis of level of GFP (low, 

medium, or high) prior to analyzing phosphorylation, and statistical significance was 
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calculated using an unpaired t test. Data are representative of four to six independent 

experiments.

(C) As in (B) but transfection with Rasgrp1WT-EGFP or Rasgrp1 R519G-EGFP constructs. 

Data are representative of four to six independent experiments.

(D) Flow cytometric analysis of CD44 levels (MFI) on CD4+ CD25− splenic T cells from 

WT and Anaef mice at the indicated ages. Statistical significance determined using the 

Holm-Sidak method, with alpha = 0.05. Data are from one experiment with two to six mice 

per genotype per age.

(E) Flow cytometric analysis of CD44 levels on naive CD4+ T cells from 12-week-old WT 

and Anaef mice treated for 1 week with vehicle or rapamycin (0.4 mg/kg, i.p.). CD44 MFI 

was calculated for TCRβ+ CD4+ CD62Lhi cells, and statistics were calculated using 

unpaired t test; mean ± SEM. Data are representative of three independent experiments with 

three mice per genotype per treatment arm per experiment.
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Figure 4. Cells with High Tonic mTORC1 Signaling Exhibit Increased Th2 Differentiation
(A) Schematic of mTORC1 and mTORC2 in T cells. Multiple upstream inputs can activate 

these kinases, and they have been demonstrated to affect differentiation to distinct effector T 

cell lineages.

(B) In vitro Th2 differentiation assay with WT and Anaef lymph node CD4+ T cells. Data 

are representative of six independent experiments with two to four mice per group; statistics 

were calculated using unpaired t test; mean ± SEM.
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(C) As in (B), but equal numbers of WT BoyJ (CD45.1) and Anaef B6 (CD45.2) cells were 

co-cultured in Th2 conditions. Contour plots are representative of two independent 

experiments with two mice per group. Data from individual experiments were normalized to 

the WT cells within that experiment, pooled, and statistical significance was calculated using 

an unpaired t test.

(D) Schematic of gating scheme for phospho-flow cytometry shown in (E) and cell-sorting 

strategy used as input for assays in (F) and (G).

(E) Phospho-flow cytometry on WT lymph node cells immediately fixed upon dissection. 

Cells were barcoded, stained, and gated as indicated in (D) prior to analysis of phospho-

markers. Statistical significance was calculated using an unpaired t test. Data are 

representative of four independent experiments with three mice per experiment.

(F) In vitro Th1 and Th2 differentiation assay on sorted CD5low and CD5high CD4+ T cells. 

Data are representative of six independent experiments with two mice per experiment.

(G) As in (F) but equal numbers of sorted WT CD5low BoyJ (CD45.1) and WT CD5high B6 

(CD45.2) cells were co-cultured in Th2 conditions. Contour plot is representative of two 

independent experiments with two mice per group, and graph is normalized and pooled data 

from both experiments. Statistical significance was calculated using an unpaired t test.
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Figure 5. Tonic mTORC1 Signaling and Translation of Target Genes in Naive CD4+ T Cells
(A) Identification of pyrimidine-rich translational elements (PRTEs) in the 5′ UTRs of 

murine Gata3 and CD44. Sequences were obtained from Ensembl.

(B) TaqMan analysis of basal Gata3 mRNA levels in WT and Anaef CD4+ T cells. Gata3 
levels were normalized to the housekeeping gene Ppia. Statistical significance was 

calculated using an unpaired t test. Data are from four independent T cell purifications with 

n = 3 technical replicates per sample.
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(C) Immunoblotting for Gata3 and TBP (loading control) in purified CD4+ T cells from WT 

and Anaef mice. Data are representative of three independent experiments.

(D) TaqMan analysis of basal CD44 mRNA levels in WT and Anaef CD4+ T cells. CD44 
levels were normalized to the housekeeping gene Ppia. Statistical significance was 

calculated using an unpaired t test. Data are from four independent T cell purifications, with 

n = 3 technical replicates per sample.

(E) Flow-cytometric analysis of CD44 protein levels (MFI) on WT and Anaef CD4+ T cells 

from the same animals as in (D).

(F) TaqMan analysis of basal Gata3 mRNA levels in sorted WT CD4+ CD25− CD44low 

CD5low and CD5high cells. Gata3 levels were normalized to the housekeeping gene Ppia. 

Statistical significance was calculated using an unpaired t test. Data are from five 

independent sorts with n = 3 technical replicates per sample.

(G) Flow-cytometric analysis of Gata3 protein levels (MFI) on WT CD4+ CD25− CD44low 

CD5low and CD5high cells from the same animals as (F). Gray-shaded histogram is an 

isotype control. Data are from three independent experiments.

(H) TaqMan analysis of basal CD44 mRNA levels in sorted WT CD4+ CD25− CD44low 

CD5low and CD5high cells. CD44 levels were normalized to the housekeeping gene Ppia. 

Statistical significance was calculated using an unpaired t test. Data are from five 

independent sorts, with n = 3 technical replicates per sample.

(I) Flow-cytometric analysis of CD44 protein levels (MFI) on sorted WT CD4+ CD25− 

CD44low CD5low and CD5high cells from the same animals as (H).

(J) Flow cytometric analysis of Gata3 levels in WT and Anaef CD4+ T cells fixed at the 

indicated time points in Th2 differentiation conditions. Histogram for the 10 h time points is 

highlighted. Gray-shaded histogram represents isotype control. Statistical significance 

determined using the Holm-Sidak method, with alpha = 0.05. Data are representative of four 

independent experiments with two or three mice per group.

(K) Flow cytometric analysis of Gata3 levels in WT CD4+ CD25− CD44low CD5low and 

CD5high cells fixed at the indicated time points in Th2 differentiation conditions. Histogram 

for the 10 h time points is highlighted. Gray-shaded histogram represents isotype control. 

Data are representative of two independent experiments.
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Figure 6. The Translational Profile of Naive CD4 T Cells Reveals a mTOR Signature
(A) Schematic of the experimental design for paired ribosome profiling and total mRNA 

sequencing. Lymph nodes from individual mice were pooled across four WT and four Anaef 

samples, and CD4+ CD25− T cells were purified. Twenty thousand cells were lysed, and 

total mRNA was extracted using oligo-dT hybridization, which was used for RNA-seq 

library preparation and sequencing. The remaining biologicals replicates were pooled to give 

two WT and two Anaef samples of 60 × 106 to 100 × 106 cells, which were lysed for 

ribosome profiling library preparation and sequencing.
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(B) Histogram plot of DESeq2-calculated log2 fold change (log2FC) of ribosome-protected 

fragment (RPF) reads relative to total RNA. The number of genes that had a log2FC greater 

than 1 are indicated, and the log2FC values of CD44 and Gata3 are indicated by purple lines.

(C) As in (B), but with histone genes overlaid as an orange histogram and lincRNAs as a 

green histogram (a list of lincRNAs was obtained from Ensembl).

(D) Heatmap of the pathways enriched in the 3,000 most differentially expressed genes (up 

and down) in the WT RPF compared with WT total RNA. Functional annotation clustering 

was performed, and enrichment scores were calculated using DAVID, with the entire WT 

RPF versus Total RNA DESeq2 dataset used as background.

(E) List of select genes from the mitochondrion cluster identified in (D).

(F) List of select genes from the oxidative phosphorylation cluster identified in (D).

(G) List of select genes from the spliceosome cluster identified in (D).

(H) List of select genes from the cell-cell adhesion cluster identified in (D).
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Figure 7. Rasgrp1Anaef CD4 T Cells Reveal Subtle Changes in Translational Landscape before 
Onset of Autoimmunity
(A) Scatterplot of WT total RNA reads per million (RPM) versus Anaef total RNA reads per 

million. RPM were averaged across all four biological replicates, a pseudocount of 0.01 was 

added to all RPM values, and genes that appear in a B cell activation Gene Ontology (GO) 

signature but not in a T cell activation GO signature were excluded from the plot. Pearson’s 

correlation coefficient (r) was calculated as 0.997.

(B) Histogram plot of DESeq2-calculated log2FC of ribosome-protected fragment (RPF) 

reads relative to total RNA. The number of genes with a log2FC > 1 are indicated.
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(C) Heatmap of the pathways enriched in the 3,000 most differentially expressed genes (up 

and down) in the Anaef RPF compared with Anaef total RNA. Functional annotation 

clustering was performed, and enrichment scores were calculated using DAVID, with the 

entire Anaef RPF versus Total RNA DESeq2 dataset used as background.

(D) Venn diagram depicting the number of genes that are different or shared between the 

3,332 (Figure 6B) and 3,545 (Figure 7B) genes that were increased 2-fold or more in the 

RPF relative to total RNA for WT and Anaef datasets, respectively.

(E) Scatterplot of the ratio of RPF RPMs for each genotype plotted these against the ratio of 

the total RNA RPMs for each genotype. Ratios were plotted on a log2 scale.

(F) Cartoon depicting the kinetics of emerging immunopathology in Rasgrp1Anaef mice.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

ICOS (fluorophore-conjugated, anti-mouse) Biolegend Clone 7E.17G9

CD279 (PD1) (fluorophore-conjugated, anti-
mouse)

Biolegend Clone RMP1-30; AB_572016

CXCR5 (fluorophore-conjugated, anti-mouse) Biolegend Clone L138D7; AB_2561969

CD4 (fluorophore-conjugated, anti-mouse) Tonbo Biosciences Clone RM4-5

CD8 (fluorophore-conjugated, anti-mouse) BD Biosciences Clone 53-6.7

TCRb (fluorophore-conjugated, anti-mouse) Biolegend Clone H57-597

CD44 (fluorophore-conjugated, anti-mouse) Tonbo Biosciences Clone IM7

CD62L (fluorophore-conjugated, anti-mouse) BD Biosciences Clone Mel-14

CD25 (fluorophore-conjugated, anti-mouse) Tonbo Biosciences Clone PC61

CD69 (fluorophore-conjugated, anti-mouse) BD Biosciences Clone HI.2F3

CD5 (fluorophore-conjugated, anti-mouse) 53-7.3 Clone 53-7.3

CD11b (fluorophore-conjugated, anti-mouse) BD Biosciences Clone M1/70

CD11c (fluorophore-conjugated, anti-mouse) BD Biosciences Clone HL3

CD19 (fluorophore-conjugated, anti-mouse) BD Biosciences Clone 1D3

B220 (fluorophore-conjugated, anti-mouse) BD Biosciences Clone RA3-6B2

Ter119 (fluorophore-conjugated, anti-mouse) BD Biosciences Clone TER-119

CD49b (fluorophore-conjugated, anti-mouse) BD Biosciences Clone DX5

Gr1 (fluorophore-conjugated, anti-mouse) Biolegend Clone RB6-8C5

IFNg (fluorophore-conjugated, anti-mouse) eBioscience Clone XMG1.2

IL-4 (fluorophore-conjugated, anti-mouse) BD Biosciences Clone 11B11

IL-17A (fluorophore-conjugated, anti-mouse) eBioscience Clone eBio17B7

FoxP3 (fluorophore-conjugated, anti-mouse) eBioscience Clone FJK-16 s

Gata3 (fluorophore-conjugated, anti-mouse) eBioscience Clone TWAJ

Bcl6 (fluorophore-conjugated, anti-mouse) BD Biosciences Clone K112-91

P-S6 S235/236 (unconjugated, anti-mouse) Cell Signaling Technologies Cat# 2211; AB_331679

P-S6 S240/244 (unconjugated, anti-mouse) Cell Signaling Technologies Cat#2215; AB_331682

P-44/42 MAPK (P-Erk) (unconjugated, anti-
mouse)

Cell Signaling Technologies Cat#4377; AB_331775

P-Akt S473 (unconjugated, anti-mouse) Cell Signaling Technologies Cat#4058; AB_331168

Donkey anti-Rabbit IgG secondary (PE 
conjugated, for flow cytometry)

Jackson Immunoresearch Cat# 711-116-152; AB_2340599

Donkey anti-Rabbit IgG secondary (APC 
conjugated, for flow cytometry)

Jackson Immunoresearch Cat# 711-136-152; AB_2340601

Gata3 (immunoblotting; mouse monoclonal) Santa Cruz Biotechnologies Cat# SC-268; AB_2108591

TBP (immunoblotting; rabbit polyclonal) Cell Signaling Technologies Cat# 8515; AB_10949159

anti-mouse CD3 (T cell stimulations; 
unconjugated)

Tonbo Biosciences Clone 2C11

Cell Rep. Author manuscript; available in PMC 2019 June 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Myers et al. Page 39

REAGENT or RESOURCE SOURCE IDENTIFIER

anti-mouse CD28 (T cell stimulations; 
unconjugated)

Tonbo Biosciences Clone 37.51

Donkey anti-Mouse IgG (H+L) FITC 
secondary (ELISA)

Jackson Immunoresearch Cat# 715-095-150; AB_2340792

Goat anti-Mouse Ig Southern Biotech Cat# SB1010-01

anti-IgA-HRP Southern Biotech Cat# SB1040-05

anti-IgG3-HRP Southern Biotech Cat# SB1100-05

anti-IgG1-HRP Southern Biotech Cat# SB1070-05

anti-IgM-HRP Southern Biotech Cat# SB1020-05

anti-IgG2b-HRP Southern Biotech Cat# SB1090-05

anti-IgG-HRP Southern Biotech Cat# SB1020-05

Chemicals, Peptides, and Recombinant Proteins

Recombinant murine IL-12 Peprotech Cat# 210-12

Recombinant murine IL-4 Peprotech Cat# AF-214-14

Recombinant human TGFb R&D Systems Cat# 240-B-002

Recombinant murine IL-6 Peprotech Cat# 216-16

Anti-IL-4 UCSF Monoclonal Antibody 
Core

Clone 11B11

Anti-IFNg UCSF Monoclonal Antibody 
Core

Clone XMG1.2

DAPI Thermo Fisher Scientific Cat# D1306

TMB Solution Sigma Aldrich Cat# T4319

Phorbol-12-myristate-13-acetate (PMA) EMD Millipore Cat# 524400

Ionomycin Sigma Aldrich Cat# I0634

BD Golgi Stop BD Biosciences Cat# 554724

Live/Dead Fixable Viability Dye Thermo Fisher Scientific Cat# L34955

Fixation/Permeabilization Solution Kit BD Biosciences Cat# 554714

FoxP3 Fixation/Permeabilization Buffer Set eBioscience Cat# 00-5523-00

Succinimidyl Esters (for fluorescent cellular 
barcoding)

Thermo Fisher Scientific / 
Molecular Probes

Cat# A20000 (AF488), Cat# P10163 (Pacific Blue)

Rapamycin EMD Millipore Cat# 553211

BI-D1870 Enzo Life Sciences Cat# BML-EI407-0001

DNase I Thermo Fisher Scientific Cat# 12185010

Super Script IV first-strand synthesis kit Thermo Fisher Scientific Cat# 18091050

Cycloheximide Sigma Aldrich Cat# C4859

Critical Commercial Assays

Naive CD4 T cell Isolation Kit (mouse) Miltenyi Biotec Cat# 130-104-453

Nova-Lite HEp-2 ANA Kit INOVA Diagnostics Cat# 508100.2

PicoPure® RNA Isolation Kit Thermo Fisher Scientific Cat# KIT0214

TaqMan Fast Advanced Master Mix Applied Biosciences Cat# 4444963

Dynabeads mRNA DIRECT Purification Kit Thermo Fisher Scientific Cat# 61011

TruSeq Ribo Profile (Mammalian) kit Illumina Cat# RPHMR12126
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Mouse reference genome NCBI build 38, 
GRCm38

Genome Reference Consortium https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/

RNA Sequencing of WT and Anaef CD4+ T 
cells

This paper GEO: GSE114741

Ribosome Profiling of WT and Anaef CD4+ 
T cells

This paper GEO: GSE114741

Experimental Models: Cell Lines

Chicken B cells: WT DT40 Rasgrp1−/−/3 
double deficient)

Oh-hora et al., 2003 RRID: CVCL_0249

Chicken B cells: Rasgrp1−/− Rasgrp3−/− Oh-hora et al., 2003 RRID: CVCL1U39

Experimental Models: Organisms/Strains

Mouse: Nur77-GFP Drs. Art Weiss and Julie 
Zikherman; Zikherman et al., 
2012

N/A

Mouse: Rasgrp1Anaef Daley et al., 2013 RRID: MGI:5564911

Mouse: OT-II TCR Transgenic UCSF Mouse Inventory N/A

Oligonucleotides

qPCR primers/probes for CD44 Life Technologies Assay ID Mm01277161_m1

qPCR primers/probes for Gata3 Life Technologies Assay ID Mm00484683_m1

qPCR primers/probes for Ppia Life Technologies Assay ID Mm02342430_g1

Recombinant DNA

pEGFP-N1-Rasgrp1 WT-EGFP Iwig et al., 2013 N/A

pEGFP-N1-Rasgrp1 R271E-EGFP Iwig et al., 2013 N/A

pEGFP-N1-Rasgrp1-R519G-EGFP Iwig et al., 2013 N/A

Software and Algorithms

TopHat v1.4.1 Trapnell et al., 2009 https://ccb.jhu.edu/software/tophat/index.shtml

Bowtie v0.12.7 Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml

Samtools v0.1.18 Li et al., 2009 http://samtools.sourceforge.net/

Plastid Dunn and Weissman, 2016 https://plastid.readthedocs.io/en/latest/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/bioc/html/DESeq2.html

DAVID Huang et al., 2009 https://david.ncifcrf.gov/
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