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As the effects of regional climate change are most pronounced at polar latitudes,

we might expect polar-ward migratory populations to respond as habitat suit-

ability changes. The southern elephant seal (Mirounga leonina L.) is a pole-ward

migratory species whose populations have mostly stabilized or increased in

the past decade, the one exception being the Macquarie Island population

which has decreased continuously over the past 50 years. To explore probable

causes of this anomalous trend, we counted breeding female seals annually

between 1988 and 2011 in order to relate annual rates of population change

(r) to foraging habitat changes that have known connections with atmospheric

variability. We found r (i) varied annually from 20.016 to 0.021 over the study

period, (ii) was most effected by anomalous atmospheric variability after a

3 year time lag was introduced (R ¼ 0.51) and (iii) was associated with

sea-ice duration (SID) within the seals’ foraging range at the same temporal

lag. Negative r years may be extrapolated to explain, at least partially, the

overall trend in seal abundance at Macquarie Island; specifically, increasing

SID within the seals foraging range has a negative influence on their abun-

dance at the island. Evidence is accruing that suggests southern elephant seal

populations may respond positively to a reduced sea-ice field.
1. Introduction
Over one-third (36% or 43 species) of marine mammal species engage in a

migratory life strategy that makes them dependent on a variety of environments

that are responding to a range of human activities and pressures [1]. For example,

pinnipeds (seals) use breeding habitats that, owing to global temperature

increases, may be at risk from sea-level rise or sea-ice retreat and they search

for food within the changing oceans during critical stages in their lives. Already

some life-history parameters and vital rates of marine mammal predators have

been correlated with recent Northern Hemisphere environmental changes [2].

The southern elephant seal (SES, Mirounga leonina L.) is the largest and perhaps

best studied Southern Hemisphere (SH) pole-ward migratory pinniped species.

Genetically distinct populations breed principally on mid-latitude islands close

to the Antarctic Polar Front (APF), although they may also have occupied higher

latitudes during periods of Holocene sea-ice retreat [3]. Following a mid-1800s

period of commercial exploitation and subsequent recovery, some major elephant

seal populations have exhibited substantial decreases, whereas others have

increased or stabilized [4,5]. The drivers responsible for these differing population

trajectories remain unresolved, but environmentally mediated food availability at

the seals’ foraging habitats stands out as the most likely explanation [4].

SH polar latitudes, where SES forage [6], have exhibited marked climatic

(atmospheric and oceanographic) variability and change that, through associ-

ated changes in ice cover, affect biological productivity [7] and the quality

and quantity of food available to upper trophic levels. In general, the Southern

Ocean between 408 and 608 S has warmed appreciably, prevailing westerly

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.2842&domain=pdf&date_stamp=2014-03-12
mailto:john_van@aad.gov.au


rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132842

2
winds have strengthened and some Antarctic Circumpolar

Current (ACC) oceanographic frontal positions (including

the APF) have shifted pole-ward [8 and references therein].

Counter to expectation, mean circum-Antarctic sea-ice

extent (SIE) has expanded at a significant rate over the past

decades. This overall expansion is essentially the sum of

larger opposing SIE trends in the Ross and Bellinghausen

seas [9]. For example, the Amundsen–Bellingshausen seas

are presently experiencing a three month shorter ice season,

whereas the Ross Sea (RS) is experiencing a two month

longer season [10–12]. In addition, inputs to the East Antarc-

tic ice field currently exceed losses, ice concentrations are

trending higher in the mid-pack, the width of the marginal

ice zone is widening and there is evidence of multi-year ice

cover in the RS [10–12].

These changes in Southern Ocean oceanography and the

sea-ice field outlined above are taking place, as the principal

mode of SH atmospheric variability, the southern annular

mode (SAM), has trended towards a higher (positive) index

state [13]. Briefly, the SAM describes monthly polarity

anomalies in the strength of the Antarctic polar vortex (zonal

winds) where a strengthened polar vortex is due to a stronger

temperature gradient between the mid and high latitudes. Posi-

tive SAM anomalies are characteristic of a stronger polar vortex

(i.e. stronger subpolar westerly winds) positioned farther south

over the continental landmass, colder Antarctic temperatures

and low atmospheric pressure over the icecap. The expected

intensification of the colder westerly wind field during positive

SAM conditions causes Ekman drift to strengthen north-

ward and as a result sea-ice season and area can be extended

[9,14,15]; however, the current literature is inconsistent in the

degree to which sea-ice trends are associated with the SAM

trend [16]. The SAM also exhibits a strong non-annular com-

ponent, manifested as enhanced pressure anomalies over

the Amundsen Sea. This non-annular component is known

to induce significant climate variability over Antarctica via

corresponding changes to meridional wind patterns [17];

specifically, warm (cold) air advection associated with north-

erly (southerly) winds promote decreased (increased) sea ice

and higher (lower) surface air temperatures in the vicinity of

the Antarctic Peninsula (RS) [10,13,17]. In this context, SESs

are experiencing broad- and local-scale physical changes at

their foraging habitats, changes that may be affecting food

availability and ultimately their abundance.

Here, we test the hypothesis that changes in breeding

female SES abundances at sub-Antarctic Macquarie Island

is in response to climate-induced changes in food availability

at the seal’s foraging habitat [4]. To do this, we made regu-

lar annual censuses of females to determine the population

trend and variability in abundances over a 24 year period

(1988–2011). We then correlated the calculated inter-annual

variability with variability in the SAM, and its known linka-

ges with sea-ice fields and regional biological productivity at

southern polar latitudes [16–23].
2. Methods
(a) Seal data collection and analyses
Harem-breeding female SESs were counted within a previously

defined study area hereafter termed ‘ISTHMUS’, and for the

whole island, hereafter termed ‘ISLAND’ [24]. ISTHMUS females

were counted in all years from 1988 to 2011 (n ¼ 24); ISLAND
females were counted on 18 occasions over the same study

period. Counts were undertaken as near as practicable to the

annually repeatable long-term peak haul-out date, if not counted

on that day a correction factor was applied according to survey

date and study area location [25]. On each occasion, all harem

females were counted at least twice by two or more observers

and, if observer estimates differed by +5%, further counts were

undertaken until the estimates were within that margin of error.

The mean of the two counts was then used as the maximum

count estimate. This study was carried out with the necessary

Animal Ethics Committee approvals and State Government

Scientific Permits.

Numbers of ISTHMUS females were highly correlated to the

ISLAND numbers (F1,27 ¼ 1008, r2 ¼ 0.97, p , 0.001). The ISTH-

MUS was therefore considered a robust reflection of the ISLAND

population trend and its variability for the study period, and thus

we focus specifically on the continuous ISTHMUS time-series for

subsequent analyses.

Annual rates of ISTHMUS population change (variability)

were computed as the intrinsic rate of change (rt) [26] as follows:

rt ¼ (lnNt – lnN0)/t, where Nt is the number of reproductively

active female seals present within the ISTHMUS study area in

a particular year, N0 is the number of reproductively active

female seals present within the ISTHMUS study area in the pre-

ceding year and t is the time period between counts. Note N in

any one census year consists of females in all age classes com-

bined and that the assumptions underlying the model from

which r is derived [25] are met.
(b) Climate data and analyses
Various observational and re-analyses datasets were used to inves-

tigate the possible causes of inter-annual variability in the

ISTHMUS elephant seal population. Particular focus is given to

determining associations with sea-ice, and the corresponding

impact of the SAM owing to the well-established linkages between

these variables and their subsequent impacts on ocean productivity

(see above) and elephant seal foraging behaviours [27–30].

A monthly SAM index1 is calculated by projecting

monthly-mean 700-hPa geopotential height (Z700) anomalies

pole-ward of 208 S onto the leading empirical orthogonal

function of monthly Z700 atmospheric pressure anomalies

over 1979–2010. Monthly 500-hPa geopotential heights

(Z500) and 950-hPa wind fields [31] are available on a

2.58 � 2.58 latitude–longitude grid.2 Note that subsequent

results are not sensitive to the choice of re-analysis product.

These monthly data were converted to annual-means by

averaging monthly values from December in year x 2 1 to

November in the year x. For example, year 1999 was calcu-

lated using the period December 1998 through November

1999. Each annual-mean period commences with the post-

breeding foraging migration for female elephant seals from

Macquarie Island (mid-end November) and ends with their

return for pupping in mid-September [32].
To investigate associations with sea-ice, we use sea-ice dur-

ation (SID; also referred to as sea-ice season length [12]) as the

primary metric of analysis. SID was chosen as it more closely

captures the temporal variability in sea-ice; for instance, regions

of high ice extent may be similar between years, whereas

duration differs markedly [11]. In order to quantify SID, quasi-

daily estimates of sea-ice concentration (SIC) processed using

the Bootstrap algorithm [33] are used. The SIC data3 are gridded

onto a 25 � 25 km mesh. Defining the sea-ice year to begin

and end in November, SID is calculated at each grid point

by determining the total number of days where the SIC is

at least 15%, linearly scaled to 365 day a year [10,12,34]. As
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Figure 1. Lognormal transformation of the estimated numbers of female ele-
phant seals breeding within the Macquarie Island ISTHMUS study area from
1988 to 2011. Seal numbers decreased at a rate of 20.8% per annum (black
line; seal numbers ¼ 24.96 – 0.008 � year) but varied between years such
that there were 12 periods of increase (black circles) and 12 periods of
decrease (grey circles).

Table 1. Correlation coefficients (R) and uncorrected statistical significance
( p-value) between the annual rate of population change for female
southern elephant seals (Mirounga leonina) breeding within the ISTHMUS
study area at Macquarie Island and the annually averaged (Dec(year x21) –
Nov(year x), 1988 – 2011) southern annular mode index lagged by 0 – 5
years. Italicized text has the largest effect size (R) and was marginally
significant after a Bonferroni adjustment for multiple comparisons
conservatively reset the p-value cut-off to 0.008.

time lag (years) effect size (R) uncorrected p-value

0 20.15 0.47

21 20.18 0.40

22 0.02 0.92

23 0.51 0.01

24 20.19 0.37

25 20.01 0.96
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shown by Parkinson [34], SID is largely insensitive to the ice

concentration threshold used.
Prior to analysis, both the ISTHMUS population time-series

and the SAM index were standardized by removing the long-

term mean and dividing by the long-term standard deviation; as

such, subsequent regression results relate to changes for a 1 s.d.

positive event. Additionally, all data (SID, Z500 heights, and

950-hPa winds) were converted to anomalies by removing the

climatological mean and detrended by removing the long-term

linear trend.

Identifying drivers for population change in migratory

species is complex, because there may be response time lags

between observed demographic performance and the potential

explanatory variables [35]. With this in mind, we incorporated

a range of temporal lags (0–5 years) into our correlation analyses,

so that seal counts in 1 year were related to SAM in that year

(lag 0), in the previous year (21) and so on.

Statistical significance of correlations was measured using a

two-tailed Student t-test, with an uncorrected threshold of 95%

set for all analyses. We applied a conservative post hoc Bonferroni

correction for multiple comparisons and set the alpha cut-off value

for significance to 0.008.
3. Results
(a) Inter-annual variability in seal numbers
Considerable inter-annual variation was detected in the

intrinsic rate of ISTHMUS population change (r; figure 1).

The magnitude of this variability ranged between 20.16

and þ 0.21 with 12 years of positive change and 12 years of

negative change within the time-series. The time-series also

shows there were never more than 2 consecutive years

of positive r-values, whereas there was a continuous period of

5 years (2005–2009 inc.) with negative r-values (figure 1).

We found variability in the ISTHMUS r was related to SH

atmospheric variability (i.e. SAM). The largest effect was evident

when a 3 year lag was introduced (table 1). This suggested the

SAM itself or SAM-related environmental conditions 3 years

prior to the seal census were driving seal abundances.

Figure 2a,b shows the SAM has large contemporary

impacts on SID through corresponding effects on atmosphe-

ric circulation patterns (shown as wind vectors). In general,
warm northerly (cold southerly) air advection occurs in the

regions of anomalously shorter (longer) SID. Within the seals

foraging areas (compare figures 2 and 3) the northwesterly

wind vectors highlight the red-shaded area of decreased SID

which largely results from advection of warm maritime air

over the region; the blue area of increased SID is consistent

with colder offshore southwesterly continental air flow (see

wind vectors). The RS region, a known feeding ground for

adult female seals from Macquarie Island (figure 3), is experi-

encing among the greatest SAM associated SID anomalies for

the SH (figure 2 and [10,11]).

Regressions based on a 3 year time lagged ISTHMUS r
reveal very similar patterns in the Z500 anomalies, winds and

the resulting SID, compared with those of the SAM (compare

figure 2 left column with figure 2 right column). For example,

the spatial correlations in Z500 and SID structures are 0.75

and 0.72, respectively. These similarities suggest that the SAM

directly impacts SID through the corresponding impacts on

the wind, but that these changes become most apparent upon

elephant seal abundance 3 years later. Specifically, increased

(decreased) SAM-induced SID within the seals Antarctic fora-

ging grounds results in negative (positive) changes in their

numbers on Macquarie Island 3 years later. We therefore con-

clude that the SAM, via changes to the SID, likely impacts the

population dynamics (variability) of reproductively active

female elephant seals from Macquarie Island.

(b) Multi-decadal trend in seal numbers
The long-term census data (figure 1) show an overall negative

trend in numbers of ISTHMUS females (1988–2011); num-

bers decreased from an estimated 3463 in 1988 to a low of

2449 in 2011. The overall exponential rate of change (re)

was 20.8% per annum (F1,23 ¼ 15.93, p , 0.01, r2 ¼ 0.38,

figure 1). By extrapolation from the ISTHMUS census data

[25], we determined that there has been a considerable

reduction of about 5400 breeding females for the whole

ISLAND, including ISTHMUS, over the 24 year study period.

Our analysis does not explicitly test multi-decadal trends

in SID and the SAM against seal abundance at Macquarie

Island (see [16]). However, the results of our analyses for r
(above) showed increased SID had a negative influence on

seal abundance. From that association, we show evidence
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that attributes of the sea-ice field confronting female elephant

seals during negative r years might also contribute to shaping

the multi-decadal population trend.

The observed long-term decrease in seal abundance has

coincidentally occurred at a time when SID, SIE, SIC and

sea-ice motion (some of which may be linked) south of

Macquarie Island have displayed positive time-series trends

[9,12,14,16,38,39]. Generally, an expanding sea-ice field is

confronting energy-depleted (owing to the costs of terrestrial

fasting events) female elephant seals from Macquarie Island.

Therefore, conceptually at least, the observed positive trends

in the sea-ice field south of Macquarie Island could be an

important overall driver of the population trend as well as

inter-annual variability (above).

Changes in the sea-ice field south of Macquarie Island

have been shown to be strongly associated, but not to be

necessarily correlated, with large-scale climate variability
such as those attributed to the SAM [9,14,16,40]. However,

significant change in RS SIC during the winter months

(June–November) has been attributed to the SAM [16].
4. Discussion
This study illustrates the essential requirement in wildlife man-

agement practices to undertake and maintain less glamorous

research tasks such as the basic monitoring of individuals.

Having such long-term data revealed that numbers of female

SESs at Macquarie Island continue to decrease despite

an earlier, somewhat optimistic, suggestion of a population

stabilization [25]. Within this downward trend, there is also

considerable inter-annual variability in the numbers of females

ashore (r). Over the 24 year study period, we identified an

equivalent number of years showing positive and negative r;
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the time-series also displayed lengthier continuous periods of

negative r compared with positive r.

Having previously discounted emigration as a factor con-

tributing to r at Macquarie Island [25], we conclude from the

results of this study that female mortality exceeds recruitment

and the conditions required to promote positive r (growth)

occur equally as often as those that do not but conditions

invoking negative r can operate over lengthier periods than

positive periods (up to 5 years continuously versus 2

years). We found that inter-annual variability in r was best

correlated (i.e. the largest effect size) with variability in a cli-

mate mode index, the SAM and also had associations with

SID within the seals’ high-quality foraging areas; positive

(negative) r events were best correlated with positive (nega-

tive) SAM events and were in turn associated with reduced

(increased) SID (figure 2). Most importantly, it was not current

conditions that influenced annual population change; rather it

was conditions at the foraging grounds 3 years previous.

Another key outcome is that the environmental factors respon-

sible for negative r years may be the same, or similar, to those

contributing to the overall negative multi-decadal population

trend at the island. Regional per capita food availability has

been proposed as the most likely factor driving elephant

seal trends [4]. We now examine that hypothesis using the

Macquarie Island population as a test case, together with a

climate index (SAM) and sea-ice as proxies for food availability.

We begin with some generally important and relevant

life-history attributes for adult female SESs. Without excep-

tion, biologging studies have shown females undertake

long-distance pole-ward foraging migrations from their ter-

restrial haul-out locations; the seals favoured foraging at

ocean frontal systems and within the seasonal SIE over the

Antarctic continental shelf south of the ACC [6,29]. The sea-

ice zone influences both the foraging behaviour and success
of female elephant seals because it presents a physical barrier

within which the seals are unable or unwilling to remain

during winter when they accumulate the critical resources

needed for breeding and rearing offspring [28–30,41]. In

years when females were capable of foraging within the

sea-ice as it seasonally extends over the Antarctic continental

shelf they fed on higher-quality prey and exhibited six-times

greater fat deposition rates compared with females that did

not [27,29]. Like other capital breeding species, female ele-

phant seals rely on energy acquired and stored as fat

during their foraging migrations for self maintenance and

the costs of reproduction. The amount of accumulated fat

not only contributes to her size, and hence capacity to gestate,

but also to the size of her offspring at weaning and its sub-

sequent survival through at least the first 2 years of life

[42,43]. A mother’s foraging success and her offspring’s

survival have broader demographic consequences, because

survival during the non-breeding phase is the most impor-

tant determinant of elephant seal abundance [43]. Female

elephant seals are also faithful to their individual feeding

areas [27], so any variability or persistent change in foraging

area quality could be an important determinant of future

survival and breeding success [44].

While it is known that climate variability (e.g. the SAM)

mediates regional biological productivity in polar ecosystems

through changes in sea-ice conditions [16–23,45], the links

between sea-ice conditions, seal foraging success and popu-

lation change have not previously been quantified. At first

glance, the negative annual population changes (r) and the

overall declining population trend we observed run counter

to expectation, because positive SAM and extended sea-ice

conditions that dominate the region to the south of Mac-

quarie Island are usually associated with elevated primary

productivity [46,47] and a higher krill biomass [18,45]; and
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krill are a keystone organism in the Antarctic pack ice food

chain that sustains higher predators, including elephant

seals [19,23,48]. Given this is not what we observed (i.e. posi-

tive SAM and SID anomalies were associated with in

negative r), we propose the following explanation for this

apparent paradox.

As outlined above, the sea-ice field south of Macquarie

Island has, over the past decades, trended towards increa-

sed duration (SID), extent (SIE) and concentration (SIC) and

sea-ice affects female foraging behaviour and success. Most

relevant to this study is that SID within the seals’ feeding

grounds (figure 3) has increased by up to 60+10 days between

1979 and 2010 [11,15,16,20]. Our analyses of the seals relation-

ship with SID indicated inter-annual decreases (increases) in

seal numbers at Macquarie Island tend to be associated with

a longer (shorter) SID 3 years previous to the census. Given

that adult females avoid sea-ice, we think an earlier sea-ice

advance (March–April) [11] could prevent pregnant females

access onto the continental shelf and the higher-quality prey

rewards available there during the critical first trimester

when the seals are accruing the majority of their winter and

lactation period blubber reserves [49]. A later ice retreat

would simply extend the period of exclusion from the same

shelf foraging areas. Increased SIC and SIE could have similar

exclusionary effects on female foraging efforts. Thus, we pro-

pose female elephant seals cannot access high-quality feeding

grounds in the extended presence of sea ice.

As a capital breeding species, that generally produce only

one offspring per annum, poor foraging years will have far

reaching consequences on female elephant seals, because

poor maternal foraging success in high sea-ice years will

translate directly into reduced juvenile survivorship and

therefore female recruitment, which, in turn, reduces popu-

lation growth rates [43]. A reduced survival of juvenile

female seals accounts for the 3 year lag between poor fora-

ging years with a long SID and the number of females

counted in harems on the isthmus, because about 12%

(authors unpublished data, 2014) of females begin to recruit

into the breeding population at 3 years of age and give

birth to their first pup at age 4 [50]. We conclude that breed-

ing female abundance at Macquarie Island in any 1 year is to

a large extent the consequence of environmentally mediated

recruitment of 3 year old female seals into the population.

The mechanisms driving changes in the sea-ice fields are

complex and difficult to diagnose. The substantial Arctic

sea-ice decrease has been linked with global warming [51],

and changes in the SH atmospheric circulation patterns are

expected to have a strong influence on Antarctic sea-ice cover

[39,52]. For example, the increased ice field in the RS region

has been linked to the dipole (non-annular) component of the

SAM such that there was more sea-ice in years with a high

(positive) SAM index [17]. Results of direct correlation analyses

of the sea-ice cover with Northern and SAM indices show

relatively weak correlations [51], a finding supported by

Simpkins et al. [12] that showed the trend in ice cover appears

unrelated to the trend in the annular component of the SAM.

Nonetheless, there is a general understanding that atmospheric

forcing is the main driver of sea-ice presence, absence and

variability [17,53], and SID has apparent influences on SES

numbers at Macquarie Island (figure 2d).

Climate-associated oceanographic change will also have

consequences for those individuals foraging pelagically out-

side the sea-ice zone within ocean frontal zones such as the
APFZ where they already encounter lower-quality prey [29].

Appreciable changes have occurred throughout the Southern

Ocean [8,54]4 that either individually or cumulatively have

the potential to spatially and temporally affect the distri-

bution and abundance of elephant seal prey. A southward

shift in ocean frontal positions alone may mean energy-

depleted females along with weaned pups and juveniles

departing Macquarie Island would expend more of their lim-

ited energy reserves on reaching frontal foraging grounds

[55–57]. Additionally, these pelagic foraging grounds may

have altered in their prey availability and quality, further

compromising survival and breeding success.

The nature of high-latitude predator responses to environ-

mental change can be complex, time lagged [35 and this study]

and result in both top-down [58] and bottom-up regulation [58

and this study]. Nonetheless, as both a warming of the

Southern Ocean and the positive SAM phase shift are predicted

to continue as long as the ozone hole remains open and green-

house gas emissions continue to increase [59–61], it can be

reasonably expected that there will be ongoing changes in the

structure and function of the Southern Ocean ecosystem.

Such changes are likely to further affect productivity of the

polar marine ecosystem [62] and mid- to high-order predator

populations, some of whom will prosper while others struggle.

It is perhaps too early to label SESs climate change ‘winners’

or ‘losers’, but others have suggested the polar environment

was changing in favour of elephant seals [6,63]. Some of the

evidence supporting this notion comes from studies in the

West Antarctic Peninsula (WAP) region, where the most rapid

reductions in SH sea-ice have been observed [64]. WAP elephant

seal abundances have increased [65,66] along with pup weaning

mass (i.e. maternal energy reserves) and the quality of food

available to the seals [67,68]. In the east Antarctic, a southward

expansion in elephant seal breeding possibly occurred during

the Holocene as the RS sea-ice field reduced [3], perhaps,

because the highly productive RS continental shelf foraging

grounds were more readily accessible to the seals during the

same period of past ice retreat. This study has shown that a

reduced sea-ice field south of Macquarie Island could, through

improved food availability, maternal foraging and juvenile sur-

vival, promote elephant seal abundances at this island. Whether

such a relationship holds for other SES populations could be

explicitly tested where data exist.

Most importantly, our findings show that the effects

of climate-driven variability on Antarctic sea-ice can be

detected at the population level for a mid-latitude breeding

but pole-ward migrating marine mammal predator, the

SES. Such high-level responses make SESs potentially impor-

tant sentinels of change, because they have the capacity to

integrate and reflect conditions, such as ecosystem produc-

tivity, across a variety of changing habitat types [69] that

are otherwise difficult to measure directly, especially during

the Antarctic winter. The strategic geographical distribu-

tion of SES breeding sites throughout the Southern Ocean,

their migratory behaviour and their individual capacity to

carry scientific instruments gives this species the potential

to become a significant contributor to measuring, identifying,

understanding and explaining the impacts and physical

responses of high-order Antarctic predators to SH climate

variability and change.
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