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Abstract: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly
people, with limited treatment options available for most patients. AMD involves the death of retinal
pigment epithelium (RPE) and photoreceptor cells, with mitochondria dysfunction being a critical
early event. In the current study, we utilized our unique resource of human donor RPE graded for
AMD presence and severity to investigate proteome-wide dysregulation involved in early AMD.
Organelle-enriched fractions of RPE were isolated from donors with early AMD (n = 45) and healthy
age-matched controls (n = 32) and were analyzed by UHR-IonStar, an integrated proteomics platform
enabling reliable and in-depth proteomic quantification in large cohorts. A total of 5941 proteins
were quantified with excellent analytical reproducibility, and with further informatics analysis,
many biological functions and pathways were found to be significantly dysregulated in donor RPE
samples with early AMD. Several of these directly pinpointed changes in mitochondrial functions,
e.g., translation, ATP metabolic process, lipid homeostasis, and oxidative stress. These novel findings
highlighted the value of our proteomics investigation by allowing a better understanding of the
molecular mechanisms underlying early AMD onset and facilitating both treatment development
and biomarker discovery.

Keywords: age-related macular degeneration; retinal pigment epithelium; mitochondria dysfunction;
quantitative proteomics; mass spectrometry; IonStar

1. Introduction

Age-related macular degeneration (AMD) accounts for the majority of progressive
and irreversible vision loss in the elderly population, affecting ~30% of individuals over
75 years old in developed countries [1]. A previous study estimated that ~290 million
individuals will suffer from AMD by the year 2040, which imposes heavy burdens on
human health worldwide [2]. AMD is characterized by macular deterioration, resulting in
central vision loss and subsequent difficulties in accomplishing daily activities that require
visualization of fine details, such as reading and face recognition. Most patients manifest a
“dry” clinical phenotype that involves loss of retinal pigment epithelium (RPE) and death
of photoreceptors [3]. Treatment options for dry AMD include a nutritional supplement
that has been shown to provide moderate benefits for a limited proportion of dry AMD
patients. However, exacerbation of AMD was still observed in most of the participating
patients [4,5]. Thus, more effective therapeutic strategies directly targeting the underlying
molecular mechanisms of dry AMD are highly favorable.
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Mitochondria are vital organelles responsible for a variety of cellular functions, includ-
ing energy production, regulation of cell survival and death, control of redox signaling, and
cation homeostasis [6]. As the primary energy source in the RPE, mitochondria are essential
for normal RPE functions and hence compromised mitochondrial function is directly asso-
ciated with RPE dysfunction and cell death. Recent studies have found that cultured RPE
cells from human donors with AMD manifested declined oxidative phosphorylation com-
pared with those from non-AMD donors, suggesting that mitochondria dysfunction may
be one of the underlying mechanisms driving AMD pathology [7]. Moreover, we have also
demonstrated that primary cultures of RPE from AMD donors showed AMD-dependent
responses to multiple mitochondria-targeting drugs [8]. These positive outcomes were
not observed in cultured RPE from non-AMD human donors, indicating the potential of
mitochondria-targeting drugs as an option for AMD treatment.

To elucidate the molecular basis underlying AMD pathology, especially during disease
onset, a more in-depth understanding of why mitochondria dysfunction occurs in AMD
is required. We propose that the proteomic profile associated with the transition from
healthy aging to early AMD will provide key insights into the mechanism driving AMD
pathology. In this study, we utilized a proteomic approach to characterize changes in RPE
protein content in AMD donors compared with age-matched non-AMD controls. To better
quantify organelle proteins, the majority of nuclear, cytosolic, and membrane proteins were
removed from the whole RPE lysates via differential centrifugation. This commonly used
method of enriching cytoplasmic organelles reduces sample complexity, thereby improving
the ability of distinguishing changes in protein content. In our previous studies, proteomic
investigations of human RPE at progressive stages of AMD revealed dysregulation of key
signaling pathways implying mitochondria dysfunction, including mitochondrial traffick-
ing, translation, apoptosis, and ATP synthase activity [9]. Of note, these investigations were
accomplished using two-dimensional (2-D) gel electrophoresis coupled to matrix-assisted
laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). While
this technology has been ubiquitously utilized for several decades, it has become gradually
outdated due to limited sensitivity, reproducibility, and depth, especially when quantitative
analysis of the proteome is warranted. With the introduction of nano-flow liquid chro-
matography (LC) and electrospray ionization (ESI), as well as the advent of ultra-high-field
orbitrap mass spectrometers [10], more comprehensive and unbiased proteomics analysis
with deep proteome coverage and excellent quality for quantification is now achievable.
Thus, the current study significantly extends the capabilities of our previous analysis to
identify altered proteins in human RPE samples.

Here we present a quantitative proteomics investigation of organelle-enriched fractions
of RPE from human donors with early-stage AMD and age-matched healthy controls. The
presence and severity of AMD were determined using the Minnesota Grading System
(MGS), with donors exhibiting no evidence of AMD designated as MGS1 and donors
with early AMD as MGS2 [11]. It is important to note that donors with early AMD
(MGS2) have experienced no vision loss and, upon ophthalmic exam, exhibit no RPE or
photoreceptor loss. The only clinical evidence of disease is the presence of a few small
deposits, known as drusen, in the retina. Organelle-enriched fractions were isolated from
individual RPE samples (n = 77 in total) and were analyzed using UHR-IonStar, a unique
label-free quantitative proteomics platform devised for highly reproducible and reliable
proteomics analysis in large sample cohorts (Figure 1a) [12,13]. Isolated fractions were first
processed by a surfactant cocktail (SC)-aided precipitation/on-pellet digestion (SEPOD)
protocol for protein solubilization and digestion [14] and were then analyzed by a large-
capacity trapping nano-flow LC-ultra-high-resolution (UHR) orbitrap MS procedure [15].
Protein quantification was performed by the UHR-IonStar data processing pipeline, which
allowed reliable proteomic quantification in large cohorts with high accuracy/precision and
an extremely low false biomarker discovery rate [13]. Quantification results were further
interpreted by a series of informatics approaches to identify proteins and corresponding
biological functions/signaling pathways dysregulated in donors with early AMD.
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Figure 1. Proteomics profiling of RPE organelle-enriched fractions from human donors with AMD.
(a) Experimental and data analysis procedures of the current study; (b) the percentage of proteins
quantified with non-zero quantitative values (i.e., missing data-free) in the dataset; (c) ranked order
of protein MS intensities and the TOP10 most abundant proteins. (d) Gene ontology (GO) enrichment
of cellular component (CC) terms for the 5941 proteins quantified.

2. Results
2.1. Quantification of RPE Proteome with UHR-IonStar

In the current study, a large cohort quantitative proteomics experiment was performed
to investigate proteome-wide expression changes in RPE organelle-enriched fractions from
human donors with early-stage AMD (MGS2/M2, n = 45) and without AMD (MGS1/M1,
n = 32). Donors were matched in age and gender (Table S1). The average age of donors was
76.8 (±10.6) for MGS1 and 79.8 (±10.4) for MGS2. There was no significant difference in
donor age between MGS2 and MGS1 (p = 0.22), and equal distribution of females and males
was present in each group (MGS1 = 16:16 and MGS2 = 22:23). Under the identification
criteria of 1% protein/peptide false discovery rate (FDR) and ≥2 unique peptides per
protein, a total of 5941 unique proteins were quantified from the 77 samples (Table S2).
An average of 5910 proteins were quantified in each sample (Figure S1a), and 94.7% of
proteins were deemed as “missing data-free” (i.e., having a non-zero quantitative value in
all 77 samples) in the entire sample set (Figure 1b). MS intensities of proteins quantified
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spanned 7.3 orders of magnitude, and the TOP3 most abundant proteins quantified were
retinoid isomerohydrolase (RPE65), retinal G protein-coupled receptor (RGR), and retinol
dehydrogenase (RDH5), which were all RPE-specific proteins and covered 14.2% of total
protein MS intensities (Figure 1c). Gene ontology (GO) analysis of cellular component terms
enriched a number of major subcellular compartments (Figure 1d), including cytosol (2541),
plasma membrane (1591), extracellular exosome (1462), nucleoplasm (1198), mitochondrion
(881), Endoplasmic reticulum (636), Golgi apparatus (534), cytoskeleton (266), centrosome
(197), lysosome (178), and endosome (171). The median MS intensities of several subcellular
organelles were much higher than those of all proteins quantified in the dataset, including
mitochondria (2.4-fold higher; Figure S2). Endoplasmic reticulum (ER) was also enriched
in the organelle fraction, which was expected considering the close association between ER
and mitochondria, allowing their co-isolation with the centrifugation step. These results
suggest that the sample preparation procedures achieved the anticipated outcomes with
good robustness.

Considering the substantial size of the sample cohort, stringent quality control of the
experimental procedures is crucial to the analytical quality of the quantitative results. We
devised and applied a standardized scheme for the monitoring and evaluation of LC-MS
reproducibility during the analysis queue (Figure S3). In brief, a quality control (QC)
sample consisting of pooled aliquots of 10 randomly selected samples from the cohort
being analyzed was injected for analysis at a fixed interval during LC-MS analysis. In this
study, the QC sample was analyzed every 20 LC-MS runs (n = 5 in total), and these QC
sample files were also included with the real sample files in the data processing pipeline and
employed as the reference for chromatographic alignment (i.e., retention time adjustment
and peak clustering). Quantification results of the five QC runs are included in Table S3.
The median CV among the five QC runs was 9.6 ± 8.9% and 18.0 ± 12.2% for proteins
within the highest 75% and lowest 25% ranges, respectively. The scatterplot (Figure 2a)
shows that under most circumstances, the CV levels of individual proteins were negatively
correlated with protein MS intensities. These results were consistent with our previous
results assessing the quantitative reproducibility of UHR-IonStar. Additionally, protein
intensity distribution was almost identical among the five QC sample runs, and an excellent
correlation coefficient was achieved for proteins within the highest 75% and lowest 25%
range (Figure 2b,c). Together, these results suggest that LC-MS reproducibility was well
maintained during the analysis of the current sample cohort, laying a solid foundation for
the subsequent analytical procedures.

2.2. Evaluation of Blood Protein Contamination for RPE Sample Qualification

RPE samples were removed from the human donor eye via manual harvesting using a
fine tool. This process could potentially disrupt the blood-retina barrier and allow blood
from the underlying choroid to be harvested along with the cells. AMD donors could be
more susceptible to disruption of the blood-retina barrier since pathological changes in
Bruch’s membrane, which separates the RPE from the outer retina blood supply of the
choroid, have been well described [16]. Therefore, blood contamination in RPE samples
from human donors is an important factor to consider since this could affect proteomics
analysis, especially for relative quantification where high content of blood proteins could
severely distort the overall data distribution. The most prominent sources of blood proteins
are erythrocytes and platelets, while serum albumin is another major source of blood
protein contamination. One previous study by Geyer et al. described a panel of quality-
associated protein markers for plasma sample qualification, which encompasses numerous
erythrocyte- and platelet-specific proteins that may also be applicable for the qualification
of RPE samples from human donors [17]. Hence, we assessed the extent and impacts of
blood protein contamination in the current sample set by compiling a list of sample quality
markers based on the guidelines from the Geyer study. These included seven erythrocyte-
specific proteins (HBA, HBB, HBD, CAH1, CAH2, CATA, PRDX2), eight platelet-specific



Int. J. Mol. Sci. 2023, 24, 3252 5 of 17

proteins (TSP1, MYH9, TPM4, TLN, VINC, ACTN1, FLNA, ACTB), and serum albumin
(ALBU). Assessment results are shown in Figure 3.
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Figure 2. Assessment of LC-MS reproducibility during the analysis queue using the quality control
(QC) sample. (a) Protein MS intensity-intra-group coefficient of variance (CV) plot. Proteins in the
highest 75% and lowest 25% abundance range were shown in dark and light blue color; (b) ranked
order of protein MS intensities for the 5 QC sample runs; (c) Pearson correlation matrices of the QC
sample runs using proteins in the highest 75% and lowest 25% abundance range.
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Figure 3. RPE sample qualification by evaluating blood protein contamination. (a) Protein MS
intensities of the 16 selected blood proteins (7 erythrocyte-specific proteins, 8 platelet-specific proteins,
1 serum albumin) in MGS1 (M1) and MGS2 (M2) samples; (b) percentage of blood proteins (protein
MS intensities) in individual samples; arrows indicate samples above the 10% threshold; (c) intra-
group CV levels for MGS1 and MGS2 groups before and after removal of outlier samples.
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To begin, we calculated the ratios between MGS2 and MGS1 for the 16 sample quality
markers selected to examine whether blood protein contamination was more severe in
human donors with AMD. Among the sixteen quality markers selected, three erythrocyte-
specific proteins (CAH, CAH2 and PRDX2), five platelet-specific proteins (VINC, FLNA,
MYH9, TPM4, TLN1) and ALBU were increased by at least 10% in the MGS2 group
(Figure 3a), confirming the increased likelihood of blood contamination in AMD samples.
As shown in Figure 3b and Table S4, the average percentage of the 16 quality markers
within each sample was 4.31 ± 1.06% (erythrocyte: 2.32 ± 1.96%; platelet: 1.79 ± 0.32%;
albumin: 0.20 ± 0.63%). Interestingly, no correlation was observed between the percentage
of erythrocyte- and platelet-specific proteins in individual samples (Figure S4). Based on
the results, four MGS2 samples and two MGS1 samples with an excessive amount of blood
proteins (i.e., >10% total MS intensities), which were considered as outlier samples, were
excluded from the dataset (Figure 3b, highlighted by red arrows), along with one additional
sample manifesting aberrantly high protein intensities (Figure S1b). The removal of outlier
samples rendered the intra-group CV levels more similar between the two groups (40.1%
and 42.1% for MGS1 and MGS2, respectively) and significantly decreased the intra-group
CV levels from 51.0% to 42.1% for the MGS2 group. Quantification results after the removal
of outlier samples (n = 70) can be found in Table S5.

2.3. Identification of Proteomic Dysregulation in MGS1 and MGS2 Donor Samples

In order to identify proteome-wide dysregulation of protein expression in the organelle-
enriched fraction of RPE samples, Welch’s test was performed between the MGS1 (n = 30)
and MGS2 (n = 40) groups after outlier sample removal. A total of 132 proteins (Table S6),
termed altered proteins (APs), were determined as statistically significant (i.e., p-value < 0.05).
Principal component analysis (PCA) using the APs showed moderate though incomplete
segregation of the MGS1 and MGS2 samples (Figure S5), suggesting that the RPE proteomic
profiles reflect subtle shifts in discrete portions of the proteome in early disease. Among these
APs, 67 and 26 proteins were up- and downregulated by at least 20% (i.e., Log2 MGS2/MGS1
ratio >0.25 or <−0.25; Figures 4a and S5) in the MGS2 group. The top5 upregulated APs with
the largest fold change were KAIN, CATS, BT3A3, TPP2, and GRAA. The top5 downregulated
APs with the largest fold change were PAR16, ORML3, ORML2, LSM12, and ZN185 (Figure S6).
GO analysis of Cellular Components led to the enrichment of 39 mitochondrion proteins with
high statistical significance (−Log10FDR = 11.6; (Figure 4b). The 39 mitochondrial proteins are
disproportionately represented (30%) among the APs when considering that mitochondrial
proteins were only 15% of the total proteins identified (Figure 1). These data support the idea
that mitochondrial protein expression is dysregulated in early AMD, which is consistent with
other studies that suggest mitochondria dysfunction is a key event of early AMD pathogenesis.
Additionally, APs were also enriched in several other key subcellular compartments, including
cytosol (53), membrane (32), extracellular exosome (27), endoplasmic reticulum (17), and
ribosome (11). Unsupervised hierarchical clustering of both APs and samples enabled the
clustering of most MGS2 samples in the middle of the heatmap, while most of the MGS1
samples were separately localized on the two horizontal ends of the heatmap (Figure 4c).
These results suggest that RPE at early-stage AMD may exhibit a signature pattern of protein
dysregulation, which could contribute as etiological factors for AMD pathogenesis and has
the potential to be established as protein markers for AMD onset.

To evaluate this hypothesis, we employed two supervised machine learning methods,
random forest (RF) and support vector machine (SVM), to develop predictive models
distinguishing donors from MGS2 and MGS1 groups. Based on tenfold cross-validation
(repeated three times) using the Log2 protein intensities of the 132 APs, RF and SVM
achieved a similar accuracy of 0.710 (95% CI [0.639, 0.780]) and 0.738 (95% CI [0.686, 0.790]),
respectively. We further trimmed down the list of APs by calculating feature importance
metrics in RF and SVM models to identify APs with the highest contribution to classifiers. A
total of 19 proteins overlapped among the TOP30 proteins, with the highest importance in
both models (Figure 5a and Table S7). Partial least squares-discriminant analysis (PLS-DA)
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of these 19 proteins showed the segregation of most samples in MGS2 and MGS1 groups.
Considering that MGS2 donors manifested minimal pathological changes in RPE and the
relatively high intra-group CV levels of clinical samples, these results, to some extent,
validate our hypothesis and indicate that proteome-level dysregulation may precede most
macroscopic changes in AMD pathology.
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Figure 4. Determination of RPE proteome-wide changes between early AMD donors (i.e., MGS2) and
healthy controls (i.e., MGS1). (a) Volcano plot of protein ratios and p-values. A total of 132 proteins
were statistically significant, among which 67 and 26 were up- and downregulated; (b) GO enrichment
of cellular components terms for the altered proteins (APs). A total of 39 APs were enriched in
the mitochondria term with high statistical significance; and (c) heatmap showing results from
unsupervised hierarchical clustering of the 132 APs in individual samples.

A functional analysis of the APs was then performed using Metascape. A total of
20 clusters of biological functions and signaling pathways were enriched from the 132 APs
identified (Figure 6a), and based on functional proximity, these clusters can be classified
into several categories: (i) translation-related: translation (15), regulation of translation
(7), mitochondrial translation (4); (ii) energy metabolism-related: ATP metabolic process
(8), aerobic respiration (4); (iii) lipid metabolism-related: lipid biosynthetic process (9),
lipid homeostasis (7), cholesterol homeostasis (3); (iv) oxidative stress-related: response to
oxidative stress (7), glutathione metabolism (3); (v) innate immunity-related: neutrophil
degranulation (10), viral process (5); (vi) miscellaneous: protein catabolic process (11),
transport of small molecules (9), mitochondrion organization (9), endocytosis (8), reg-
ulation of autophagy (8), nucleus organization (5), autophagy (5), and RHOD GTPase
cycle (3). We then mapped the 39 mitochondria-localized APs to each of these clusters
and found that mitochondria-localized APs were present in 17 out of the 20 clusters,
implicating that mitochondrion, potentially in a dysregulated state, was contributing to
early AMD pathology (Figure 6b). Moreover, 5 out of the 20 clusters consisted of >50%
mitochondria-localized APs, including mitochondrial translation (4/4, 100%), mitochon-
drion organization (9/9, 100%), ATP metabolic process (6/8, 75%), aerobic respiration
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(3/4, 75%), and response to oxidative stress (4/7, 57.1%). Furthermore, five protein–protein
interaction (PPI) networks were established. Among these PPI networks, Network 1 con-
sists of seven ribosomal proteins, including one mitochondrial ribosomal protein (MRPS15);
Network 3 consists of three ORM1-like proteins involved in sphingolipid metabolism; Net-
work 4 encompasses three mitochondria-localized proteins involved in aerobic respiration
(GPD2, COX7A2L, COX7A2).
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Figure 5. Supervised machine learning analysis of the 132 APs using random forest (RF) and support
vector machine (SVM) algorithms. (a) Scaled importance of the 19 proteins overlapped between the
TOP30 proteins with the highest importance in both models; (b) partial least squares-discriminant
analysis (PLS-DA) results of the 19 proteins.
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Figure 6. Functional enrichment of APs. (a) Clusters of biological functions and signaling pathways
enriched. Protein number in each biological function/signaling pathway is proportional to the size of
the node. (b) The number of APs in each cluster enriched. Mitochondria-localized APs are shown in
gray. (c) Protein-protein interaction (PPI) networks enriched.

To further explore the relationships between the altered protein levels in the current
dataset and mitochondria dysfunction as a putative contributor for AMD onset, we selected
five specific functional categories with high percentages of mitochondria-localized APs
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based on their biological roles in maintaining normal mitochondrial functions. These
categories include mitochondrial translation (7), oxidative stress (7), lipid metabolism
(11), energy metabolism (8), and mitochondrion organization (9). As shown in Figure 7,
25 out of the 36 APs selected were localized in mitochondria, and 27/9 proteins were
significantly up- or downregulated in the MGS2 group. Of the three categories directly
related to mitochondria functions (i.e., mitochondrial translation, energy metabolism,
and mitochondrion organization), the majority of proteins were upregulated (18 out of
20). Interestingly, all seven APs involved in energy metabolism were upregulated in the
MGS2 group, including three proteins in glycolysis (HK1, HK2, PKM), two proteins in
the Krebs cycle (SDHB, OGDHL), two proteins in oxidative phosphorylation (COX7A2L,
COX7A2), and one non-mitochondria-localized protein (NUDT5). Moreover, five out of
six mitochondrial proteins involved in translation, including three ribosomal proteins
(MRPS30, MPRS15, MPRS9), were upregulated. The upregulation of these mitochondrial
enzymes and ribosomal proteins may be a compensatory response to counteract the deteri-
oration of mitochondrial energy metabolism. Five more proteins were also upregulated
and involved in mitochondria structural assembly and molecule trafficking (TSPO, PARL,
TMEM126A, RHOT2, TOMM40L). In contrast, the only two downregulated proteins con-
sisted of one translation initiation factor (EIF5B) and one sequestosome protein involved in
mitochondria dynamics (SQSTM1). Two additional categories involving a high percentage
of mitochondria-localized proteins were oxidative stress and lipid metabolism, both of
which have been reported to play a role in AMD pathology. Among the seven proteins
involved in oxidative stress, four were upregulated, including two glutathione peroxidases
(GPX3, GPX4) and two other enzymes localized in mitochondria (PDK1, ADRPS); three
were downregulated, including two double-stranded RNA-binding protein Staufen ho-
mologs (STAU1, STAU2) and one apoptosis-related kinase (RIPK1). Conversely, among
the eleven proteins involved in lipid metabolism, seven were upregulated, including
two mitochondrial proteins (TSPO, GPX4), two non-mitochondrial lipases (LIPL, LIPE),
and three additional mitochondria-ER-localized enzymes (HDHD5, LPCAT1, PTPMT1);
four were downregulated including three members of the Orm family proteins (ORMDL1,
ORMDL2, ORMDL3), which negatively regulate sphingolipid synthesis and one phosphati-
date phosphatase LPIN1. Taken together, these results provide an in-depth view of novel
molecular details of the protein changes occurring at the very earliest stage of AMD.
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3. Discussion
3.1. Establishment of a Reliable Workflow for Human RPE Sample Proteomics Analysis

In this study, we performed a quantitative proteomics experiment to investigate
global protein content in the RPE organelle-enriched fractions from human AMD donors
and healthy age-matched controls. To achieve high-quality quantification of the RPE
proteome, we adopted UHR-IonStar for sample preparation and LC-MS data acquisi-
tion/processing and integrated several approaches specifically devised for this study. As a
result, ~6000 unique proteins were quantified in the 77 samples with excellent reproducibil-
ity (~10% CV for >75% of all proteins quantified), among which 881 were assigned to be lo-
calized in the mitochondrion, an organelle with detrimental changes previously associated
with AMD [7–9]. These results were ascribed to not only the introduction of state-of-the-art
LC-MS instruments and techniques but also the utilization of an analytical pipeline well
optimized for large sample cohorts. Specifically, the SEPOD protocol enabled exhaustive
and efficient protein solubilization/digestion from the isolated organelles-enriched frac-
tions, and the use of a pooled protein digest as the QC sample enabled assessment of
LC-MS reproducibility.

Blood contamination of the samples procured from human donors could compromise
the quality of proteomics data in several ways. (i) MS detection of peptides from the target
proteins could be interfered with by the high-abundance, co-eluting peptides from blood
proteins, resulting in a sharp decrease of identifiable peptide/protein number; (ii) the
presence of blood proteins can shift the distribution of protein MS intensities, thus causing
quantitative biases. Complete blood removal by whole-body perfusion, which is frequently
implemented before sample procurement from animal subjects [18], was not possible for
clinical samples. Typically, sample qualification is limited to manual inspection, although
this method is prone to subjective biases. Hence, a straightforward and robust approach
for sample qualification is in urgent demand.

In recent years, several studies have evaluated the impacts of blood contamination on
LC-MS-based proteomics data quality in both biofluid and tissue samples. For example,
You et al. investigated the proteome of cerebrospinal fluid (CSF) spiked with whole blood
from low to high amounts and identified four blood contamination markers (hemoglobin,
catalase, peroxiredoxin, and carbonic anhydrase I) for CSF proteomics analysis [19]. In
another study, Geyer et al. performed a comprehensive analysis to assess the impacts
of erythrocyte and platelet contamination in plasma proteomics via analyzing plasma
samples spiked with different amounts of erythrocyte/platelet protein lysates [17]. A
list of quality markers for evaluating erythrocyte and platelet issues was provided as a
guideline for plasma sample qualification. In the current study, we utilized this information
and compiled a list of the most abundant erythrocyte and platelet quality markers plus
ALBU that were detected in the current dataset as the serum/plasma marker. Using 10%
total MS intensities as the cutoff, we identified six samples containing significant blood
contaminants and removed these six samples from the dataset (plus one sample with
abnormal MS intensities). Elimination of these “outliers” significantly diminished the
intra-group variation of proteomics data, especially the early AMD group (~10% decrease).
In addition, we also found that besides using all 16 proteins as quality markers, using the
three hemoglobin proteins (HBA, HBB, and HBD) plus ALBU with a 5% cutoff threshold
also yielded the same set of outlier samples and, therefore, could also be considered an
alternative for the simplicity reason. This compilation of blood contaminant markers as
a quality control measure is extremely valuable and applicable for our future proteomics
investigation of human RPE samples.

3.2. Exploring the Molecular Basis of RPE Mitochondria Dysfunction in Early AMD

RPE has been regarded as the primary site of pathological changes during AMD onset.
While the mechanism responsible remains unresolved, our laboratory and others have
suggested that mitochondrial dysfunction is a key event in AMD pathology. Furthermore,
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we have shown mitochondrial DNA damage occurs in the RPE of AMD donors but not in
the neural retina, indicating the pathogenic mechanism may be cell-specific [20].

In our previous studies, we investigated RPE proteomic changes at different stages of
AMD using 2-DE coupled to either MALDI-TOF or LC-MS/MS [9,21,22]. In the first study,
we identified eight spots with significant changes in AMD samples, including three ATP
synthase subunits, cytochrome c oxidase VIb, mitofilin, mtHsp70 and mitochondrial trans-
lation factor Tu, which are proteins that reside in the mitochondria [21]. Our recently
published study identified 58 proteins with altered expression when comparing normal
aging with AMD. Many of these altered proteins, with the majority localized to the mito-
chondria, were associated with both normal aging as well as during AMD progression.
However, the direction of change was predominantly opposite, suggesting that aging and
AMD involve different biological processes [22].

In the current study, we utilized UHR-IonStar, which allows a much deeper pro-
teome profiling and better quantification, to identify altered proteins (APs) from organelle-
enriched fractions in age-matched donors without AMD (MGS1) versus with early AMD
(MGS2). Fractionation of RPE allowed us to obtain a more in-depth analysis of proteins
associated with cytosolic organelles, including mitochondria. The comparison of proteomic
profiles between MGS1 and MGS2 provided valuable information about early proteomic
changes in the transition between healthy aging and AMD onset. How these changes
set into motion the pathology associated with AMD is still unclear, as our report from
human donor tissue cannot discriminate whether the changes are a consequence of cellular
stress or whether they are the cause of the pathology observed in the later stages of the
disease. Nonetheless, this study adds important new information about potential causative
mechanisms associated with the described clinical and biochemical phenotypes of AMD,
which could be further tested using experimental approaches that can be genetically or
chemically manipulated. Additionally, supervised machine learning analysis identified
19 proteins enabling the classification of the majority of MGS2 and MGS1 samples. While
we acknowledge that investigations done in the current study were far from enough for
biomarker discovery, the proteins selected by both machine learning algorithms represent
a panel of proteins of high biological importance in AMD onset and might contribute to the
development of biomarkers for AMD early diagnosis.

Among the 132 APs identified in this study, 39 APs were localized at mitochondria
and were involved in the majority of biological processes identified from the AP functional
analysis (17 out of 20) and in the PPI networks (Figure 6), including mitochondrial translation
and organization, sphingolipid and lipid metabolism, aerobic respiration and oxidative stress.
These results indicate significant changes in the mitochondrial proteome in early AMD could
have a major impact on critical cellular signaling pathways/biological processes.

Additionally, the majority of mitochondrial-related APs were upregulated in MGS2
samples, indicating a potential compensatory response in RPE cells during early AMD.

For example, the upregulation of translational proteins in the MGS2 RPE suggested
proteome alterations, which may include both pathological changes as well as adaptive
changes in the RPE of early-stage AMD. Three mitochondrial ribosomal proteins (MRPS30,
MPRS15, MPRS9) and five proteins involved in mitochondria trafficking and assembly (TSPO,
PARL, TMEM126A, RHOT2, TOMM40L) were increased, indicating a potential compensatory
response to mitochondrial damage caused by disease conditions. The upregulation of four en-
zymes of glycolysis (HK1, HK2, PKM, OGDHL) in MGS2 samples is consistent with the
increased glycolytic proteins in RPE with AMD [22]. Interestingly, some enzymes involved in
oxidative phosphorylation were also increased at the early stage. It can be speculated that
in the transition from normal to early AMD status, the RPE counteracts energy metabolism
defects by elevating both mitochondrial and glycolytic protein expression levels in an effort to
meet cellular energy demands.

Another class of proteins significantly changed in MGS2 is involved in oxidative
stress. Oxidative stress has been regarded as a significant contributor to AMD patho-
physiology [23]. Abundant mitochondria present in RPE are required for maintaining the
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highly active metabolism in RPE cells. ROS, generated as the consequence of mitochondrial
metabolism, can contribute to the oxidative burden in RPE. Smoking or a high fat diet,
also significant risk factors for AMD, could impose extra oxidative stress on RPE cells.
In this study, our data suggest that oxidative stress was present in the RPE experiencing
early AMD. For example, the upregulation of PDK1 (pyruvate dehydrogenase kinase 1) in
MGS2 samples indicated the inactivation of pyruvate dehydrogenase and, thus, disrupting
the homeostasis of carbohydrate fuels. ADPRS (ADP-ribosylserine hydrolase) plays a
key role in DNA damage response; GPX3 and GPX4 (glutathione peroxidases) protect
cells against oxidative damage. The elevation of these proteins and the downregulation
of apoptosis-related kinase (RIPK1) in MGS2 samples suggested a protective mechanism
against oxidative damage during AMD onset. Of note, the double-stranded RNA-binding
protein Staufen homologs (STAU1, STAU2), two essential components of stress granules,
were decreased in the MSG2 samples. It has been shown that STAU1 is involved in recovery
from stress by stabilizing polysomes and helping stress granule dissolution [24]. This data
suggests the recovery from oxidative stress may be compromised in the RPE of donors
with early AMD.

Dysregulated lipid or lipoproteins has long been regarded as a significant phenotype
of AMD since lipoproteins and cholesterol are major constituents of drusen. Sphingolipids
are bioactive molecules associated with oxidative stress and inflammation. Increasing
evidence supports that altered sphingolipid levels contribute to AMD pathology [25].
Ceramide has also been shown to be a crucial player in the induction of RPE cell death.
In this study, we found a decrease in ORMDL proteins, which are negative regulators of
sphingolipid biosynthesis, indicating a potential increase of sphingolipids in RPE cells in
the early stage of AMD. We also found upregulation of LPL, LIPG (both are involved in
triglyceride metabolism), PTPMT1, and HDHD5 (both are involved in glycerophospholipid
biosynthesis and metabolism) in MGS2 samples. LPIN1 regulates general lipid metabolism
by entering the nucleus, where it inhibits SREBP activity and reduces the expression of
lipid genes [26]. The downregulation of LPIN1 suggested a potential upregulation of lipid
biosynthesis in the RPE of early AMD.

Since no animal model fully replicates the cardinal features of AMD, the use of human
donor tissue provides the best way to investigate AMD mechanism. However, there are
several caveats associated with our experimental design that need to be recognized. While
we were able to match ages and gender distribution in our two groups, we had no control
over other factors, such as diet and lifestyle, that could influence our results. Another
consideration is that our preparation of organelle-enriched fractions would miss protein
changes in other cellular locations. Therefore, our results likely underestimate the total
changes present in early AMD. Finally, while we cannot infer causality as protein changes
simply correlate with disease, these results provide a roadmap for future investigations
into disease mechanisms and the discovery of targets for therapy.

4. Materials and Methods
4.1. Human Eye Procurement and Grading for AMD

De-identified donor eyes were obtained from the Lions Gift of Sight (Saint Paul, MN,
USA). Eyes were obtained with the written consent of the donor or donor’s family for use
in medical research in accordance with the Declaration of Helsinki. The Lions Gift of Sight
is licensed by the Eye Bank Association of America (accreditation #0015204) and accredited
by the FDA (FDA Established Identifier 3000718538). De-identified donor tissue is exempt
from the process of Institutional Review Board Approval.

Tissue handling, storage and donor exclusion criteria are as outlined previously [27].
Evaluation of the presence or absence of AMD was determined by a Board-Certified
Ophthalmologist (Dr. Sandra R. Montezuma) from stereoscopic fundus photographs of the
RPE using a set of criteria (RPE pigment changes and presence, drusen size and location)
established by the Minnesota Grading System (MGS) [11].
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4.2. Sample Preparation for Proteomics Analysis

RPE cell pellets from individual donors were suspended in an isolation buffer (70 mM
sucrose, 200 mM mannitol, 1 mM EGTA, 10 mM HEPES, pH 7.4) and subjected to two freeze-
thaw cycles prior to homogenization. Samples were centrifuged at 800× g for 8 min, and
the supernatant (containing the organelles) was centrifuged at 12,000× g for 10 min. The
pelleted organelle-enriched fraction was resuspended in an ice-cold SC buffer (50 mM
Tris-formic acid, 150 mM NaCl, 2% SDS, 0.5% sodium deoxycholate, 2% IGEPAL CA630,
pH 8.4) supplemented with complete protease inhibitor cocktail tablets (Roche Applied
Science, Indianapolis, IN, USA), and sonicated in a water bath sonicator for 10 min to
solubilize proteins. Protein concentration was determined by bicinchoninic acid assay.

For protein digestion, 60 µg protein was aliquoted from each sample, and an SC-
aided precipitation/on-pellet digestion (SEPOD) protocol was employed as previously
described [14]. Protein was first reduced by 10 mM dithiothreitol (DTT) at 56 ◦C for 30 min
and alkylated by 25 mM iodoacetamide (IAM) at 37 ◦C for 30 min in darkness. Both steps
were performed with constant shaking (550 rpm) in a covered thermomixer (Eppendorf,
Framingham, MA, USA). Protein precipitation was performed by the addition of 6 volumes
of ice-cold acetone with vigorous vortexing, and the mixture was incubated at −20 ◦C for
3 h. Precipitated protein was pelleted by centrifugation at 18,000× g, 4 ◦C for 30 min, and
was gently washed with 500 µL methanol. After removing the supernatant, the protein
pellet was left to air dry for 1 min, and 48 µL 50 mM Tris-formic acid (FA), pH 8.4 was
added to wet the pellet. A total volume of 12 µL trypsin (Sigma-Aldrich, St. Louis, MO,
USA) dissolved in 50 mM Tris-FA (0.25 µg/µL) was added to each sample to reach a
final enzyme-to-substrate ratio of 1:20 (w/w), and samples were incubated in a covered
thermomixer at 37 ◦C for 6 h with constant shaking. Tryptic digestion was terminated by
the addition of 0.6 µL FA, and samples were centrifuged at 18,000× g, 4 ◦C for 30 min. The
supernatant was carefully transferred to LC vials for analysis.

4.3. Liquid Chromatography-Mass Spectrometry (LC-MS)

The LC-MS system consists of a Dionex UltiMate 3000 nano-LC system, a Dionex
UltiMate 3000 micro LC system with a WPS-3000 autosampler, and an Orbitrap Fusion
Lumos mass spectrometer (ThermoFisher Scientific, San Jose, CA, USA). A large-inner
diameter (i.d.) trapping column (300-µm i.d. × 5 mm; Agilent Technologies, Santa Clara,
CA, USA) setting was implemented before the analytical column (75-µm i.d. × 65 cm,
packed with 2.5-µm XSelect CSH C18 material) for high-capacity sample loading, cleanup
and delivery. For each sample, a peptide equivalent to 4 µg protein was injected for
LC-MS analysis. Mobile phases A and B were 0.1% FA in 2% acetonitrile (ACN) and 0.1%
FA in 88% ACN. The 180-min LC gradient profile for peptide separation was: 4% B for
3 min, 4–11% B for 5 min, 11–32% B for 117 min, 32–50% B for 10 min, 50–97% B for
1 min, 97% B for 17 min, and then equilibrated to 4% for 27 min. The mass spectrometer
was operated under data-dependent acquisition (DDA) mode with a maximal duty cycle
of 3 s. MS1 spectra were acquired by Orbitrap (OT) under 240k resolution for ions in
the m/z range of 400–1500. Automatic Gain Control (AGC) target and maximal injection
time were set to 175% and 50 ms, and dynamic exclusion was set as 60 s, ±10 ppm.
Precursor ions were isolated by quadrupole using an m/z window of 1.6 Th and were
fragmented by high-energy collisional dissociation (HCD) at 30% energy. MS2 spectra were
acquired by OT under 15k resolution with an AGC target of 100% and a maximal injection
time of 50 ms. Detailed LC-MS set-tings and information can be found in our previous
publications [12,13,15].

4.4. LC-MS Data Processing

An in-house developed UHR-IonStar data processing pipeline was adopted for pro-
teomic quantification. Database searching was conducted by matching the LC-MS raw files
against the human Swiss-Prot protein sequence database (20,302 entries, downloaded in
May 2020) using the MS-GF+ search engine (v20210108, released in January 2021). Search
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parameters included: (1) Precursor mass tolerance: 20 ppm; (2) Instrument type: Q-Exactive;
(3) Matches per spectrum: 1; (4) Fixed modification: carbamidomethylation of cysteine
(C); (5) Dynamic modification: oxidation of methionine (M) and acetylation of peptide
N-terminal; (6) Maximal missed cleavages: 2. Peptide-spectrum match (PSM) filtering,
protein inference and grouping, and global false discovery rate (FDR) control were accom-
plished by IDPicker (v3.1.18192.0). Protein and peptide FDR were controlled at ≤1%, and a
minimum of 2 unique peptides per protein was set. Proteins with no unique peptides were
grouped with a maximal number of 50 proteins per group. The filtered PSM list was gener-
ated by the UHR-IonStar APP (https://github.com/JunQu-Lab/UHRIonStarApp, accessed
on 29 March 2022) using lists of proteins/peptides/spectra exported from IDPicker.

Peptide quantitative features were extracted from LC-MS raw files using SIEVE (v2.2,
ThermoFisher Scientific, San Jose, CA, USA) and further processed by the UHR-IonStar
APP to generate protein quantification results. Primary procedures included: (1) chromato-
graphic alignment with ChromAlign [28] for dataset-wide retention time (RT) adjustment
and peak clustering. The optimal reference run was selected based on alignment scores
in the entire dataset; (2) data-independent MS1 quantitative feature extraction using the
direct ion-current extraction (DICE) method, which uses a pre-defined m/z-RT window
(10 ppm, 1 min for 240k MS1) to extract ion chromatograms for all precursor ions subjected
to fragmentation and MS2 acquisition in the aligned dataset. Each set of extracted ion
chromatograms with corresponding area under the curve (AUC) in all files is termed as
one “frame”; (3) integration of the SIEVE frame database and the filtered PSM list by a
unique identifier combining file name and MS2 scan number. Frames with valid peptide
sequences were then subjected to frame-level quality control, global normalization, peptide-
level outlier detection/exclusion, and aggregation to the protein level. More detailed
information about the UHR-IonStar data processing pipeline can be found in our previous
publications [12,13].

4.5. Data Analysis and Bioinformatics

Quantification results were further processed using the UHR-IonStar APP, which
encompassed the following steps: (1) data formatting and cleanup; (2) statistical testing
by Welch’s t-test; (3) calculation of protein ratios between MGS2 and MGS1 groups. Gene
Ontology (GO) enrichment of Cellular Component terms was performed by the Database
for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources
(https://david.ncifcrf.gov/, accessed on 10 April 2022) [29,30], and results were manually
curated. Machine learning analysis of APs was performed with random forest (RF) and
support vector machines (SVM) using caret package in R [31]. Model accuracy was esti-
mated by tenfold cross-validation, and the procedure was repeated three times. Tuning
parameters were determined when the model hit the best accuracy. The tuning parameters
used were: (1) RF: ntree =1000 (number of trees to grow); mtry = 106 (number of variables
randomly sampled as candidates at each split); (2) SVM: cost = 1 (cost of constraints vio-
lation and the regularization term in the Lagrange formulation). Feature importance for
RF and SVM were calculated by “mean decrease in accuracy” and ROC curve analysis,
respectively. Annotation of protein functions and pathways, as well as protein–protein
interaction analysis, were performed by Metascape (https://metascape.org/, accessed
on 27 June 2022) [32] and visualized using Cytoscape v3.9.1 [33]. Hierarchical clustering,
Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis
(PLS-DA) was performed by R using corresponding packages. All other data visualization
was done by Graphpad Prism and R with the ggplot2 package.

5. Conclusions

In this study, we employed UHR-IonStar to investigate the proteomic profiles of RPE
from donors with early AMD compared with healthy age-matched controls. Notably, a
standardized scheme for monitoring LC-MS reproducibility and an outlier sample detection
procedure was implemented to achieve high-quality quantification of the RPE proteome.

https://github.com/JunQu-Lab/UHRIonStarApp
https://david.ncifcrf.gov/
https://metascape.org/
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Our data suggest that during the transition to early AMD, the RPE alters metabolism,
exhibits an oxidative stress response, and upregulates lipid biosynthesis. These adaptive
mechanisms are likely to counteract detrimental cellular conditions by elevating mitochon-
drial translational/trafficking/assembly proteins and increasing energy metabolism.
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2-D Two-dimensional
AGC Automatic Gain Control
ALBU Albumin
AMD Age-related macular degeneration
AP Altered protein
BP Biological process
CC Cellular Component
CSF Cerebrospinal fluid
CV Coefficient of variance
CFH Complement factor H
DAVID Database for Annotation, Visualization, and Integrated Discovery
DIA Data-independent acquisition
DICE Direct Ion-Current Extraction
DDA Data-dependent acquisition
DTT Dithiothreitol
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MGS Minnesota Grading System
MS Mass spectrometry
OT Orbitrap
PSM Peptide-spectrum match
PCA Principal Component Analysis
PLS-DA Partial Least Squares-Discriminant Analysis
PPI Protein-protein interaction
QC Quality Control
RF Random Forest
RDH5 retinol dehydrogenase
RGR retinal G protein-coupled receptor
RPE Retinal pigment epithelium
RPE65 retinoid isomerohydrolase
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