
UCSF
UC San Francisco Previously Published Works

Title
Neuroanatomy of Expressive Suppression: The Role of the Insula

Permalink
https://escholarship.org/uc/item/17g7w0rc

Journal
Emotion, 21(2)

ISSN
1528-3542

Authors
Muhtadie, Luma
Haase, Claudia M
Verstaen, Alice
et al.

Publication Date
2021-03-01

DOI
10.1037/emo0000710
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/17g7w0rc
https://escholarship.org/uc/item/17g7w0rc#author
https://escholarship.org
http://www.cdlib.org/


Neuroanatomy of Expressive Suppression: The Role of the 
Insula

Luma Muhtadie1, Claudia M. Haase2, Alice Verstaen1, Virginia E. Sturm3, Bruce L. Miller3, 
Robert W. Levenson1

1University of California, Berkeley

2Northwestern University

3University of California, San Francisco

Abstract

Expressive suppression is a response-focused regulatory strategy aimed at concealing the outward 

expression of emotion that is already underway. Expressive suppression requires the integration of 

interoception, proprioception, and social awareness to guide behavior in alignment with personal 

and interpersonal goals—all processes known to involve the insular cortex. Frontotemporal 

dementia (FTD) provides a useful patient model for studying the insula’s role in socioemotional 

regulation. The insula is a key target of early atrophy in FTD, causing patients to lose the ability to 

represent the salience of internal and external conditions, and to use these representations to guide 

behavior. We examined a sample of 59 patients with FTD, 52 patients with Alzheimer’s disease 

(AD), and 38 neurologically healthy controls. Subjects viewed two disgust-eliciting films in the 

laboratory. During the first film, subjects were instructed to simply watch (emotional reactivity 

trial); during the second, they were instructed to hide their emotions (expressive suppression trial). 

Structural images from a subsample of participants (n=42; 11 FTD patients, 11 AD patients, and 

20 controls) were examined in conjunction with behavior. FreeSurfer was used to quantify regional 

gray matter volume in 41 empirically derived neural regions in both hemispheres. Of the three 

groups studied, FTD patients showed the least expressive suppression and had the smallest insula 

volumes and, even after controlling for age, gender, and emotional reactivity. Among the brain 

regions examined, the insula was the only significant predictor of expressive suppression ability, 

with lower insula gray matter volume in both hemispheres predicting less expressive suppression.
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Expressive suppression is a form of emotion regulation that involves conscious, voluntary 

inhibition of the outward manifestation of an ongoing emotional response (Gross, 2013; 

Gross & Levenson, 1993; Levenson, 1994). Although suppression is often viewed as a less 

adaptive emotion regulation strategy than cognitive reappraisal (Butler et al., 2003; Gross, 
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2002b; Haga, Kraft, & Corby, 2009; Moore, Zoellner, & Mollenholt, 2008), it has distinctive 

features that make it a highly useful strategy in certain contexts. For example, because 

cognitive reappraisal involves reinterpreting the meaning of a potential emotion-eliciting 

stimulus early in the elicitation process, expressive suppression may be the only viable 

regulation strategy later in the elicitation process when an emotion is already underway. 

Given that the primary function of expressive suppression is concealing rather than 

diminishing the underlying emotion (i.e., suppression does not appear to have an impact on 

the intensity of subjective emotional experience; Gross, 2002a; Gross & Levenson, 1993; 

Levenson, 1994), it is best viewed as a social regulation strategy. In the interest of 

maintaining harmonious relationships, we are often required to hide certain emotions to 

avoid their deleterious effect on others, even if this comes at a cost (e.g., increased 

sympathetic arousal; Gross, 2002a; Gross & Levenson, 1993; Levenson, 1994).

Another distinctive feature of expressive suppression is that it is a highly embodied strategy 

relying on the dynamic integration of interoceptive awareness (“What am I feeling right 

now?”), proprioceptive awareness (“Is this feeling showing on my face or body?”), social 

awareness (“Is it inappropriate or embarrassing to display this feeling here and now?”), and 

personal salience (“Are there risks or benefits of showing my emotions in this moment?”). 

When all of this information is combined in the service of expressive suppression, it 

produces dynamic behavior that is context-sensitive and adaptive.

Because expressive suppression is a response-focused strategy, aimed at concealing visible 

signs of emotion, and requiring interoceptive awareness, it would seem especially suited to 

emotions that arise quickly in response to significant threats. One such emotion is disgust, a 

highly visceral emotion arousing powerful affective and behavioral responses that evolved to 

protect against the threat of illness or contamination (Rozin, Haidt, & McCauley, 2008). 

When a person encounters certain unpleasant foods, objects, or smells, disgust and the 

attendant visceral sensations (nausea, gagging, etc.) are triggered almost instantly (Simpson, 

Carter, Anthony, & Overton, 2006), without requiring elaborate, protracted cognitive 

processing.

Recent evidence suggests that this phylogenetically older motivational system may in fact be 

co-opted during social transgressions or other cases of “bad taste.” For example, the facial 

motor actions and subjective feelings evoked by aversive chemical-sensory stimulation have 

been found to extend to other forms of disgust, including those related to cleanliness and 

contamination, and to be triggered when the everyday moral code of fairness is perceived to 

be violated (Chapman, Kim, Susskind, & Anderson, 2009). Further, because expressions of 

disgust can be interpreted as being directed toward the observer, or at least as unpleasant and 

non-affiliative (Fisher, Becker, & Veenstra, 2012), they often need to be suppressed in social 

contexts to maintain decorum. For example, a dinner party guest would likely offend her 

host by displaying disgust at his attire when he arrived at the door, or in response to an 

unfavorable entrée he placed in front of her at the dinner table. Indeed, many occupations, 

such as those involving caring for the ill or infirm, require individuals to suppress the 

expression of disgust if they are to perform their duties with professionalism and 

compassion (Curtis, 2011).
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The Putative Role of the Insula in Expressive Suppression

Because of the centrality of interoceptive awareness—the perception of signals originating 

in the body (Craig, 2002, 2003)—in expressive suppression, the insular cortex likely plays 

an important role in the brain circuitry associated with expressive suppression. Recent 

insights regarding the human insula’s connectivity and function suggest this region not only 

maps the state of the body, but that it does so in contextually relevant and emotionally 

significant ways (Craig, 2009, 2010; Critchley, 2005; Critchley, Mathias, & Dolan, 2001). 

The insula functions as a key hub within a neural network that subserves emotional salience 

processing (Beckmann, DeLuca, Devlin, & Smith, 2005; Seeley, Crawford, Zhou, Miller, & 

Greicius, 2009; Seeley et al., 2007). Primary interoceptive inputs from the body—such as 

sensations arising from the viscera and face—are first represented in the posterior insula. 

Then, beginning in an integrative zone in the mid-insula and proceeding in an anterior 

direction, the insula receives and combines inputs from multiple other limbic and cortical 

regions. Among these regions are the hypothalamus, which maintains homeostasis in the 

internal milieu; the nucleus accumbens, which processes the incentive motivational aspects 

of rewarding stimuli (Reynolds & Zahm, 2005; Robinson & Berridge, 2008); the amygdala, 

which is involved in emotional arousal, is critical for processing stimulus salience, and 

supports emotional learning and memory (Augustine, 1985; Jasmin, Burkey, Granato, & 

Ohara, 2004; Jasmin, Rabkin, Granato, Boudah, & Ohara, 2003; Paton, Belova, Morrison, & 

Salzman, 2006; Reynolds & Zahm, 2005); the anterior cingulate cortex, which engenders 

motivational aspects of emotion and is involved in various tasks related to self-monitoring 

and evaluating action selection (Augustine, 1996; Critchley, Tang, Glaser, Butterworth, & 

Dolan, 2005; Goldstein et al., 2007; Reynolds & Zahm, 2005; Rushworth & Behrens, 2008); 

and the orbitofrontal cortex, which is implicated in the context-dependent evaluation of 

environmental stimuli (Bechara, Damasio, & Damasio, 2000; Kringelbach, 2005; 

O’Doherty, Kringelbach, Hornak, Andrews, & Rolls, 2001; Ongür & Price, 2000; Ongür & 

Price, 2000; Rolls & Grabenhorst, 2008; Schoenbaum, Roesch, & Stalnaker, 2006; 

Schoenbaum, Setlow, Saddoris, & Gallagher, 2003). As this information gets integrated and 

re-represented in a posterior-to-anterior direction, it is abstracted to correspond more to 

one’s subjective feelings and motivations than to the objective features of the environment 

(Craig, 2010; Craig, Chen, Bandy, & Reiman, 2000). Ultimately, this process of integration, 

re-representation, and abstraction produces a coherent model of self that encompasses the 

state of the body, the social environment, and the person’s goals (Craig, 2002, 2009, 2010), 

thus providing the key representations thought to be necessary for expressive suppression.

Research on the Neural Correlates of Expressive Suppression

There is not a great deal of research that has examined the neural correlates of expressive 

suppression. Existing studies of emotion regulation have tended to focus more on reappraisal 

than on suppression, and to link neural measures (both functional and structural) with self-

reported regulation tendencies (e.g., Giuliani, Drabant, Bhatnagar, & Gross, 2011; Gross & 

John, 1997) rather than with performance-oriented measures of the actual regulation of 

emotional responses. Among studies using functional imaging and measuring actual 

expressive suppression: (a) suppressing emotional facial responses to negative visual images 

was associated with greater activation of bilateral insular cortex, supramarginal gyrus, and 
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middle frontal gyrus activation compared to passive viewing (Hayes, et al., 2010); and (b) 

suppressing disgust facial behavior to a disgust-eliciting film was associated with increased 

activation in the right amygdala and right insula throughout the film and in the right 

ventrolateral, dorsomedial, and dorsolateral prefrontal cortices late in the film (Goldin, 

McRae, Ramel, & Gross, 2008). In addition, a study in which participants were instructed to 

suppress subjective emotional experience to visual stimuli (Ohira et al., 2006) found 

activation of left prefrontal cortex, medial prefrontal cortex, and medial orbital prefrontal 

cortex including the rostral-ventral anterior cingulate cortex (Ohira et al., 2006).

To our knowledge, no study has used structural imaging to link regional gray matter volumes 

(in neurological patients or healthy controls) to a behavioral measure of emotion suppression 

or reappraisal.

Neurodegenerative Disease: A Window to the Insula’s Role in Expressive 

Suppression

Patients with neurodegenerative disease provide a useful model for studying the 

neuroanatomical correlates of emotional functioning. In these diseases, neural atrophy 

progresses along well defined neural networks with functional significance (Buckner et al., 

2005; Seeley et al., 2009), providing a “lesion” model for studying brain-behavior 

relationships. One advantage of this approach is that behavioral assays can be conducted 

outside of the scanner environment, enabling emotional processes to be studied more 

naturalistically and without severe behavioral constraints (e.g., problems that emotion-

related movement artifacts cause for functional imaging).

Patients with frontotemporal dementia (FTD) provide a particularly useful model for 

studying the role of the insula in emotion regulation. The major FTD clinical subtypes 

include behavioral variant, semantic dementia (SD), and progressive non-fluent aphasia 

(PNFA). Behavioral variant FTD (bvFTD) is associated with dramatic changes in social-

emotional processing that result from focused medial frontal and frontoinsular degeneration 

(Seeley, 2010). SD presents with disintegration of word, object, person-specific, and 

emotional meaning (Hodges, Patterson, & Tyler, 1994; Seeley et al., 2005), followed by 

behavioral changes akin to those seen in bvFTD (Kertesz, McMonagle, Blair, Davidson, & 

Munoz, 2005; Seeley et al., 2005; Snowden et al., 2001), which result from degeneration 

beginning in the temporal pole and amygdala then spreading to subgenual cingulate, 

frontoinsular, ventral striatal, and upstream posterior temporal regions (Brambati et al., 

2007). PNFA is associated with effortful, non-fluent, often agrammatic speech that is 

sometimes accompanied by speech apraxia or dysarthria and results from dominant frontal 

operculum and dorsal anterior insula injury (Gorno-Tempini et al., 2004; Josephs et al., 

2006; Nestor et al., 2003).

In all three major subtypes of FTD, the insula is a key target of early atrophy (Rosen, Gorno-

Tempini, Goldman, Perry, & Schuff, 2002), causing patients to lose the ability to represent 

the personal significance of internal and external events and to use these representations to 

guide behavior (Seeley, 2010). Consistent with the importance of these representations for 

emotion, prior research from our laboratory indicates that FTD patients show impairments in 
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emotional reactivity and regulation. In terms of reactivity, we found that patients with 

behavioral variant FTD show reduced behavioral, physiological, and self-reported 

experiential responses to a disgusting film relative to controls (Eckart, Sturm, Miller, & 

Levenson, 2012). In terms of regulation, we found that FTD patients generally show 

impairments in the ability to down-regulate emotional responses to an aversive acoustic 

startle stimulus relative to patients with Alzheimer’s disease (AD) and neurologically 

normal controls (Goodkind, Gyurak, McCarthy, Miller, & Levenson, 2010).

Following up on this work using a sample of patients with FTD and other neurodegenerative 

diseases as well as neurologically healthy controls, we found that smaller insular volume 

was associated with reduced self-reported disgust and physiological activation in response to 

a disgusting film but not to a sad film (Verstaen et al., 2016). These findings regarding the 

role of the insula in emotional reactivity raise the question of whether insular and other 

neural region volumes are also associated with deficits in emotional suppression.

The Present Study

The present study sought to examine the neuroanatomical basis of expressive suppression 

(i.e., downregulation of emotional behavioral to a disgust-eliciting film) in patients with 

FTD, patients with AD, and age-matched neurologically healthy controls. As noted earlier, 

insular atrophy is common among patients with FTD (Seeley, 2010). Including patients with 

AD in our study increases anatomical and behavioral heterogeneity, as AD targets the medial 

temporal and parietal lobes (i.e., the default mode network) and typically manifests in 

memory, language, and visuospatial impairments (Levenson, Sturm, & Haase, 2014).

Three hypotheses were tested: (H1) patients with FTD will show less expressive suppression 

(more emotional behavior when instructed to hide their reactions to a disgust-eliciting film) 

than patients with AD and healthy controls; (H2) patients with FTD will have lower insula 

gray matter volumes than patients with AD and healthy controls; and (H3) across all 

participants, lower levels of insular gray matter volume will be associated with less 

expressive suppression.

Method

Participants

Participants were 59 patients diagnosed with FTD, 52 patients diagnosed with AD, and 38 

cognitively normal, age-matched control participants. All participants were recruited 

through the Memory and Aging Center (MAC) at the University of California, San Francisco 

where they underwent an extensive multidisciplinary diagnostic and clinical evaluation (i.e., 

clinical interview, neurological examination, neuropsychological examination, structural 

magnetic resonance imaging [MRI]). FTD patients met standard diagnostic criteria (Neary, 

Snowden, Gustafson, Passant, & Stuss, 1998; Rascovsky et al., 2011) for behavioral variant 

FTD (n = 33), semantic dementia (n = 17), and progressive non-fluent aphasia (n = 9) 

subtypes. AD patients met diagnostic criteria for Alzheimer’s disease based on the National 

Institute of Neurological Disorders and Stroke criteria (McKhann et al., 1984). Control 
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participants were screened to rule out any previous history of neurological or psychiatric 

disorder. See Table 1 for demographic and clinical characteristics of the three groups.

Procedure

Participants came to the Berkeley Psychophysiology Laboratory for a daylong 

comprehensive assessment of emotional functioning (Levenson, 2007). Upon arriving, 

participants or their caregivers provided written informed consent for the laboratory 

procedures. Participants’ upper torso and face were videotaped throughout the session using 

a high-resolution, partially concealed video camera. Stimuli were presented on a 21-inch 

video monitor placed directly in front of participants at a distance of 1.75m. At the end of 

the laboratory session, participants provided informed consent for subsequent use of the 

video recordings.

For the present study, we utilized data from two trials during which subjects viewed 

emotional films. Each trial began with a 60-second baseline period during which a large “X” 

was displayed on the monitor and participants were instructed to “watch the X”. Participants 

were then given on-screen visual and verbal instructions for the upcoming film (see below). 

Participants viewed a 105-second film clip followed by a 30-second recovery period during 

which the screen was blank.

At the outset of the first trial, participants were instructed: “In this next task, you will see a 
short film clip. Please try to relax and clear your mind until the film starts.” They then 

viewed a 105-second excerpt from the television show “Fear Factor” in which a man sucks 

fluids from cow intestines and drinks a cup of this fluid. This first trial (reactivity trial) 

provided an assessment of emotional reactivity in the absence of explicit instructions to 

regulate emotion. At the outset of the second trial, participants were instructed: “For the next 
task, you will watch another film. This time, HIDE your reaction so that no one would know 
how you feel while watching the film.” They then viewed a 105-second excerpt from the 

movie “Pink Flamingos” in which a dog defecates and a person eats the dog feces. This 

second trial (expressive suppression trial) provided an assessment of ability to suppress 

behavioral responding to the film. Prior research has shown that both film clips are highly 

effective elicitors of disgust (Gross & Levenson, 1995; Gyurak, Goodkind, Kramer, Miller, 

& Levenson, 2012; Seider, Shiota, Whalen, & Levenson, 2011; Shiota & Levenson, 2012; 

Verstaen et al., 2016). All procedures were approved by, and in compliance with, the 

Institutional Review Board at the University of California.

Measures

Dementia severity.—As part of the clinical assessment at the UCSF MAC, dementia 

severity was assessed using the Clinical Dementia Rating Scale (CDR; Morris, 1993). A 

total CDR score was obtained for each participant. Scores on this scale range from 0 to 3, 

with higher scores indicating greater functional impairment. Mean CDR scores and tests of 

group differences for FTD, AD, and Controls are reported in Table 1.

Emotional behavior.—Trained raters blind to diagnosis, trial, and study hypotheses 

viewed the video recordings without sound and coded emotional behaviors during the most 
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intense 30-second period of each film clip as determined previously by a panel of raters. 

Using a modified version of the Emotional Expressive Behavior coding system (Gross & 

Levenson, 1993), 10 emotional behaviors were coded (amusement/happiness, anger, 

confusion, contempt, disgust, embarrassment, fear, interest, sadness, and surprise) for each 

trial using an intensity scale ranging from 0 to 3 (0=none; 3=strong). Intercoder reliability 

for each trial, determined by having 2 to 4 coders rate 68% of the trials, was high 

(Cronbach’s alpha = .91). For each emotion code, we summed the intensity scores for every 

occurrence of that emotion during the task and created a composite score for total emotional 

behavior by summing all 10 of the codes. Table 1 shows participants’ total emotional 

behavior scores during the disgust reactivity and disgust suppression trials.

Neuroimaging.—Structural images from a subsample of 42 participants (11 patients with 

FTD, 8 right-handed; 11 patients with AD, 7 right-handed; and 20 healthy controls, 17 right-

handed) were used in the brain-behavior analyses. Images for patient groups (FTD, AD) 

were only analyzed if the scan was completed within 3–4 months of the lab visit, and for 

healthy controls if the scan was completed within 12–14 months of the lab visit. A logistic 

regression analysis predicting whether participants were part of or not part of the 

neuroimaging sample showed that participants in the neuroimaging sample were statistically 

indistinguishable from the unscanned participants in terms of age, gender, CDR score, and 

emotional behavior during both the reactivity and expressive suppression trials, all ps > .338. 

There were proportionately fewer FTD patients, Exp(B) = .02, p = .002, and fewer AD 

patients, Exp(B) = .02, p = .002, than healthy controls in the neuroimaging sample than in 

the non-neuroimaging sample.

The structural scan and emotional assessment occurred in close temporal proximity to each 

other. Specifically, for participants with neurodegenerative disease, the mean period between 

the two sessions was M =.30 months (SD = .48, range = 0–1) for FTD patients, M =0.60 

months (SD = 1.34, range =0–3) for AD patients. For healthy controls, the mean period 

between the two sessions was 1.93 months (SD = 2.40, range = 0–7).

Because the present study used data from participants recruited over a 3-year period (from 

2007–2009) there were changes in magnet field strength. Most participants were tested using 

a 1.5T Siemens-CIND scanner (n = 25, 59.5% of scanned sample); 13 participants (31%) 

were tested using a 3T Siemens-NIC scanner; and 4 participants (9.5%) were tested using a 

4T Siemens-CIND scanner.

Brain volumes.—Regional brain volumes were calculated using the FreeSurfer method. 

FreeSurfer is a semi-automated program that generates volumes for cortical and subcortical 

regions of interest (Desikan et al., 2006). This procedure has been shown to produce 

statistically indistinguishable results from those yielded by manual tracing (Fischl et al., 

2002). For most participants (n = 33), data were analyzed using FreeSurfer version 4.0.2; for 

a few participants, FreeSurfer versions 4.3.0 (n = 6) and 4.5.0 (n = 3) were used. New 

versions of FreeSurfer are released regularly to fix bugs and improve existing and/or add 

new tools (for detailed documentation of the different Freesurfer versions, see “FreeSurfer 

Release Notes,” 2019). In terms of major changes, a noted issue with insula thickness 

computations was fixed in FreeSurfer version 4.0 (prior to all versions used in the present 
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study). To account for possible differences between FreeSurfer versions, we included them 

as covariates in our statistical models (see below).

Because the neurodegenerative diseases in our sample may produce diffuse brain atrophy, 

we took a whole-brain approach and examined 41 cortical and subcortical regional volumes 

in both hemispheres (82 total) that were generated by FreeSurfer. These included: right and 

left insula, superior temporal sulcus, caudal anterior cingulate cortex, caudal middle frontal 

gyrus, cuneus, entorhinal cortex, frontal pole, fusiform gyrus, inferior parietal cortex, 

inferior temporal gyrus, isthmus of the cingulate gyrus, lateral occipital cortex, lateral 

orbitofrontal cortex, lingual gyrus, medial orbitofrontal cortex, middle temporal gyrus, 

paracentral lobule, parahippocampal gyrus, pars opercularis, pars orbitalis, pars triangularis, 

pericalcarine cortex, postcentral gyrus, posterior cingulate cortex, precentral gyrus, 

precuneus, rostral anterior cingulate cortex, rostral middle frontal gyrus, superior frontal 

gyrus, superior parietal cortex, supraorbital margin, superior temporal gyrus, temporal pole, 

transverse temporal cortex, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, 

and accumbens area. A measure of total intracranial volume was also obtained and used as a 

covariate in analyses to control for head size. The FreeSurfer software authors request that 

the following explanatory paragraph be included in any study using this procedure:

Cortical reconstruction and volumetric segmentation was performed with the FreeSurfer 

image analysis suite, which is documented and freely available for download online (http://

surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are described in 

prior publications (Dale & Sereno, 2007; Desikan et al., 2006; Fischl, Liu, & Dale, 2001; 

Fischl et al., 2002; Fischl et al., 2004; Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, 

& Dale, 1999; Han et al., 2006; Jovicich et al., 2006; Segonne et al., 2004). Briefly, this 

processing includes motion correction and averaging of multiple volumetric T1 weighted 

images (when more than one is available), removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure (Segonne et al., 2004), automated Talairach 

transformation, segmentation of the subcortical white matter and deep gray matter 

volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles; 

Fischl et al., 2002; Fischl et al., 2004), intensity normalization (Sled, Zijdenbos, & Evans, 

1998), tessellation of the gray matter white matter boundary, automated topology correction 

(Fischl et al., 2001; Segonne, Pacheco, & Fischl, 2007), and surface deformation following 

intensity gradients to optimally place the gray/white and gray/cerebrospinal fluid borders at 

the location where the greatest shift in intensity defines the transition to the other tissue class 

(Dale, Fischl, & Sereno, 1999; Dale & Sereno, 2007; Han et al., 2006). Once the cortical 

models are complete, a number of deformable procedures can be performed for in further 

data processing and analysis including surface inflation (Fischl, Sereno, & Dale, 1999), 

registration to a spherical atlas which utilized individual cortical folding patterns to match 

cortical geometry across subjects (Fischl, Sereno, Tootell, et al., 1999), parcellation of the 

cerebral cortex into units based on gyral and sulcal structure (Desikan et al., 2006; Fischl et 

al., 2004), and creation of a variety of surface based data including maps of curvature and 

sulcal depth. This method uses both intensity and continuity information from the entire 

three dimensional MR volume in segmentation and deformation procedures to produce 

representations of cortical thickness, calculated as the closest distance from the gray/white 

boundary to the gray/CSF boundary at each vertex on the tessellated surface (Han et al., 
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2006). The maps are created using spatial intensity gradients across tissue classes and are 

therefore not simply reliant on absolute signal intensity. The maps produced are not 

restricted to the voxel resolution of the original data thus are capable of detecting 

submillimeter differences between groups. Procedures for the measurement of cortical 

thickness have been validated against histological analysis (Rosas et al., 2002) and manual 

measurements (Kuperberg et al., 2003; Salat et al., 2004). FreeSurfer morphometric 

procedures have been demonstrated to show good test-retest reliability across scanner 

manufacturers and across field strengths (Han et al., 2006).

Statistical Analyses

To test our first hypothesis that patients with FTD will show less expressive suppression than 

patients with AD and healthy controls, we conducted a repeated-measures MANCOVA with 

total emotional behavior (10 behaviors) during the suppression trial as a within-subjects 

factor and diagnosis as a between-subjects factor. We also included gender as a between-

subjects factor, and age and total emotional behaviors during the reactivity trial as 

covariates. Significant effects of diagnosis were followed up with simple contrasts.

To test our second hypothesis that patients with FTD will have lower bilateral insula gray 

matter volumes than patients with AD and healthy controls, we conducted a MANCOVA 

with left and right insula gray matter volume as the dependent variables and diagnosis as the 

between-subject factor. We also included gender, scanner type, and FreeSurfer version as 

between-subjects factors, and age and ICV as covariates.

To test our third hypothesis that lower levels of insula gray matter volume will be associated 

with less expressive suppression (i.e., greater emotional behavior when instructed to hide 

their reactions to the film) across all participants, we took a two-stage approach. First, based 

on prior studies of brain-behavior relationships (e.g., Sturm et al., 2013), we computed two-

tailed partial bivariate correlations between total emotional behavior (i.e., composite of 10 

emotional behavior codes) during the expressive suppression trial and all 41 regional brain 

volumes generated by FreeSurfer for each hemisphere (i.e., 82 total), controlling for (a) total 

emotional behavior during the reactivity trial (to account for any baseline differences in 

emotional reactivity); (b) total intracranial volume (ICV; total of gray matter, white matter, 

and cerebrospinal fluid volume, to control for any individual differences in brain size; (c) 

scanner type (3 dummy variables indicating 1.5T Siemens-CIND, 3T Siemens-CIND, and 

4T Siemens-CIND, to control for differences in magnet strength); and (d) FreeSurfer version 

(2 dummy variables indicating FreeSurfer version 4.3.0 and 4.5.0). To allow for sufficient 

power to test our research question and following standard conventions designating r = .50 

as a large effect size (Cohen, 1992), only regions with large effect sizes (rp > .50; Cohen, 

1992) were examined in the next stage, as in our previous work (Sturm et al., 2013). As 

described in detail below, this approach resulted in 19 regional brain volumes to be 

examined. Thus, next, we conducted stepwise hierarchical regression analyses with total 

emotional behavior (i.e., composite of 10 emotion behavior codes) during the expressive 

suppression trial as the dependent variable. To account for possible lateralization, we 

conducted two separate regressions for left and right hemisphere volumes. For both 

regressions, in Step 1, we included age and gender (to control for differences between the 
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diagnostic groups) as well as total emotional behavior during the reactivity trial, ICV, 

scanner type, FreeSurfer version, and diagnosis (i.e., 2 dummy variables indicating AD and 

FTD diagnosis, to rule out the possibility that significant findings were confined to one 

diagnostic group) as covariates. In Step 2, we used a forward-entry model to let the 

statistical program determine which brain region(s) accounted for significant variance in 

emotional behavior beyond the covariates. In follow-up analyses, we examined whether 

findings remained stable when applying Bonferroni corrections to account for multiple 

testing (for 19 regional brain volumes examined the corrected alpha was .0026). All analyses 

were conducted using SPSS Statistics for Macintosh, version 25 (IBM, 2017) .

Results

Demographic, clinical, and emotional characteristics of patients with FTD, patients with 

AD, and Healthy Controls are presented in Table 1.

Hypothesis 1. Neurodegenerative Disease and Expressive Suppression.

The repeated-measures MANCOVA revealed a marginally significant effect of diagnosis on 

emotional behavior during the suppression trial, F(2,134) = 4.69, p = .011, ηp = 07. Simple 

contrasts revealed that patients with FTD showed less expressive suppression (i.e., greater 

total emotional behavior during the suppression trial) than healthy controls, Mdiff = .87, 

SE(Mdiff) = .29, p = .003; whereas patients with AD showed marginally less expressive 

suppression than patients with FTD (Mdiff = .48, SE(Mdiff) = .26, p = .064) and were 

statistically indistinguishable from healthy controls Mdiff = .39, SE(Mdiff) = .29, p = .184). 

Thus, our first hypothesis that patients with FTD would show less expressive suppression 

than the two comparison groups was supported for FTD patients versus healthy controls, but 

not for FTD versus AD (See Figure 1).

Hypothesis 2. Neurodegenerative Disease and Insula Volume.

The MANCOVA revealed a significant effect of diagnosis on right insula gray matter 

volume, F(2,32) = 4.11, p = .026, ηp = 20, and left insula gray matter volume, F(2,32) = 

4.12, p = .026, ηp = 21. Simple contrasts revealed that for the right hemisphere, patients with 

FTD had significantly lower right insula gray matter volumes than patients with AD, Mdiff = 

−700.43, SE(Mdiff) = 332.87, p = .043, and healthy controls, Mdiff = −1019.90, SE(Mdiff) = 

376.98, p = .011. For the left hemisphere, patients with FTD had marginally lower left insula 

gray matter volumes than patients with ADs, Mdiff = −677.10, SE(Mdiff) = 396.17, p = .097, 

and significantly lower left insula gray matter volumes than healthy controls, Mdiff = 

−1271.70, SE(Mdiff) = 447.48, p = .008. Patients with AD did not differ from healthy 

controls in either right or left insula gray matter volumes, ps > .181 (See Figure 2). Thus, for 

both hemispheres, our second hypothesis that patients with FTD would have lower insula 

gray matter volumes than patients with AD and healthy controls was supported, though the 

difference between FTD and AD patients was marginally significant for left hemisphere 

insula volume.
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Hypothesis 3. Insula Volume and Expressive Suppression.

Preliminary analyses.—The partial correlation analyses to determine which brain 

regions to include in our test of the association between brain volume and emotional 

behavior for each hemisphere revealed that 6 right-hemispheric brain regions and 13 left-

hemispheric brain regions correlated with total emotional behavior at our threshold level of r 
= 0.5 or greater (for details on specific regions, see Table 2). Notably, the insula met this 

inclusion criterion for both hemispheres.

In the stepwise regression comparing the associations between the right hemisphere brain 

regions obtained from the partial correlation above (i.e., six candidate regions) and 

emotional behavior, only right insula volume was a significant predictor of emotional 

behavior. Specifically, lower right insula gray matter volume was associated with less 

expressive suppression (i.e., greater total emotional behavior during the expressive 

suppression trial), B = −.01, SE(B) = .003, β = −.63,p < .001. In the stepwise regression 

comparing the associations between the left hemisphere brain regions obtained from the 

partial correlation above (i.e., 13 candidate regions) and emotional behavior, only left insula 

gray matter volume was a significant predictor of emotional behavior. Specifically, lower left 

insula gray matter volume was associated with less expressive suppression (i.e., greater total 

emotional behavior during the suppression trial), B = −.01, SE(B) = .002, β = −.66,p < .001 

(See Figure 3). Thus, our third hypothesis that across all participants, lower insula gray 

matter volume would be associated with less expressive suppression in both hemispheres 

was supported. Findings remained stable when applying Bonferroni corrections to account 

for multiple testing.

Discussion

We examined the relationship between neural loss and suppression of behavioral responses 

to a disgusting film in patients with FTD, patients with AD, and neurologically healthy 

controls. Our main findings were that (1) patients with FTD showed less expressive 

suppression than healthy controls, but not less than patients with AD; (2) patients with FTD 

had lower bilateral insula gray matter volume than both patients with AD and healthy 

controls; and (3) across all participants, lower insula gray matter volume was associated with 

less expressive suppression.

These findings suggest that the insula, a region typically associated with the generation of 

emotion (Adolphs, Tranel, & Damasio, 2003; Phillips, Drevets, Rauch, & Lane, 2003; Stein, 

Simmons, Feinstein, & Paulus, 2007; Verstaen et al., 2016; Wright, He, Shapira, Goodman, 

& Liu, 2004), is also involved in the regulation of emotion; specifically, expressive 

suppression. Indeed, among all the empirically derived neural regions we examined in both 

hemispheres, only insula gray matter volume was associated with expressive suppression 

ability; specifically, lower gray matter volume in both the right and left insula predicted less 

expressive suppression (i.e., greater emotional behavior when instructed to hide reactions to 

a disgust-eliciting film).

On the surface, an instruction to reduce visible signs of emotion seems simple. However, 

expressive suppression relies on the dynamic integration of a complex set of processes, 
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including interoceptive and proprioceptive awareness, social awareness, and monitoring 

emotional salience in the service of personal and social goals. The present findings are 

consistent with a growing body of work suggesting that beyond its roles in viscerosensory 

awareness (Craig, 2002; Saper, 2002) and emotional responding (e.g., Adolphs et al., 2003; 

Phillips et al., 2003; Stein et al., 2007; Verstaen et al., 2016; Wright et al., 2004), the insula 

plays a crucial role in integrating bottom-up sensory information with top-down regulatory 

signals in ways that serve adaptive motivated and social behavior (Berntson et al., 2011; 

Craig, 2009, 2010; Critchley, 2005, 2009; Damasio, 1999; Gu, Hof, Friston, & Fan, 2013; 

Seeley, 2010).

Our findings are particularly informative in helping to understand the neural basis of a 

prominent behavioral problem seen in patients with FTD. Anatomical studies have revealed 

insular atrophy early in the course of FTD (Seeley, 2008, 2010). Behavioral research has 

indicated that patients with FTD exhibit deficits in expressive suppression (Goodkind et al., 

2010). The present study confirms both of these findings and goes on to establish a direct 

link between lower insula volume and diminished expressive suppression ability.

Results of tests of our first hypothesis—that patients with FTD would have diminished 

expressive suppression ability compared to healthy controls (i.e., more emotional behavior 

when explicitly instructed to hide their reactions to a disgust-eliciting film)—corroborates 

one of the hallmark features of FTD observed in clinical and real-world settings: disinhibited 

social behavior. Early in the disease process, patients with FTD often behave in ways that 

violate social norms (e.g., making offensive remarks, encroaching on the personal space of 

others, exhibiting lack of etiquette; Manoochehri & Huey, 2012). Although we focused on a 

very specific emotion regulation skill, instructed expressive suppression, the diminished 

ability we found in patients with FTD to inhibit a dominant response (i.e., the behavioral 

display of emotion) and to coordinate/execute a subdominant response (i.e., to conceal any 

felt emotions in accordance with task instructions) dovetails with the broader difficulties 

these patients are known to have with judgment, loss of initiative, deficient self-control, 

compulsive or stereotypic behavior, and loss of interpersonal caring and tact (Miller, Chang, 

Mena, Boone, & Lesser, 1993; Snowden et al., 2001). Notably, patients with FTD did not 

differ significantly from patients with AD in expressive suppression ability. This may be due 

to the general cognitive complexity of the task instructions and demands for patients with 

AD, rather than to expressive suppression per se; however, our data do not enable us to 

establish this conclusively. Nonetheless, the overall pattern of findings was graded, with the 

FTD group showing the least expressive suppression, followed in turn by the AD group and 

healthy controls. Thus, with greater statistical power, the difference between FTD and AD 

groups may have reached statistical significance.

Results of tests of our second hypothesis—that patients with FTD would have lower bilateral 

insula gray matter volumes than both patients with AD and healthy controls—align with the 

distinctive structural and functional features of FTD versus those of AD. In terms of the 

three clinical subtypes of FTD, studies reveal that behavioral variant FTD involves the 

ventral and dorsal anterior insula early in the disease (Seeley, 2008); semantic dementia 

begins with the left or right temporal pole, but later spreads to ventral anterior insula (Pereira 

et al., 2009; Rohrer et al., 2009); and progressive non-fluent aphasia primarily involves 
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degeneration of dorsal anterior insula (Gorno-Tempini et al., 2004; Nestor et al., 2003; 

Rohrer et al., 2009). By contrast, AD is characterized neuroanatomically by cortical atrophy 

in the medial temporal and parietal lobes (Seeley et al., 2009; Seeley et al., 2007) and 

clinically by cognitive impairments (i.e., episodic memory, language, and visuospatial 

dysfunction), with socio-emotional functioning remaining relatively spared.

Finally, results of tests of our third hypothesis—that lower insula volume would be 

associated with diminished expressive suppression ability—allowed us to link structure and 

function directly. The human ventral frontoinsula responds to diverse visceral and autonomic 

challenges and co-activates with the amygdala and anterior cingulate cortex during a range 

of social-emotional paradigms (Critchley, 2005; Kurth, Zilles, Fox, Laird, & Eickhoff, 2010; 

Mutschler et al., 2009; Singer, Critchley, & Preuschoff, 2009). The functions of the dorsal 

anterior insula are less clear, but data suggest it plays a role in response suppression, task 

switching, and task maintenance (Aron, Robbins, & Poldrack, 2004; Dosenbach et al., 

2006). In linking structure and function directly, the present study corroborates previous 

research implicating the insula in expressive suppression (Giuliani et al., 2011; Goldin, 

McRae, Ramel, & Gross, 2008), and builds on it further by assessing the structural correlates 

of actual expressive suppression and by doing so in a sample of neurological patients.

Questions for Future Research

The present study raises important questions as to the boundary conditions of the present 

findings, including whether they extend to: (a) stimuli other than disgust-eliciting ones, (b) 

forms of emotion regulation other than expressive suppression (e.g., reappraisal, attentional 

control), (c) the upregulation of emotion (i.e., displaying exaggerated responses when these 

are socially appropriate), and (d) suppression of other aspects of the emotional response 

package (i.e., physiology and subjective experience). Because we view the accurate 

representation and processing of bodily information as critical to all types of emotion 

regulation, we would expect the insula to be important across these aforementioned 

conditions. Nonetheless, interesting differences might also emerge; for example, when 

regulating emotions that are arguably less visceral than disgust (e.g., sadness) or when 

bodily responses are not the targets of behavioral modulation (i.e., regulation via reappraisal 

or attentional control as opposed to expressive suppression).

In addition, structural parcellation in this study was limited to the left and right insula and 

did not examine the insula’s posterior/anterior or dorsal/ventral divisions, each of which has 

functional specificity. Whereas the posterior and mid-insula share projections with the 

somatosensory cortex and receive visceral afferent projections that convey interoceptive 

information about bodily states (Craig, 2002), the anterior insula is highly connected with 

limbic (e.g. amygdala, ventral striatum) and prefrontal cortical (e.g., anterior cingulate 

cortex, orbitofrontal cortex) structures (Mesulam & Mufson, 1982; Öngür & Price, 2000). 

Accordingly, information is represented in its simplest form in the posterior and mid-insula 

and in a more abstracted, contextualized form in the anterior insula. In terms of dorsal/

ventral subregions, the dorsal insula is chiefly involved in representing visceral and 

somatosensory information, whereas the ventral insula appears to be more important for 

integrating interoceptive signals with information pertaining to salience, focal attention, and 
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the emotional modulation of autonomic activity (Simmons et al., 2013). It would thus be 

interesting in future work to explore the relative contributions of these subregions to various 

emotional reactivity and regulation processes.

Strengths and Limitations

Strengths of the present study include its relatively large sample size (for patient research); 

inclusion of patients with multiple neurological disorders; quantitative analysis of brain 

volumes from structural brain images; and objective coding of emotional behaviors during 

emotion regulation in a relatively naturalistic context. Limitations include focusing on a 

single emotional elicitor (disgust); examining a single regulatory strategy (expressive 

suppression); lack of precision in the anatomical analyses (e.g., not being able to quantify 

insula subregions); the small sample for the neuroimaging analyses (with different cell sizes 

for the different diagnostic groups); and use of different scanners with different magnet 

strengths. We hope to address these limitations in future work.

Conclusion

We found evidence that patients with FTD show greater deficits in expressive suppression 

than healthy controls; greater loss of bilateral insular gray matter volume than both patients 

with AD and healthy controls; and that across the neurologically heterogeneous sample, 

greater insular volume loss was associated with more profound deficits in expressive 

suppression. This research contributes to a growing body of literature highlighting the 

insula’s role in emotion and provides new information concerning the important role the 

insula plays in emotion regulation specifically. In addition, the links between insular loss 

and deficits in expressive suppression appear to explain some of the hallmark social and 

emotional changes observed in patients with FTD.
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Figure 1. 
Total emotional behavior during the suppression trial for FTD patients, AD patients, and 

health controls. Note. Scores adjusted for age, gender, and emotional behaviors during the 

reactivity trial. Horizontal bars represent estimated marginal means. Error bars represent the 

standard error of the mean. ** p < .01
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Figure 2. 
Right (Panel A) and left (Panel B) Insula Gray Matter Volumes Among Patients with FTD, 

Patients with AD, and Healthy Controls Note. Scores adjusted for age, gender, emotional 

behavior during the reactivity trial, ICV, scanner type, and FreeSurfer version. Horizontal 

bars represent estimated marginal means. Error bars represent the standard error of the 

mean.
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Figure 3. 
Insula gray matter volumes and total emotional behavior during the suppression trial. Note. 
Panel A: Right hemisphere. Panel B: Left hemisphere. Scores adjusted for age, gender, 

emotional behavior during the reactivity trial, ICV, scanner type, FreeSurfer version, and 

diagnosis. Each data point represents data from one study participant.
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Table 1.

Demographic, Clinical, and Emotional Characteristics of FTD Patients, AD Patients, and Healthy Controls

FTD Patients AD Patients Controls Group Difference

N
Full Sample
Imaging Only

59
11

52
11

38
20

χ2(2)=4.60, p=100
χ(2)=3.86, p=.145

Demographic Characteristics, M (SD)

 Age (years) 62.26 (7.57)
64.71 (6.13)

62.60 (8.59)
59.89 (7.02)

64.94 (11.91)
62.59 (13.59)

F(2,146)=1.08, p=342
F(2,39)=.57, p=.569

 Gender (% female) 33.9
18.2

38.5
36.4

55.3
65.0

χ2(2)=4.57, p=.102
χ2(2)=6.75, p=.034

 Education (in years) 16.34 (2.64)
15.91 (3.18)

15.88 (3.14)
15.55 (4.70)

17.52 (2.18)
17.70 (2.00)

F(2,135)=3.30, p=.040
F(2,39)=2.03, p=.144

 Race (% White) 89.7
100

94.2
90.9

92.1
100

χ2(2)=77, p=679
χ2(2)=2.80, p=.247

Clinical Characteristics, M (SD)

 CDR .93 (.61)
.77 (.52)

.64 (1.27)

.94 (.46)
.04 (.14)
.05 (.15)

F(2,115)=5.10, p=.008
F(2,28)=2.37, p=.000

Total Emotional Behavior

 Reactivity
Trial

24.05(18.77)
24.45(14.98)

24.71(15.84)
25.73(12.85)

34(17.53)
28.25(16.46)

F(2,146)=4.33,p=015
F(2,39)=.25, p=.784

 Suppression
Trial

13.81(14.70)
18.00(19.27)

12.02(15.60)
17.36(18.57)

9.79(13.61)
6.90(10.31)

F(2,146)=86, p=.424
F(2,39)=2.59, p=.088

Note. M and SD for neuroimaging sample in italics. FTD = Frontotemporal dementia. AD = Alzheimer’s disease. CDR = Clinical Dementia Rating 
Scale.
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Table 2.

Brain Regions Volumes Significantly Associated with Emotion Suppression Behavior in FTD Patients, AD 

Patients, and Healthy Controls

FTD patients AD patients Healthy controls

M SD M SD M SD

Left hemisphere

Insula 5494.55 901.983 5972.00 1279.284 6233.65 686.667

Fusiform gyrus 8249.91 1594.356 7744.18 1502.298 9364.30 1558.762

Inferior temporal

gyrus 8752.55 1959.332 9149.00 1743.030 10464.95 1954.854

Isthmus of the

cingulate gyrus 2124.55 424.251 1770.55 397.351 2260.15 479.710

Lateral orbitofrontal

cortex 6689.73 1542.580 7028.27 1573.496 7436.30 1193.352

Medial orbitofrontal

cortex 3905.55 641.342 3904.00 785.175 4185.15 787.470

Middle temporal

gyrus 9004.00 1797.834 9098.64 2115.158 10607.10 1752.427

Paracentral lobule 3305.09 579.259 3052.64 486.790 3507.65 656.791

Pars triangularis 3174.09 578.453 3057.91 667.734 3755.75 872.518

Superior frontal gyrus 19602.27 3330.848 19291.27 3060.141 22849.40 3956.731

Supraorbital margin 9537.18 1530.481 10548.64 1714.410 12294.65 2282.338

Superior temporal

gyrus 9522.55 1511.747 8192.00 1674.468 10746.35 2072.821

Temporal pole 1474.36 558.589 1961.64 403.226 2350.65 358.891

Right hemisphere

Insula 5268.73 942.181 5757.45 959.200 5846.40 656.618

Inferior parietal

cortex 13014.36 2194.804 11645.18 2199.619 14266.05 2595.935

Lateral orbitofrontal

cortex 6424.55 1386.668 6926.73 1404.789 7062.80 1199.590

Medial orbitofrontal

cortex 4301.55 851.175 4361.09 1004.128 4580.75 801.181

Posterior cingulate

Cortex 2962.36 513.751 3196.09 771.121 3265.25 648.063

Rostral middle frontal

gyrus 15519.09 2432.576 13973.36 3620.321 15666.80 2869.624

Note. Mean gray matter volumes (in cubic millimeters) and SD’s for brain regions that were associated with total emotional behavior during the 
suppression trial in the partial correlation analyses (rp > 0.5). FTD = Frontotemporal dementia. AD = Alzheimer’s disease.
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