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Abstract

The menstrual cycle is a loop involving the interplay of different organs and hormones, with the 

capacity to impact numerous physiological processes, including body temperature and heart rate, 

which in turn display menstrual rhythms. The advent of wearable devices that can continuously 

track physiological data opens the possibility of using these prolonged time series of skin 

temperature data to non-invasively detect the temperature variations that occur in ovulatory 

menstrual cycles. Here, we show that the menstrual skin temperature variation is better represented 

by a model of oscillation, the cosinor, than by a biphasic square wave model. We describe how 

applying a cosinor model to a menstrual cycle of distal skin temperature data can be used to 

assess whether the data oscillate or not, and in cases of oscillation, rhythm metrics for the cycle, 

including mesor, amplitude, and acrophase, can be obtained. We apply the method to wearable 

temperature data collected at a minute resolution each day from 120 female individuals over a 

menstrual cycle to illustrate how the method can be used to derive and present menstrual cycle 

characteristics, which can be used in other analyses examining indicators of female health. The 

cosinor method, frequently used in circadian rhythms studies, can be employed in research to 

facilitate the assessment of menstrual cycle effects on physiological parameters, and in clinical 

settings to use the characteristics of the menstrual cycles as health markers or to facilitate 

menstrual chronotherapy.
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Introduction

The menstrual clock consists of a feedback loop of hormonal nature, involving the 

hypothalamus, the pituitary, and the ovaries, and which period of revolution is normally 
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between 22 to 36 days during the reproductive stage, becoming more and more irregular 

around perimenopause (Bull et al., 2019; Ecochard et al., 2001; O’Connor et al., 2001; 

Reed & Carr, 2000) and stopping after menopause (defined retrospectively when menses has 

ceased for one year) (Harlow et al., 2012a). During the follicular phase of the menstrual 

cycle, the gonadotropin releasing hormone (GnRH) neurons of the hypothalamus produce 

GnRH in a pulsatile manner, triggering the pituitary to release luteinizing hormone (LH) 

and follicle stimulating hormone (FSH) into the blood circulation. These hormones reach 

their receptors in the ovary, which allow a follicle to grow to the point at which it 

commences releasing estradiol. In turn, estradiol stimulates a LH surge which triggers 

ovulation. After ovulation, the luteal phase begins, marked by the luteinization of the 

follicle, when it begins producing progesterone, which induces growth of the endometrium 

(Barbieri, 2014). Progesterone peaks around half-way through the luteal phase, about one 

week after ovulation (Ecochard et al., 2017). At that point, in the absence of pregnancy, the 

corpus luteum atrophies, resulting in a decrease in estradiol and progesterone levels. The 

inhibition on GnRH, FSH and LH are lifted, and a new menstrual cycle can begin (Barbieri, 

2014).

The hormones of the menstrual clock have receptors in numerous tissues all over the body, 

and can therefore influence functioning of organs even if they are not directly involved in 

reproductive function (Farage et al., 2009). Conversely, the menstrual clock is sensitive to 

signals from the rest of the organism, and from the external environment. Indeed, GnRH 

neurons, by being interconnected with other neural areas of the hypothalamus, and by 

having receptors to hormones such as leptin, insulin, neuropeptide Y, melanocortin, cortisol, 

and orexins, integrate signals about body composition, nutritional status, energy expenditure, 

stress, and emotional state (Arora & Taheri, 2015; Barbieri, 2014). In extreme cases, weight 

loss, nutritional, and emotional stress can lead to amenorrhea (Warren & Fried, 2001).

These bidirectional mechanistic links make it possible for the menstrual cycle to influence 

other aspects of health, and for internal and external factors to influence the menstrual cycle. 

The menstrual cycle, therefore, is both an indicator, and an influencer, of health. Thus, 

menstrual cycles metrics, such as period, amplitude, acrophase, mesor, and regularity, have 

the potential to be useful markers or predictors of specific health conditions.

In circadian rhythms research, the associations between rhythms and specific conditions 

including health problems are studied extensively. In addition to the rhythmicity itself being 

used as an indicator of health problems (Stenvers et al., 2019), the characteristics of the 

rhythm including the period, amplitude, mesor, acrophase, are also used as health indicators. 

For example, the amplitude and acrophase are investigated in metabolic health research as 

different factors can influence them, including nutrition, exercise, or aging (Froy, 2010; 

Gabriel & Zierath, 2019; Parkar et al., 2019; Serin & Acar Tek, 2019). In addition, having 

a circadian clock with a longer endogenous circadian period translates into a preference for 

evening behavior called “later chronotype”, which is associated with numerous risk factors 

including mood disorders, anxiety disorders, insomnia, sleep apnea, arterial hypertension, 

bronchial asthma, type 2 diabetes, and infertility (Bhar et al., 2022; Partonen, 2015).
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In menstrual cycle medicine, the absence or irregularity of menstrual cycles is already 

known as an indicator of anorexia nervosa and bulimia nervosa (Hirschberg, 2023), but also 

of polycystic ovary syndrome (Singh et al., 2021). However, the menstrual rhythm and its 

characteristics remain to be investigated as potential markers of these health conditions or 

others, as well as an aging indicator. There is an opportunity to advance this knowledge with 

the increasing availability of sensors and statistical tools such as presented in this work.

Tracking menstrual cycles

Menstrual cycles can be tracked based on the appearance of menstrual bleeding, marking 

the beginning of a cycle. There are now several menstrual diary apps available to assist in 

tracking menses over many menstrual cycles (Trépanier et al., 2023), however, the burden 

is still on the user to enter the information. While the menses are easily observable, the 

only way to directly record ovulation is through an ultrasound of the ovaries. However, 

other hormonal and physiological events that are characteristically occurring during an 

ovulatory menstrual cycle are routinely used as a proxy to confirm ovulation. For example, 

home-based kits exist that can capture the surge of LH in urine, which typically increases 

24-48 hours before ovulation (Ecochard et al., 2001; Eichner & Timpe, 2004). This method 

is classically used by the general public to plan a pregnancy, and also in research, as a 

proxy to validate that ovulation occurred during a studied cycle (Cervinski & Gronowski, 

2010; Rogan & Black, 2022; Su et al., 2017). It is affordable, non-invasive, and reliable in 

most individuals. Studies assessing the capacity of detecting an ovulatory cycle via LH surge 

detection compared with the transvaginal ultrasound of ovaries, showed up to 97% accuracy, 

when used with proper adherence (Miller & Soules, 1996; Su et al., 2017). However, LH 

surges can have various shapes, number of peaks, and be more or less far in time from the 

actual ovulation detected with the ultrasound of the ovaries (Ecochard et al., 2001).

Body temperature is a well-studied marker of the ovulatory menstrual cycle. It is at its 

lowest during the follicular phase, and increases 0.3°C to 0.7°C after ovulation, in the 

presence of progesterone, reaching a maximum during the luteal phase (Fiona C. Baker et 

al., 2020). If conception occurs, body temperature remains high. If not, it decreases at the 

end of the luteal phase, as progesterone declines, and menses occurs. Temperature was first 

reported to change across the menstrual cycle in 1904 (Van de Velde, 1904; Van de Velde, 

1926); finger temperature specifically was first used in menstrual cycle and pregnancy 

monitoring in 1949 (Burt, 1949), and has since then been used to mark ovulatory cycles 

(Su et al., 2017). To track their menstrual cycles, women can be advised to take a single 

oral temperature measurement each morning soon after waking, before getting out of bed 

considered as the most stable measurement, and to observe the variation across the cycle. 

This manual process of temperature measurement is limited by several issues including 

compliance, which affects reliability, and environmental temperature changes, which can 

limit the accuracy, especially when only a single temperature measurement is taken per 

day (Fiona C. Baker et al., 2020). However, when performed with high adherence, this 

method detects a biphasic temperature pattern, with an increase of at least 0.2-0.3°C across 

a 6-day interval, in 98% of cycles with an ultrasound-confirmed ovulation (Ecochard et 

al., 2001). Advances in technology, and in particular the availability of wearable devices 

with integrated temperature sensors are now providing long time series of temperature data 
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at a high granularity, such as each minute, across days, weeks, months, and even years. 

These data potentially enable non-invasive tracking and evaluation of menstrual oscillations 

of temperature, or other physiological characteristics of an ovulatory menstrual cycle, with 

minimum input from the user.

Considerations for relying on body temperature to track menstrual cycle rhythms

Even if it is continuously measured, there are several factors that influence body temperature 

that need to be considered in the context of a study’s objectives, in order to select a strategic 

sensor location and perform adequate data preprocessing.

External elements including ambient temperature and humidity, as well as internal factors 

such as basal metabolic rate, muscle activity, digestion, sleep, posture, and hormonal 

fluctuations, are sources of temperature variation. To maintain the core body temperature 

in a range in which the organs can function optimally, the hypothalamus integrates these 

signals and consequently orchestrates mechanisms regulating heat loss or heat production. 

The body surface, with the skin and subcutaneous fat, is a key area for thermoregulation as 

it constitutes the interface with the exterior. Vasoconstriction and vasodilation mechanisms 

allow humans to regulate the amount of blood present at the surface, hence modulating 

the extent of the temperature exchange (Campbell, 2008). Every day, the basal metabolism, 

hormones, muscles activity, and digestive system are typically active during daytime, with 

the peak of heat production around 11AM-12PM, and the core temperature increases 

through the day to reach a maximum around dusk (Krauchi & Wirz-Justice, 1994). To shunt 

out the heat from the core, peripheral vasodilation takes place, allowing the core temperature 

to reach its lowest at dawn. As a consequence, the core and distal skin temperature display 

antiphase rhythms, with the temperature of hands and feet highest during the night and at 

their nadir during the day (Krauchi & Wirz-Justice, 1994). These oscillations are controlled 

by the circadian system, as they are measurable even in constant conditions (Krauchi & 

Deboer, 2010). Interestingly, as we illustrate in Figure 1, while the distal skin and core 

temperature are in antiphase for their circadian rhythms, they are in phase at the menstrual 

rhythm scale (Kräuchi et al., 2014).

Core body temperature measurements (e.g., rectal, vaginal, esophageal) are considered the 

reference (Childs, 2018), but are invasive and limiting for the continuous monitoring of 

temperature over enough days to track menstrual cycles. Skin temperature measurement 

is convenient as it is easily accessible and can be monitored for prolonged periods of 

time, but in addition to circadian and menstrual changes, skin temperature fluctuates due 

to changes in the inner (fever, activity) and outer (external temperature and humidity, 

showering, dishwashing) environments. The effect of these artifacts on skin temperature 

can be minimized by resampling the data. For example, to study menstrual cycle related 

changes in temperature, filtering and combining the data strategically into one daily average 

temperature is required, if that average reliably represents the temperature of the day and is 

as free as possible from artefacts. But a simple average of all the data from one day would 

incorporate numerous potential biases, which could blur the overall menstrual variation 

trend. Maijala and co-authors have published a strategy to address this issue, using a 17-min 

moving average, which they applied to minute-by-minute temperature data collected by 
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Oura rings to obtain a single reliable average temperature measure for each day, when skin 

temperature was highest, which occurs at night, when temperature is more stable and when 

core body temperature is lowest (see Figure 1). Once such reliable daily data are obtained, 

they can be used in different models and analysis, for example to characterize the menstrual 

cycle.

Using wearables to track changes in body temperature across the menstrual cycle

Several wearables have incorporated sensors of various physiological data including 

temperature, heart rate, breathing, light exposure, skin conductance, and movement (de 

Zambotti et al., 2020). Here, we focus on temperature detection, as its change across the 

ovulatory menstrual cycle is already well described. Typically worn on the wrist or the 

finger, wearables rely on distal skin temperature, and have applied advanced algorithms to 

track temperature changes to predict sickness (Natarajan et al., 2020) as well as ovulation 

and menses (Mohaned Shilaih et al., 2018; Uchida & Izumizaki, 2022; Yu et al., 2022), and 

pregnancy (Grant & Smarr, 2022). Wearables have led to a resurrection in the reliance 

on temperature data in menstrual health (Alzueta et al., 2022). Indeed, many devices 

(Demiańczyk & Michaluk, 2016; Goodale et al., 2019; Ogidan et al., 2023; Regidor et 

al., 2018; Wark et al., 2015; Zhu et al., 2021) and mobile applications (Berglund Scherwitzl 

et al., 2015; Händel & Wahlström, 2019) have offered continuous nocturnal temperature 

measurements at different body sites to improve the accuracy of this proxy of ovulation 

detection (Maijala etal., 2019; M. Shilaih et al., 2018). The most recent studies utilizing 

wearables for ovulation or fertile window detection and prediction (fora review see (Uchida 

& Izumizaki, 2022)) have applied a variety of statistical models (Chen et al., 2009; 

Luo et al., 2020) and machine learning algorithms (Goodale et al., 2019; Maijala et al., 

2019; Murayama et al., 2023). However, a performance comparison to accurate reference 

measurements is lacking (see (Händel & Wahlström, 2019) for a review of proposed 

mathematical models). Some of these methods rely on investigating the biphasic pattern 

of body temperature (Chen et al., 2009; Goodale etal., 2019; M. Shilaih et al., 2018; Zhu 

et al., 2021), with the temperature increase generally regarded as confirmation of ovulation 

(Royston & Abrams, 1980). However, to our knowledge, whether the temperature change 

across the menstrual cycle is best represented by an oscillation or by an increase that 

plateaus in the luteal phase, has not been shown yet. Other work has relied on the rhythmic 

characteristics of the circadian rhythm of temperature in order to improve fertility and 

pregnancy planning (Webster & Smarr, 2020). Others have integrated the variations in distal 

skin temperature and heart rate variability data from the Oura ring in the context of women’s 

health, using signal processing models in order to anticipate the onset of the LH surge which 

precedes ovulation (Grant et al., 2020), or to detect early pregnancy (Grant & Smarr, 2022).

However, these methods do not take advantage of the rhythmic nature of the menstrual cycle 

of temperature to extract metrics and use them as predictors of conditions, as is done in 

circadian rhythms research. Indeed, applying oscillating models to menstrual cycle data may 

be useful to extract information not only about the occurrence of an ovulation, but also 

metrics of the rhythm itself.
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In circadian rhythms research, sine models, also known as cosinor, are frequently used to 

fit parameters which vary across 24h, including genetic expression (Gómez-Santos et al., 

2009), hormonal levels (Rahman et al., 2019), as well as body temperature (Lee, 1988). This 

approach allows the verification of the cyclicity of the data, and the assessment of different 

characteristics of the cycle, such as its amplitude, mesor, and acrophase (Díez-Noguera, 

2013). These metrics can then be compared between individuals as well, to potentially 

identify changes in these characteristics according to a condition, disease, or medication. 

The cosinor method has been previously used in the analysis of the influence of the 

menstrual cycle on the rhythmic characteristics of the circadian rhythms of core body 

temperature. This work has shown that the mesor of the 24-hour rhythm is higher, and its 

amplitude is dampened during the luteal phase compared to the follicular phase (Coyne et 

al., 2000; Lee, 1988; Padhye & Hanneman, 2007). In addition, a dual harmonic regression 

approach has been used to model 24-hour core body temperature variations, also showing a 

blunted amplitude during the luteal phase (Shechter et al., 2010).

Comparing temporal events surging at certain moments of the rhythm in individuals with 

diverse inner rhythms duration constitutes a challenge. For that, circadian scientists use the 

trigonometric circle to represent the circadian clock, and to calculate the difference between 

two events in angles instead of hours (Refinetti et al., 2007). Employing this method in 

menstrual cycle research could be useful to study and illustrate how characteristics of the 

menstrual cycles vary with health status, life habits, treatments, etc.

We propose here that a cosinor modelling approach could be applied to study menstrual 

cycle rhythms. We describe a method that takes advantage of tools classically employed in 

circadian rhythm research to model menstrual cycle rhythms using distal skin temperature 

data obtained from wearables. We first apply the cosinor method to a large dataset collected 

from 120 females and identify the r2 as a strategic indicator of the data’s proximity to 

an oscillatory pattern. We hypothesized that menstrual skin temperature variations are 

better modeled by an oscillation fitted with a cosinor model than by a higher plateau in 

the luteal phase, fitted with a square wave. A cosinor r2 threshold is determined above 

which an individual’s data are considered to be oscillatory. We also assessed to what 

extent the oscillatory temperature was associated with a positive outcome on a LH test and 

hypothesized that there would be high agreement between the two methods. Finally, we 

illustrate that metrics, including the mesor, amplitude, and acrophase, can be derived from 

the cosinor model of oscillating menstrual temperature.

Methodology

Study cohort and experimental design

Individuals were recruited to participate in a larger study about sleep and memory across 

the menstrual cycle. The Stages of Reproductive Aging Workshop (STRAW) criteria (Hall, 

2015; Harlow et al., 2012b) were used to identify the individuals’ reproductive stage. 

Participants reporting no more than 7-days variation in the length of consecutive menstrual 

cycles were considered in the reproductive stage, while individuals reporting persistent ≥7 

days variation in the length of consecutive cycles or amenorrhea for at least 60 days but had 

not gone 12 months without a period were considered in the menopausal transition stage. 
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Individuals were healthy, not taking chronic medications, including oral contraceptives or 

hormone therapy, and did not suffer from any menstrual-associated disorders. None of the 

participants was post-menopausal, defined by amenorrhea of at least 12 months. The study 

followed the ethical standards of relevant national and institutional committees on human 

experimentation and with the Helsinki Declaration of 1975, revised in 2008. The University 

of California, Irvine, IRB committee approved this study, and participants provided written 

informed consent. All participants received compensation.

As part of the protocol, 120 individuals (age range: 18-52 years) wore an Oura ring© (Gen 

2, firmware 2.43.1; Ōura Health Oy, Oulu, Finland) across at least one menstrual cycle, 

which forms the dataset used here. They also tracked days of bleeding (menses) in a digital 

diary that was completed daily and tracked presence of a LH surge using a commercial urine 

test (PREGMATE®, Ovulation Midstream Test Predictor Kit; sensitivity level: 25 mlU/ml). 

They were asked to start using one test per day during their first urination in the morning, 

starting 5 days prior to the estimated ovulation day and to continue testing for 3 days after 

the first positive result, or longer if there was no clear result. The estimated ovulation date 

was based on participant-reported prior menses dates, to fall 14 days before the estimated 

date of their next menses. Indeed, the follicular phase is known to present greater variability 

than the luteal phase (Bull et al., 2019), and an additional 5 days of testing was introduced to 

buffer for potential variability. Participants sent a picture of the kit result each time to the lab 

staff for visual checking of the results. The retained LH surge day was considered the first 

day in which a positive test was obtained. Participants who failed to perform the test more 

than once in this estimated periovulatory window were considered to lack adherence to this 

method.

Data pre-processing

Data pre-processing procedures allowed us to calculate a reliable value of distal skin 

temperature per day in a transparently calculated manner. From the Oura cloud online 

interface for researchers, we downloaded for each participant the table of raw absolute 

temperature values at one data point per minute, as well as the table containing the 

hypnogram of 30s epochs estimated by Oura’s algorithm.

We used the procedures recommended by Maijala and co-authors to obtain one reliable 

and representative value of distal skin temperature per day (Maijala et al., 2019): First, 

only nocturnal data were down-selected to limit artifacts from daily behaviors, with the 

nocturnal period defined as the time between the Oura provided indexes Bedtime_start and 

Bedtime_end. Since sleep staging information is now available for Oura, we went one step 

further, and only used the portions of data classified as sleep across the nocturnal period. 

Second, a moving average filter of 17 minutes of length was applied across the nocturnal 

data and portions of the data with extreme variability were removed, defined as more than 

1 °C change across 17 minutes. Finally, the maximum stable 17-minute average of the 

nocturnal period was kept as the reliable temperature measure for the day (Maijala et al., 

2019). An example is shown in Figure 2 and the histogram distribution of these data is 

shown in Supplementary Figure 1. With this approach, very few missing data were obtained: 

on average, across the 116 participants with temperature data, less than 1 datapoint was 
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missing across their menstrual cycles of data (mean number of missing datapoints: 0.69 ± 

1.15).

The distal skin temperature data were presented scaled and centered, as Oura claims its 

product to provide a reliable trend of temperature data, but not of absolute value. Scaling 

was performed across all participants, using the “scale()” function in R. After pre-processing 

the daily temperature data, daily temperatures were plotted over time to identify any trends 

across the menstrual cycle. Participants’ data were used to fit a cosinor curve if data from 

at least 75% of days of a menstrual cycle were available, and with no more than 6 days of 

consecutive missing data. On the participant’s data fulfilling these criteria, a 3-day moving 

average filter accepting a maximum of one missing value was applied in order to smooth 

the curve, giving more importance to the general trend than to the day-to-day variations and 

to possible outliers (Figure 3, upper panel). The participants’ data that were included in the 

current analysis ranged between three quarters of a menstrual cycle to one menstrual cycle 

and half of another (75% to 150% of a menstrual cycle duration).

On these data, we investigated which cosinor curve was the best fit for each participant, 

blinded to self-reported menstrual cycle duration (determined from identified menses onset) 

and measures of LH surge with a detection kit. For participants in the reproductive stage 

up to age 35 years, cosinor curves of periods ranging between 22 and 36 days were fitted, 

corresponding to the variability of normal menstrual cycles during this stage (Bull et al., 

2019; Fehring et al., 2006). For participants over the age of 35 years in the reproductive or 

menopausal transition stage, curves between 22 to 45 days were fitted, to account for the 

variability of menstrual cycles durations, which can start in the later part of the reproductive 

stage (O’Connor et al., 2001). Among these multiple models tested, the one with the highest 

r2 was considered to best represent the data and was selected. The distribution of the periods 

of the selected model of each participant is presented in the Supplementary Figure 2.

Once the model was fitted, the associated p-value, r2, and residuals standard deviation 

were obtained. Other metrics characterizing the rhythm included the mesor or midpoint 

value of the oscillation, the amplitude or maximum distance reached by the curve from its 

mesor, the acrophase or timepoint at which the maximum positive distance to the mesor 

was reached, and the period or number of days to complete the oscillation pattern. In 

addition, as temperature increases after ovulation and menses commences after temperature 

starts decreasing, we used the acrophase of the curve as a reference point from which to 

measure when ovulation and menses onset occurred (Figure 3, middle panel). The estimated 

ovulation date was set as the day after the first positive result with the LH kit, as suggested 

by the manufacturer. For each individual, the temporal gap between menses or estimated 

ovulation and acrophase was converted into degrees by dividing by the period of each 

individual’s curve and multiplying the result by 360.

Using the same 3-days smoothed distal skin temperature data, as used for the cosinor model, 

we also fitted a square wave function to search for the optimal parameters—period, mesor, 

and amplitude. It iterated over the same period lengths as the cosinor curve, selecting for 

each participant the fit with the highest R2. The mesor and amplitude were determined 
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through a linear model, so that the square wave curve that best fit each participant’s data was 

generated (Figure 3, lower panel).

Data Analysis

Spearman correlations were performed using the cor.test() function in R, to assess the 

relationship between the r2 of the cosinor curve and the period of the cycle, between the r2 

of the cosinor curve and the age of the participant, and between the r2 of the cosinor curve 

and the r2 of the square waves curve. Wilcoxon test was used to compare r2 of the square 

wave curve and r2 of the cosinor curve. We also performed a logistic regression, using the 

r2 of our cosinor models to predict if certain ranges of r2 were associated with the positive 

and negative outcomes of the urine LH test. Finally, we did a secondary analysis to examine 

the dispersion and average temperature data between participants with oscillatory and non-

oscillatory cycles. Specifically, we used independent t-tests with Bonferroni correction to 

compare the mean and standard deviation (SD) of the temperature data (whole cycle) from 

participants with non-oscillatory cycles to the mean and SD of the temperature data from 

participants in the estimated-follicular (days when the curve was below the mesor) and 

estimated-luteal (days when the curve was higher than the mesor) phases of their oscillatory 

cycles. Paired t-tests with Bonferroni correction were used to compare the mean and SD of 

the temperature data from the estimated-follicular and estimated-luteal phases of the same 

participants.

All the data processing was conducted using R version 4.2.2 (2022-10-31 ucrt) (R Core 

Team (2022). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing), with the packages lubridate, readxl, tidyverse, zoo, and lme4. Result 

figures were also produced with R, grouped and labelled using PowerPoint, and the method 

figure was produced in PowerPoint.

Results

The characteristics of the study participants are presented in Table 1.

Cosinor fitting and identification of the r2 as an indicator of the data’s proximity to an 
oscillatory pattern

As presented in the introduction, the temperature cyclicity over the menstrual cycle, with 

higher levels during the luteal phase, is known to indicate that ovulation has happened. By 

visual inspection of distal skin temperature data over a menstrual cycle, it is possible to 

observe whether such a variation is present. For example, in the top left graph of Figure 4, 

the temperature data presented in grey did not vary across the menstrual cycle, in contrast to 

the other graphs shown in the figure. Using a cosinor method, a cosinor curve was obtained 

which models the menstrual cycle of distal skin temperature. Here, we aimed to use this tool 

to assess whether or not the data were oscillatory and therefore suggested that the cycle was 

ovulatory, and whether the model represented the data sufficiently well to provide reliable 

metrics from the cycle of temperature. Using the p-values of the regression models, out of 

the 116 individuals with distal skin temperature data, we found all models but one to be 

significant at a level of p < 0.05. However, in some individuals with significant p-values, the 
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visual assessment showed no clear menstrual oscillation of the temperature. Consequently, 

the p-value was considered an insufficient indicator of the presence of an oscillation in the 

data. On the other hand, with better fit quality (higher r2), as observable in the examples in 

Figure 4, the model became an accurate approximation of the oscillatory data. There was no 

relationship between r2 and age (rho coefficient: −0.097, p = 0.303) or with the period length 

of the cycle (rho coefficient: −0.094., p = 0.314).

Comparing a cosinor fit with a square wave fit on distal skin temperature data across a 
menstrual cycle

Square wave curves were also fitted to the temperature data to assess whether the menstrual 

cycle changes in distal skin temperature were better represented by an oscillation or by a 

biphasic model. As with the cosinor curve, the fit quality (r2) was extracted from the square 

wave curve of each participant. When comparing the r2 of the two models for the 116 curves 

using a Wilcoxon test, the cosinor curve was found to fit the data significantly better than the 

square wave (p = 0.022, Figure 5)

Identification of a r2 threshold to classify “oscillatory” versus “non-osciiiatory” data

Figure 6 shows the distribution of the r2 of the cosinor curve on menstrual cycle distal 

skin temperature data in the 116 participants. On average, the fit was high (r2 = 0.56 ± 

0.25). When sufficiently high, the fit quality allowed characterization of the oscillation in 

the temperature. This relevant indicator of the fit quality may be useful by itself, as an 

indicator of the menstrual oscillation of temperature. Also, a threshold could be identified, 

above which the fit quality could be considered sufficiently good to confirm that the distal 

skin temperature data oscillate and indicate an ovulatory cycle. With that aim, a logistic 

regression was first performed, using the r2 of our models in order to predict if certain 

ranges of r2 were associated with the positive and negative outcomes of the urine LH test.

As presented in Figure 7 and Supplementary Table 1, this analysis confirmed that a higher r2 

value was associated with a greater likelihood for the urine LH kit to be positive, however, 

no obvious cut-off point for r2 stood out. Indeed, some individuals had a positive LH surge 

test despite absence of a visible oscillation, while some others did not measure an LH surge 

although their temperature oscillated very clearly across their menstrual cycle. Therefore, 

we aimed to determine a r2 cutoff from which the oscillation of the model matched the one 

visually observable in the data. Based on visual assessment of the distal skin temperature 

and their corresponding model in 116 individuals, we proposed that (1) when r2 was greater 

than 0.25, the data were sufficiently well represented by a sine wave for the temperature 

to be considered oscillatory. However, in some of the individuals although the oscillation 

was present and captured by the model, important variability in the data was not captured 

in the curve. Therefore, for the present dataset, we proposed to consider that (2) the model 

was sufficiently good to extract metrics (e.g., mesor, amplitude, acrophase) only for models 

reaching a second, more rigorous cut-off at r2 > 0.4. The residuals corresponded to the 

variability in the data which was not explained by the model. In Figure 8, the standard 

deviation of residuals is presented according to the fit quality of the cosinor curve, and the 

proposed cutoffs are marked on the same plot.
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Comparing dispersion and levels in skin temperature data from oscillatory versus non-
oscillatory cycles

We identified the skin temperature data to be well represented by an oscillatory curve 

in 99 of the 116 participants. The data of the remaining 17 participants were not well 

represented by a curve. This may be explained by the absence of the luteal temperature 

surge typically occurring in an ovulatory menstrual cycle, and therefore be a marker of 

anovulation. Alternatively, if the data were noisier and more dispersed in these participants, 

the cosinor may not represent the data well even if an ovulation and subsequent temperature 

surge was present. A comparison of the data from these two groups of participants addressed 

these two possibilities: The average and SD of temperatures from non-oscillatory cycles 

were similar to that of the estimated-follicular portion of the oscillatory cycles, but were 

lower compared to the estimated-luteal portion of the oscillatory cycles (p < 0.001, Figure 

10). Further, the SD calculated across the whole cycle in participants with oscillatory data 

was significantly higher than the SD for participants with non-oscillatory cycles (p = 0.014, 

Figure 10). These data, therefore, suggest that the non-oscillatory cycles were anovulatory 

rather than reflecting noisier, more dispersed datasets.

Association between LH surge and oscillatory pattern of skin temperature data

We first compared the adherence to two methods that may be used as proxies to track 

ovulatory cycles: the LH urine kit, and the distal skin temperature measurement by the Oura 

ring. In the case of the LH kit, lack of adherence was defined as participants failing to take 

the test, and/or not reporting the results to the researcher despite the daily reminders. This 

failure was observed in 6 out of 120 participants. Lack of adherence to the distal temperature 

collection was defined as the participant failing to charge and/or wear the ring despite the 

daily reminders, resulting in too much missing data (less than 75% of a menstrual cycle, or 

more than 6 consecutive missing days), which happened in 4 out of 120 participants (Table 

2).

Second, we compared to what extend these two characteristics of an ovulatory cycle (the 

LH surge and oscillating temperature) were associated to each other in our study group. 

In the case of the LH kit, the result of the test was considered positive or negative 

according to the manufacturer’s indications. Regarding the distal skin temperature, a cosinor 

model or cosinor curve was fitted to the data as explained earlier. If the fit was >.25, the 

menstrual cycle was considered oscillatory (n=99) and if the fit was <.25, it was considered 

non-oscillatory (n=17). Out of the 114 who adhered to the LH kits, 104 had a positive 

result (Table 2). Out of the 10 who did not have a clear positive result, 5 were in the 

reproductive stage and 5 were in the menopausal transition stage. For participants adhering 

to both methods (N=111), LH kit and temperature oscillation detection showed agreement 

in 82% of cases. Examples of curves illustrating each of the combinations of positives and 

negatives from the temperature oscillation and the LH kits are shown in Figure 9.

Menstrual cycle metrics derived from the curve

For the participants in which the curve had an r2 > .4, we proposed to consider that the 

curve fitted the data sufficiently well to derive other metrics, including the mesor, amplitude 

and the acrophase. Here, 75 individuals, corresponding to 71.6% of our sample, met that 
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criterion. The fit quality, the mesor, and the amplitude of the menstrual cycle of distal 

skin temperature may be considered as potential indicators of certain medical or fertility 

conditions or associated with other characteristics. As an example, the distribution of the 

mesor and amplitude across the entire group is represented in Figure 11. These metrics 

may be grouped by variables of interest, such as age, reproductive stage, health conditions, 

or treatment, to identify how the menstrual cycle characteristics are influenced by such 

variables. On the other hand, the acrophase may be used as a reference time point to 

compare to other temporal elements. For instance, the distance between the menses and the 

acrophase, and estimated ovulation (as the day following the first positive LH surge test 

result) and acrophase could be calculated and presented. As the menstrual cycle duration 

varies across individuals, a solution was needed to compare and represent them together. A 

possibility was to consider a cycle of data as a circle. For each individual, the temporal data 

could be transposed in degrees of a 360° cycle, instead of days of a, for example, 28-days 

cycle. An example of this menstrual clock representation is illustrated in Figure 11, showing 

the distribution of the menses and estimated ovulation compared with the temperature cycle. 

On average in our sample, menses started at 90.6° (sd = 42°) after the acrophase of the 

temperature cycle. The data can be converted back from degrees to a 28-day cycle, by 

dividing by 360 and multiplying by 28, such that menses was, on average, 7.05 days (sd = 

3.27 days) after the acrophase. Estimated ovulation on the other hand started on average at 

251° (sd = 64.8°) or 19.5 days (sd = 5.04) after the acrophase.

Discussion

In the current work, we showed how the method of cosinor curve modelling, broadly used 

in circadian rhythms research (Gómez-Santos et al., 2009), could be applied to distal skin 

temperature data obtained with an OURA ring in order to determine the presence of the 

temperature oscillation characteristic of an ovulatory menstrual cycle.

There was high compliance from our group of participants with using a wearable across 

a menstrual cycle, and the pre-processing of the temperature data allowed us to obtain 

reliable daily temperature measures. Our comparison of fitting the data with a cosinor and 

a square wave model showed that the menstrual variation of skin temperature is closer to 

a smooth oscillation rather than a low follicular plateau followed by a sudden increase to 

reach a higher luteal plateau. This finding suggests that the use of the term ”biphasic”, 

commonly used to characterize the menstrual variations of temperature (Ecochard et al., 

2001; Moghissi, 1976; Uchida & Izumizaki, 2022), may be less appropriate than speaking 

of an “oscillatory” change. We also showed that in the few individuals whose data did not 

oscillate, daily temperatures remained low across the cycle, similar to levels recorded in 

the curve-estimated follicular phase of oscillatory data, suggesting that these cycles were 

anovulatory.

The findings of the current paper suggest that the cosinor method applied to wearable-

derived skin temperature data can be used as a good estimate of whether a menstrual cycles 

is ovulatory, unobtrusively and with low user-burden. It can also advance research about the 

menstrual cycle in basic and clinical health applications and can be used as a tool to control 

for menstrual cycle factors in research. We attempted to use a method of logistic regression 

Gombert-Labedens et al. Page 12

J Biol Rhythms. Author manuscript; available in PMC 2024 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to identify limits of r2 values that would indicate a cut-off for an adequate fit of the curve 

reflecting oscillatory activity associated with an ovulatory cycle. However, this method 

revealed no obvious cut-off, and we therefore inspected the curves visually. A visually 

identified threshold in the cosinor fit quality (r2>0.25) reflected an adequate fit, however, 

we chose a more conservative fit (r2> 0.4) requirement to reliably calculate rhythm metrics. 

These cut-offs are appropriate for the current dataset, obtained with a specific device (Oura 

ring) in a specific female population. However, their transferability to other studies remains 

to be assessed.

While there was a high level of agreement between our distal skin temperature rhythm 

method and the LH surge detection method for identifying ovulatory cycles, there were 

cases of both false positives and false negatives when comparing the methods. Reasons for 

these discrepancies are unclear since we did not measure hormone levels across cycles or 

use transvaginal ultrasound of the ovaries to precisely detect ovulation. However, some cases 

of ovulation without a subsequent temperature surge have been reported in the literature 

and may correspond to a lower progesterone sensitivity (F. C. Baker et al., 2020; Ecochard 

et al., 2001; Moghissi, 1976). In parallel, LH surges not followed by an ovulation (and 

therefore not followed by a temperature increase) have been reported in 4 to 10% of 

cases in individuals without known fertility problems or menstrual disorders (Su et al., 

2017). Another study reported that 46.8% of regularly menstruating individuals presented 

at least one premature LH surge and 37% presented multiple ones (Krotz et al., 2005). A 

premature LH surge in that study was defined as an unsustained increase of LH, potentially 

sufficiently high to be positive on a test, but not sustained over time so likely not to result 

in an ovulation. Different profiles of LH surge with varying durations and amplitudes are 

associated with hormone level modifications and variations in the ovulation day (Direito et 

al., 2013). In the current study, LH was not quantified but only detected with a home testing 

kit, which participants were instructed continue testing only for 3 days after they had had 

a positive test, therefore this profile analysis could not be performed. However, different 

LH profiles could explain part of the disparities between the LH kit results and our cosinor 

analysis.

Future work could directly compare our method of cosinor modelling of temperature against 

the gold standard method of ovulation detection (transvaginal ultrasound of the ovaries) to 

determine accuracy, sensitivity, and specificity of the method.

As the useability of a method does not only depend on its accuracy but also on the practical 

application, we were interested in measuring the adherence, understanding that in this study, 

participants were contacted with reminders when to use the kit and if they lapsed in the 

use of the wearable. We observed similarly high adherence for both the LH-kit and the 

Oura temperature collection. In the case of the wearable used here, the burden for the 

participant is in 1) wearing the ring, 2) syncing the ring and the app daily to ensure data 

transfer, consisting in having the app open on the smartphone for at least one minute, 3) 

charging the ring, approximately every 3 days for about 20 minutes. The feedback from 

participants is consistent with previous reports, in studies using both wearables and diaries, 

in which participants reported that the diary was the most burdensome part of the study 

(Rawassizadeh et al., 2015), and in a high-school population, that the wearables were 
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better accepted than the diaries (Mastrandrea et al., 2015). Some participants in our study 

commented that using the wearable was a motivation for participating.

It should be noted that when using a wearable for continuous and high sampling data 

collection, numerous sources of artefacts need to be considered and preprocessing steps are 

critical to ensure the data selected are truly representative of the phenomenon of interest. In 

the current study, we adapted a previously described method for selecting one reliable data 

point per day, which was the highest stable 17-min average, measured in the sleep period 

(Maijala et al., 2019). This approach enabled us to model menstrual cycle temperature 

rhythms that had high concordance with the LH kit results. However, skin temperature is 

also influenced by the sleep environment, behaviors of the individual during sleep, and other 

factors, and it is possible that the temperature data selected could reflect these influences 

more than the menstrual cycle for some individuals.

An advantage that the cosinor curve method provides, when the data do present an 

oscillatory pattern, is the possibility to extract metrics from the rhythm. First, we note 

that the fit quality does not appear to be affected by the age of the participant or by the 

duration of the period, indicating that the method seems to work for a diverse sample of 

participants. However, other conditions may affect the fit quality, which could then be used 

by itself as a marker or health indicator. In addition, when the fit is sufficiently good, the 

mesor, amplitude, and acrophase, could also be investigated as potential markers. When 

comparing the level of a rhythmic variable between two groups or conditions, using a single 

time-point can lead to inaccuracies, whereas using the mesor of the rhythm constitutes 

a more reliable element to compare. Examples of the application of rhythm metrics can 

be found in circadian rhythms science, where a decrease in the amplitude and a labile 

acrophase is classically encountered in aging as well as in metabolic disorders (Hofman, 

2000; Woller & Gonze, 2021). In addition, the circadian period of an individual, which 

is longer in individuals with evening chronotypes and shorter in morning chronotypes, is 

known to evolve across the life span and to be predictive of certain behaviors and metabolic 

disorders (Reutrakul et al., 2013; Wong et al., 2015). To our knowledge, these rhythm 

metrics have not been investigated in the context of menstrual cycle rhythms, and further 

work is needed to explore whether differences in acrophase, amplitude, and periods of the 

menstrual cycle rhythm are predictive of reproductive functioning and overall health. For 

example, reproductive aging may reshape the menstrual cycle metrics in the same way 

that aging influences circadian rhythms. Future studies need to examine how these metrics 

evolve with reproductive aging, and how they are influenced by demographic factors like 

race and ethnicity and body composition, and to ultimately define the healthy menstrual 

cycle for each individual. Transposing the sine curve, or cosinor, to a trigonometric circle 

representation is another advantage of our proposed rhythm method; we showed that this 

approach can be used to plot the temporal location of menses and ovulation, in relation 

to the acrophase of each individual’s menstrual rhythm of temperature. This information 

can be employed to observe differences between timing of events in different groups or 

according to different conditions, or to visualize if certain events tend to occur during 

specific menstrual phases. For example, in the current paper, the distribution of menses 

onset compared to the acrophase of the curve seems to display two modes, which may 

indicate the influence of another parameter, such as different profiles of hormones or 

Gombert-Labedens et al. Page 14

J Biol Rhythms. Author manuscript; available in PMC 2024 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensitivity to hormones in the luteal phase. Indeed, in pathophysiology, circadian timing is 

predictive of disease onset such as cardiovascular events (Takeda & Maemura, 2016), but the 

efficacy of treatments also varies across the rhythm (CornÉlissen & Halberg). Investigating 

these elements in relation to menstrual cycle characteristics and phases could enhance the 

potential for precision medicine in women’s health.

Previous studies have reliably tracked the menstrual cycle using temperature from diverse 

wearable devices. For example, a research group developed a wearable earbud that tracks 

body temperature every 5 minutes (Luo et al., 2020). In their method, they used the 

minimum overnight temperature to fit a Hidden Markov Model, weighted by the estimated 

length of the luteal phase of the cycle based on ovulation history, to characterize the cycle 

and identify the date of ovulation. They compared the performance of the algorithm against 

ovulation, confirmed with a LH surge detection kit, and found concordance in 30 of the 

39 cycles studied, corresponding to 76.92%. Weinberg et al. (Weinberg & Cohen, 1983) 

calculated the mean overnight temperature measured by a thermometer attached to a hygiene 

pad and observed a rise of about 0.50°C across the menstrual cycle, but no comparison 

was provided with other ovulation tracking methods. In the study by Zhu et al. (Zhu et al., 

2021) , participants wore a bracelet (Ava Fertility Tracker bracelet) to continuously measure 

wrist skin temperature during sleep and compared it with daily morning oral basal body 

temperature (BBT) measures and an at-home luteinizing hormone test (reference). They 

found that the mean wrist skin overnight temperature was more sensitive than BBT and had 

a higher true-positive rate for detecting ovulatory cycles relative to the LH kit; however, 

it also had a higher false-positive rate, resulting in lower specificity. They characterized 

ovulatory cycles as biphasic if at least one temperature shift was present between different 

stages of the cycle. As we showed here, however, an oscillatory model better describes 

menstrual cycle temperature rhythms rather than a biphasic model In the current study, we 

specifically preprocessed the data following a rigorous procedure to reduce environmental 

artefacts in the distal skin temperature, relying on the recognition of sleep epochs by the 

Oura ring algorithm to select stable temperatures, to improve the reliability of the data. It 

may be beneficial in future work to integrate other physiological signals from wearables, 

such as heart rate, to refine our method. For example, Goodale et al. (Goodale et al., 2019) 

analyzed data collected with a wrist-worn armband and integrated multiple physiological 

measures to predict ovulation. The cosinor method described here and commonly used in 

chronobiology may be a relevant complement to analyses implemented by others for various 

temperature sensors used to track ovulatory cycles (Maijala et al., 2019; Mohaned Shilaih 

et al., 2018; Uchida & Izumizaki, 2022; Yu et al., 2022). Indeed, in addition to indicating 

if a cycle is ovulatory, the cosinor method can be used to obtain insights when ovulation 

and menses occur in relation to the temperature rhythm, which could be used to identify 

menstrual cycle phases and ovulation windows in future cycles. In addition, the current 

method goes beyond only identifying events (menses and ovulation) to also identify metrics 

of the cycle, which could be alternative indictors of health and reproductive function. A 

diversity in menstrual hormone levels exist between females, and distinct patterns of luteal 

hormonal variations have been associated with the size of the follicle (Ecochard et al., 2017), 

as well as with the duration of the cycle and different levels of other hormones (Abdullah et 

al., 2023). It is likely that such hormonal profiles are reflected on the patterns of temperature 
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variations across the menstrual cycle, and the characteristics of these temperature variations 

may in turn be used as predictors. The method presented here relies on the oscillatory 

pattern of temperature, but other methods that characterize the shape of the changes and 

allow the calculation of metrics from the menstrual cycle data of hormones and temperature, 

may serve as strategic health predictors in the future. Regarding reproductive function, 

the metrics derived from menstrual cycle data could be useful in pregnancy planning as 

well as in precision contraception. Indeed, several researchers currently aim to reduce to a 

minimum the exogenous hormonal input needed to obtain anovulation (Gavina et al., 2023). 

In order to optimally administer these monotherapies, the timing of the intake relative to 

the menstrual cycle is crucial. Consumer wearable devices are already greatly facilitating 

the implementation of chronotherapy considering an individual’s circadian rhythms (Kim 

et al., 2020), and the implementation of the current method is particularly promising to 

extend it to precision medicine adapted to menstrual timing. We propose that the acrophase 

of the menstrual rhythm of temperature could be a strategic reference point in time, and 

that specific moments of the menstrual cycle may be referred-to as specific degrees of the 

cycles instead of days, as this would allow consideration of the interindividual variability 

in the menstrual cycle duration. Circadian rhythms science can be a valuable source of 

inspiration with regard to chrono-medicine. For example, the chronotypes, corresponding 

to different lengths of inner circadian rhythms, are associated with certain life habits, 

behaviors, risk factors and conditions (Arora & Taheri, 2015; Cespedes Feliciano et al., 

2019). Similarly, associations between the duration of the menstrual cycle and particular 

behaviors or conditions may exist.

There are limitations to the method proposed here. First, in the case of using the r2 to 

indicate an ovulatory cycle, we have proposed a threshold (r2>0.25) which, based on the 

visual assessment of all our participants’ data and associated models, appeared to us as 

the most appropriate way to discriminate between data presenting a menstrual cyclicity 

from data that did not. Further work is needed in a large sample of individuals with and 

without ovulatory cycles to determine the performance of this r2 cutoff relative to the gold 

standard measure of ovulation, ultrasound of the ovaries, which is more accurate than the 

LH urine kits employed here. Indeed, several individuals with very clear menstrual patterns 

of temperature change, strongly suggesting that ovulation happened, never had a “positive” 

result with the kits. This finding may be linked to an insufficient sampling rate for the 

LH kits, which may require 2 tests a day to ensure the LH surge is captured. Also, as 

described above, the alternative is possible for a minority of cases where there may not be 

a temperature increase despite ovulation occurring, in whom the proposed method would 

not be applicable to detect ovulation. However, it may still be useful to use the temperature 

rhythm method to identify and follow-up on anomalies in menstrual cycle patterns in 

those individuals. Similarly, we identified a r2 cutoff that would be sufficiently high for 

metrics of the curve to be calculated (r2>0.4) using visual inspection. We considered 

that a higher cutoff was needed to ensure greater reliability of the calculated metrics. 

However, future work is needed to expand and develop our method, including examination 

of the performance of these cutoffs in different samples relative to true ovulation and/or 

other datasets including reproductive hormone levels across a menstrual cycle. Another 

consideration to put this study in perspective is that the distal temperature was measured 
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using a ring; future studies should test the method using other wearables across different 

locations starting from the most common, i.e., the wrist. Also, we propose it is important 

to test different curves with a range of periods corresponding to the range considered as 

a normal menstrual cycle duration (Bull et al., 2019; Fehring et al., 2006). In the current 

study using between three quarters of a menstrual cycle and one menstrual cycle and a half, 

testing this range of fits was effective and allowed some flexibility to find the best model. 

In addition, wearable devices also detect other physiological data in a continuous manner, 

including heart rate, heart rate variability, and SpO2, and the technique presented here could 

be tested to measure menstrual variations across these measures. Notably, other techniques 

relying on the identification of repetitive patterns of temperature changes only work on data 

from many menstrual cycles, while the cosinor curve fitting method works with even slightly 

less than one cycle of data. On the other hand, according to the shape of the temperature 

variation and the regularity of the periods, the model that would best fit the data might not 

have a period exactly corresponding to the actual menses-to-menses distance. Indeed, fitting 

such a cosinor curve to multiple menstrual cycles would only work if the cycles were very 

regular. If not, a shift would tend to appear between the temperature cycles and the model, 

which would make it lose its relevance. This technique may therefore be nicely adapted to 

study between one to six fairly regular menstrual cycles. Other techniques may be more 

adapted to study multiple menstrual cycles, and the identification of temperature maxima, 

amplitude, the length of the period between them, their frequency, the slopes of temperature 

variations, etc. For example, the work of Leise shows the potential applications of wavelet-

based analysis, as it allows the detection of changes of periods over the course of several 

cycles (Leise, 2013). In time series longer than a few months, this approach could allow 

the derivation of additional metrics such as the strength of rhythm (Leise & Harrington, 

2011). The method of cubic periodic smoothing splines can be applied to model data across 

over multiple menstrual cycles, and has been used in the confirmation of ovulatory cycles 

and estimation of the ovulation date (Odlén, 2019). This last method can be used to obtain 

derivative measures including the slope and the curvature of the variations, which can also 

enrich the study of multiple menstrual cycles. In addition, the use of such methods would be 

more applicable than the cosinor fit in order to collect information surrounding the average 

duration of a menstrual cycle, the frequency and regularity of menses. Individuals sharing 

trends of menstrual rhythms metrics may share specific health characteristics, but also, a 

sudden change from the habitual pattern may be an early indicator of a new health condition. 

In addition, while in the cosinor approach, the nadir and the acrophase are necessarily at a 

half-period distance, other more flexible methods such as those mentioned above could be 

used to obtain additional information from the temporal location of the nadir and acrophase, 

the distance between them, and from other biological or external events.

In conclusion, we have presented a method frequently used in circadian rhythms science to 

model cyclic physiological changes, and showed how it can be applied to the distal skin 

temperature variations across the menstrual cycle. Fitting a cosinor curve to such data allows 

use of the fit quality (r2) to assess how well the data fits this cyclic pattern. A high fit 

quality can confirm that the studied cycle is ovulatory, and different metrics can be extracted 

from the model: the amplitude, mesor, and acrophase. In addition, as in circadian rhythms 

studies, the cosinor fitting can be used to transpose the data to a circle representation, 
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on which temporal elements can be located at particular angles of the cycle, allowing 

comparison of individuals even when they have different cycle durations. These techniques 

can be employed to broaden the understanding of the menstrual cycle, not only as the female 

reproductive system, but as a biological rhythm with the potential to influence numerous 

health mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic representation of the circadian and menstrual effects on core and distal skin 

temperature. Core and distal skin temperature are anti-phase at the circadian rhythm 

scale, and in-phase at the menstrual scale. During the luteal phase, in addition to the 

overall temperature increase, the amplitude of its circadian rhythm is blunted. Black arrows 

approximate dawn and dusk in a 24-hour cycle.
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Figure 2. 
Temperature and sleep staging measured with an Oura ring during 4 consecutive days at a 

one measurement/min granularity in one individual. The selected portions correspond to the 

stable sections measured during Oura-detected sleep. Oura’s sleep staging is displayed in the 

lower panel of the graph.
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Figure 3. 
Example of cosinor curve fit to skin temperature data obtained with an Oura ring over 

more than a month. The data obtained by selecting a stable night value of skin temperature 

are presented, normalized for this individual. Upper panel: The temperature points selected 

during each night of the cycle appear as black dots, and the trend smoothened by a three-day 

moving average is presented as a black line. Middle panel: The cosinor curve fitting these 

temperature data and its derived metrics. Lower panel: Superimposed on these curves, is 
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self-identified first day of bleeding (menses) and day of estimated ovulation (positive LH 

surge from an ovulation prediction kit) in vertical solid and dashed lines.
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Figure 4. 
Examples of cosinor curve fitting to daily temperature data, showing a range of fits, based 

on r2values, from no fit (r2 = 0.1) to a high fit (r2= 0.9). Self-reported first day of menses is 

indicated by the solid line and a positive LH surge, indicating ovulation, is indicated by the 

dashed line.
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Figure 5. 
Comparison of the r2 derived from the cosinor and the square wave models. The asterisk is 

for a Wilcoxon test in which p < 0.05.
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Figure 6. 
Distribution of the fit quality of the cosinor curve on menstrual temperature. The vertical 

line at 0.25 represents the threshold r2selected for the confirmation of ovulation. A higher fit 

(r2= 0.4, second line) was deemed to be necessary in order to reliably derive metrics from 

the curve, including mesor, amplitude, and to estimate days of ovulation and menses.
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Figure 7. 
Logistic regression predicting the outcome (positive or negative) of the LH urine kit 

according to the r2of the cosinor curve fitting the menstrual cycle of temperature data. The 

black dots mark the data points of the different r2encountered in individuals with positive 

and negative LH tests. The solid line corresponds to the regression curve. The first vertical 

dashed line corresponds to the first cut-off proposed, at r2= 0.25, and the second vertical 

dashed line to the second cut-off, at r2= 0.4.
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Figure 8. 
Standard deviation of residuals according to the cosinor curve fit quality of the cosinor 

model. The vertical line at 0.25 and the one at 0.4 represent the thresholds r2 selected for the 

confirmation of ovulation and usability of metrics.
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Figure 9. 
Examples of curves illustrating the confusion matrix of temperature fit and LH kit results. 

Self-reported first day of menses is indicated by the solid line and a positive LH surge, 

indicating impending ovulation, is indicated by the dashed line.
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Figure 10. 
Comparison between the levels and dispersion of the temperature between participants 

with oscillatory and non-oscillatory data. T-tests with Bonferroni correction were performed 

between each group, the * symbolizes a p-value < 0.05, and N.S. indicates that the groups 

are not significantly different.
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Figure 11. 
On the left panel, boxplots illustrate the distribution of the mesor and amplitude of the 

cosinor curves obtained from the current cohort. On the right panel, a polar plot of the 

distribution of menses and ovulation across the menstrual rhythm of temperature relative to 

temperature acrophase are shown. 0° corresponds to the acrophase of the curve.
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Table 1.

Characteristics of the study participants

Demographic Variables Values

Age (Years),M ± SD 35 ± 11.56

Stage, n (%)

 Reproductive 95 (79.17%)

 Menopausal transition 25 (20.83%)

Race/Ethnicity, n (%)

 White 49 (40.83%)

 Asian 46 (38.33%)

 Black/African American 4 (3.33%)

 Latino/Latina/Latinx 13 (10.83%)

 More than one race 8 (6.67%)

Site, n (%)

 SRI International 66 (55%)

 University of California, Irvine 54 (45%)

Menses duration (days), M ± SD 4.96 ± 1.27

Menstrual cycle duration (days), M ± SD 30.85 ± 9.41

Proportion of a cycle studied (%), M ± SD 121.97 ± 21.56

LH test, n (%)

Participants with at least one positive 104 (86.67%)

Participants with no positive despite diligently performed tests 10 (8.33%)

Participants not diligently performing tests 6 (5%)
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Table 2.

LH kit vs wearable temperature method agreement: adherence and test results comparison

Temperature fit

Non-oscillatory Oscillatory Lack of adherence

LH kit

Negative 3 7 0

Positive 13 88 3

Lack of adherence 1 4 1
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