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SUMMARY

We estimate the effects of transportation network companies (TNCs) Uber and
Lyft on vehicle ownership, fleet average fuel economy, and transit use in U.S. ur-
ban areas using a set of difference-in-difference propensity score-weighted
regression models that exploit staggered market entry across the U.S. from
2011 to 2017. We find evidence that TNC entry into urban areas causes an
average 0.7% increase in vehicle registrations with significant heterogeneity in
these effects across urban areas: TNC entry produces larger vehicle ownership in-
creases in urban areas with higher initial ownership (car-dependent cities) and in
urban areas with lower population growth (where TNC-induced vehicle adoption
outpaces population growth). We also find no statistically significant average ef-
fect of TNC entry on fuel economy or transit use but find evidence of heteroge-
neity in these effects across urban areas, including larger transit ridership reduc-
tions after TNC entry in areas with higher income and more childless households.

INTRODUCTION

The past decade saw the advent and growth of ridesourcing, a travel mode in which a passenger uses a

mobile device to request a ride with a nearby driver at a transaction price determined in real time by a trans-

portation network company (TNC), such as Uber or Lyft. During this period, the daily number of Americans

traveling in for-hire vehicles more than doubled (Federal Highway Administration, 2019; Conway, 2018).

Uber, which launched its basic level of service (UberX), in 2012, had entered 224 U.S. urban areas (approx-

imately half of those identified by the U.S. Census) by the end of 2017, as Figure 1 and Table S2 show. In

absolute terms, the 0.5% of total passenger trips now served by TNCs is still relatively small, but in urban

areas, the effects can be substantial—by 2016, TNCs accounted for 15% of all intra-San Francisco vehicle

trips on an average weekday (San Francisco County Transportation Authority, 2017).

While a growing body of research finds that TNCs lead to significant changes in transportation-related out-

comes such as new vehicle purchases in China (Gong et al., 2017), traffic congestion (Li et al., 2016), motor

vehicle homicide (Greenwood and Wattal, 2015; Lagos et al., 2019; Barrios et al., 2019), and passenger

safety (Chaudhry et al., 2018), as well as other outcomes as varied as AirBnB demand (Zhang et al., 2018),

entrepreneurial activity (Burtch et al., 2018), and urban crime (Weber, 2019), few studies have yet reached

conclusions about effects of TNCs on energy and climate change-relevant outcomes like petroleum con-

sumption and greenhouse gas (GHG) emissions. Both outcomes are particularly important for the transpor-

tation sector, which has long consumed the bulk of petroleum products produced and recently became a

greater GHG emitter than any other sector in the U.S (Davis et al., 2019). These outcomes are a function of

total vehicle travel and fuel efficiency and are related to the size of the vehicle fleet and availability of trans-

portation alternatives. Higher vehicle ownership rates have historically been associated with both higher

transportation energy consumption per capita (Newman and Kenworthy, 2006) and greater emissions

from vehicle production: there were nearly 17 million new vehicles sold in the U.S. in 2018, each generating

nearly 8 metric tons of GHGs from the manufacturing process (Davis et al., 2019) (Figure S1).

The introduction of TNC services could disrupt the relationship between vehicle ownership and transpor-

tation energy consumption and emissions not only in the U.S. but also globally, including in countries like

China and India, where vehicle registration numbers are climbing more than 10% each year (Davis et al.,
iScience 24, 101933, January 22, 2020 ª 2020
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Figure 1. Uber and Lyft entry over time by urban area

Uber entry date (x axis) is compared to Lyft entry date (y axis) for each of the 224 urban areas with TNC access by the end of

2017. Urban areas are depicted by bubbles proportional to population size.
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2019). There are reasons to believe, a priori, that TNC market entry could increase vehicle ownership, as

aspiring TNC drivers purchase new vehicles, or decrease vehicle ownership, as passengers with access

to TNC services shed or delay the purchase of a private vehicle. Similarly, TNC market entry could poten-

tially increase average vehicle fuel economy, as TNC drivers anticipating high-mileage invest in relatively

efficient vehicles, or decrease vehicle fuel economy, if TNC drivers are attracted to larger—and less fuel-

efficient—vehicles to accommodate more riders and associated price premiums (through ‘‘Uber XL’’ and

‘‘Lyft XL’’ services). TNC entry could also increase transit ridership, by improving access, or decrease transit

ridership, if acting as a replacement. And the relative impact of each of these (and other) effects may vary

across urban areas. As TNCs continue to diffuse across global cities, understanding the impact on total ve-

hicles, energy, and emissions becomes increasingly important.

The few published articles that do examine TNC impacts on energy and the environment are constrained to

survey methods or limited geographies, and, when taken together, reach inferences and conclusions that

initially may appear inconsistent with one another. Previous analyses of TNC effects on vehicle ownership,

for example, have found either a decrease in vehicle ownership (Ward et al., 2019) or that ‘‘ridesourcing

probably did not influence car ownership behavior’’ (Rayle et al., 2016). Considered with appropriate

context and constraints, these findings are not necessarily inconsistent (the decline in vehicle ownership

was modeled at the U.S. state level, while the no-effect finding was based on a survey specific to San Fran-

cisco, CA), but their differences point to the need for a coherent framework within which to interpret such

findings and their associated implications.

As described above, plausible underlying narratives can explain either an increase or a decrease in vehicle

ownership after TNC market entry (or a net-zero effect, as a result of the simultaneous presence of pres-

sures in both directions): new economic opportunity afforded by TNC entry could motivate would-be

TNC vehicle drivers to increase vehicle registrations; whereas, private vehicle-free mobility newly afforded

to would-be passengers could prompt vehicle shedding and/or new vehicle purchase delays. Several work-

ing papers use surveys to understand these vehicle ownership relationships: a positive correlation for TNC
2 iScience 24, 101933, January 22, 2020



ll
OPEN ACCESS

iScience
Article
drivers (Berliner and Tal, n.d.) and a negative correlation for TNC passengers (Clewlow and Mishra, 2017;

Alemi et al., 2018a, 2018b; Feigon and Murphy, 2016). Other working papers use empirical panel data to

observe or model a net effect, finding both increases (Gong et al., 2017; Schaller Consulting, 2018) or de-

creases (Hampshire et al., 2017) in vehicle ownership.

Effects of TNCs on fleet fuel economy are also ambiguous a priori, as drivers motivated by lower operating

costs could plausibly migrate to newer, more efficient vehicles (Uber and Lyft require newer vehicles in

some cities (Uber, 2020)), just as drivers motivated by the potential for large-party-trip price premiums

may shift to larger, less efficient vehicles. Only one peer-reviewed article to date reports a TNC-fuel econ-

omy relationship, finding that ridesourcing vehicles are more efficient compared to non-ridesourcing vehi-

cles (Wenzel et al., 2019). Two working papers agree (Gong et al., 2017; Kitchel and Wise, 2017); while

another suggests that TNC vehicle fuel economies are lower than those of taxis (Wagner, 2017).

The effects of TNCs on public transit ridership are similarly equivocal, with several survey-based studies

finding ridesourcing can either replace transit (Rayle et al., 2016) or complement it (Yan et al., 2018; Zhang

and Zhang, 2018; Hall et al., 2018) as an effective extension of an otherwise fixed network (several working

papers also suggest replacement (Alemi et al., 2018b; Norris and Xiong, 2019; Manville et al., 2018) or

complementarity (Feigon and Murphy, 2016; Schweiterman and Livingston, 2018)). Importantly, two of

these previous studies report heterogeneous effects—a more positive transit correlation is found either

(1) in bigger cities as well as cities with smaller transit agencies (Hall et al., 2018) or (2) as a function of

high population density and households with fewer vehicles (Zhang and Zhang, 2018)—and a working pa-

per finds commuter rail usage increases while city bus usage declines, on average, with variation in effects

across cities (Babar and Burtch, 2017).

We propose that heterogeneity of the effects of TNC entry in different types of cities may be responsible for

some of the apparent discrepancies in reported effects, since average effects can look different depending

on what subset of locations are included in the study scope and how they are aggregated. To quantify and

systematically organize the potentially fundamental changes to personal travel across U.S. urban areas and

associated energy and environmental outcomes, we estimate effects of Uber and Lyft entry on vehicle

ownership, fleet average fuel economy, and transit ridership outcomes using a set of difference-in-differ-

ence propensity score-weighted regression models that exploit staggered TNC market entry into urban

areas across the U.S. from 2010 to 2017. We combine annual individual vehicle registration data from

Polk/IHS Markit with annual ZIP code-level sociodemographic data from the U.S. Census Bureau and

aggregate to the urban area to estimate effects. We find that estimated vehicle ownership, fuel economy,

and transit ridership effects of TNC entry vary across urban areas. Accordingly, we characterize this hetero-

geneity across urban areas and estimate that (1) TNC entry increases vehicle ownership on average, and

this increase is larger in urban areas with higher initial vehicle ownership (‘‘car-dependent cities’’) and in

urban areas with lower growth rates; (2) the effect of TNC entry on fleet fuel economy is not statistically sig-

nificant on average, but it is more positive in urban areas with lower rates of childless households than in

urban areas with higher rates of childless households; and (3) the effect of TNC entry on transit ridership is

not statistically significant on average, but it is more negative (larger reduction) in urban areas with higher

rates of childless households or higher income than in urban areas with lower rates of childless households

or lower income. These results offer a novel framework for informing future energy, transportation, and ur-

ban planning decision-making.
RESULTS

Analyses are conducted using a series of difference-in-difference models with inverse probability of treat-

ment weighting (IPTW). The difference-in-difference method is a quasi-experimental technique that com-

pares trends before and after a treatment—i.e., TNC market entry in this study—against counterfactual

trends in an untreated control group, and IPTW weights help ensure the control group is appropriately

comparable to the treatment group (see Transparent Methods in the SI for details and Table S10 for a com-

parison with unweighted results). We specify models to estimate average TNC entry effects on vehicle

ownership, fuel economy, and transit ridership and then characterize heterogeneity in this effect by (1)

leveraging two exploratory methods (heterogeneous treatment effect [HTE] and cluster analysis) to identify

explanatory variables associated with differences in treatment effects and (2) estimating interaction effects

of these identified variables in our primary specification (testing the null hypothesis that these variables do

not influence treatment effects). Specifically, in our first exploratory method, we conduct HTE analysis to
iScience 24, 101933, January 22, 2020 3



Table 1. Results for average effects

Dependent variable, log:

Vehicle registration,

per capita

Average fuel

economy

Transit trips,

per capita

Treatment 0.007** 3.00 3 10-4 5.19 3 10-4

(0.004) (8.76 3 10-4) (0.0116)

Covariate controls Y Y Y

Time fixed effects Y Y Y

Group fixed effects Y Y Y

Group time trends Y Y Y

Observations 3395 3395 1848

Deg. freedom 2894 2894 1569

Adjusted R-Sq. 0.948 0.979 0.998

Covariate, time fixed effects, group fixed effects, and group time trend coefficient estimates not shown. *p<0.1; **p<0.05;

***p< 0.01.

Average treatment effects of TNC entry on urban areas in the U.S. from three regression models estimating (1) vehicle reg-

istrations per capita, (2) average fuel economy, and (3) transit ridership (coefficients for control variables, fixed effects, and

linear time trends are excluded for brevity). Expanded results and a comparison with OLS results are presented in Table S10.

ll
OPEN ACCESS

iScience
Article
estimate urban area-specific TNC effects and identify factors that differ between urban areas with positive

versus negative estimated effects. In a second, complementary exploratory method, we cluster similar ur-

ban areas, calculate cluster-specific TNC effects, and identify factors that differ between clusters with sta-

tistically significant versus non-significant estimated effects. Finally, in our primary specification, we add

targeted treatment interaction terms identified by the HTE and cluster analysis to our regression model

to confirm whether these urban area characteristics explain the heterogeneity in TNC entry effects across

urban areas. We present average effect results first (Table 1), followed by HTE (Figure 2, Table 2), cluster

analysis (Figure 3, Table 3), and results of our primary specification (Table 4, Figure 4).

Average effect

On average, we find TNC entry in an urban area increases per capita vehicle registrations by 0.7% (95% con-

fidence interval: 0.1–1.3%), and we find no significant average effect on fleet average fuel economy or per

capita transit trips (Table 1). Each estimate can be interpreted as a weighted average across urban areas

(Table S2, Figure S4). The estimated average effect on registrations is also robust to a battery of robustness

checks and sensitivity analyses (Table S9), including randomized treatment (Figure S7), leave-one-out anal-

ysis (Figures S8 and S9), leave-multiple-out analysis (Figure S10), alternative treatment encoding (Table

S12), disaggregation of transit ridership data (Table S13), and an event study (Figure S6). When data are

aggregated to the state level of resolution, rather than the urban area level, estimated average effects

are negative (Table S11), consistent with a study by Ward et al. (2019) using state-level data. This suggests

heterogeneous effects: When effects of TNC entry differ across urban areas, averaging across states, rather

than urban areas, can produce different estimates – in this case changing sign. In the following sections, we

use HTE and cluster analysis to identify features of urban areas that are important for determining the type

of response urban areas have to TNC entry, and we use these results to inform our primary specification,

testing for interaction effects with these urban area features.

Heterogeneous treatment effects

In a first approach to exploring heterogeneity, we estimate urban area-specific TNC entry effects and find

estimates ranging from an 11.0% decrease in per capita vehicle registrations in Redding, CA to a 15.7% in-

crease in Gainesville, FL, and from a 1.9% decrease in fleet average fuel economy in Greely, CO to a 2.6%

increase in Thousand Oaks, CA. Transit ridership data are unavailable for nearly half of urban areas and so

are not reported in this approach. Figure 2 shows the distribution of those estimated effects in urban areas

that are statistically significant, and Table S5 provides the full results.

TNC entry is associated with a significant decline in vehicle registrations per capita in 38 urban areas (17% of

224 treated urban areas) and an increase in 58 (26%) urban areas. Conducting a linear regression using a
4 iScience 24, 101933, January 22, 2020



Figure 2. Heterogeneous treatment effect results

Effects on TNC entry on per capita vehicle registrations (left) and fleet average fuel economy (right), ranked by urban area

from lowest to highest; only statistically significant effects are shown. The center blue line illustrates treatment effects, and

the gray bands indicate 95% confidence intervals. Detailed results are presented in Table S5.
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binary variable equal to 1 if an urban area has a statistically significant positive estimatedHTEeffect and 0 if it

has a statistically significant negative estimated HTE effect (other urban areas are excluded) (Table 2), we

find that urban areas with positive estimated effects on vehicle registrations tend to be smaller, lower in-

come, and have more vehicle registrations per capita, transit commuters, and childless households than ur-

ban areas with negative estimated effects. TNC entry is also associated with a significant decline in fleet

average fuel economy in 30 (13%) urban areas and increase in 38 (17%) urban areas; urban areas with positive

effects on fleet average fuel economy also tend to be smaller, lower income (at the 90% confidence level),

andhavemore vehicle registrations per capita and transit commuters but fewer householdswithout children

than urban areaswith negative effects. Estimated effects on per capita vehicle registrations and average fuel

economy are not significant in 57% and 70% of urban areas, respectively (not shown). Because each treated

urban area observes only one TNC entry event, our ability to confidently identify effects for specific urban

areas is limited, and we use this analysis primarily to identify candidate hypotheses for which urban area at-

tributes are important in determining the type of response an urban area will have to TNC entry.
Cluster effects

As a complementary approach to characterizing heterogeneity, we use hierarchical clustering to identify

and group similar urban areas and then estimate TNC entry effects for each cluster. In Figure 3 we show

for alternative exogeneous specifications for the number of clusters the resulting effect in each cluster of

TNC entry on per capita vehicle registrations (detailed results for the 3- and 4-cluster cases are presented

in Table S6, and results for alternative clustering methods and clustering features are presented in Figures

S12 and S13). Significant estimates range from a 1%–3% increase (excluding the single-urban-area cluster

containing New York City, which contains only one treatment observation), and all estimates range from a

1.8% decrease to a 3.0% increase. Conducting a linear regression for the case of 3 clusters using a binary

variable equal to 1 if an urban area is in a cluster with a statistically significant positive estimated effect and

0 otherwise, we find that the significant-and-positive-effect clusters include urban areas that are, on

average, smaller with lower incomes and population growth rates, higher vehicle ownership rates, and

more households without children compared to the clusters with estimated effects that are not statistically

significant (Table 3). Results for 4 clusters are presented in Figure S11.

Figure 3 also shows for each cluster the effect of TNC entry on average fuel economy, significant estimates

of which range from a 0.4%–0.5% increase and all estimates of which range from a 0.07% decrease to a 0.4%

increase. As was the case for heterogeneity in estimated vehicle registration effects, the cluster with signif-

icant-and-positive-effects includes urban areas that are, on average, smaller with lower incomes and pop-

ulation growth rates and higher vehicle ownership rates and more households without children compared

to the clusters with insignificant-effects, as Table 3 again shows.
iScience 24, 101933, January 22, 2020 5



Table 2. Urban-area attributes influencing treatment effects: HTE results

Dependent variable:

Indicator: TNC entry

has a statistically significant [1 = positive,

0 = negative] HTE-estimated effect for

per capita registrations

Indicator: TNC entry

has a statistically significant [1 = positive,

0 = negative] HTE-estimated effect for

fleet fuel economy

Vehicle registrations

per capita

0.284** 0.628**

(0.141) (0.141)

Population, log �0.040** �0.033**

(0.017) (0.017)

D population, log �0.448 0.533

(0.765) (1.051)

Income �0.282*** �0.161*

(0.095) (0.095)

Transit commuters,

log +1

1.396** 2.528***

(0.662) (0.637)

Unemployment rate �1.133 0.936

(0.822) (0.834)

Childless household

rate

0.818*** �2.238***

(0.294) (0.305)

Gasoline price �0.003 �0.002

(0.003) (0.003)

Observations 3395 3395

Degrees of freedom 2895 2895

Adjusted R-squared 0.042 0.057

*p < 0.1; **p < 0.05; ***p < 0.01.

Coefficients of a linear model estimating whether the HTE-estimated urban area effect for vehicle registrations or fuel econ-

omy is statistically significant (p < 0.05) and positive (dependent variable indicator = 1) versus negative (dependent variable

indicator = 0) as a function of other covariates used in the primary regression. Results are used to identify candidate urban

area characteristics that may be important in determining response to TNC entry.
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Estimates are overall robust to the battery of robustness checks already described as well as to addi-

tional checks for alternative clustering methods (with further detail the SI). New York City appears as a

‘‘cluster’’ of just one urban area in each figure and is not explicitly explored further in this analysis

because the intent is to identify trends across cities, and single-city estimates based on a single

TNC entry event may not be reliable. For the effect of TNC entry on transit ridership, none of our

clusters had significant effects. Like the HTE analysis, we use the results of this analysis primarily to

identify candidate hypotheses for which urban area attributes are important in determining the

type of response an urban area will have to TNC entry.
Primary model specification

In our primary specification for characterizing differences across urban areas, we introduce treatment

interaction regressions that include the six dimensions of urban area attributes suggested by either

the HTE results or the clustering analysis results as being important to determining the direction of

TNC entry effects: vehicle registrations per capita (in a pre-treatment reference year, 2010, to avoid

endogeneity in modeling vehicle registrations in 2011–2017), population, population growth, income,

the percentage of commuters who travel by transit, and the percentage of households without chil-

dren (all also measured in a pre-treatment reference year, 2011) (Table S8). As Table 4 and Figure 4

show, we find evidence of heterogeneity in TNC effects across all outcomes studied: larger increases

on vehicle ownership in urban areas with higher initial vehicle ownership and lower growth rates;

larger increases on average fuel economy in urban areas with lower childless households rates; and
6 iScience 24, 101933, January 22, 2020



Figure 3. Cluster analysis results

TNC treatment effect on the change in per capita vehicle registrations (top) and average fuel economy (bottom) varies by

urban area typology and is consistently significant and positive (indicated in blue) for one-to-two clusters of urban areas

across a sweep of exogenously specified cluster numbers (excluding the single-urban-area cluster containing New York

City). Statistically significant effects are highlighted in blue, and estimates that are not significant are gray. The size of each

circle reflects the number of urban areas in each cluster; note that the weighted average (by number of urban areas per

cluster) of cluster effects is consistent across the number of clusters and with the average estimates in Table 1. Detailed

results are presented in Table S6.
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larger decreases in transit ridership in urban areas with higher incomes and higher childless house-

holds rates. Estimates are generally robust to a battery of robustness checks (Table S9), including ran-

domized treatment (Figure S7), leave-one-out analysis (Figures S8 and S9), leave-multiple-out analysis

(Figure S10), alternative quantile resolution (Table S15), continuous interactions (Table S16), and cor-

rections for multiple hypothesis tests (Table S14).
DISCUSSION

We apply HTE analysis, cluster analysis, and a regression analysis with interaction effects as three

different ways to characterize the heterogeneity of vehicle ownership, fuel economy, and transit

ridership impacts as Uber and Lyft enter into urban areas. Our results suggest that access to these

TNC services has significant and heterogeneous effects on vehicle ownership (per capita vehicle reg-

istrations). All three methods agree that TNC entry tends to produce larger increases in vehicle

ownership for those urban areas with higher initial vehicle ownership (Table S8). So, ‘‘car-dependent

cities’’ (urban areas in the top 50% of vehicle registrations per capita) remain or become even more

so after the introduction of TNCs, whereas car ownership is not necessarily increased when TNCs

enter less car-dependent areas. And our primary specification suggests that while TNC-stimulated

new vehicle acquisitions tend to outpace new residents in slower-population-growth areas, in
iScience 24, 101933, January 22, 2020 7



Table 3. Urban-area attributes influencing treatment effects: cluster analysis results

Dependent variable:

Indicator: TNC entry

[1 = has, 0 = does not have] a

statistically significant positive cluster-

estimated effect for per capita

registrations

Indicator: TNC entry

[1 = has, 0 = does not have] a

statistically significant positive

cluster-estimated effect for

fleet fuel economy

Vehicle registrations

per capita

1.023*** 1.023***

(0.083) (0.083)

Population, log �0.032*** �0.032***

(0.009) (0.009)

D population, log �5.663*** �5.663***

(0.439) (0.439)

Income �0.243*** �0.243***

(0.052) (0.052)

Transit commuters,

log +1

0.695 0.695

(0.516) (0.516)

Unemployment rate �0.080 �0.080

(0.386) (0.386)

Childless household

rate

1.155*** 1.155***

(0.146) (0.146)

Gasoline price 0.004* 0.004*

(0.002) (0.002)

Observations 3395 3395

Degrees of freedom 2895 2895

Adjusted R-squared 0.1892 0.1892

*p < 0.1; **p < 0.05; ***p < 0.01.

Coefficients of a linear model estimating whether the cluster containing each urban area has or does not have a significant

(p < 0.05) positive estimated TNC effect on vehicle registrations or fuel economy as a function of other covariates used in the

primary regression. Results are identical for both dependent variables because the set of clusters with positive effects are

identical for the 3-cluster case. Results for the 4-cluster case are presented in Figure S11. Results are used to identify candi-

date urban area characteristics that may be important in determining response to TNC entry.
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faster-population-growth areas, more new residents afforded the flexibility of being potential TNC

passengers depresses overall per capita private vehicle registrations.

Our interaction effects model and our HTE model also agree that TNC entry tends to produce larger

increases in fleet average fuel economy in urban areas with fewer childless households, but our cluster

analysis results suggest the opposite. One possible interpretation for the importance of childless

households is that the purchase of efficient new vehicles by new TNC drivers results in a smaller rela-

tive efficiency increase in urban areas with a higher concentration of smaller cars than in urban areas

with a higher concentration of family cars. Increases in average fuel economy can reduce fuel con-

sumption and associated emissions, although the net effect also depends on potential changes in

travel behavior, which was not studied here due to lack of annual vehicle travel distance data at

the urban area level.

Finally, the interaction effects model suggests that TNC entry tends to produce larger decreases in

transit ridership for urban areas with higher incomes and childless household rates, (we did not iden-

tify statistically significant results for transit in our HTE and cluster analysis models). A potential inter-

pretation is that TNCs have a greater tendency to displace transit in cities where potential passengers

possess a greater ability to pay for more expensive, more convenient travel modes and where poten-

tial passengers are childless and may have fewer family constraints, such as car seats, and different
8 iScience 24, 101933, January 22, 2020



Table 4. Results for primary model specification

Dependent variable, log:

Vehicle registration,

per capita

Average fuel

economy

Transit trips,

per capita

Treatment 0.006 0.002** 0.003

(0.008) (0.001) (0.027)

Treatment 3 1Top50%_VehicleRegistrations 0.009** �2.2 3 10�5 �0.002

(0.004) (4.2 3 10�4) (0.013)

Treatment 3 1Top50%_Population �0.006 8.5 3 10�5 0.024

(0.008) (6.9 3 10�4) (0.021)

Treatment 3 1Top50%_PopulationGrowth �0.009** �5.2 3 10�4 �0.002

(0.004) (3.8 3 10�4) (0.013)

Treatment 3 1Top50%_ChildlessHHRate 0.003 �0.001** �0.026**

(0.004) (0.000) (0.013)

Treatment 3 1Top50%_Income 0.000 �4.6 3 10�4 �0.051***

(0.005) (4.4 3 10�4) (0.017)

Treatment 3 1Top50%_TransitRidership 0.004 �5.5 3 10-4 0.027

(0.005) (4.2 3 10�4) (0.020)

Covariate controls Y Y Y

Time fixed effects Y Y Y

Group fixed effects Y Y Y

Group time trends Y Y Y

Observations 3395 3395 1584

Deg. freedom 2407 2407 1034

Adjusted R-sq. 0.972 0.996 0.998

Covariate, time fixed effects, group fixed effects, and group time trend coefficient estimates not shown. ycomputed post-hoc

and not directly estimated; *p < 0.1; **p < 0.05; ***p < 0.01.

Treatment effects of TNC entry in US urban areas from three regression models for (1) vehicle registrations per capita, (2) fleet

average fuel economy, and (3) transit trips per capita, each including interactions with categorical measures of vehicle owner-

ship, population, population growth, childless household rate, income, and transit commuters. 1Top50%_X is an indicator func-

tion that is 1 for urban areas with values of characteristic X in the top 50% of all urban areas in the data set (0 otherwise). Co-

efficients for controls, fixed effects, and linear time trends are omitted for brevity. Alternative specifications and robustness

checks are presented in Tables S9–S16.
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travel behavior, such as frequenting bars and restaurants. Declines in transit ridership affect transit

revenues and potentially affect service availability and access. Additionally, diversion of trips from

transit to TNC travel has implications for energy use, emissions, and road congestion.
Limitations of the study

Our analysis controls for all described urban area covariates using an approach ‘‘doubly robust’’ to model

specification by including these controls in the regression specification as well as in determining propensity

score weights using a flexible functional form via gradient boosting. The difference-in-difference model

specification also controls for unobserved effects, to the extent that they are time-invariant in each urban

area (captured by group fixed effects) or consistent across urban areas (captured by time fixed effects). The

addition of linear time trends provides further flexibility to control for different trends across urban areas.

Remaining factors for which we (and similar econometric models) cannot control are any unobserved

nonlinear changes in trends of unobserved variables that differ across urban areas. We are not aware of

additional factors that changed nonlinearly and heterogeneously across urban areas during the analysis

period that are correlated with treatment and substantially influence our dependent variables enough to

bias our estimates, and our robustness checks protect against some potential effects of this form (e.g.:

via leave-one-out tests).
iScience 24, 101933, January 22, 2020 9



Figure 4. Summary of results for primary model specification

Visual summary of regression model findings estimating TNC market entry effects on vehicle ownership, fuel economy,

and transit ridership. Average effects for each outcome are shown in blue (with an error bar indicating a 95% confidence

interval), and heterogeneous effects are shown in gray (with arrows indicating the estimated interaction effects). Data

from Tables 1 and 4.
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Interpreting the estimated effects presented here as causal relies on three key assumptions of the differ-

ence-in-difference approach: (1) exogeneous intervention, (2) parallel trends, and (3) no spillover. For

the exogeneous intervention condition, informal discussions with TNCs about market entry strategy sug-

gests that decisions were not made by monitoring differential nonlinear changes in trends across urban

area variables other than monitoring frequency of local web searches for terms like ‘‘uber’’ and ‘‘lyft’’.

Our event study results (Figure S6) are consistent with exogeneous intervention because, for registrations

as the dependent variable, we observe no statistically significant effects prior to entry and observe statis-

tically significant and positive effects every year after entry. For the parallel trends condition, use of linear

time trends provides flexibility in establishing parallel trends relative to potentially distinct linear trends in

each urban area, and it is encouraging that our event study (Figure S6), which does not assume parallel

trends, also produces a positive (although larger) effect estimate after entry. For the spillover condition,

we view it as safe to assume the effect of residents in one city changing vehicle ownership or transit rider-

ship patterns in response to entry of TNCs in other cities is negligible.

Our analysis identifies net overall outcomes after TNCs enter urban areas. We cannot identify more detailed

changes to vehicle fleetmix or changes in specific cities with the available data, and there are potentiallymultiple

alternative—and sometimes competing—narratives that might explain these trends. Additional study of the ef-

fect of TNCmarket entry on vehicle fleet composition and travel behavior across the fleet is needed for deeper

insight about themechanisms that produce these outcomes. Our analysis is also constrained to a relatively short

time period and relatively simple measures of TNC availability and use; whereas, future study can build on this
10 iScience 24, 101933, January 22, 2020
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work with more detailed data. Given the global growth trends of TNC services, vehicle manufacturing, and

travel-related GHG, and air pollutant emissions, understanding and mitigating the environmental impacts of

TNC use in urban areas is critical.
Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Jeremy Michalek (jmichalek@cmu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data set and code used in this study have been deposited toMendeley Data [https://doi.org/10.17632/

8tpstn78dh.1], with the exception of vehicle registration and fuel economy data. Vehicle registration and

fuel economy data are propriety to and available from IHS Markit; restrictions apply to the availability of

these data, which were used under license for the current study, and so are available for purchase from

IHS Markit.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental information can be found online at https://doi.org/10.1016/j.isci.2020.101933.
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1. TRANSPARENT METHODS  

We use difference-in-difference (DID) models to estimate effects of the intervention (TNC entry 
into U.S. urban areas) by comparing the trends of treated and untreated groups before and after 
the treatment occurs. The DID technique is a quasi-experimental method that enables our models 
to isolate and estimate a TNC entry effect, even without a randomized controlled experiment. 
These specifications can control explicitly for relevant covariates as well as implicitly for 
potentially unobserved (or otherwise omitted) covariates (to the extent they are time invariant 
within each urban area or affect urban areas similarly over time) that could otherwise bias our 
estimates by differencing away similarities between treated and untreated groups (both of which 
are ostensibly similarly affected by any potentially omitted covariates). DID methods have been 
used previously to evaluate the effect of TNCs on transportation and several other outcomes. We 
employ inverse probability of treatment weighting (IPTW) to ensure that our control and treated 
groups are comparable and mitigating confounding (e.g.: TNCs systematically entering certain 
kinds of urban areas first). The details of our DID and IPTW implementations are described 
below. 

1.1. Difference-in-Difference Model 
Our regression model is informed by models used in prior literature for our outcomes of interest. 
Regression analysis is conducted using inverse probability of treatment weighting (described 
below) and the following baseline specification: 

 

 𝑦𝑢𝑡 = 𝛽𝑥𝑢𝑡 + 𝛂⊤𝐳𝑢𝑡 + 𝛾𝑢 + 𝛿𝑡 + 𝛾𝑢𝑡 + 𝜀𝑢𝑡 (1) 

 

where 𝑦𝑢𝑡 is the dependent variable of interest for urban area 𝑢 and year 𝑡 and represents either 
1) vehicle registrations per capita, 2) average fuel economy, or 3) transit ridership. 𝑥𝑢𝑡 is the 
treatment (TNC indicator) with coefficient 𝛽. 𝐳𝑢𝑡 is a vector of controls (population, 
unemployment rate, income, portion of households with no children, percent of population 
commuting by transit, and state average gas price), with corresponding coefficients 𝛂. 𝛾𝑢 and 𝛿𝑔 
are fixed-effects dummies for urban area 𝑢 and year 𝑡, respectively; 𝛾𝑢𝑡 allows for linear time 
trends by urban area; and 𝜀𝑢𝑡 is unobserved error.  

Propensity Score 

A potential concern arises if treatment (TNC entry) is conflated with other attributes of the 
treated and untreated groups (e.g.: if densely populated cities are treated more frequently than 
less densely populated cities). So, to control for potential systematic differences between treated 
and untreated groups, we apply both control variables and inverse probability of treatment 
weights (IPTW) in a weighted least-squares model. This model compares post-treatment trends 
in treated units with weighted trends in non-treated units, probabilistically weighted to resemble 
the treated states along attribute dimensions that are correlated with treatment. After estimating 
the probability of treatment, we compare measures of balance to confirm that the propensity score 
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weights succeed in matching the control states’ weighted pretreatment characteristics to those of 
the unweighted treatment states (that is, that the weighted control and unweighted treatment 
group are balanced). 

We estimate propensity scores using gradient boosting (Friedman et al., 2000), which previous 
studies have shown as superior to simple logistic regression models for propensity score estimation 
(McCaffrey et al., 2013), to approximate the logistic model: 

 

 log ( 𝑝𝑔𝑡(𝐳𝑢𝑡)
1−𝑝𝑢𝑡(𝐳𝑢𝑡)) = ∑ 𝑓𝑚(𝐳𝑢𝑡)𝑚 + 𝜖𝑢𝑡, (2) 

 

where 𝑝𝑢𝑡 is the probability of treatment for urban area 𝑢 and year 𝑡; 𝐳𝑢𝑡 is the same vector of 
covariates for urban area 𝑢 and year 𝑡 as in equation (1), and 𝜖𝑢𝑡 is unobserved error. We estimate 
the additive function 𝑓𝑚 using gradient boosting, given the treatment and covariate data, and 
compute estimated probability of treatment 𝑝�̂�𝑡 for each urban area and year. The resulting 
estimates for probability of treatment are then used in a weighted regression for equation (1) 
(Austin and Stuart, 2015). Table S4 reports the resulting weights used; Table S3 summarizes 
improvements of balance of attributes across treated and untreated urban areas after weighting, 
and Figure S2 presents an influence diagram. Table S6 compares regression results with and 
without IPTW weighting. Figure S3 provides diagnostic plots for the IPTW regression. 

Heterogeneous Treatment Effects Analysis 

We estimate heterogeneous treatment effects by individual urban area in the following variation 
of our baseline specification: 

 

 𝑦𝑢𝑡 = 𝛽𝑢𝑥𝑢𝑡 + 𝛂⊤𝐳𝑢𝑡 + 𝛾𝑢 + 𝛿𝑡 + 𝛾𝑢𝑡 + 𝜀𝑢𝑡, (3) 

 

such that the coefficient 𝛽𝑢 now takes on unique values for each urban area 𝑢.  We subsequently 
fit an additional linear model to identify significant differences between urban areas where 
treatment effects are positive versus negative using the following specification: 

 

 𝜏𝑢 = 𝛂⊤𝐳𝑢𝑡 + 𝜀𝑢𝑡, (4) 

 

where 𝜏𝑢 is a binary indicator for whether the treatment effect is significant and positive or 
significant and negative (urban areas without significant estimated effects are excluded). Detailed 
results for the HTE model are presented in Table S5 and Figure S5. 

1.2. Cluster Analysis 
We use hierarchical clustering to identify groups of urban areas that are similar in terms of their 
observable features, employing an agglomerative (rather than divisive) algorithm, in hopes of 
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finding larger groups of similar urban areas, and computing [dis]similarity across urban areas using 
Euclidean distances and Ward’s minimum variance method (Murtagh and Legendre, 2011). For 
a given number of clusters, 𝑛, we re-specify our regression as: 

 

 𝑦𝑢𝑡 = 𝛋𝑢
⊤𝛃𝑥𝑢𝑡 + 𝛂⊤𝐳𝑢𝑡 + 𝛾𝑢 + 𝛿𝑡 + 𝛾𝑢𝑡 + 𝜀𝑢𝑡, (5) 

 

where 𝛋𝑢
⊤ = [κ1u 𝜅2𝑢 … 𝜅𝑛𝑢] is a vector indicating the cluster to which urban area 𝑢 belongs (𝜅𝑖𝑢 =

1 if urban area 𝑢 is in cluster 𝑖 and 𝜅𝑖𝑢 = 0 otherwise) and 𝛃 = [𝛽1 𝛽2 … 𝛽𝑛]⊤ is the vector of 
treatment coefficients for each cluster. We run a series of models sweeping from 𝑛 ∈ {2, 3,… ,10} 
clusters and estimate cluster-specific TNC entry effects as described.  

We test the sensitivity of our clustering analysis by varying the clustering algorithm (divisive 
rather than agglomerative), the distance measure (Manhattan rather than Euclidean), the linkage 
function (complete rather than Ward’s method) and by using a subset (rather than all) of urban 
area features: vehicle registrations per capita, population, population density, and percent of 
population commuting by transit. 

We again fit an additional linear model to identify significant differences between clusters of urban 
areas where treatment effects are positive and significant versus insignificant using the following 
specification: 

 

 𝛕𝑢 = 𝛂⊤𝐳𝑢𝑡 + 𝜀𝑢𝑡, (6) 

 

where 𝜏𝑢 is a binary indicator for whether the treatment effect for the cluster to which an urban 
area belongs is significant and positive or not. Results for 3-cluster models are summarized in 
Table 3. Results for 3- and 4-cluster models are presented in Table S6. 

1.3. Interaction Analysis 
In a final variation on the primary regression in equation (1), we interact specific variables with 
treatment. We specify these interaction regressions as: 

 

 𝑦𝑢𝑡 = 𝛽1𝑥𝑢𝑡 + 𝛽2𝑥𝑢𝑡𝜁𝑢𝑡 + 𝛂⊤𝐳𝑢𝑡 + 𝛾𝑢 + 𝛿𝑡 + 𝛾𝑢𝑡 + 𝜀𝑢𝑡, (7) 

 

where 𝛽1 is the average treatment coefficient and 𝛽2 is a treatment interaction coefficient 
estimating how the average treatment varies with 𝜁𝑢, an element of 𝐳𝑢𝑡. We interact a categorical 
measure of 𝜁𝑢𝑡: 1 indicates a value greater than the median for a given UA in a given year; while, 
0 indicates not (Table S7 provides summary statistics). We use pre-treatment year 2011 for all 
categorical control variables except for the following: when the interaction term is vehicle 
registrations per capita, to avoid endogeneity problems (as a function of modeling a dependent 
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measure of vehicle registrations per capita with an independent measure of the same), the 
interaction term refers to a pre-treatment categorization from 2010. 

1.4. Robustness 
We subject our results to a variety of checks including a set of robustness checks, sensitivity 
analysis, and event studies. We discuss each below. All significant effects in our primary model 
are robust (i.e., still estimated as significant at similar magnitude) to five robustness checks, with 
exceptions noted in Table S9, as follows: 

(1) Randomized Treatment: we conduct placebo tests, in which we reassign the set of true 
TNC entry dates to other urban areas at random and re-specify our regressions, to ensure 
that the effects we estimate are unique to the particular observed pattern of treatments, 
rather than a result of the structure of the model (Figure S7). Estimated effects are 
considered robust if they fall in the tails (>95%) of the distribution of randomized 
treatment-estimated effects;  

(2) Leave-One-Out: we conduct leave-one-out tests to ensure that our estimates do not hinge 
on accuracy of the timing of TNC entry in, or the data from, any one urban area. (Figure 
S8-Figure S9) Estimated effects are considered robust if they remain significant when 
systematically leaving each urban area out;  

(3) Leave-Multiple-Out: because some dependent variables exhibit what could be perceived as 
discontinuities resulting from data collection/input or other error for several urban areas, 
we incrementally remove urban areas that exhibit the largest year-on-year change in 
decreasing order (Figure S10). Estimated effects are considered robust if estimated 
magnitude and significant are similar after systematically excluding up to 25 urban areas; 

(4) Alternative Quantiles: in our targeted interaction regressions, we increase the number of 
quantiles (the top and bottom 50%iles are compared in the main text) to confirm 
significant treatment interaction terms are robust and consistent across varying categorical 
interaction variable quantile sizes (Figure S10); 

(5) Continuous Interaction: in our targeted interaction regressions, we replace the categorical 
with a continuous measure of the interaction term to test whether interaction effects are 
linear (Table S16);  

(6) Alternative Clustering: in our cluster analysis, we change the urban area features and 
algorithms used for clustering (including Manhattan instead of Euclidean distance 
measures, a complete linkage function instead of Ward’s linkage function, a divisive instead 
of agglomerative algorithm, and an alternative feature selection, including only those 
features identified as significant in our HTE analysis) to confirm correlations between TNC 
effects on vehicle registration and fuel economy outcomes are consistent independent of 
clustering features and/or method (Figure S12-Figure S13); and  

(7) Event Study: we model an event study by adding relative time indicators for the number 
of years before and after TNC entry to confirm the presence of post-treatment (i.e., post-
TNC entry) effects without pre-treatment anticipation (i.e., estimated effects occur only 
after treatment) (Figure S6). 

Robustness test results are summarized in Table S9. 
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1.5. Data 
We describe and identify data sources, resolution, and other data quality descriptions for 
dependent variables, treatment, and control variables below (Table S1 provides summary 
statistics):  

Dependent Variables: 

• Vehicle registrations and fuel economy: IHS Markit (formerly Polk) collects and sells 
vehicle registration information from U.S. state agencies responsible for vehicle registration 
data (IHS Markit, 2019). We rely on annual versions of the dataset from 2010–2017 that 
report individual vehicle make, model, and engine size for each of the approximately 240 
million light-duty vehicles registered in the U.S. Data are provided to us at the ZIP code 
level, and we aggregate vehicle counts to and average fuel economies by urban area. 

• Transit ridership: U.S. DOT’s Federal Transit Administration (FTA) reports annual 
summary statistics, including ridership by transit mode (train, bus, demand response, or 
other), on more than 660 transit providers receiving federal funding in the National Transit 
Database (Federal Transit Administration, 2019). We focus on transit providers that 
consistently report data for all years of this analysis (2010–2017) and aggregate individual 
transit agencies by urban area, per classification in the database, resulting in transit data 
for only 55% of the urban areas in our dataset. 

Treatment Variables:  

• Uber and Lyft entry dates: We adopt data from previous sources that aggregated and 
published a time-series of Uber market entry dates. A 2014 Forbes article first aggregated 
Uber launch dates from 2010–2014 (Bi, 2014) by service area, as originally announced on 
Uber’s official blog (on a post no longer available) and/or in local media from each new 
service area. Forbes continued to update that dataset to reflect additional Uber markets 
launched through December 2015. Those dates are cross-referenced against Uber market 
launch date data that were independently gathered and published in two later studies (Bi, 
2014; Brazil and Kirk, 2016) as well as the authors’ own systematic comparison with local 
newspaper announcements. Burtch et al. include a table of market launch dates for 
UberX—Uber’s lower-cost, on-demand service provided in the driver’s personal vehicle, 
which the authors compiled directly from the Uber Blog for the rest of the analysis period 
(through 2017). Lyft market launch dates were requested from and provided by Lyft 
(Gigante, 2016). While Uber and Lyft launch dates are published to the day, we use an 
annualized measure (to align with our other annual indicators) of the first entry date (Uber 
or Lyft) in our analysis to indicate when on-demand mobility became available for each 
urban area (annualized Lyft market entry years are the same or later than annualized 
Uber market entry years in all but several cases in upstate New York). Market entry 
begins in 2012 with 5 urban areas, grows through 2014 with 114 urban areas, and then 
declines through the end of our analysis period (and likely beyond) with 25 urban areas 
treated in 2017. Table S2 in presents details on market entry timing by urban area and is 
accompanied by Figure S4, which presents a Goodman-Bacon decomposition diagnostic 
plot of difference-in-difference weights by treatment timing cohort. 
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Control Variables 

• Control variables are 5-year American Community Survey (ACS) estimates reported by 
the U.S. Census annually and include: (i) population, (ii) unemployment rate, (iii) income, 
(iv) portion of households without children, and (v) percent of population commuting by 
transit. A state-level measure of gasoline price, published annually by the Energy 
Information Administration, is also included as a control variable (U.S. Energy 
Information Administration, 2020). Additional ACS variables used to determine IPTW 
weights include: population density, portion of the population over age 16 and 65, 
respectively, and percent of population that is female.  
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2. SUPPLEMENTAL FIGURES 

 

  
Figure S1. Vehicle Ownership, Transportation Energy Consumption, and Commute 
Modes in US Cities. Transportation energy consumption is positively correlated with vehicle 
ownership, shown for 10 major U.S. cities (left; data from U.S. Census and Newman and 
Kenworthy, 2006), and private vehicle travel consumes proportionally greater energy, compared 
to commuter transportation modes, as energy shares of those commuter transportation modes for 
New York and Los Angeles shows (right; data from U.S. Census and Banister, 2011). Related to 
Figure 1. 
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Figure S2. IPTW influence diagram. Relative influence of urban area features in determining 
the estimated probability of treatment (i.e., TNC entry in a given urban area in a given year). 
The influence diagram indicates that urban area population (“pop”) is the most important urban 
area feature in determining estimated probability of treatment, followed by unemployment rate 
(“p_unemp”), population density (“pop_dens”), percentage of population over 65 (“p_o_65”), 
income (“inc”), childless household rate (“p_no_child”), percentage of population over 16 
(“p_o_16”), percentage female (“p_fem”), and public transit commuting rate (“p_pt”). 
Population alone accounts for just over 50% of the variance that influences estimated probability 
of treatment. Related to Table 1. 

 



Ward, Michalek, Samaras, Azevedo, Henao, Rames, and Wenzel  Supplemental Information 

 S9 

 
Figure S3. IPTW diagnostic plots. Shown for model estimating average effect on vehicle 
ownership. The residuals-vs.-fitted values plot (top, left) confirms no structure in residual error; 
the normal quantile-quantile plot (top, right) illustrates a generally normal distribution of residual 
errors with heavy tails; the scale-location plot (bottom, left) suggests residuals are generally 
randomly spread over the range of fitted values (and our main text reports cluster-robust standard 
errors); and the residuals-vs.-leverage plot suggests no disproportionately influential observations. 
Related to Table 1. 
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Figure S4. Goodman-Bacon decomposition diagnostic plot. This figure shows the OLS 
difference-in-difference coefficient estimate and weight in the overall average treatment effect for 
each respective cohort. The largest weights are associated with the difference between untreated 
urban areas and urban areas treated in 2014 and 2015, which corresponds both to the middle of 
the analysis period and the years in which the greatest number of urban areas are treated (48% 
and 22% in 2014 and 2015, respectively). Related to Table 1 and Table S2. 
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Figure S5. Heterogeneous treatment effect model results. At left, a comparison of the 
level of significance (p-value) of all estimated urban area-specific TNC entry treatment effects on 
vehicle ownership as a function of TNC entry date into each urban area, as well as the average 
level of significance by TNC entry year. At right, the percentage of urban areas with a significant 
estimated TNC entry effect on vehicle ownership by TNC entry year as well as the distribution 
of the number of urban areas with a significant estimated TNC entry effect on vehicle ownership 
by TNC entry year. Related to Figure 2. 

 
Figure S6. Event study. An event study showing estimated relative time effect of TNC entry 
on vehicle registrations per capita. Estimated effects are not significant before the year of entry 
and are significant and positive after the year of entry, providing supporting evidence for primary 
conclusions. However, both the smooth monotonic visual trend and the larger magnitude of the 
estimated effect post treatment in the event study relative to the primary model suggest caution. 
Neither average fuel economy nor transit ridership are analyzed, as regressions modeling those 
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dependent variables in the main text did not identify a significant TNC entry effect to test. 
Related to Table 1. 

 
Figure S7. Robustness check: randomized treatment. Distributions of average TNC entry 
effect estimated on vehicle registrations per capita (top left), average fuel economy (top right), 
and transit ridership (bottom left) after randomizing TNC entry across urban areas. In general, 
the distributions are centered about zero and symmetric, suggesting that the estimated effects in 
the main text are not the inadvertent result of model structure. Related to Table 1. 
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Figure S8. Robustness check: leave-one-out analysis for average effect. Distributions of 
average TNC entry effect estimated on vehicle registrations per capita (top left), average fuel 
economy (top right), and transit ridership (bottom left) after systematically excluding one urban 
area at time. Limits of the x-axis are set to match the confidence interval presented in the main 
text, such that the tightness of the distribution is meaningful. In general, the distributions are 
centered tightly about the value estimated including all urban areas, suggesting no one urban area 
has undue influence in biasing or driving the estimates presented in the main text. Related to 
Table 1. 
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Figure S9. Robustness check: leave-one-out analysis for interaction effects. 
Distributions of the estimated interaction effect between TNC entry and a categorical measure of 
income on vehicle registrations per capita (top left), average fuel economy (top right), and transit 
ridership (bottom left) after systematically excluding one urban area at time. Limits of the x-axis 
are set to match the confidence interval presented in the main text, such that the tightness of the 
distribution is meaningful. In general, the distributions are centered tightly about the value 
estimated including all urban areas, suggesting no one urban area has undue influence in biasing 
or driving the estimates presented in the main text. Related to Table 1. 
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Figure S10. Robustness check: leave-multiple-out analysis. Distribution of changes in per-
capita vehicle registrations over the 2011–2017 analysis period by urban are (top left) as well as 
distributions of the estimated interaction effect between TNC entry and a categorical measure of 
income on vehicle registrations per capita (top right), average fuel economy (bottom left), and 
transit ridership (bottom right) after systematically excluding an increasing number of urban 
areas in order greatest change in vehicle ownership over the analysis period. Limits of the x-axis 
are set to match the confidence interval presented in the main text, such that the tightness of the 
distribution is meaningful. In general, the distributions are centered tightly about the value 
estimated including all urban areas, suggesting no one urban area has undue influence in biasing 
or driving the estimates presented in the main text. Related to Table 1. 

 

 

 

 



Ward, Michalek, Samaras, Azevedo, Henao, Rames, and Wenzel  Supplemental Information 

 S16 

 
Figure S11. Robustness check: cluster analysis results for the 4-cluster case. A 
comparison of the average characteristics of “Big, dense UAs” versus “Other UAs” (left), and 
“Slow growth UAs” versus “Other UAs” (right). Highlighted cells indicate significant differences 
(p<0.05). “Big, dense UAs” is a cluster where TNC entry results in increased per capita vehicle 
registrations, and “Slow growth UAs” is a cluster where TNC entry results in increased per capita 
registrations and increased fleet average fuel efficiency. Related to Table 3. 
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Figure S12. Robustness check: alternative clustering methods. TNC treatment effect on 
the change in per-capita vehicle registrations varying by urban area typology and as a function of 
clustering method: Euclidean vs. Manhattan distance (panel A vs. B), Ward’s vs. complete linkage 
(panel A vs. C), and agglomerative vs. divisive algorithm (panel A vs. D). In all cases, statistically 
significant effects are highlighted in blue, and estimates that are not significant are grey. The size 
of each circle reflects the number of urban areas in each cluster. Related to Figure 3. 
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Figure S13. Robustness check: alternative clustering features. TNC treatment effect on 
the change in per-capita vehicle registrations varying by urban area typology and as a function of 
the urban area features used for classification: all features (panel), only significant features 
identified in the HTE analysis (panel B), and significant features identified in the HTE analysis 
plus a measure of their rates of change (panel C). In all cases, statistically significant effects are 
highlighted in blue, and estimates that are not significant are grey. The size of each circle reflects 
the number of urban areas in each cluster. Red text indicate items common across all three plots. 
Related to Figure 3. 
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3. SUPPLEMENTAL TABLES 

 

Table S1. Descriptive statistics (means and standard deviations) across n=485 urban 
areas annually for the analysis period 2011–2017. Related to Tables 1-4. 

 
 

 

Table S2. TNC market entry timing by urban area. Market entry begins in 2012 with 5 
urban areas, grows through 2014 with 114 urban areas, and then declines through the end of our 
analysis period (and likely beyond) with 25 urban areas treated in 2017. Related to Figure 1. 

 
 

  

Uber Entry 
Year

Number of 
Urban Areas

Share of Urban 
Areas

Treatment 
Share

2012 5 1% 86%
2013 26 5% 71%
2014 114 24% 57%
2015 55 11% 43%
2016 17 4% 29%
2017 25 5% 14%

Untreated 243 50% --
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Table S3. Balance table for inverse probability of treatment weights (IPTW). 
Significant differences across population, density, unemployment, income, female population 
percentage, and transit commuting rate in the unweighted data are balanced (i.e., no significant 
differences) in the weighted sample (except for unemployment rate, which, though still statistically 
significantly different, is practically similar at 7.7% and 8.1% for the treated and control groups, 
respectively). Related to Table 1. 

 

 
 

 

Table S4. IPTW weights used in IPTW regressions. Urban areas with TNC access receive 
unity weights (i.e., a weight of 1); control urban areas and pre-treatment urban areas that are 
eventually treated are weighted as the quotient calculated by dividing probability of treatment 
by one minus the probability of treatment. Weights range from 0.01 (for several smaller urban 
areas) to 6.28 (for San Francisco, CA in the pre-treatment year 2011). Related to Table 1 and 
Table 4. 



Ward, Michalek, Samaras, Azevedo, Henao, Rames, and Wenzel  Supplemental Information 

 S21 

 

 

2011 2012 2013 2014 2015 2016 2017 2011 2012 2013 2014 2015 2016 2017
Aberdeen--Bel Air South--Bel Air North, MD 1.21 1.09 1.03 1.58 1.00 1.00 1.00 Chico, CA 0.03 0.03 0.03 0.06 1.00 1.00 1.00
Abilene, TX 0.26 0.24 0.25 0.25 0.22 0.25 0.30 Cincinnati, OH--KY--IN 0.77 1.13 1.60 1.00 1.00 1.00 1.00
Akron, OH 0.36 0.25 0.27 1.00 1.00 1.00 1.00 Clarksville, TN--KY 0.05 0.08 0.08 0.07 0.14 1.00 1.00
Albany--Schenectady, NY 1.39 1.25 0.80 1.50 2.52 3.44 1.00 Cleveland, OH 0.31 0.40 0.55 1.00 1.00 1.00 1.00
Albany, GA 0.01 0.01 0.01 0.00 0.00 0.01 0.01 Cleveland, TN 0.01 0.02 0.02 0.02 0.02 0.03 0.03
Albany, OR 0.04 0.02 0.02 0.01 0.02 0.03 0.04 Coeur d'Alene, ID 0.05 0.08 0.11 0.16 0.20 0.20 0.25
Albuquerque, NM 1.40 0.78 0.89 1.00 1.00 1.00 1.00 College Station--Bryan, TX 0.04 0.03 0.03 0.03 0.09 0.16 0.23
Alexandria, LA 0.04 0.05 0.05 0.05 0.05 0.05 0.06 Colorado Springs, CO 0.30 0.33 0.34 1.00 1.00 1.00 1.00
Allentown, PA--NJ 1.00 1.14 0.85 1.23 1.00 1.00 1.00 Columbia, MO 0.07 0.06 0.07 0.13 0.15 0.13 0.12
Alton, IL--MO 0.05 0.04 0.04 0.04 0.05 0.06 0.06 Columbia, SC 0.33 0.26 0.32 1.00 1.00 1.00 1.00
Altoona, PA 0.04 0.04 0.05 0.05 0.04 0.04 0.05 Columbus, GA--AL 0.19 0.20 0.13 0.16 0.20 1.00 1.00
Amarillo, TX 0.66 0.52 0.48 0.48 1.00 1.00 1.00 Columbus, IN 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Ames, IA 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Columbus, OH 0.38 0.51 0.51 1.00 1.00 1.00 1.00
Anchorage, AK 0.16 0.14 0.16 0.14 0.14 0.72 1.00 Concord, CA 0.90 0.46 0.43 0.37 1.12 1.66 1.87
Anderson, IN 0.05 0.04 0.04 0.05 0.05 0.08 0.06 Concord, NC 0.22 0.19 0.13 0.10 1.00 1.00 1.00
Anderson, SC 0.02 0.02 0.01 0.01 0.02 0.02 0.05 Conroe--The Woodlands, TX 0.37 0.38 0.38 0.56 0.57 0.64 1.35
Ann Arbor, MI 0.18 0.18 0.15 1.00 1.00 1.00 1.00 Conway, AR 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Anniston--Oxford, AL 0.03 0.04 0.01 0.01 0.01 0.01 0.02 Corpus Christi, TX 0.72 1.03 1.15 1.00 1.00 1.00 1.00
Antioch, CA 0.09 0.08 0.11 0.12 0.11 0.13 0.47 Corvallis, OR 0.02 0.02 0.01 0.01 0.01 0.02 0.02
Appleton, WI 1.11 1.41 1.43 1.58 1.00 1.00 1.00 Cumberland, MD--WV--PA 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Arroyo Grande--Grover Beach, CA 0.09 0.08 0.09 0.09 0.09 0.09 0.11 Dallas--Fort Worth--Arlington, TX 0.34 0.35 1.00 1.00 1.00 1.00 1.00
Asheville, NC 0.45 0.45 0.45 1.00 1.00 1.00 1.00 Dalton, GA 0.02 0.01 0.02 0.01 0.02 0.04 0.05
Athens-Clarke County, GA 0.20 0.15 0.12 1.00 1.00 1.00 1.00 Danbury, CT--NY 0.48 0.26 0.56 1.00 1.00 1.00 1.00
Atlanta, GA 0.15 1.00 1.00 1.00 1.00 1.00 1.00 Danville, IL 0.01 0.01 0.01 0.02 0.02 0.03 0.04
Atlantic City, NJ 0.36 0.37 0.40 1.00 1.00 1.00 1.00 Daphne--Fairhope, AL 0.02 0.02 0.02 0.02 0.02 0.03 0.03
Auburn, AL 0.00 0.00 0.00 0.00 0.00 0.01 0.01 Davenport, IA--IL 1.44 1.50 2.28 2.27 1.00 1.00 1.00
Augusta-Richmond County, GA--SC 0.37 0.34 0.26 0.34 1.00 1.00 1.00 Davis, CA 0.01 0.01 0.01 0.02 0.05 0.05 0.10
Austin, TX 0.32 0.26 0.48 1.00 1.00 1.00 1.00 Dayton, OH 0.44 0.45 0.50 1.00 1.00 1.00 1.00
Avondale--Goodyear, AZ 0.06 0.13 0.12 0.15 0.39 0.64 0.53 Decatur, AL 0.01 0.01 0.01 0.01 0.01 0.01 0.03
Bakersfield, CA 0.08 0.08 0.11 1.00 1.00 1.00 1.00 Decatur, IL 0.03 0.02 0.02 0.02 0.03 0.03 0.05
Baltimore, MD 1.02 1.02 1.00 1.00 1.00 1.00 1.00 DeKalb, IL 0.00 0.01 0.01 0.01 0.01 0.01 0.01
Bangor, ME 0.01 0.01 0.01 0.01 0.01 0.01 0.03 Delano, CA 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Barnstable Town, MA 1.03 1.81 1.00 1.00 1.00 1.00 1.00 Deltona, FL 0.35 0.28 0.19 1.00 1.00 1.00 1.00
Baton Rouge, LA 0.39 0.44 0.32 1.00 1.00 1.00 1.00 Denton--Lewisville, TX 0.25 0.22 0.15 0.16 0.19 0.25 0.81
Battle Creek, MI 0.01 0.01 0.01 0.01 0.02 0.03 0.02 Denver--Aurora, CO 0.55 0.37 0.55 1.00 1.00 1.00 1.00
Bay City, MI 0.02 0.01 0.01 0.02 0.02 0.02 0.02 Des Moines, IA 0.38 0.38 0.51 0.57 0.89 2.11 2.11
Beaumont, TX 0.12 0.10 0.08 0.13 0.17 0.39 0.59 Detroit, MI 1.10 1.10 1.00 1.00 1.00 1.00 1.00
Beckley, WV 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Dothan, AL 0.01 0.01 0.02 0.03 0.03 0.04 0.02
Bellingham, WA 0.31 0.30 0.33 0.45 1.00 1.00 1.00 Dover--Rochester, NH--ME 0.13 0.22 0.24 0.32 0.32 0.36 0.38
Beloit, WI--IL 0.03 0.03 0.02 0.02 1.00 1.00 1.00 Dover, DE 0.20 0.18 0.18 0.20 0.20 0.27 0.38
Bend, OR 0.01 0.01 0.01 0.01 0.02 0.21 0.24 Dubuque, IA--IL 0.05 0.06 0.06 0.06 0.06 0.06 0.05
Benton Harbor--St. Joseph--Fair Plain, MI 0.01 0.01 0.01 0.01 0.02 0.03 0.03 Duluth, MN--WI 0.31 0.43 0.43 0.40 1.02 1.32 1.00
Billings, MT 0.38 0.71 0.79 0.75 0.81 1.00 1.00 Durham, NC 0.34 0.35 0.41 1.00 1.00 1.00 1.00
Binghamton, NY--PA 0.19 0.20 0.19 0.20 0.59 0.40 1.00 East Stroudsburg, PA--NJ 0.02 0.01 0.01 0.01 0.01 0.01 0.02
Birmingham, AL 0.78 0.58 0.78 1.39 1.00 1.00 1.00 Eau Claire, WI 0.07 0.11 0.15 0.17 0.17 0.37 1.00
Bismarck, ND 0.02 0.01 0.01 0.01 0.01 0.02 0.02 El Centro--Calexico, CA 0.02 0.01 0.01 0.01 0.02 0.04 0.05
Blacksburg, VA 0.01 0.01 0.01 0.01 0.02 0.04 0.06 El Paso de Robles (Paso Robles)--Atascadero, CA 0.01 0.01 0.01 0.01 0.01 0.01 0.02
Bloomington--Normal, IL 0.10 0.12 0.07 0.19 0.30 0.42 0.69 El Paso, TX--NM 0.16 0.34 0.34 1.00 1.00 1.00 1.00
Bloomington, IN 0.01 0.05 0.08 1.00 1.00 1.00 1.00 Elizabethtown--Radcliff, KY 0.01 0.02 0.03 0.03 0.07 0.06 0.06
Bloomsburg--Berwick, PA 0.01 0.02 0.02 0.01 0.01 0.02 0.03 Elkhart, IN--MI 0.08 0.08 0.10 1.00 1.00 1.00 1.00
Boise City, ID 0.34 0.61 1.15 1.00 1.00 1.00 1.00 Elmira, NY 0.03 0.03 0.04 0.05 0.06 0.05 0.06
Bonita Springs, FL 1.26 1.23 0.93 1.00 1.00 1.00 1.00 Erie, PA 0.56 0.50 0.58 0.93 1.00 1.00 1.00
Boston, MA--NH--RI 2.61 2.64 1.00 1.00 1.00 1.00 1.00 Eugene, OR 0.26 0.24 0.22 0.26 0.34 0.85 2.45
Boulder, CO 0.40 0.40 0.15 1.00 1.00 1.00 1.00 Evansville, IN--KY 0.93 0.93 0.49 0.88 1.59 1.77 1.00
Bowling Green, KY 0.01 0.01 0.01 0.01 0.02 0.03 0.04 Fairbanks, AK 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Bremerton, WA 0.29 0.30 0.24 0.42 0.28 1.41 2.29 Fairfield, CA 0.12 0.13 0.09 0.14 0.15 0.20 0.35
Bridgeport--Stamford, CT--NY 0.54 0.48 0.46 1.00 1.00 1.00 1.00 Fargo, ND--MN 0.28 0.27 0.31 0.34 1.00 1.00 1.00
Bristol--Bristol, TN--VA 0.10 0.05 0.04 0.06 0.10 0.09 0.10 Farmington, NM 0.01 0.01 0.02 0.03 0.03 0.03 0.04
Brownsville, TX 0.06 0.05 0.05 0.05 0.05 0.05 0.12 Fayetteville--Springdale--Rogers, AR--MO 0.44 0.35 0.64 1.00 1.00 1.00 1.00
Brunswick, GA 0.01 0.02 0.03 0.01 0.03 0.02 1.00 Fayetteville, NC 0.35 0.29 0.26 1.00 1.00 1.00 1.00
Buffalo, NY 0.56 0.57 0.52 0.76 0.91 1.42 1.00 Flagstaff, AZ 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Burlington, NC 0.05 0.04 0.04 0.09 0.07 0.17 0.34 Flint, MI 0.18 0.22 0.22 1.00 1.00 1.00 1.00
Burlington, VT 0.25 0.29 0.25 0.26 0.44 0.47 1.03 Florence, AL 0.02 0.04 0.04 0.06 0.07 0.10 0.07
Camarillo, CA 0.08 0.08 0.08 0.09 0.08 0.10 0.11 Florence, SC 0.06 0.06 0.06 0.06 0.06 0.08 0.10
Canton, OH 0.44 0.36 0.39 1.00 1.00 1.00 1.00 Fond du Lac, WI 0.05 0.06 0.07 0.07 0.08 0.08 0.08
Cape Coral, FL 0.70 0.52 0.52 1.00 1.00 1.00 1.00 Fort Collins, CO 0.21 0.34 0.67 1.00 1.00 1.00 1.00
Cape Girardeau, MO--IL 0.01 0.01 0.01 0.01 0.01 0.02 0.02 Fort Smith, AR--OK 0.20 0.17 0.10 0.11 0.13 0.18 0.26
Carbondale, IL 0.01 0.01 0.01 0.01 0.01 0.02 0.02 Fort Walton Beach--Navarre--Wright, FL 0.62 0.58 0.59 1.00 1.00 1.00 1.00
Carson City, NV 0.02 0.02 0.02 0.01 0.02 0.02 0.03 Fort Wayne, IN 0.88 0.67 0.51 0.95 1.00 1.00 1.00
Cartersville, GA 0.00 0.01 0.01 0.01 0.01 0.02 0.02 Frederick, MD 0.18 0.28 0.77 0.42 1.00 1.00 1.00
Casa Grande, AZ 0.02 0.02 0.02 0.02 0.02 0.03 0.03 Fredericksburg, VA 0.08 0.09 0.12 0.09 0.33 0.38 0.53
Casper, WY 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Fresno, CA 0.55 0.50 0.50 1.00 1.00 1.00 1.00
Cedar Rapids, IA 0.69 0.69 0.63 1.00 1.00 1.00 1.00 Gadsden, AL 0.01 0.01 0.00 0.00 0.01 0.01 0.01
Chambersburg, PA 0.05 0.03 0.02 0.02 0.03 0.03 0.04 Gainesville, FL 0.53 0.47 0.26 1.00 1.00 1.00 1.00
Champaign, IL 0.51 0.47 0.45 0.45 1.00 1.00 1.00 Gainesville, GA 0.22 1.00 1.00 1.00 1.00 1.00 1.00
Charleston--North Charleston, SC 0.25 0.24 0.39 1.00 1.00 1.00 1.00 Gastonia, NC--SC 0.15 0.15 0.15 0.15 0.15 0.27 0.76
Charleston, WV 0.34 0.33 0.29 0.29 0.34 0.46 0.46 Gilroy--Morgan Hill, CA 0.01 0.01 0.01 0.01 0.03 0.05 0.05
Charlotte, NC--SC 1.24 0.93 1.00 1.00 1.00 1.00 1.00 Glens Falls, NY 0.06 0.07 0.08 0.08 0.07 0.07 0.07
Chattanooga, TN--GA 0.30 0.24 0.41 1.00 1.00 1.00 1.00 Goldsboro, NC 0.01 0.01 0.00 0.01 0.01 0.01 0.01
Cheyenne, WY 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Grand Forks, ND--MN 0.00 0.01 0.01 0.01 0.01 0.02 0.09
Chicago, IL--IN 0.92 1.12 1.00 1.00 1.00 1.00 1.00 Grand Island, NE 0.01 0.01 0.01 0.01 0.01 0.01 0.01



Ward, Michalek, Samaras, Azevedo, Henao, Rames, and Wenzel  Supplemental Information 

 S22 

 

2011 2012 2013 2014 2015 2016 2017 2011 2012 2013 2014 2015 2016 2017
Grand Junction, CO 0.96 0.55 0.54 0.48 1.00 1.00 1.00 Leominster--Fitchburg, MA 0.21 0.18 0.13 0.18 1.00 1.00 1.00
Grand Rapids, MI 0.21 0.29 0.58 1.00 1.00 1.00 1.00 Lewiston, ID--WA 0.01 0.02 0.01 0.01 0.01 0.01 0.02
Grants Pass, OR 0.01 0.01 0.01 0.01 0.01 0.01 0.02 Lewiston, ME 0.02 0.04 0.02 0.02 0.02 0.02 0.03
Great Falls, MT 0.03 0.04 0.04 0.04 0.04 0.03 0.04 Lexington Park--California--Chesapeake Ranch Estates, MD 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Greeley, CO 0.04 0.04 0.05 1.00 1.00 1.00 1.00 Lexington-Fayette, KY 0.36 0.20 0.25 1.00 1.00 1.00 1.00
Green Bay, WI 0.95 1.19 0.66 1.00 1.00 1.00 1.00 Lima, OH 0.01 0.01 0.02 0.02 0.02 0.03 0.03
Greensboro, NC 0.58 0.38 0.43 0.37 1.00 1.00 1.00 Lincoln, NE 0.47 0.58 0.89 1.00 1.00 1.00 1.00
Greenville, NC 0.07 0.03 0.08 0.06 1.00 1.00 1.00 Little Rock, AR 0.62 0.62 0.65 1.00 1.00 1.00 1.00
Greenville, SC 0.28 0.21 0.21 1.00 1.00 1.00 1.00 Livermore, CA 0.00 0.00 0.01 0.01 0.01 0.01 0.01
Gulfport, MS 0.40 0.26 0.16 0.19 0.37 1.00 1.00 Lodi, CA 0.02 0.02 0.02 0.04 0.03 0.03 0.04
Hagerstown, MD--WV--PA 0.69 0.49 0.24 0.24 1.00 1.00 1.00 Logan, UT 0.01 0.00 0.00 0.01 0.02 0.02 1.00
Hammond, LA 0.01 0.01 0.00 0.01 0.01 0.01 0.03 Lompoc, CA 0.00 0.00 0.01 0.01 0.01 0.01 0.01
Hanford, CA 0.01 0.01 0.01 0.01 0.02 0.02 0.03 Longmont, CO 0.03 0.04 0.04 0.04 0.04 0.04 0.04
Hanover, PA 0.06 0.05 0.05 0.05 0.05 0.05 0.05 Longview, TX 0.07 0.05 0.07 0.06 0.07 0.05 0.13
Harlingen, TX 0.01 0.01 0.02 0.02 0.03 0.03 0.02 Longview, WA--OR 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Harrisburg, PA 1.90 1.73 2.63 2.34 1.00 1.00 1.00 Lorain--Elyria, OH 0.13 0.11 0.12 0.14 0.17 0.18 0.44
Harrisonburg, VA 0.02 0.02 0.02 0.02 0.02 0.02 0.04 Los Angeles--Long Beach--Anaheim, CA 0.61 0.71 1.00 1.00 1.00 1.00 1.00
Hartford, CT 0.57 0.47 0.36 1.00 1.00 1.00 1.00 Los Lunas, NM 0.01 0.01 0.01 0.00 0.00 0.01 0.01
Hattiesburg, MS 0.02 0.02 0.03 0.02 0.01 0.03 0.06 Louisville/Jefferson County, KY--IN 0.50 0.35 0.56 1.00 1.00 1.00 1.00
Hazleton, PA 0.04 0.04 0.03 0.02 0.03 0.03 0.05 Lubbock, TX 0.45 0.59 0.56 1.00 1.00 1.00 1.00
Hemet, CA 0.07 0.07 0.03 0.04 0.05 0.17 0.17 Lynchburg, VA 0.13 0.17 0.21 0.25 1.00 1.00 1.00
Hickory, NC 0.07 0.06 0.05 0.06 0.07 0.17 0.26 Macon, GA 0.05 0.07 0.20 0.05 0.04 1.00 1.00
High Point, NC 0.10 0.08 0.09 0.08 1.00 1.00 1.00 Madera, CA 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hilton Head Island, SC 0.03 0.03 0.03 0.04 0.04 0.07 0.10 Madison, WI 0.53 0.47 0.54 1.00 1.00 1.00 1.00
Hinesville, GA 0.01 0.00 0.00 0.00 0.00 0.00 0.00 Manchester, NH 0.71 0.64 0.64 1.00 1.00 1.00 1.00
Holland, MI 0.09 0.09 0.09 0.12 0.13 0.12 1.00 Mandeville--Covington, LA 0.10 0.08 0.11 0.14 0.09 0.08 0.11
Homosassa Springs--Beverly Hills--Citrus Springs, FL 0.00 0.00 0.00 0.00 0.00 0.00 0.01 Manhattan, KS 0.01 0.00 0.01 0.01 0.01 0.01 0.01
Hot Springs, AR 0.01 0.00 0.01 0.00 0.00 0.00 0.00 Mankato, MN 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Houma, LA 0.12 0.13 0.22 0.13 0.11 0.13 0.12 Mansfield, OH 0.03 0.02 0.02 0.02 0.03 0.03 0.03
Houston, TX 0.68 0.56 0.60 1.00 1.00 1.00 1.00 Manteca, CA 0.01 0.02 0.02 0.03 0.03 0.03 0.05
Huntington, WV--KY--OH 0.83 0.46 0.46 0.46 0.69 1.00 1.00 Marysville, WA 0.11 0.13 0.09 0.11 1.00 1.00 1.00
Huntsville, AL 0.64 0.57 0.45 0.64 0.73 1.00 1.00 Mauldin--Simpsonville, SC 0.17 0.09 0.25 1.00 1.00 1.00 1.00
Idaho Falls, ID 0.00 0.00 0.00 0.01 1.00 1.00 1.00 McAllen, TX 0.05 0.05 0.05 0.05 0.05 0.08 0.08
Indianapolis, IN 0.72 0.69 1.00 1.00 1.00 1.00 1.00 McKinney, TX 0.52 0.52 1.00 1.00 1.00 1.00 1.00
Indio--Cathedral City, CA 0.77 0.66 0.60 1.00 1.00 1.00 1.00 Medford, OR 0.07 0.07 0.07 0.07 0.08 0.19 1.00
Iowa City, IA 0.10 0.14 0.12 0.24 0.73 1.00 1.00 Memphis, TN--MS--AR 0.40 0.40 0.38 1.00 1.00 1.00 1.00
Ithaca, NY 0.01 0.02 0.02 0.02 0.02 0.04 0.05 Merced, CA 0.04 0.04 0.02 0.03 0.04 0.04 0.04
Jackson, MI 0.04 0.04 0.04 0.03 0.05 0.06 0.07 Miami, FL 1.25 1.18 1.10 1.00 1.00 1.00 1.00
Jackson, MS 0.76 0.65 0.76 1.00 1.00 1.00 1.00 Michigan City--La Porte, IN--MI 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Jackson, TN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Middletown, NY 0.01 0.01 0.01 0.01 0.02 0.02 0.02
Jacksonville, FL 1.03 1.14 1.01 1.00 1.00 1.00 1.00 Middletown, OH 0.12 0.15 0.13 1.00 1.00 1.00 1.00
Jacksonville, NC 0.01 0.00 0.01 0.01 0.00 0.00 0.00 Midland, MI 0.01 0.01 0.01 0.02 0.02 0.01 0.01
Janesville, WI 0.03 0.03 0.02 0.03 0.03 0.03 0.03 Midland, TX 0.33 0.47 0.27 0.30 1.00 1.00 1.00
Jefferson City, MO 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Milwaukee, WI 1.02 0.72 0.66 1.00 1.00 1.00 1.00
Johnson City, TN 0.07 0.08 0.08 0.12 0.14 0.14 0.29 Minneapolis--St. Paul, MN--WI 0.91 0.99 1.00 1.00 1.00 1.00 1.00
Johnstown, PA 0.10 0.08 0.07 0.05 0.04 0.05 0.08 Mission Viejo--Lake Forest--San Clemente, CA 1.25 1.00 0.56 1.38 2.02 2.17 2.49
Jonesboro, AR 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Missoula, MT 0.04 0.05 0.05 0.13 0.10 0.10 0.12
Joplin, MO 0.02 0.02 0.02 0.02 0.02 0.02 0.03 Mobile, AL 0.28 0.24 0.23 0.23 1.00 1.00 1.00
Kahului, HI 0.05 0.03 0.03 0.02 0.02 0.04 0.04 Modesto, CA 0.34 0.40 0.42 1.00 1.00 1.00 1.00
Kailua (Honolulu County)--Kaneohe, HI 0.25 0.21 0.21 0.35 0.34 0.44 0.42 Monessen--California, PA 0.04 0.13 0.14 1.00 1.00 1.00 1.00
Kalamazoo, MI 0.19 0.20 0.28 1.00 1.00 1.00 1.00 Monroe, LA 0.06 0.06 0.06 0.06 0.06 0.06 1.00
Kankakee, IL 0.03 0.03 0.03 0.04 0.03 0.05 0.05 Monroe, MI 0.02 0.01 1.00 1.00 1.00 1.00 1.00
Kansas City, MO--KS 1.76 1.74 1.70 1.00 1.00 1.00 1.00 Montgomery, AL 0.33 0.29 0.29 0.42 0.55 1.00 1.00
Kennewick--Pasco, WA 0.36 0.31 0.29 0.40 1.12 1.00 1.00 Morgantown, WV 0.02 0.03 0.04 0.04 0.04 0.05 0.08
Kenosha, WI--IL 0.19 0.18 0.13 0.18 1.00 1.00 1.00 Morristown, TN 0.01 0.01 0.01 0.01 0.01 0.02 0.02
Killeen, TX 0.11 0.10 0.09 0.10 0.09 0.09 0.06 Mount Vernon, WA 0.01 0.01 0.01 0.01 0.02 0.02 0.01
Kingsport, TN--VA 0.08 0.04 0.08 0.05 0.03 0.06 0.08 Muncie, IN 0.01 0.01 0.01 0.01 0.01 0.02 0.02
Kingston, NY 0.04 0.03 0.03 0.03 0.03 0.07 0.03 Murfreesboro, TN 0.03 0.07 0.08 0.10 0.14 0.14 0.16
Kissimmee, FL 0.13 0.11 0.12 1.00 1.00 1.00 1.00 Murrieta--Temecula--Menifee, CA 0.15 0.11 0.11 0.18 0.40 0.43 0.79
Knoxville, TN 1.53 1.29 1.18 1.00 1.00 1.00 1.00 Muskegon, MI 0.07 0.07 0.07 0.07 0.10 0.17 1.00
Kokomo, IN 0.01 0.01 0.01 0.02 0.02 0.02 0.03 Myrtle Beach--Socastee, SC--NC 0.19 0.19 0.16 1.00 1.00 1.00 1.00
La Crosse, WI--MN 0.11 0.13 0.12 0.12 0.13 0.17 1.00 Nampa, ID 0.04 0.06 0.07 0.12 0.18 0.20 0.31
Lady Lake--The Villages, FL 0.03 0.03 0.03 0.05 0.15 0.32 0.46 Napa, CA 0.01 0.01 0.01 0.02 0.02 0.02 0.02
Lafayette--Louisville--Erie, CO 0.01 0.01 0.01 0.01 0.01 0.03 0.08 Nashua, NH--MA 0.30 0.52 1.00 1.00 1.00 1.00 1.00
Lafayette, IN 0.11 0.11 0.11 1.00 1.00 1.00 1.00 Nashville-Davidson, TN 0.51 0.31 1.00 1.00 1.00 1.00 1.00
Lafayette, LA 0.31 0.30 0.57 1.13 1.00 1.00 1.00 New Bedford, MA 0.23 0.20 0.18 0.19 0.51 0.45 0.38
Lake Charles, LA 0.10 0.08 0.08 0.10 0.11 0.27 0.34 New Bern, NC 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Lake Havasu City, AZ 0.01 0.01 0.02 0.01 0.00 0.01 0.01 New Haven, CT 0.42 0.44 0.41 1.00 1.00 1.00 1.00
Lake Jackson--Angleton, TX 0.01 0.01 0.01 0.02 0.01 0.02 0.01 New Orleans, LA 0.22 0.23 0.27 0.34 1.00 1.00 1.00
Lakeland, FL 0.36 0.48 0.31 1.00 1.00 1.00 1.00 New York--Newark, NY--NJ--CT 3.97 1.00 1.00 1.00 1.00 1.00 1.00
Lancaster--Palmdale, CA 0.04 0.05 0.05 0.11 0.13 0.15 0.20 Newark, OH 0.09 0.05 0.11 0.12 0.12 0.14 0.17
Lancaster, PA 2.55 2.12 1.12 2.03 1.00 1.00 1.00 Norman, OK 0.06 0.08 0.20 1.00 1.00 1.00 1.00
Lansing, MI 0.54 0.33 0.45 1.00 1.00 1.00 1.00 North Port--Port Charlotte, FL 0.57 0.10 0.08 0.08 0.10 0.19 0.36
Laredo, TX 0.05 0.12 0.12 0.12 0.15 0.17 0.24 Norwich--New London, CT--RI 1.02 1.13 1.39 1.39 1.33 1.00 1.00
Las Cruces, NM 0.11 0.09 0.08 0.08 1.00 1.00 1.00 Ocala, FL 0.15 0.04 0.06 0.06 0.06 0.18 0.27
Las Vegas--Henderson, NV 0.37 0.23 0.56 0.57 1.00 1.00 1.00 Odessa, TX 0.20 0.20 0.28 0.31 0.23 0.21 0.18
Lawrence, KS 0.01 0.01 0.02 0.02 0.02 0.03 0.02 Ogden--Layton, UT 0.54 0.57 0.57 0.57 1.00 1.00 1.00
Lawton, OK 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Oklahoma City, OK 2.76 2.54 1.00 1.00 1.00 1.00 1.00
Lebanon, PA 0.04 0.04 0.04 0.04 0.04 0.04 0.07 Olympia--Lacey, WA 0.54 0.34 0.54 0.52 0.79 1.00 1.00
Lee's Summit, MO 0.06 0.15 0.17 1.00 1.00 1.00 1.00 Omaha, NE--IA 0.54 0.54 0.50 1.00 1.00 1.00 1.00
Leesburg--Eustis--Tavares, FL 0.33 0.17 0.06 0.05 0.10 0.13 0.14 Orlando, FL 0.36 0.33 0.39 1.00 1.00 1.00 1.00



Ward, Michalek, Samaras, Azevedo, Henao, Rames, and Wenzel  Supplemental Information 

 S23 

 
 

  

2011 2012 2013 2014 2015 2016 2017 2011 2012 2013 2014 2015 2016 2017
Oshkosh, WI 0.05 0.05 0.04 0.04 0.09 0.11 0.15 South Bend, IN--MI 0.26 0.27 0.23 0.25 0.53 0.60 1.00
Owensboro, KY 0.02 0.02 0.02 0.02 0.02 0.02 0.02 South Lyon--Howell, MI 0.16 0.34 1.00 1.00 1.00 1.00 1.00
Oxnard, CA 0.51 0.34 0.77 1.00 1.00 1.00 1.00 Spartanburg, SC 0.22 0.12 0.12 0.12 1.00 1.00 1.00
Palm Bay--Melbourne, FL 0.91 0.75 0.62 1.00 1.00 1.00 1.00 Spokane, WA 0.54 0.42 0.37 1.00 1.00 1.00 1.00
Palm Coast--Daytona Beach--Port Orange, FL 1.98 1.02 0.88 1.00 1.00 1.00 1.00 Spring Hill, FL 0.72 0.20 0.38 1.00 1.00 1.00 1.00
Panama City, FL 0.20 0.14 0.12 1.00 1.00 1.00 1.00 Springfield, IL 0.36 0.37 0.54 0.47 1.00 1.00 1.00
Parkersburg, WV--OH 0.02 0.02 0.02 0.02 0.02 0.02 0.02 Springfield, MA--CT 0.58 0.39 0.41 0.36 1.00 1.00 1.00
Pascagoula, MS 0.01 0.01 0.02 0.04 0.01 0.02 0.03 Springfield, MO 1.03 0.58 0.58 0.55 1.11 1.00 1.00
Pensacola, FL--AL 0.28 0.45 0.70 1.00 1.00 1.00 1.00 Springfield, OH 0.04 0.03 0.03 0.04 0.04 0.07 0.06
Peoria, IL 0.84 0.84 1.27 1.27 1.00 1.00 1.00 St. Augustine, FL 0.06 0.03 0.05 0.08 0.07 0.07 0.05
Petaluma, CA 0.03 0.03 0.02 0.02 0.02 0.05 0.07 St. Cloud, MN 0.12 0.17 0.18 0.32 0.48 0.67 1.00
Philadelphia, PA--NJ--DE--MD 1.27 0.76 0.74 1.00 1.00 1.00 1.00 St. George, UT 0.05 0.07 0.10 0.18 0.25 0.32 0.31
Phoenix--Mesa, AZ 3.49 3.79 1.00 1.00 1.00 1.00 1.00 St. Joseph, MO--KS 0.03 0.03 0.03 0.03 0.03 0.03 0.05
Pine Bluff, AR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 St. Louis, MO--IL 0.75 0.66 0.52 0.66 1.00 1.00 1.00
Pittsburgh, PA 4.40 3.39 1.79 1.00 1.00 1.00 1.00 State College, PA 0.03 0.03 0.03 0.03 0.04 0.11 0.10
Pittsfield, MA 0.03 0.02 0.02 0.02 0.02 0.03 0.08 Staunton--Waynesboro, VA 0.01 0.02 0.02 0.02 0.02 0.02 0.02
Pocatello, ID 0.01 0.01 0.01 0.02 0.02 0.02 0.02 Stockton, CA 0.35 0.19 0.15 1.00 1.00 1.00 1.00
Port Arthur, TX 0.16 0.17 0.09 0.09 0.13 0.20 0.40 Sumter, SC 0.01 0.01 0.01 0.01 0.03 0.01 0.02
Port Huron, MI 0.06 0.06 0.06 0.06 0.08 0.09 0.14 Syracuse, NY 0.67 0.32 0.42 0.42 0.41 1.32 1.00
Port St. Lucie, FL 0.62 0.62 0.62 1.00 1.00 1.00 1.00 Tallahassee, FL 0.36 0.25 0.24 1.00 1.00 1.00 1.00
Porterville, CA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Tampa--St. Petersburg, FL 1.65 1.28 1.28 1.00 1.00 1.00 1.00
Portland, ME 1.58 2.15 2.09 1.00 1.00 1.00 1.00 Temple, TX 0.09 0.08 0.08 0.07 1.00 1.00 1.00
Portland, OR--WA 0.26 0.42 0.54 0.95 1.00 1.00 1.00 Terre Haute, IN 0.13 0.13 0.06 0.06 0.07 0.07 0.11
Portsmouth, NH--ME 0.04 0.04 0.08 0.10 0.10 0.10 0.08 Texarkana--Texarkana, TX--AR 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Pottstown, PA 0.33 0.28 0.28 0.27 0.59 0.93 0.93 Texas City, TX 0.23 0.26 0.18 1.00 1.00 1.00 1.00
Poughkeepsie--Newburgh, NY--NJ 0.53 0.28 0.32 0.45 0.45 0.86 1.00 Thousand Oaks, CA 1.14 0.66 0.59 1.00 1.00 1.00 1.00
Prescott Valley--Prescott, AZ 0.02 0.03 0.01 0.02 0.03 0.08 0.04 Titusville, FL 0.04 0.03 0.03 0.03 0.05 0.04 0.06
Providence, RI--MA 1.02 0.75 1.00 1.00 1.00 1.00 1.00 Toledo, OH--MI 0.24 0.24 0.24 1.00 1.00 1.00 1.00
Provo--Orem, UT 0.32 0.24 0.21 0.24 1.00 1.00 1.00 Topeka, KS 0.32 0.28 0.34 0.48 1.00 1.00 1.00
Pueblo, CO 0.08 0.07 0.09 0.07 0.07 0.10 0.11 Tracy, CA 0.02 0.02 0.01 0.01 0.01 0.01 0.01
Racine, WI 0.36 0.23 0.17 0.22 1.00 1.00 1.00 Trenton, NJ 0.60 0.46 0.57 1.00 1.00 1.00 1.00
Raleigh, NC 0.27 0.21 0.34 1.00 1.00 1.00 1.00 Tucson, AZ 0.28 0.30 0.26 0.29 0.54 1.00 1.00
Rapid City, SD 0.01 0.01 0.01 0.01 0.02 0.02 0.02 Tulsa, OK 2.13 1.85 1.99 1.00 1.00 1.00 1.00
Reading, PA 0.62 0.46 0.54 0.35 1.00 1.00 1.00 Turlock, CA 0.03 0.06 0.06 1.00 1.00 1.00 1.00
Redding, CA 0.06 0.06 0.06 0.06 0.08 1.00 1.00 Tuscaloosa, AL 0.12 0.12 0.10 0.16 0.16 0.32 0.31
Reno, NV--CA 0.58 0.50 0.43 0.49 1.00 1.00 1.00 Twin Rivers--Hightstown, NJ 0.47 1.00 1.00 1.00 1.00 1.00 1.00
Richmond, VA 0.66 0.67 0.67 1.00 1.00 1.00 1.00 Tyler, TX 0.19 0.19 0.18 0.18 0.52 0.49 0.48
Riverside--San Bernardino, CA 0.19 0.22 0.25 1.00 1.00 1.00 1.00 Uniontown--Connellsville, PA 0.01 0.01 0.00 0.00 0.01 0.03 0.01
Roanoke, VA 2.86 2.86 2.48 1.00 1.00 1.00 1.00 Urban Honolulu, HI 2.67 1.58 1.73 1.00 1.00 1.00 1.00
Rochester, MN 0.08 0.09 0.11 0.11 0.11 0.17 0.22 Utica, NY 0.38 0.39 0.36 0.39 0.39 0.44 1.00
Rochester, NY 0.40 0.52 0.53 0.59 0.74 0.99 1.00 Vacaville, CA 0.02 0.02 0.03 0.06 0.06 0.04 0.04
Rock Hill, SC 0.03 0.04 0.04 0.04 0.06 0.09 0.14 Valdosta, GA 0.00 0.00 0.00 0.00 0.00 0.01 0.01
Rockford, IL 0.36 0.34 0.26 0.34 1.00 1.00 1.00 Vallejo, CA 0.08 0.09 0.08 0.08 0.13 0.14 0.26
Rocky Mount, NC 0.02 0.01 0.01 0.01 0.01 0.01 0.02 Victoria, TX 0.06 0.07 0.06 0.06 0.05 0.06 0.11
Rome, GA 0.01 0.00 0.00 0.00 0.01 0.01 0.01 Victorville--Hesperia, CA 0.08 0.07 0.06 0.11 0.11 0.11 0.17
Round Lake Beach--McHenry--Grayslake, IL--WI 0.26 0.20 1.00 1.00 1.00 1.00 1.00 Villas, NJ 0.03 0.03 0.03 0.05 0.05 0.07 0.06
Sacramento, CA 1.83 1.70 1.00 1.00 1.00 1.00 1.00 Vineland, NJ 0.02 0.02 0.02 0.02 0.03 0.03 0.03
Saginaw, MI 0.10 0.07 0.06 0.06 0.05 0.06 0.09 Virginia Beach, VA 1.18 1.07 1.44 1.00 1.00 1.00 1.00
Salem, OR 0.27 0.24 0.30 0.22 0.27 0.66 1.00 Visalia, CA 0.14 0.10 0.10 0.12 0.14 0.17 0.21
Salinas, CA 0.07 0.07 0.09 1.00 1.00 1.00 1.00 Waco, TX 0.09 0.18 0.25 1.00 1.00 1.00 1.00
Salisbury, MD--DE 0.20 0.24 0.25 0.48 1.00 1.00 1.00 Waldorf, MD 0.07 0.14 0.16 0.16 1.00 1.00 1.00
Salt Lake City--West Valley City, UT 0.25 0.20 0.75 1.00 1.00 1.00 1.00 Walla Walla, WA--OR 0.02 0.02 0.02 0.02 0.02 0.02 0.03
San Angelo, TX 0.02 0.02 0.02 0.02 0.06 0.10 0.08 Warner Robins, GA 0.17 0.14 0.06 0.10 0.21 0.20 0.20
San Antonio, TX 0.93 0.47 0.60 1.00 1.00 1.00 1.00 Washington, DC--VA--MD 1.70 1.41 1.00 1.00 1.00 1.00 1.00
San Diego, CA 1.10 1.19 1.00 1.00 1.00 1.00 1.00 Waterbury, CT 0.30 0.23 0.27 0.42 0.30 0.20 0.27
San Francisco--Oakland, CA 6.28 1.00 1.00 1.00 1.00 1.00 1.00 Waterloo, IA 0.06 0.05 0.05 0.06 0.09 0.11 1.00
San Jose, CA 0.98 1.28 1.00 1.00 1.00 1.00 1.00 Watertown, NY 0.01 0.01 0.01 0.01 0.01 0.01 0.01
San Luis Obispo, CA 0.02 0.02 0.02 0.03 0.02 0.02 0.01 Watsonville, CA 0.02 0.02 0.02 0.02 0.02 0.02 0.02
San Marcos, TX 0.00 0.00 0.00 0.00 0.01 0.01 0.01 Wausau, WI 0.01 0.01 0.02 0.02 0.02 0.02 0.02
Santa Barbara, CA 0.89 0.63 1.00 1.00 1.00 1.00 1.00 Weirton--Steubenville, WV--OH--PA 0.01 0.01 0.01 0.02 0.05 0.05 0.05
Santa Clarita, CA 0.07 0.07 0.04 0.20 1.00 1.00 1.00 Wenatchee, WA 0.01 0.01 0.01 0.01 0.02 0.02 0.02
Santa Cruz, CA 0.81 0.81 0.83 1.00 1.00 1.00 1.00 West Bend, WI 0.01 0.01 0.01 0.02 0.02 0.02 0.01
Santa Fe, NM 0.05 0.03 0.02 0.03 0.03 0.05 0.04 Westminster--Eldersburg, MD 0.15 0.10 0.14 0.14 0.17 0.19 0.29
Santa Maria, CA 0.22 0.21 0.17 0.27 0.32 0.59 0.48 Wheeling, WV--OH 0.02 0.02 0.03 0.05 0.05 0.06 0.07
Santa Rosa, CA 0.58 0.44 0.42 1.00 1.00 1.00 1.00 Wichita Falls, TX 0.07 0.07 0.04 0.03 0.07 0.08 0.07
Sarasota--Bradenton, FL 1.60 1.50 1.53 1.00 1.00 1.00 1.00 Wichita, KS 0.99 0.99 0.99 1.00 1.00 1.00 1.00
Saratoga Springs, NY 0.04 0.04 0.03 0.03 0.04 0.08 0.13 Williamsburg, VA 0.04 0.05 0.08 0.05 0.05 0.05 0.04
Savannah, GA 0.71 0.49 0.32 0.69 1.00 1.00 1.00 Williamsport, PA 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Scranton, PA 1.77 0.99 0.99 1.11 1.00 1.00 1.00 Wilmington, NC 0.70 0.47 0.42 1.00 1.00 1.00 1.00
Seaside--Monterey, CA 0.14 0.10 0.21 1.00 1.00 1.00 1.00 Winchester, VA 0.04 0.04 0.04 0.04 0.04 0.05 0.06
Seattle, WA 0.72 1.66 1.00 1.00 1.00 1.00 1.00 Winston-Salem, NC 0.41 0.23 0.23 0.25 1.00 1.00 1.00
Sebastian--Vero Beach South--Florida Ridge, FL 0.08 0.08 0.08 0.08 0.09 0.11 0.17 Winter Haven, FL 0.19 0.09 0.09 1.00 1.00 1.00 1.00
Sebring--Avon Park, FL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Woodland, CA 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Sheboygan, WI 0.04 0.09 0.05 0.06 0.06 0.06 0.06 Worcester, MA--CT 1.06 1.06 1.00 1.00 1.00 1.00 1.00
Sherman, TX 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Yakima, WA 0.24 0.15 0.15 0.22 0.26 1.00 1.00
Shreveport, LA 0.55 0.55 0.54 0.77 0.94 1.18 1.00 York, PA 0.61 0.43 0.45 0.88 1.00 1.00 1.00
Sierra Vista, AZ 0.01 0.01 0.01 0.01 0.02 0.02 0.01 Youngstown, OH--PA 0.30 0.28 0.39 0.62 0.99 1.00 1.00
Simi Valley, CA 0.09 0.06 0.19 1.00 1.00 1.00 1.00 Yuba City, CA 0.04 0.04 0.04 0.05 0.05 0.05 0.05
Sioux City, IA--NE--SD 0.15 0.17 0.20 0.17 0.24 0.28 1.00 Yuma, AZ--CA 0.21 0.13 0.12 0.11 0.09 0.10 0.14
Sioux Falls, SD 0.33 0.38 0.30 0.65 0.68 1.60 1.00 Zephyrhills, FL 0.05 0.07 0.09 1.00 1.00 1.00 1.00
Slidell, LA 0.03 0.05 0.05 0.08 0.12 0.12 0.08
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Table S5. Urban area-specific heterogeneous treatment effects.  Estimates from the 
heterogeneous treatment effect (HTE) regressions modeling vehicle registrations, fuel economy, 
and transit ridership. Related to Figure 2. 
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Table S6. Cluster Analysis Results. Estimated effects on vehicle registrations per capita and 
average fuel economy and descriptive statistics by cluster for clusters of urban areas estimated in 
a 3-cluster and 4-cluster analysis. Related to Figure 3. 

 
 

Table S7. Summary statistics of urban areas by bin. A comparison of mean and standard 
deviation for the lower and upper 50%ile for each respective interaction term: vehicle registrations 
per capita, population, change in population, household income, and transit commuting rate. 
Related to Table 4. 
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Table S8. Comparison of heterogeneity findings across model specifications. Summary 
of influence of urban area characteristics on TNC entry effect sign estimated for vehicle 
registrations per capita, average fuel economy, and transit ridership using the HTE model, cluster 
analysis, and our primary specification with interaction terms for urban area covariates of pre-
treatment vehicle registrations per capita, population, population growth, childless household rate, 
household income, transit commuting rate, unemployment rate, and gasoline price. The HTE and 
cluster analysis results, shown in gray, are used as exploratory models to identify a set of 
interaction variables to test in our primary specification. For the HTE results, + or –  indicates 
the attribute is significant (at the p=0.05 level) in predicting whether the an urban area with a 
significant HTE TNC entry effect estimate will be positive or negative (Table 2). For the cluster 
analysis results, + or – indicates the attribute is significant (at the p=0.05 level) in predicting 
whether an urban area will belong to a cluster that has a TNC entry effect estimate that is positive 
or not statistically significant (Table 3). For the interaction effects model, our primary 
specification, we test only those urban area attributes identified in either the HTE analysis or the 
cluster analysis as being significant in predicting differences in TNC entry effect estimates. Related 
to Table 2, Table 3, and Table 4. 
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Population 
Growth – – –
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Table S9. Summary of robustness tests and results. Related to Table 1 and Table 4. 
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Table S10. Robustness check: comparison of IPTW and OLS results. Regression results 
estimating the effect of TNC market entry (“Treatment”) on three dependent variables of 
interest—vehicle ownership, fleet fuel efficiency, and transit ridership—as a function of control 
variables (coefficients shown) both with inverse probability of treatment weighting (IPTW) and 
without (i.e., ordinary least squares, OLS). Year and urban-area fixed effect estimates are omitted 
for brevity and readability. Related to Table 1. 
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Table S11. Robustness check: alternative data resolution. Comparison of estimated TNC 
entry effect on vehicle registration from analysis at the state and urban area level. Our primary 
regression analysis (middle column) finds an increase in average per-capita vehicle registrations 
after TNC entry at the urban area level, whereas Ward et al. (2019) found a decrease in a state-
level analysis (left column). We replicate the state level analysis using urban area-level data by 
aggregating (or population-weighting) urban area data by state and re-specifying the state-level 
regression model. We find that the urban area data produces a significant negative estimate when 
aggregated to the state level, consistent with the state-level analysis in Ward et al. (2019). This 
suggests that the change in sign is not a result of using a different data source but, rather, 
differences in results when averaged across different units of observation suggests heterogeneity: 
If TNC entry has different effects in different cities, averaging effects across urban areas can yield 
different results than averaging effects across states. Related to Table 1. 
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Table S12. Robustness check: alternative treatment encoding. Results of a replication of 
regression results from Table 1 using a one-year lag in treatment. The estimated effects of lagged 
TNC entry on vehicle registrations, average fuel economy, and transit ridership are comparable 
to those estimated in the main text: a significant increase in per-capita vehicle registrations and 
no significant effect on either average fuel economy or per-capita transit trips. A pairwise 
comparison by outcome of results in Table 1 with those here confirms that the 95% confidence 
intervals of all estimates overlap. Related to Table 1. 

 
 

Table S13. Robustness check: disaggregation of transit ridership data. A comparison of 
the estimated TNC effect on per-capita transit ridership (from Table 1) with a disaggregation of 
transit ridership (which includes bus, rail, demand response, and other trips) by bus and rail. The 
TNC effect on neither per-capita bus ridership nor per-capita bus ridership is significant. Note 
that estimates are less precise than those presented in the main text due to the fewer number of 
urban areas for which bus and rail data (especially) are available. Related to Table 1. 
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Table 14. Robustness check: correction for multiple hypothesis tests. A Benjamini-
Hochberg test for False Discovery Rate (FDR) for multiple hypotheses, showing the estimated 
average effect of TNC entry on vehicle registration is robust to FDRs as low as 12% when 
considering the 3 average-effect hypothesis only, and, when considering all 21 hypothesis regarding 
average and interaction effects, all effects estimated as significant are robust to FDRs as low as 
14%. Values highlighted in green are robust at the false detection rate of the corresponding 
column. Related to Table 1 and Table 4. 

 
 

 

1% 2% 5% 10% 20%
3 Veh Reg - average 0.7% 0.4% 1.75 0.040 1 0.003 0.007 0.017 0.033 0.067 12.0%

Avg MPG - average 0.0% 0.1% 0.34 0.366 2 0.007 0.013 0.033 0.067 0.133 54.9%
Transit - average 0.1% 1.2% 0.04 0.482 3 0.010 0.020 0.050 0.100 0.200 48.2%

1% 2% 5% 10% 20%
21 Avg MPG - p_no_child -0.1% 0.0% -3.10 0.001 1 0.000 0.001 0.002 0.005 0.010 2.0%

Transit - inc -5.1% 1.7% -2.95 0.002 2 0.001 0.002 0.005 0.010 0.019 1.7%
Veh Reg - polkpc 1.0% 0.4% 2.18 0.015 3 0.001 0.003 0.007 0.014 0.029 10.3%
Transit - p_no_child -2.6% 1.3% -1.97 0.024 4 0.002 0.004 0.010 0.019 0.038 12.8%
Veh Reg - D_pop -0.9% 0.4% -1.97 0.025 5 0.002 0.005 0.012 0.024 0.048 10.4%
Veh Reg - average 0.7% 0.4% 1.75 0.040 6 0.003 0.006 0.014 0.029 0.057 14.0%
Avg MPG - D_pop -0.1% 0.0% -1.34 0.090 7 0.003 0.007 0.017 0.033 0.067 26.9%
Avg MPG - p_pt -0.1% 0.0% -1.32 0.093 8 0.004 0.008 0.019 0.038 0.076 24.4%
Transit - p_pt 2.7% 2.0% 1.31 0.095 9 0.004 0.009 0.021 0.043 0.086 22.2%
Transit - pop 2.5% 2.1% 1.18 0.119 10 0.005 0.010 0.024 0.048 0.095 25.0%
Avg MPG - inc 0.0% 0.0% -1.05 0.148 11 0.005 0.010 0.026 0.052 0.105 28.2%
Veh Reg - pop -0.6% 0.8% -0.82 0.206 12 0.006 0.011 0.029 0.057 0.114 36.1%
Veh Reg - p_no_child 0.3% 0.4% 0.76 0.222 13 0.006 0.012 0.031 0.062 0.124 35.9%
Veh Reg - p_pt 0.4% 0.5% 0.70 0.242 14 0.007 0.013 0.033 0.067 0.133 36.3%
Avg MPG - average 0.0% 0.1% 0.34 0.366 15 0.007 0.014 0.036 0.071 0.143 51.2%
Transit - polkpc -0.2% 1.3% -0.19 0.426 16 0.008 0.015 0.038 0.076 0.152 55.9%
Transit - D_pop -0.2% 1.3% -0.14 0.445 17 0.008 0.016 0.040 0.081 0.162 55.0%
Avg MPG - pop 0.0% 0.1% 0.12 0.451 18 0.009 0.017 0.043 0.086 0.171 52.6%
Veh Reg - inc 0.0% 0.5% 0.07 0.472 19 0.009 0.018 0.045 0.090 0.181 52.2%
Avg MPG - polkpc 0.0% 0.0% -0.05 0.479 20 0.010 0.019 0.048 0.095 0.190 50.3%
Transit - average 0.1% 1.2% 0.04 0.482 21 0.010 0.020 0.050 0.100 0.200 48.2%

min. 
FDR*

min. 
FDR*

Critical values as f(FDR*)

Estimate Std. Error t value Pr(>|t|)
p-value 

rank
Critical values as f(FDR*)

Estimate Std. Error t value Pr(>|t|)
p-value 

rank
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Table S15. Robustness check: alternative quantiles for interaction effects. Estimated 
TNC entry effects and interaction effects on vehicle registrations per capita, average fuel economy, 
and transit trips per capita using three quantiles (rather than two, as is presented in the main 
text) for pre-treatment values of each of several interaction variables: vehicle registrations per 
capita, population growth rate, childless household rate, and income (population and transit 
commuting rate not shown to match Table 5 in the main text). Related to Table 4. 
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Table S16. Robustness check: continuous variables for interaction effects. Treatment 
effects of TNC entry in the U.S. from regression models estimating vehicle registrations per capita, 
average fuel economy, and transit ridership per capita using continuous measures (rather than 
categorical measures) of interaction variables. Related to Table 4. 
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