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The smallest singular value of inhomogeneous square

random matrices

Galyna V. Livshyts * Konstantin Tikhomirov and Roman Vershynin †

Georgia Institute of Technology

e-mail: glivshyts6@math.gatech.edu; konstantin.tikhomirov@math.gatech.edu

University of California, Irvine

e-mail: vershyn@uci.edu

Abstract: We show that for an n×n random matrix A with independent uniformly anti-concentrated entries,

such that E‖A‖2
HS

≤ Kn2, the smallest singular value σn(A) of A satisfies

P

{

σn(A) ≤ ε√
n

}

≤ Cε+ 2e−cn, ε ≥ 0.

This extends earlier results [25, 22] by removing the assumption of mean zero and identical distribution of

the entries across the matrix, as well as the recent result [17] where the matrix was required to have i.i.d.

rows. Our model covers inhomogeneous matrices allowing different variances of the entries, as long as the

sum of the second moments is of order O(n2).
In the past advances, the assumption of i.i.d. rows was required due to lack of Littlewood–Offord–type

inequalities for weighted sums of non-i.i.d. random variables. Here, we overcome this problem by introducing

the Randomized Least Common Denominator (RLCD) which allows to study anti-concentration properties

of weighted sums of independent but not identically distributed variables. We construct efficient nets on the

sphere with lattice structure, and show that the lattice points typically have large RLCD. This allows us to

derive strong anti-concentration properties for the distance between a fixed column of A and the linear span

of the remaining columns, and prove the main result.

MSC 2010 subject classifications: 60B20.

Keywords and phrases: random matrices, Littlewood-Offord problem.

1. Introduction

Given a random matrix A, the question of fundamental interest is: how likely is A to be invertible, and,

more quantitatively, well conditioned? These questions can be expressed in terms of the singular values

σ1(A) ≥ · · · ≥ σn(A) ≥ 0, which are defined as the square roots of the eigenvalues of ATA. The extreme

singular values are especially interesting. They can be expressed as

σ1(A) = max
x∈Sn−1

|Ax| and σn(A) = min
x∈Sn−1

|Ax|, (1)

where Sn−1 is the unit Euclidean sphere in R
n. In this paper, we will be concerned with the smallest singular

value σn(A). Its value is nonzero if and only if A is invertible, and the magnitude of σn(A) provides us with

a quantitative measure of invertibility.

The behavior of the smallest singular values of random matrices have been extensively studied [2, 4, 5, 11,

15, 16, 17, 20, 22, 24, 25, 26, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43]. For Gaussian random matrices with i.i.d.

N(0, 1) entries, the magnitude of σn(A) is of order 1/
√
n with high probability. This observation goes back

to von Neumann and Goldstine [19], and it was rigorously verified, with precise tail bounds, by Edelman

[6] and Szarek [32]. Extending this result beyond the Gaussian distribution is non-trivial due to the absence

of rotation invariance. After the initial progress by Tao and Vu [36] and Rudelson [24], the following lower

bound on σn(A) was proved by Rudelson and Vershynin [25] for matrices with sub-gaussian, mean zero,

unit variance, i.i.d. entries:

P

{
σn(A) ≤

ε√
n

}
≤ Cε+ 2e−cn, ε ≥ 0. (2)

This result is optimal up to positive constants C and c (depending only on the subgaussian moment). It

has been further extended and sharpened in various ways [17, 22, 26, 33, 43]. In particular, Rebrova and
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Tikhomirov [22] relaxed the sub-gaussian assumption on the distribution of the entries to just having unit

variance.

It has remained unclear, however, if one can completely drop the assumption of the identical distribution

of the entries of A. The identical distribution seemed to be crucial in the existing versions of the Littlewood–

Offord theory [14], which allowed to handle arithmetic structures that arise in the invertibility problem for

random matrices. A partial result was obtained recently by Livshyts [17] who proved (2) under the assumption

that the rows of A are identically distributed (the entries must be still independent but not necessarily i.i.d).

In the present paper we remove the latter requirement as well, and thus prove (2) without any identical

distribution assumptions whatsoever.

We only assume the following about the entries of A: (a) they are independent; (b) the sum of their

second moments is O(n2), which is weaker than assuming that each entry has unit second moment; (c)

their distributions are uniformly anti-concentrated, i.e. not concentrated around any single value. The latter

assumption is convenient to state in terms of the Lévy concentration function, which for a random variable

Z is defined as

L(Z, t) := sup
u∈R

P{|Z − u| < t}, t ≥ 0.

The following is our main result.

Theorem 1.1 (Main). Let A be an n × n random matrix whose entries Aij are independent and satisfy∑n
i,j=1 EA

2
ij ≤ Kn2 for some K > 0 and maxi,j L(Aij , 1) ≤ b for some b ∈ (0, 1). Then

P

{
σn(A) ≤

ε√
n

}
≤ Cε+ 2e−cn, ε ≥ 0.

Here C, c > 0 depend only on K and b.

We would like to emphasize that prior to this paper even the problem of singularity of inhomogeneous

random matrices was not resolved in the literature. In particular, it was not known if for an n × n random

matrix B with independent discrete entries (say, uniformly bounded and with variances separated from zero),

the singularity probability is exponentially small in dimension. (Theorem 1 of [17] only implied a polynomial

bound on the singularity probability, without the assumption of i.i.d. rows.)

The following theorem is the primary tool in proving the main result of the paper.

Theorem 1.2 (Distances). For any K > 0 and b ∈ (0, 1) there are r, C, c > 0 depending only on K and b
with the following property. Let A be a random n× n matrix as in Theorem 1.1. Denote the columns of A by

A1, . . . , An, and define

Hj = span {Ai : i 6= j, i = 1, . . . , n} , j ≤ n.

Take any j ≤ n such that E|Aj |2 ≤ rn2, and let vj be a random unit vector orthogonal to Hj and measurable

with respect to the sigma–field generated by Hj . Then

L
(
〈vj , Aj〉, ε

)
≤ Cε+ 2e−cn, ε ≥ 0.

In particular, for every such j we have

P

{
dist(Aj , Hj) ≤ ε

}
≤ Cε+ 2e−cn, ε ≥ 0.

Let us outline how Theorem 1.1 can be deduced from Theorem 1.2. The first step follows the argument in

[25], which is to decompose the sphere into compressible and incompressible vectors. Fix some parameters

ρ, δ ∈ (0, 1), which for simplicity can be thought of as small constants. The set of compressible vectors

Comp(δ, ρ) consists of all vectors on the unit sphere Sn−1 that are within Euclidean distance ρ to δn-sparse

vectors (those that have at most δn nonzero coordinates). The remaining unit vectors are called incompress-

ible, and we have the decomposition of the sphere:

S
n−1 = Comp(δ, ρ) ∪ Incomp(δ, ρ).

By the characterization (1) of the smallest singular value, the invertibility problem reduces to finding a uni-

form lower bound over the sets of compressible and incompressible vectors:

P

{
σn(A) ≤

ε√
n

}
= P

{
inf

x∈Comp(δ,ρ)
|Ax| ≤ ε√

n

}
+ P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ε√

n

}
. (3)
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For the compressible vectors, Lemma 5.3 from [17] gives the upper bound 2e−cn on the corresponding

probability in (3). For the incompressible vectors, we use a version of the “invertibility via distance” bound

from [25], which holds for any n× n random matrix A (regardless of the distribution):

P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ερ√

n

}
≤ 4

δn
inf
J

∑

j∈J

P

{
dist(Aj , Hj) ≤ ε

}
, (4)

where the infimum is over all subsets J ⊂ [n] of cardinality at least n − δn/2. To handle the distances, we

apply Theorem 1.2. Due to our assumption
∑n

i,j=1 EA
2
ij =

∑n
j=1 E|Aj |2 ≤ Kn2, all except at most K/r

terms satisfy E|Aj |2 ≤ rn2. Denoting the set of these terms by J and applying Theorem 1.2, we get

P

{
dist(Aj , Hj) ≤ ε

}
≤ Cε+ 2e−cn for all j ∈ J.

Since the cardinality of J is at least n−K/r ≥ n− δn/2 for large n, we can substitute this bound into (4)

and conclude that the last term in (3) is bounded by . ε+ e−cn (recall that δ is a constant and we suppress

it here). Putting all together, the probability in (3) gets bounded by . ε+ e−cn, as claimed in Theorem 1.1.

Remark 1.3. Given Theorem 1.1, the second assertion of Theorem 1.2 can be formally strengthened as

follows. Since the matrix A is shown to be singular with probability at most 2e−cn, we have that for any

j ≤ n and any random unit vector vj orthogonal to Hj , |〈vj , Aj〉| = dist(Aj , Hj) with probability at least

1− 2e−cn. Hence, the assertion of Theorem 1.2 can be replaced with

L
(
dist(Aj , Hj), ε

)
≤ Cε+ 2e−cn, ε ≥ 0, whenever E|Aj |2 ≤ rn2,

for some r, c, C > 0 depending only on K, b.

An earlier version of Theorem 1.2, under the assumption that the coordinates of Ai are i.i.d., was obtained

by Rudelson and Vershynin [25]. They discovered an arithmetic-combinatorial invariant of a vector (in this

case, a normal vector of Hi), which they called an essential Least Common Denominator (LCD). The authors

of [25] proved a strong Littewood–Offord–type inequality for linear combinations of i.i.d. random variables

in terms of the LCD of the coefficient vector, and thus were able to estimate L
(
dist(Ai, Hi), ε

)
. However,

in the case when Ai do not have i.i.d. coordinates, the essential LCD is no longer applicable. Moreover, none

of the existing Littlewood–Offord–type results could be used even to show that the distance dist(Ai, Hi) is

zero with an exponentially small probability (which would allow to conclude that the singularity probability

for the inhomogeneous random matrix is exponentially small in dimension).

In the present paper, we develop a randomized version of the least common denominator and show how it

can handle the non-i.i.d. coordinates. Given a random vector X in R
n, and a (deterministic) vector v in R

n,

as well as parameters L > 0, u ∈ (0, 1), the Randomized Least Common Denominator of v = (v1, . . . , vn)
(with respect to the distribution of X = (X1, . . . , Xn)) is

RLCDX
L,u(v) = inf

{
θ > 0 : Edist2(θ(v1X1, . . . , vnXn),Z

n) < min(u|θv|2, L2)
}
.

In this paper, we establish a few key properties of the RLCD, in particular, its relation to anti-concentration

as well as stability under perturbations of a vector. Other essential elements of the proof of Theorem 1.2

are a discretization argument based on the concept of random rounding and a double counting procedure for

estimating cardinalities of ε–nets. Those were, in a rather different form, used in [17] and [41].

In Section 2 we discuss some preliminaries and introduce our main tool, the RLCD. In Section 3 we

outline the discretization procedure, based on the idea of random rounding. In Section 4 we outline the key

result, which informally states that “lattice vectors are usually nice”, and is based on the idea of double

counting. In Section 5 we combine the results of sections 3 and 4, and prove Theorem 1.2. In Section 6 we

conclude by formally deriving Theorem 1.1 from Theorem 1.2.

Acknowledgement.

The first author is grateful to the mathematics department of UC Irvine for hospitality. The first two authors

are grateful to Mark Rudelson for suggesting this problem.
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2. Preliminaries

The inner product in R
n is denoted 〈·, ·〉, the Euclidean norm is denoted | · |, and the sup-norm is denoted

‖x‖∞ = maxi |xi|. The Euclidean unit ball and sphere in R
n are denoted Bn

2 and S
n−1, respectively. The

unit cube and the cross-polytope in R
n are denoted

Bn
∞ =

{
x ∈ R

n : ‖x‖∞ ≤ 1
}
, Bn

1 =
{
x ∈ R

n :
n∑

i=1

|xi| ≤ 1
}
.

The integer part of a real number a (i.e., the largest integer which is smaller or equal to a) is denoted by ⌊a⌋,

and the fractional part by {a} = a− ⌊a⌋. The cardinality of a finite set I is denoted by ♯I .

Columns of an N × n matrix M will be denoted by Mj, for j = 1, . . . , n, and the rows will be denoted

M i, with i = 1, . . . , N.
For a random variable X , we denote by X the symmetrization of X defined as X = X −X ′, where X ′

is an independent copy of X . Note that

E|X|2 = 2Var(X), (5)

where we defined the variance of a random vector X as the covariance of X with itself, i.e. Var(X) =
Cov(X,X) = E|X − EX |2.

2.1. Decomposition of the sphere

We shall follow the scheme developed by Rudelson and Vershynin in [25], the first step of which is to

decompose the sphere to the set of compressible and incompressible vectors. Such decomposition in some

form goes back to earlier works, in particular that of Litvak, Pajor, Rudelson and Tomczak-Jaegermann [15],

and it was used in many papers since then [26, 33, 38, 22].

Fix some parameters δ, ρ ∈ (0, 1) whose values will be chosen later, and define the sets of sparse, com-

pressible, and incompressible vectors as follows:

Sparse(δ) :=
{
u ∈ S

n−1 : supp(u) ≤ δn
}
,

Comp(δ, ρ) :=
{
u ∈ S

n−1 : dist(u, Sparse(δ)) ≤ ρ
}
,

Incomp(δ, ρ) := S
n−1 \ Comp(δ, ρ).

We will use a result of [17], which gives a good uniform lower bound for |Ax| on the set of compressible

vectors:

Lemma 2.1 (Lemma 5.3, [17]). Let A be an N × n random matrix with N ≥ n, whose entries Aij are

independent and satisfy
∑N

i=1

∑n
j=1 EA

2
ij ≤ KNn for some K > 0 and maxi,j L(Aij , 1) ≤ b for some

b ∈ (0, 1). Then

P

{
inf

x∈Comp(δ,ρ)
|Ax| ≤ C

√
N

}
≤ 2e−cN .

Here ρ, δ ∈ (0, 1) and C, c > 0 depend only on K and b.

The rest of our argument will be about incompressible vectors.

2.2. Randomized Least Common Denominator

We will need the following lemma due to Esseen (see, e.g., Rudelson–Vershynin [25]):

Lemma 2.2 (Esseen). Given a variable ξ with the characteristic function ϕ(·) = E exp(2πiξ·),

L(ξ, t) ≤ C

∫ 1

−1

∣∣∣∣ϕ
(
s

t

) ∣∣∣∣ ds, t > 0,

where C > 0 is an absolute constant.
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Rudelson and Vershynin [25, 26] specialized Esseen’s lemma for weighted sums of independent random

variables 〈X, v〉 = ∑n
i=1 viXi:

Lemma 2.3. Let X = (X1, . . . , Xn) be a random vector with independent coordinates such thatmaxi L(Xi, 1) ≤
b for some b ∈ (0, 1). Then for every vector v ∈ R

n, and any t > 0, we have1

L
(
〈X, v〉, t

)
≤ C2.3

∫ 1

−1

exp

(
− c2.3E

( n∑

i=1

[
1− cos

(2πsXivi
t

)] ))
ds.

The constants C2.3, c2.3 > 0 here depend only on b.

For completeness, we outline the argument here.

Proof. Let ϕ be the characteristic function of 〈X, v〉, and ϕi be the characteristic function of Xi. By inde-

pendence, we have

ϕ(s) =
n∏

i=1

ϕi(svi), s ∈ R.

By definition of X i, we have for each i ≤ n:

|ϕi(svi)| =
√
E cos(2πsviXi) ≤ exp

(
− 1

2

(
1− E cos(2πsviXi)

))
, s ∈ R,

where the last step uses the inequality |a| ≤ exp
(
− 1

2 (1− a2)
)

valid for all a ∈ [−1, 1]. To finish the proof

it remains to use Lemma 2.2.

In analogy with the notion of the essential least common denominator (LCD) developed by Rudelson and

Vershynin [25, 26, 29], we define a randomized version of LCD, which will be instrumental in controlling

the sums non-identically distributed random variables.

Definition 2.4. For a random vector X in R
n, a (deterministic) vector v in R

n, and parameters L > 0,

u ∈ (0, 1), define

RLCDX
L,u(v) := inf

{
θ > 0 : Edist2(θv ⋆ X,Zn) < min(u|θv|2, L2)

}
.

Here by ⋆ we denote the Schur product

v ⋆ X := (v1X1, . . . , vnXn).

The usefulness of RLCD is demonstrated in the following lemma, which shows how RLCD controls the

concentration function of a sum of independent random variables.

Lemma 2.5. Let X = (X1, . . . , Xn) be a random vector with independent coordinates satisfyingmaxi L(Xi, 1) ≤
b for some b ∈ (0, 1). Let c0 > 0, L > 0 and u ∈ (0, 1). Then for any vector v ∈ R

n with |v| ≥ c0 and any

ε ≥ 0, we have

L(〈X, v〉, ε) ≤ Cε+ C exp(−c̃L2) +
C

RLCDX
L,u(v)

.

Here C > 0, c̃ > 0 may only depend on b, c0, u.

Proof. Take any ε ≥ 1/RLCDX
L,u(v)). By Lemma 2.3, we have

L
(
〈X, v〉, ε

)
≤ C2.3

∫ 1

−1

exp

(
− c2.3E

( n∑

i=1

[
1− cos

(2πsXivi
ε

)]))
ds.

For each s ∈ [−1, 1] and i ≤ n we have

E

[
1− cos

(2πsXivi
ε

)]
≥ c̃E dist2(sX ivi/ε,Z)

1Recall that Xi denotes the symmetrization of Xi, which we defined in the beginning of Section 2.
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for some universal constant c̃ > 0. Hence,

L
(
〈X, v〉, ε

)
≤ C2.3

∫ 1

−1

exp

(
− c2.3c̃E dist2(sX ⋆ v/ε,Zn)

)
ds

= C2.3ε

∫ 1/ε

−1/ε

exp

(
− c2.3c̃E dist2(sX ⋆ v,Zn)

)
ds

≤ C2.3ε

∫ 1/ε

−1/ε

exp

(
− c2.3c̃ min(u|sv|2, L2)

)
ds,

where at the last step we used the definition of RLCD and the assumption on ε. A simple computation finishes

the proof.

We shall also need the notion of the randomized LCD for matrices.

Definition 2.6. For an m× n matrix M with rows M1, . . . ,Mm, and a vector v ∈ R
n, define

RLCDM
L,u(v) := min

i=1,...,m
RLCDMi

L,u(v).

Recall the following “tensorization” lemma of Rudelson and Vershynin [25]:

Lemma 2.7 (Tensorization lemma, Rudelson–Vershynin [25]). Suppose that ε0 ∈ (0, 1), K ≥ 1, and let

Y1, . . . , Ym be independent random variables such that each Yi satisfies

P{|Yi| ≤ ε} ≤ Kε for all ε ≥ ε0.

Then

P

{ m∑

i=1

Y 2
i ≤ ε2m

}
≤ (CKε)m, ε ≥ ε0,

where C > 0 is a universal constant.

The tensorization lemma is useful when one wants to control the anti-concentration of |Mx| where M is

an m × n random matrix with independent rows M i and x is a fixed vector. Indeed, in this case |Mx|2 =∑m
i=1〈M i, x〉2, and one can use Lemma 2.7 for Yi := 〈M i, x〉. Furthermore, one can use Lemma 2.5 to

control the concentration function of each Yi. This gives:

Lemma 2.8. Let M be an m× n random matrix with independent entries Mij satisfying

max
i,j

L(Mij , 1) ≤ b for some b ∈ (0, 1).

Let L > 0, c0 > 0 and u ∈ (0, 1). Then for any x ∈ R
n with |x| ≥ c0 and any ε ≥ C2.8 exp(−c̃2.8L

2) +

C2.8/RLCD
M
L,u(x), we have

P
{
|Mx| ≤ ε

√
m
}
≤ (C2.8ε)

m.

Here C2.8, c̃2.8 > 0 may only depend on b, c0 and u.

A crucial property of the RLCD which will enable us to discretize the range of possible realizations of

random unit normals, is stability of RLCD with respect to small perturbations:

Lemma 2.9 (Stability of RLCD). Consider a random vector X in R
n, a (deterministic) vector x in R

n, and

parameters L, u > 0. Fix any tolerance level r > 0 that satisfies

r2 Var(X) ≤ 1

8
min

(
u|x|2, L2

D2

)
(6)

where D = RLCDX
L,u(x). Then for any y ∈ R

n with ‖x− y‖∞ < r, we have

RLCDX
2L,4u(y) ≤ RLCDX

L,u(x) ≤ RLCDX
L/2,u/4(y).
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Proof. Note that

E(x ⋆ X − y ⋆ X)2 = E

n∑

i=1

X
2

i (xi − yi)
2 ≤ r2E|X |2 = 2r2 Var(X),

where the last identity is (5). Since RLCDX
L,u(x) = D, the definition of RLCD yields

Edist2(Dx ⋆ X,Zn) = min(uD2|x|2, L2).

By the inequality (a+ b)2 ≤ 2a2 + 2b2, we get

Edist2(Dy ⋆ X,Zn) ≤ 2Edist2(Dx ⋆ X,Zn) + 2E|Dx ⋆ X −Dy ⋆ X |2

≤ 2min(uD2|x|2, L2) + 4D2r2 Var(X) ≤ 4min(uD2|x|2, L2),

where the last step follows from our assumptions (6) on r. By definition of RLCD, this immediately gives

RLCDX
2L,4u(y) ≤ D,

which proves the first conclusion of the lemma.

The second conclusion can be derived similarly. For any θ < D, the definition of RLCD yields

Edist2(θx ⋆ X,Zn) ≥ min(uθ2|x|2, L2).

By the inequality (a+ b)2 ≥ a2/2− b2, we get

Edist2(θy ⋆ X,Zn) ≥ 1

2
Edist2(θx ⋆ X,Zn)− E|θx ⋆ X − θy ⋆ X |2

≥ 1

2
min(uθ2|x|2, L2)− 2θ2r2 Var(X) ≥ 1

4
min(uθ2|x|2, L2),

where in the last step we used the bound θ < D and our assumptions (6) on r. By definition of RLCD, this

immediately gives

RLCDX
L/2,u/4(y) ≥ θ.

Since θ < D was arbitrary, it follows that RLCDX
L/2,u/4(y) ≥ D, which proves the second conclusion of

the lemma.

The following result is a version of [26, Lemma 3.6].

Lemma 2.10 (Incompressible vectors have large RLCD). For any b, δ, ρ ∈ (0, 1) there are n0 = n0(b, δ, ρ),
h2.10 = h2.10(b, δ, ρ) ∈ (0, 1) and u2.10 = u2.10(b, δ, ρ) ∈ (0, 1/4) with the following property. Let

n ≥ n0, let x ∈ Incompn(δ, ρ), and assume that a random vector X = (X1, . . . , Xn) with independent

components satisfies L(Xi, 1) ≤ b, i ≤ n, and Var |X |2 ≤ T , for some fixed parameter T ≥ n. Then for

any L > 0 we have RLCDX
L,u2.10

(x) ≥ h2.10 · n√
T

.

Proof. For clarity of the argument, we shall often hide the parameters b, δ, ρ, h2.10, and u2.10 in the notation

such as .,&; the reader will find it easy to fill in the details.

By definition of RLCD and since x is a unit vector, it suffices to show that

Edist2(θx ⋆ X,Zn) & θ2 ∀ θ ∈
(
0, h2.10 ·

n√
T

)
.

Suppose that

Edist2(θx ⋆ X,Zn) ≪ θ2

for some θ > 0; we want to show that in this case θ & n√
T

. Let p ∈ Z
n denote a closest integer vector to

θx ⋆ X; note that p is a random vector. Then E |θx ⋆ X − p|2 ≪ θ2, and Markov’s inequality yields that

|θx ⋆ X − p| ≪ θ with high probability. Deviding both sides by θ gives |x ⋆ X − p/θ| ≪ 1, so another

application of Markov’s inequality shows that

∣∣∣xiX i −
pi
θ

∣∣∣ ≪ 1√
n

for n− o(n) coordinates i.
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Moreover, E
∣∣X

∣∣2 ≤ 2E|X |2 ≤ 2T by (5). So a similar double application of Markov’s inequality shows

that, with high probability,

∣∣X i

∣∣ .
√

T

n
for n− o(n) coordinates i.

Furthermore, incompressible vectors are “spread” in the sense that

I :=
{
i : |xi| ≍

1√
n

}
satisfies |I| & n.

This fact is easy to check; a formal proof can be found in [25, Lemma 3.4].

Finally, the assumption on the concentration function shows that P{
∣∣X i

∣∣ ≥ 1} ≥ b. This implies that, with

high probability, ∣∣Xi

∣∣ ≥ 1 for b|I| /2 & n coordinates i ∈ I.

Taking the intersection of these events and sets of coordinates, we see that with high probability there

must exist a coordinate i for which we have simultaneously the following three bounds:

∣∣∣xiX i −
pi
θ

∣∣∣ ≪ 1√
n
, 1 ≤

∣∣Xi

∣∣ .
√

T

n
, |xi| ≍

1√
n
.

Then, using the triangle inequality, we get

∣∣∣
pi
θ

∣∣∣ ≥
∣∣xiXi

∣∣− o
( 1√

n

)
≥ c√

n
· 1− o

( 1√
n

)
> 0.

Thus pi 6= 0, and since pi is an integer, we necessarily have |pi| ≥ 1.

On the other hand, a similar application of the triangle inequality gives

∣∣∣
pi
θ

∣∣∣ ≤
∣∣xiXi

∣∣+ o
( 1√

n

)
.

1√
n
·
√

T

n
+ o

( 1√
n

)
.

√
T

n
.

This yields that θ & |pi| · n√
T
≥ n√

T
, as claimed.

3. Discretization

In this section we outline the required discretization results. They essentially follow from the results in

Section 3 of [17], however they are not stated there in the form we need, and thus we repeat certain arguments

here.

Definition 3.1 (Discretization, part 1). Given a vector of weights α ∈ R
n and a resolution parameter ε >

0, we consider the set of approximately unit vectors whose coordinates are quantized at scales αiε/
√
n.

Precisely, we define

Λα(ε) :=
(3
2
Bn

2 \ 1

2
Bn

2

)
∩
(
α1ε√
n
Z× · · · × αnε√

n
Z

)
.

Lemma 3.2 (Rounding). Fix any accuracy ε ∈ (0, 1/2), a weight vector α ∈ [0, 1]n, and any (deterministic)

N × n matrix A whose columns we denote Ai. Then for any x ∈ S
n−1 one can find y ∈ Λα(ε) such that

‖x− y‖∞ ≤ ε√
n

and
∣∣A(x − y)

∣∣ ≤ ε√
n

( n∑

j=1

α2
i

∣∣Aj

∣∣2
)1/2

.

Proof. Our construction of y is probabilistic and amounts to random rounding of x. The technique of random

rounding has been used in computer science (see the survey by Srinivasan [31], papers [1], [12]), asymptotic

convex geometry [13] and random matrix theory [17, 38].

A random rounding of x ∈ S
n−1 is a random vector y that takes values in the Λα(ε) and satisfies Ey = x

and ∣∣xj − yj
∣∣ ≤ αjε√

n
, j = 1, . . . , n, for any realization of y. (7)
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One can construct such a distribution of y by rounding each coordinate of x up or down, at random, to a

neighboring point in the lattice (αjε/
√
n)Z. The identity Ey = x can be enforced by choosing the probabil-

ities of rounding up and down accordingly.2

To check that y indeed takes values in Λα(ε), note that the bound in (7) and the assumption that αi ∈ [0, 1]
imply

‖x− y‖∞ ≤ ε√
n

for any realization of y. (8)

It follows that ‖x− y‖2 ≤ ε < 1/2, and since ‖x‖2 = 1, this implies by triangle inequality that 1/2 <
‖y‖2 < 3/2. This verifies that the random vector y takes values in Λα(ε) as we claimed.

Finally, we have

E
∣∣A(x − y)

∣∣2 = E

∣∣∣∣
n∑

j=1

(xj − yj)Aj

∣∣∣∣
2

=

n∑

i=1

E(xj − yj)
2 ·

∣∣Aj

∣∣2 (since E(xj − yj) = 0)

≤ ε2

n

n∑

j=1

α2
j

∣∣Aj

∣∣2 (using the bound in (7)).

Combining this with (8), we conclude that there exists a realization of the random vector y that satisfies the

conclusion of the lemma.

Lemma 3.3. Let M ≥ 1. There exists a subset Ξ ⊂ R
n
+ of cardinality at most (CM)n and such that the

following holds. For every vector x ∈ R
n
+ with‖x‖1 ≤ Mn there exists y ∈ Ξ such that‖y‖1 ≤ (M + 1)n

and y ≥ x coordinate-wise.

Proof. Define y := ⌈x⌉ where the ceiling function is applied coordinate-wise. Then ‖y‖1 ≤ ‖x‖1 + n ≤
(M + 1)n as claimed. In particular, there are as many vectors y as there are integer points in the ℓ1-ball

{z ∈ R
n : ‖z‖1 ≤ (M + 1)n}. According to classical results (see [21, Exercise 29], [30]), the number of

integer points in this ball is bounded by (CM)n (see also [13] for a similar covering argument). The lemma

is proved.

Fix κ > 1 and consider the set

Ωκ :=
{
α ∈ [0, 1]n :

n∏

j=1

αj ≥ κ−n
}
. (9)

The following result is a corollary of [17, Lemma 3.11].

Lemma 3.4. For any κ > 1 there exists a subset F ⊂ Ωeκ of cardinality at most (Clog κ)n and such that

the following holds. For every vector β ∈ Ωκ there exists α ∈ F such that for all α ≤ β coordinate-wise.

Proof. Apply Lemma 3.3 for x = − log β, y = − logα (defined coordinate-wise) and M = log κ.

Definition 3.5 (Discretization – part 2). Assuming the dimension n fixed, for the parameters κ > e and

ε > 0, we shall use notation

Λκ(ε) :=
⋃

α∈F
Λα(ε), (10)

with F being the set whose existence is guaranteed by Lemma 3.4.

Remark 3.6. It is immediate from the above definition that for any κ > e there is Cκ > 0 depending only

on κ such that ♯Λκ(ε) ≤
∑
α∈F

♯Λα(ε) ≤ (Cκ/ε)
n for every ε ∈ (0, 1].

The following notion from [17] will help us to control the norms of the columns Aj of an N × n matrix

A in the absence of any distributional assumptions on Aj :

Bκ(A) := min
{ n∑

j=1

α2
j |Aj |2 : α ∈ Ωκ

}
.

2Precisely, if xj = (αiε/
√
n)(kj + pj) for some kj ∈ Z and pj ∈ [0, 1), we let yj take value (αjε/

√
n)kj with probability

1− pj and value (αjε/
√
n)(kj + pj) with probability pj . Clearly, this yields Ey = x.

imsart-generic ver. 2014/10/16 file: ltv-AoP.tex date: September 19, 2019



G.V. Livshyts, K. Tikhomirov, R. Vershynin/The smallest singular value of inhomogeneous random matrices 10

Theorem 3.7. Fix ε ∈ (0, 1/2), κ > 1, and any (deterministic) N × n matrix A. Then for every x ∈ S
n−1

one can find y ∈ Λκ(ε) so that

‖x− y‖∞ ≤ ε√
n

and
∣∣A(x − y)

∣∣ ≤ ε√
n

√
Bκ(A).

Proof. By Lemma 3.2, for any x ∈ S
n−1 we can find y ∈ Λκ(ε) that approximates x in the ℓ∞ norm as

required, and such that

∣∣A(x− y)
∣∣ ≤ ε√

n

(
min
α∈F

n∑

j=1

α2
j

∣∣Aj

∣∣2
)1/2

≤ ε√
n

(
min
β∈Ωκ

n∑

j=1

β2
j

∣∣Aj

∣∣2
)1/2

(by Lemma 3.4)

=
ε√
n

√
Bκ(A).

The proof is complete.

Lastly, we recall the important property concerning the large deviation behavior of Bκ; here Lemma 3.12

from [17] is quoted with a specific choice of parameters.

Lemma 3.8 (Lemma 3.12 from [17]). Let A be a random matrix with independent columns. Then for any

κ > 1, we have

P

{
Bκ(A) ≥ 2‖A‖2HS

}
≤

(
κ√
2

)−2n

.

Finally, we are ready to state the main result of this section, which will follow as a corollary of Lemma

2.9, Theorem 3.7 and Lemma 3.8. Given γ > 0, ω ∈ (0, 1), D > 0, and a distribution of a random matrix

M, we shall use notation

SM
ω,γ(D) :=

{
x ∈ 3

2
Bn

2 \ 1

2
Bn

2 : RLCDM
γ
√
n,ω(x) ∈ [D, 2D]

}
,

S̃M
ω,γ(D) :=

{
x ∈ 3

2
Bn

2 \ 1

2
Bn

2 : RLCDM
2γ

√
n,4ω(x) ≤ 2D, RLCDM

0.5γ
√
n,0.25ω(x) ≥ D

}

for the level sets of the RLCD.

Theorem 3.9 (Approximation). Fix any ε ∈ (0, 0.1), κ > e, γ > 0, ω ∈ (0, 1), K > 0. Let M be an m× n
random matrix with independent columns, and whose rows M i satisfy

ε2 Var(M i) ≤ 1

8
min

(
ωn,

γ2n2

D2

)
, i = 1, . . . ,m. (11)

Then, with probability at least 1 − (κ/
√
2)−2n, for every x ∈ S

n−1 ∩ SM
ω,γ(D) there exists y ∈ Λκ(ε) ∩

S̃M
ω,γ(D) such that

‖x− y‖∞ ≤ ε√
n
,

∣∣M(x− y)
∣∣ ≤

√
2ε√
n

(
E‖M‖2HS

)1/2

. (12)

Proof. Lemma 3.8 says that the event

E := {Bκ(M) ≤ 2‖M‖2HS}

occurs with probability at least 1 − (κ/
√
2)−2n. Fix any realization of the random matrix M for which this

event happens.

Let y be the approximation of x given by Theorem 3.7. Then (12) follows from the conclusion of Theorem

3.7 and the definition of our event. The fact that y ∈ S̃M
ω,L(D) follows from Lemma 2.9 together with the

assertion of Theorem 3.7: indeed, the assumption (11) allows us to appeal to Lemma 2.9.
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4. Anti-concentration on lattice points

The goal of this section is to study anti-concentration properties of random sums with coefficients taken from

sets of the form

Λ :=

(
3

2
Bn

2 ∩
{
x ∈ R

n : ♯{i : |xi| ≥
ρ√
n
} ≥ δn

})
∩
(

λ1√
n
Z× · · · × λ1√

n
Z

)
. (13)

The main result of this section is the following

Theorem 4.1 (Most lattice points are unstructured). For any U ≥ 1, b ∈ (0, 1) and δ, ρ ∈ (0, 1/2] there exist

n0 = n0(U, b, δ, ρ), γ = γ(U, b, δ, ρ) ∈ (0, 1) and u = u(b, δ, ρ) ∈ (0, 1/4) such that the following holds.

Let n ≥ n0. Consider a random vector X in R
n with independent components Xi that satisfies

Var(X) ≤ 1

8
(1− b)δγ2n2 and max

i
L(Xi, 1) ≤ b.

Fix numbers λ1, . . . , λn satisfying 6−n ≤ λi ≤ 0.01 and let W be a vector uniformly distributed on the set

Λ defined in (13). Then

PW

{
RLCDX

γ
√
n,u(W ) < min

i
1/λi

}
≤ U−n.

The above theorem will be used to control the cardinality of ε-nets on the set of “typical” realizations

of unit normal vectors to the spans of columns of our random matrix, and forms a crucial step in the proof

of Theorem 1.2. The idea of using double counting to verify structural properties of random normals was

applied earlier in [41].

We start with an observation that will allow us to reduce the Euclidean ball 3
2B

n
2 by a parallelotope in the

definition of Λ.

Lemma 4.2. There is a universal constant C0 > 0 with the following property. For any n ≥ 1, there is a

collection of parallelotopes P = {Pi} in R
n of cardinality at most 2C0n, such that

• Each Pi is centered at the origin, with the edges parallel to the coordinate axes;

• Each edge of Pi is of length at least 2/
√
n;

• 3
2B

n
2 ⊂ ⋃

i

Pi ⊂ 3Bn
2 .

Proof. First, standard volumetric estimates imply that there is a covering of 3
2B

n
2 by parallel translates of

the cube 1
2
√
n
Bn

∞, of cardinality at most 2C0n for a universal constant C0 > 0. Let {xi}i∈I be a collection

of at most 2C0n points in 3
2B

n
2 such that each of the cubes from the covering contains at least one point xi

from the collection. Now, define P = {Pi}i∈I by taking, for each i ∈ I , Pi := P̃i +
1√
n
Bn

∞, where P̃i is

the unique parallelotope centered at the origin, and with xi/|xi| being one of its vertices. It is elementary to

check that the collection satisfies the required properties.

Lemma 4.3. For any b ∈ (0, 1) and δ, ρ ∈ (0, 1/2], there exists n0 = n0(b, δ, ρ) such that the following

holds. Let n ≥ n0 and γ ∈ (0, 1). Fix any subset J ⊂ [n] and consider a fixed (deterministic) vector x ∈ R
n

satisfying

|x|2 ≤ 1

4
(1− b)δγ2n2 and ♯{i ∈ J : |xi| ≥ 1} ≥ 1

2
(1− b)δn. (14)

Furthermore, fix numbers λ1, . . . , λn satisfying 6−n ≤ λi ≤ 0.01 and a vector a = (a1, . . . , an) satisfying

|a| ≤ 3 and min ai ≥ 1/
√
n. Consider the parallelotope P :=

∏n
i=1[−ai, ai], and define

Λ′ :=

{
w ∈ P : |wi| ≥

ρ√
n
∀i ∈ J

}
∩
(

λ1√
n
Z× · · · × λ1√

n
Z

)
.

Let W be a random vector uniformly distributed on Λ′. Then, for D := mini 1/λi, we have

P

{
min

θ∈(0,D)
dist(θW ⋆ x,Zn)2 < min

(
c|θW |2/2, 16γ2n

)}
≤ (Cγ)cn, (15)

where C, c > 0 depending only on b, δ, ρ.
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Proof. Step 1. Halving the set I . The assumptions on X imply that the set

I :=
{
i ∈ J : 1 ≤ |Xi| ≤ γ

√
n
}

satisfies ♯I ≥ 1

4
(1− b)δn.

Next, let µ = µ(x) be a median of the set {ai|Xi| : i ∈ I}. Thus, each of the subsets

I ′ := {i ∈ I : ai|Xi| ≤ µ} and I ′′ := {i ∈ I : ai|Xi| ≥ µ}

contains at least a half of the elements of I:

min(♯I ′, ♯I ′′) ≥ 1

2
♯I ≥ 1

8
(1− b)δn ≥ cn, (16)

where c > 0 depends only on b and δ. Take θ ∈ (0, D) and consider two cases.

Step 2. Ruling out small multipliers θ. We claim that the range for θ in (15) can automatically be

narrowed to ( 1
2µ , D). To check this, it suffices to show that for any θ ∈ (0, 1

2µ ], the bound

dist(θW ⋆ x,Zn)2 ≥ c|θW |2/2 (17)

holds deterministically, i.e. for any realization of the random vector W .

By construction, the coordinates Wi of W for i ∈ I are uniformly distributed in lattice intervals, namely

Wi ∼ Unif
([ ρ√

n
, ai

]
∩ λi√

n
Z

)
, i ∈ I. (18)

This means in particular that the coordinates of θW ⋆ x for i ∈ I ′ satisfy

θ|Wixi| ≤ θai|xi| ≤ θµ ≤ 1

2
,

where we used the definition of I ′ and the smallness of θ. This bound in turn yields

dist(θ|Wixi| ,Z) = θ|Wixi| ≥ θ · ρ√
n
· 1

where in the last step we used the range of Wi from (18) and the definition of I . Square both sides of this

bound and sum over i ∈ I ′ to get

dist(θW ⋆ x,Zn)2 ≥ θ2ρ2

n
♯I ′ ≥ c0θ

2ρ2 ≥ cθ2|W |2 /2,

where we used (16), suppressed ρ into c, and noted that |W |2 ≤|a|2 ≤ 9 by definition of W and assumption

on a. We have proved (17).

Step 3. Handling a fixed multiplier θ. Due to the previous step, our remaining task is to show that

P

{
min

θ∈(1/2µ,D)
dist(θW ⋆ x,Zn)2 < 49γ2n

}
≤ (Cγ)cn.

To do this, let us first estimate the probability that dist(θW ⋆ x,Zn)2 < 49γ2n for a fixed multiplier3

θ ∈ (1/2µ,D+ 1).
Let i ∈ I ′′. Recall from (18) that the random variable |Wi| is uniformly distributed in a lattice interval

whose diameter is at least

ai −
ρ√
n
− 2λi√

n
≥ ai

3
;

here we used the assumptions ai ≥ 1/
√
n, ρ ≤ 1/2 and λi ≤ 0.01. Thus, the random variable θ|Wixi|, i.e.

the absolute value of a coordinate of θW ⋆ x, is distributed in a lattice interval of diameter at least

ai
3
θ|xi| ≥

θµ

3
≥ 1

6
;

3Extending the range by 1 will be help us in the next step to unfix θ.
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here we used the definition of I ′′ and the largeness of θ. Moreover, the step of that lattice interval (the distance

between any adjacent points) is

λi√
n
θ|xi| ≤ λiθγ ≤ λi(D + 1)γ ≤ 2γ;

here we used the definition of I , the range of θ, the definition of D, and the assumption that λi ≤ 0.01.

The random variable θ|Wixi| that is uniformly distributed on a lattice interval of diameter at least 1/6 and

with step at most 2γ satisfies

P

{
dist(θ|Wixi| ,Z) < ε

}
≤ Cε for any ε ≥ 4γ,

where C is an absolute constant. Squaring the distances, summing them over i ∈ I ′′ and using Tensorization

Lemma 2.7, we conclude that

P

{
dist(θW ⋆ x,Zn)2 < ε2♯I ′′

}
≤ (C′ε)♯I

′′

for any ε ≥ 4γ.

Recall from (16) that ♯I ′′ ≥ cn. Hence, substituting ε = C0γ with sufficiently large C0 (depending on c and

thus ultimately on b and δ), we get

P

{
dist(θW ⋆ x,Zn)2 < 49γ2n

}
≤ (C′′γ)cn.

Step 4. Unfixing the multiplier θ. It remains to make the distance bound hold simultaneously for all

θ in the range (1/2µ,D). To this end, we use a union bound combined with a discretization argument. To

discretize the range of θ, consider the lattice interval

Θ :=
( 1

2µ
,D

)
∩ 1√

n
Z.

For sufficiently large n, its cardinality can be bounded as follows:

♯Θ ≤ (D + 1)
√
n+ 1 ≤ (6n + 1)

√
n+ 1 ≤ 7n;

here we used that D = mini(1/λi) by definition, and λi ≥ 6−n by assumption. The construction of Θ shows

that any θ ∈ (1/2µ,D) can be approximated by some θ0 ∈ Θ in the sense that

θ ≤ θ0 ≤ θ +
1√
n
.

Note in particular that θ0 falls in the range (1/2µ,D+1), which we handled in the previous step of the proof.

Recall that we need to bound the probability of the event

E :=
{

min
θ∈(1/2µ,D)

dist(θW ⋆ x,Zn) < 4γ
√
n
}
.

Suppose this event occurs. Let θ be the multiplier that realizes the minimum and consider an approximation

θ0 ∈ Θ as above. By triangle inequality, it satisfies

dist(θ0W ⋆ x,Zn) < 4γ
√
n+|θ0 − θ||W ⋆ x| .

By construction, we have |θ0 − θ| ≤ 1/
√
n and

|W ⋆ x| ≤‖W‖∞|x| ≤ 3γn;

here we used that‖W‖∞ ≤‖a‖∞ ≤ |a| ≤ 3 by definition of W and assumptions on a, as well as |x| ≤ γn
by assumption on x. Thus,

dist(θ0W ⋆ x,Zn) ≤ 7γn.

For each fixed θ0, the result of the previous step of the proof shows that the probability of this event is at

most (C′′γ)cn.

As we know, the number of possible choices of θ is at most ♯Θ ≤ 7n. Thus, the union bound gives

P(E) ≤ 7n(C′′γ)cn ≤ (Cγ)cn.

This completes the proof of the lemma.

imsart-generic ver. 2014/10/16 file: ltv-AoP.tex date: September 19, 2019



G.V. Livshyts, K. Tikhomirov, R. Vershynin/The smallest singular value of inhomogeneous random matrices 14

From Lemma 4.3 we deduce

Lemma 4.4. For any U ≥ 1, b ∈ (0, 1) and δ, ρ ∈ (0, 1/2], there exist n0 = n0(U, b, δ, ρ), γ =
γ(U, b, δ, ρ) ∈ (0, 1) and u = u(b, δ, ρ) ∈ (0, 1/4) such that the following holds. Let n ≥ n0. Further,

consider an independent random vector X in R
n with independent components Xi that satisfies

E|X |2 ≤ 1

8
(1− b)δγ2n2 and max

i
L(Xi, 1) ≤ b.

Consider a set Λ′ described in Lemma 4.3 and a random vector W uniformly distributed on Λ′. Then

PW

{
RLCDX

γ
√
n,u(W ) < min

i
1/λi

}
≤ U−n.

Proof. We apply a simple argument based on change of integration order, or a “double-counting” trick. For

simplicity and without any loss of generality, let us assume that the random vector X is uniformly distributed

on a finite set X := X1 × · · · × Xn, so that for any x ∈ X , we have

P{X = x} =
1

♯X .

Set X ′ := {x ∈ X : x satisfies (14)}. In view of our assumptions on X (and assuming that n is sufficiently

large), we have

P{X ∈ X ′} ≥ 1/4,

while, in view of the assertion of Lemma 4.3 and summing over x ∈ X ′, we get

∣∣{(x,w) ∈ X ′ × Λ′ : min
θ∈(0,D)

dist(θw ⋆ x,Zn)2 ≥ min(c|θw|2/2, 16γ2n)
}∣∣

≥
(
1− (Cγ)cn

)
♯X ′ ♯Λ′,

where D = mini 1/λi. This implies

♯
{
w ∈ Λ′ : ♯{x ∈ X ′ : min

θ∈(0,D)
dist(θw ⋆ x,Zn)2 ≥ min(c|θw|2/2, 16γ2n)} ≥ ♯X ′/4

}

≥
(
1− 2(Cγ)cn

)
♯Λ′.

Back from counting to probabilities, we get from the last bound and the estimate ♯X ′/4 ≥ ♯X/16:

♯
{
w ∈ Λ′ : min

θ∈(0,D)
EX dist(θw ⋆ X,Zn)2 ≥ min(c|θw|2/32, γ2n)

}
≥

(
1− 2(Cγ)cn

)
♯Λ′.

This can be equivalently rewritten with u := c/32 as

♯
{
w ∈ Λ′ : RLCDX

γ
√
n,u(w) > D

}
≥

(
1− 2(Cγ)cn

)
♯Λ′,

and the result follows by taking any γ ∈ (0, 1) satisfying 2(Cγ)cn ≤ U−n.

Proof of Theorem 4.1. Without loss of generality, EX = 0, so that Var(X) = E|X |2. We obtain the results

as a combination of Lemmas 4.2 and 4.4. To do so, note that Λ can be covered by 2C1n sets of the type Λ′ (one

for each paralellotope and a support set J). Then the probability measures onΛ and a givenΛ′ are within 2C1n

from each other. Thus the probability in the conclusion of Theorem 4.1 is bounded by 2C1nU−n ≤ (cU)−n.

It remains to re-define U → cU to get the result.

5. Proof of Theorem 1.2

In this section, we split the Euclidean unit sphere Sn−1 into level sets collecting (incompressible) unit vectors

having comparable RLCD. To show that with a high probability the normal vector does not belong to a level

set with a small RLCD, we consider a discrete approximating set whose cardinality is well controlled from

above, by using a combination of Theorem 3.9 and Theorem 4.1. In view of the stability property of RLCD,

the event that the normal vector has a small RLCD is contained within the event that one of the vectors in
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the approximating set has a small RLCD. We then apply the small ball probability estimates for individual

vectors, combined with the union bound, to show that the latter event has probability close to zero.

For any D ≥ 1, γ, u ∈ (0, 1), and an m× n random matrix M , define, as before,

SD(M,γ, u) := {v ∈ S
n−1 : RLCDM

γ
√
n,u ∈ [D, 2D]}.

As the first step, we combine the approximation Theorem 3.9 with Theorem 4.1 to obtain

Proposition 5.1. For any b, ρ, δ ∈ (0, 1), U ≥ 1 and K ≥ 1 there are n5.1 = n5.1(b, δ, ρ, U,K), u5.1 =
u5.1(b, δ, ρ) ∈ (0, u2.10(b, δ, ρ)), γ5.1 = γ5.1(b, δ, ρ, U,K) ∈ (0, 1/2) with the following property. Let

D ≥ 1 and 0 < ε ≤ 1/D. Let n ≥ n5.1, n ≤ m, and let M be an m × n matrix with independent entries

Mij such that L(Mij , 1) ≤ b for all i, j;

Var(M⊤ei) ≤
1

8
min

(
(1− b)δγ2

5.1n
2, ε−2u5.1n

)

for every i ≤ m, and

E‖M‖2HS ≤ Kn2.

Then there is a non-random set Λ ⊂ R
n of cardinality at most (εU)−n having the following properties:

• For any y ∈ Λ, we have 3/2 ≥ |y| ≥ 1/2;

• For any y ∈ Λ, RLCDM
γ5.1

√
n/2,u5.1/4

(y) ≥ D and RLCDM
2γ5.1

√
n,4u5.1

(y) ≤ 2D;

• With probability at least 1− e−n, for any x ∈ SD(M,γ5.1, u5.1) ∩ Incomp(δ, ρ) there is y ∈ Λ with

‖x− y‖∞ ≤ ε/
√
n and |M(x− y)| ≤ ε

√
n.

Proof. Set κ := 5, and let Cκ > 0 be the constant from Remark 3.6. Let U ≥ 1, U ′ := 100
√
2KUCκ/ρ,

and set

n5.1 := n0(U
′, b, δ, ρ/2), γ = γ5.1 := γ(U ′, b, δ, ρ/2), u = u5.1 := u(b, δ, ρ/2) ∈ (0,

1

4
),

where the functions n0(·), γ(·), u(·) are taken from Theorem 4.1. Finally, set

ε′ :=
ρε

100
√
2max(K, 1)

∈ (0, 0.01),

and let Λκ(ε′) be as in Definition 3.5.

Let Λ be a subset of all vectors y ∈ Λκ(ε′) such that

RLCDM
γ
√
n/2,u/4(y) ≥ D and RLCDM

2γ
√
n,4u(y) ≤ 2D,

and, such that the ℓ∞–distance of y to Incomp(δ, ρ) is at most ε′/
√
n. Note that the last condition implies

that for any y ∈ Λ, ♯{i ≤ n : |yi| ≥ ρ/2} ≥ δn, see Lemma 3.4 from [25].

By our choice of ε′ and the condition on the matrix, we have

(ε′)2 Var(M⊤ei) ≤
1

8

γ2n2

D2
; (ε′)2 Var(M⊤ei) ≤

1

8
un.

Then, according to Theorem 3.9, with probability at least 1 − (5/
√
2)−2n for any x ∈ SD(M,γ, u) there is

a vector y ∈ Λ such that ‖x− y‖∞ ≤ ε′/
√
n and |M(x− y)| ≤

√
2ε′

√
K
√
n ≤ ε

√
n.

It remains to estimate the cardinality of Λ. We recall that

Λκ(ε′) =
⋃

α∈F
Λα(ε

′),

where the collection F of parameters (α1, . . . , αn) ∈ (0, 1]n is given by Lemma 3.4. Fix for a moment any

(α1, . . . , αn) ∈ F , and set λi := αiε
′ ∈ (0, 0.01], i ≤ n. Observe that 1/λi ≥ 1/ε′ > 2/ε ≥ 2D, i ≤ n.

Hence, we can apply Theorem 4.1 to obtain

♯(Λ ∩ Λα(ε
′)) ≤ ♯Λα(ε

′) (U ′)−n.

Taking the union over all (α1, . . . , αn) ∈ F , we then get

♯Λ ≤ (U ′)−n
∑

α∈F
♯Λα(ε

′) ≤ (εU)−n,

where at the last step we used our definition of U ′.
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Next, we combine the discrete approximation set introduced above, with the small ball probability of

Lemma 2.8:

Proposition 5.2. For any b, ρ, δ ∈ (0, 1) andK ≥ 1 there are n5.2 = n5.2(b, δ, ρ,K),u5.2 = u5.2(b, δ, ρ) ∈
(0, u2.10(b, δ, ρ)), γ5.2 = γ5.2(b, δ, ρ,K) ∈ (0, 1/2) and γ′

5.2 = γ′
5.2(b, δ, ρ,K) with the following prop-

erty. Let n ≥ n5.2, e2 ≤ D ≤ D0 ≤ e
γ′

5.2n, 0 ≤ k ≤ n/ lnD0, m := n − k, and let M be an m × n
random matrix with independent entries Mij such that L(Mij , 1) ≤ b for all i, j;

Var(M i) ≤ 1

64
min

(
(1− b)δγ2

5.2n
2, D2

0u5.2n
)

(19)

for every i ≤ m, and

E‖M‖2HS ≤ Kn2.

Let M (1) be the matrix obtained from M by removing the first row. Then

P
{
∃ x ∈ Incomp(δ, ρ) ∩ SD(M,γ5.2, u5.2) s.t. RLCDM(1)

γ5.2
√
n,u5.2

(x) ≥ D0, M (1)x = 0
}
≤ 2e−n.

Proof. First, we should carefully define the parameters. We choose u := u5.1(b, δ, ρ). Next, set U :=
2e3C2

2.8, where C2.8 is taken from Lemma 2.8 with parameters b, c0 := 1/2 and u/4. Finally, take γ :=

γ5.1(b, δ, ρ, U,K), γ′ := c̃2.8γ
2/4 ≤ 1.

Let e2 ≤ D ≤ D0 ≤ eγ
′n, and let random matrix M satisfy the assumptions of the proposition. Let Λ be

the set defined in Proposition 5.1 with ε := 1/D0. Set

ED :=
{
∃ x ∈ Incomp(δ, ρ) ∩ SD(M,γ, u) s.t. RLCDM(1)

γ
√
n,u(x) ≥ D0, M (1)x = 0

}
.

Note that whenever x and y are two vectors in R
n with RLCDM(1)

γ
√
n,u(x) ≥ D0 and ‖x− y‖∞ ≤ 1

D0
√
n

, then

necessarily RLCDM(1)

γ
√
n/2,u/4(y) ≥ D0 (as follows from Lemma 2.9).

Hence, applying Proposition 5.1, we get

P(ED) ≤ e−n + P
{

There is y ∈ Λ with |M (1)y| ≤ √
n/D0 and RLCDM(1)

γ
√
n/2,u/4(y) ≥ D0

}

≤ e−n + ♯Λ sup
y

P
{
|M (1)y| ≤

√
n/D0

}

≤ e−n + (D0/U)n sup
y

P
{
|M (1)y| ≤

√
n/D0

}
,

where the supremum is taken over all vectors y ∈ 3
2B

n
2 \ 1

2B
n
2 with RLCDM(1)

γ
√
n/2,u/4(y) ≥ D0.

Fix any y satisfying the above conditions. Set ε̃ := 2C2.8/D0 and observe that, by our conditions on D0,

ε̃ ≥ C2.8 exp(−c̃2.8γ
2n/4) + C2.8/RLCD

M(1)

γ
√
n/2,u/4(y).

Applying Lemma 2.8, we then obtain

P{|M (1)y| ≤
√
n/D0} ≤ P{|M (1)y| ≤ 2

√
m− 1/D0} ≤ P{|M (1)y| ≤ ε̃

√
m− 1} ≤ (C2.8ε̃)

m−1.

Taking the supremum over all admissible y, we then get

P(ED) ≤ e−n + (D0/U)n (C2.8ε̃)
m−1 ≤ e−n +Dn−m+1

0 U−n
(
2C2

2.8
)n
.

The result follows by the choice of U and the condition on m.

Our proof of Theorem 1.2, in the case Var(Aj) = Θ(n), j = 1, 2, . . . , n, is a straightforward application

of Proposition 5.2 (taking a dyadic sequence of level sets), together with results of [17] on invertibility over

compressible vectors. The fact that in our model some columns may have variances much greater than n
adds some complexity to the proof because the relation (19) for such columns may hold true only for “large

enough” D0 leaving a gap in the treatment of small values of the parameter. We deal with this issue in the

statement below by carefully splitting the event in question into subevents and invoking Lemma 2.10 that

allows to deterministically bound RLCD in terms of the variance.
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Proposition 5.3. Let b, δ, ρ ∈ (0, 1) and K ≥ 1 be parameters, and let u5.2, γ5.2 be taken from Proposi-

tion 5.2. Then there are n5.3(b, δ, ρ,K) and γ′
5.3(b, δ, ρ,K) with the following property. Let n ≥ n5.3, let

n× n matrix A be as in the statement of Theorem 1.2, and let j ≤ n be such that

Var(Aj) ≤ min
(
h2
2.10e

−4n2,
1

64
(1− b)δγ2

5.2n
2
)
,

where h2.10 is taken from Lemma 2.10. Then

P
{
∃ x ∈ Incomp(δ, ρ) orth. to Ai, i 6= j, with RLCD

Aj

γ5.2
√
n,u5.2

(x) ≤ e
γ′

5.3n
}
≤ 2−n/2.

Proof. We will assume that n is large, and that γ′ > 0 is a small parameter whose value can be recovered

from the proof below. Without loss of generality, j = 1. Let A′ be the submatrix of A composed of all

columns Ai satisfying

Var(Ai) ≤ min
(
h2
2.10e

−4n2,
1

64
(1− b)δγ2

5.2n
2
)
.

We note that the number of columns of A′ is at least n −K/min
(
h2
2.10e

−4, 1
64 (1 − b)δγ2

5.2

)
. Further, let

M be the transpose of A′, and denote by W the submatrix of M (1) formed by removing rows with variances

at least n9/8.

The proof of the statement is reduced to estimating probability of the event

E ′ :=
{
∃ x ∈ Incomp(δ, ρ) with M (1)x = 0 and RLCDA1

γ5.2
√
n,u5.2

(x) ≤ eγ
′n
}
.

We can write

P(E ′) ≤
∑

log2 n−1≤ℓ≤γ′n log2 e

P
{
∃ x ∈ Incomp(δ, ρ) ∩ S2ℓ(M,γ5.2, u5.2) with M (1)x = 0

}

+ P
{
∃ x ∈ Incomp(δ, ρ) with M (1)x = 0 and RLCDM

γ5.2
√
n,u5.2

(x) < n
}
.

The first sum can be estimated directly by applying Proposition 5.2 with D0 := D := 2ℓ, log2 n − 1 ≤
ℓ ≤ γ′n log2 e (note that the relation (19) is fulfilled for such D for all rows of M , and that the propo-

sition can be applied as long as K/min
(
h2
2.10e

−4, 1
64 (1 − b)δγ2

5.2
)
≤ 1/γ′). Further, the condition that

RLCDM
γ5.2

√
n,u5.2

(x) < n implies that either RLCDW
γ5.2

√
n,u5.2

(x) < n or RLCDW
γ5.2

√
n,u5.2

(x) ≥ n

and RLCDMq

γ5.2
√
n,u5.2

(x) < n for some row M q of M . Hence, we get

P(E ′) ≤ 2n · 2e−n +
∑

q

P
{
∃ x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√
n,u5.2

(x) ≥ n

and RLCDMq

γ5.2
√
n,u5.2

(x) < n
}

+ P
{
∃ x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√
n,u5.2

(x) < n
}
.

To estimate the sum, we apply Lemma 2.10 which, together with our restrictions on the variances, allows to

deterministically bound the RLCD with respect to M q by e2. Thus, we get

P
{
∃ x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√
n,u5.2

(x) ≥ n

and RLCDMq

γ5.2
√
n,u5.2

(x) < n
}

= P
{
∃ x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√
n,u5.2

(x) ≥ n

and e2 ≤ RLCDMq

γ5.2
√
n,u5.2

(x) < n
}
.

Splitting the interval [e2, n] into dyadic subintervals and applying Proposition 5.2 with D0 := n and for the

matrix formed by concatenating W and M q, we get an upper bound 2e−n log2 n for the probability.

In order to estimate probability of the event

{
∃ x ∈ Incomp(δ, ρ) with Wx = 0 and RLCDW

γ5.2
√
n,u5.2

(x) < n
}
,
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we apply Lemma 2.10; this time the definition of W implies that RLCD with respect to each row is deter-

ministically bounded from below by n3/8. Again, splitting of the interval [n3/8, n] into dyadic subintervals

reduces the question to estimating events of the form

{
∃ x ∈ Incomp(δ, ρ) ∩ SD(W,γ5.2, u5.2) with Wx = 0

}

for some D ∈ [n3/8, n]. Taking D0 := D, one can see that the condition (19) is fulfilled for all rows of W ,

and that the difference between the number of columns and rows of W is clearly less than n/ lnD0. Thus,

Proposition 5.2 is applicable.

Summarizing, we get P(E ′) ≤ C′ne−n lnn for a universal constant C′ > 0. The result follows for all

sufficiently large n.

Now, we are in position to prove Theorem 1.2.

Proof of Theorem 1.2. We will assume that n is large. We start by recording a property of A which follows

immediately from [17, Lemma 5.3]: For any j ≤ n, with probability at least 1 − e−c1n any unit vector

orthogonal to {Ai, i 6= j}, is (δ, ρ)–incompressible for some δ, ρ ∈ (0, 1) depending only on b,K (here,

c1 ∈ (0, 1) depends only on b,K). Indeed, let j ≤ n, let B be the n × (n − 1) matrix formed from A by

removing Aj , and define M := BT. Then

P

{
∃x ∈ Comp(δ, ρ) orthogonal to Hj

}
≤ P

{
inf

x∈Comp(δ,ρ)
|Mx| = 0

}
≤ e−c1n,

where in the last passage [17, Lemma 5.3] was used.

Set

r := min
(
h2
2.10e

−4,
1

64
(1 − b)δγ2

5.2

)
,

where h2.10 and γ5.2 are defined in respective lemmas with the parameters b,K, δ, ρ. Pick any index j ≤ n
such that Var(Aj) ≤ rn2, and let v be a random unit vector orthogonal to Hj and measurable with respect

to the sigma-field generated by Hj . Applying Proposition 5.3 together with the above observation, we get

v is (δ, ρ)–incompressible and RLCD
Aj

γ5.2
√
n,u5.2

(v) ≥ e
γ′

5.3n

with probability at least 1− ec1n − 2−n/2. Application of Lemma 2.5 finishes the proof.

Remark 5.4. In our proof, the Randomized Least Common Denominator acts like a mediator in the rela-

tionship between anticoncentration properties of matrix-vector products and cardinalities of corresponding

discretizations (nets), following the ideas developed in [25]. A crucial element of our argument is the fact

that RLCD is stable with respect to small perturbations of the vector, which we quantify in Lemma 2.9.

An alternative approach recently considered in [41] is based on directly estimating the concentration

function for “typical” points on a multidimensional lattice. The argument of [41] uses as an important step

certain stability properties of the Lévy concentration function and of small ball probability estimates for

linear combinations of Bernoulli random variables. However, in the general (non-Bernoulli) setting, and

with different distributions of entries of the matrix, obtaining satisfactory stability properties similar to those

in [41] seems to be a very non-trivial problem, in the situation when the approximation is done by a random

vector. We note here that in our net construction the approximating vector is, indeed, random, and depends

on the realization of the matrix.

On a technical level, since RLCD is a structural (geometric) property, its stability follows from relatively

simple computations, while the Lévy concentration function is much more difficult to control; in particular,

the Esseen lemma provides only an upper bound for the concentration function, hence cannot be relied on

when studying its stability.

6. Proof of the Theorem 1.1

In this section we formally derive Theorem 1.1 from Theorem 1.2, using a modification of the “invertibility

via distance” lemma from [25].
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Lemma 6.1 (Invertibility via distance). Fix a pair of parameters δ, ρ ∈ (0, 1
2 ), and assume that n ≥ 4/δ.

Then, for any ε > 0,

P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ε

ρ√
n

}
≤ 4

δn
inf

I⊂[n],
♯I=n−⌊δn/2⌋

∑

j∈I

P{dist(Aj , Hj) ≤ ε},

where Hj denotes the subspace spanned by all the columns of A except for Aj .

Proof. Fix any I ⊂ [n] with ♯I = n− ⌊δn/2⌋, and consider event

E :=

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ε

ρ√
n

}
.

Fix any realization of the matrix A such that the event holds, i.e. there exists a vector x ∈ Incomp(δ, ρ) with

|Ax| ≤ ε ρ√
n

. In view of the definition of the set Incomp(δ, ρ), there is a subset Jx ⊂ [n] of cardinality ⌊δn⌋
such that |xi| ≥ ρ/

√
n for all i ∈ Jx, whence

dist(Ai, Hi) ≤ |xi|−1 |Ax| ≤ ε, i ∈ Jx.

Note that Jx ∩ I has cardinality at least ⌊δn⌋ − ⌊δn/2⌋ ≥ δn/4. Thus,

E ⊂
{
♯{i ∈ I : dist(Ai, Hi) ≤ ε} ≥ δn/4

}

It remains to note that

P
{
♯{i ∈ I : dist(Ai, Hi) ≤ ε} ≥ δn/4

}
≤ 4

δn
E ♯{i ∈ I : dist(Ai, Hi) ≤ ε}.

Proof of Theorem 1.1. The theorem follows from Lemma 2.1 (that is, Lemma 5.3 from [17]), Lemma

6.1 and Theorem 1.2, by taking I0 := {i ∈ [n] : E|Ai|2 ≤ rn2} and noting that, in view of the assumption

E‖A‖2HS ≤ Kn2, we have ♯I0 = n − K/r ≥ n − ⌊δn/2⌋ for all sufficiently large n, so that for all large

enough n

P

{
inf

x∈Incomp(δ,ρ)
|Ax| ≤ ε

ρ√
n

}
≤ 4

δn

∑

j∈I0

P{dist(Aj , Hj) ≤ ε}.

�
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