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A B S T R A C T

Children with ASD are more likely to experience gastrointestinal (GI) symptoms than typically-developed chil-
dren. Numerous studies have reported immune abnormalities and inflammatory profiles in the majority of in-
dividuals with ASD. Immune dysfunction is often hypothesized as a driving factor in many GI diseases and it has
been suggested that it is more apparent in children with ASD that exhibit GI symptoms. In this study we sought to
characterize peripheral T cell subsets in children with and without GI symptoms, compared to healthy typically-
developing children. Peripheral blood mononuclear cells were isolated from participants, who were categorized
into three groups: children with ASD who experience GI symptoms (n ¼ 14), children with ASD who do not
experience GI symptoms (n ¼ 10) and typically-developing children who do not experience GI symptoms (n ¼
15). In order to be included in the GI group, GI symptoms such as diarrhea, constipation, and/or pain while
defecating, had to be present in the child regularly for the past 6 months; likewise, in order to be placed in the no
GI groups, bowel movements could not include the above symptoms present throughout development. Cells were
assessed for surface markers and intracellular cytokines to identify T cell populations. Children with ASD and GI
symptoms displayed elevated TH17 populations (0.757% � 0.313% compared to 0.297% � 0.197), while children
with ASD who did not experience GI symptoms showed increased frequency of TH2 populations (2.02% � 1.08%
compared to 1.01% � 0.58%). Both ASD groups showed evidence of reduced gut homing regulatory T cell
populations compared to typically developing children (ASDGI:1.93% � 0.75% and ASDNoGI:1.85% � 0.89
compared to 2.93% � 1.16%). Children with ASD may have deficits in immune regulation that lead to differential
inflammatory T cell subsets that could be linked to associated co-morbidities.
1. Introduction

Neurodevelopmental disorders, such as autism spectrum disorders
(ASD) are often considered disorders of the brain, particularly since they
are defined by behavioral traits including repetitive and stereotyped
behaviors and by impairments in communication and social interactions
(Association, 2013). However, many individuals with ASD also suffer
from one or more medical comorbidities including epilepsy, sleep dis-
orders, asthma and gastrointestinal (GI) dysfunction (Levisohn, 2007;
Bauman, 2010; Kohane et al., 2012; Maenner et al., 2012; Chen et al.,
2013; Zerbo et al., 2015b; Mannion and Leader, 2016). Reports of GI
logy and Immunology, the MIND
ood).
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related symptoms in autism have occurred since the disorder was first
described in 1943 (Kanner, 1943) and studies since have continued to
report symptoms of constipation, diarrhea, vomiting, abdominal pain,
gas and bloating associated with ASD. The full extent of GI symptoms
among individuals with ASD has been debated, with differences in study
designs, report biases, or population studies vs. clinic based studies, all
leading to a wide range (20–90%) in the reported prevalence rates
(Horvath and Perman, 2002; Molloy and Manning-Courtney, 2003;
Niehus and Lord, 2006; Valicenti-McDermott et al., 2006; Xue et al.,
2008; Buie et al., 2010; Coury et al., 2012). One large cohort study
including close to 1000 participants reported children with ASD are 6–8
Institute, 2805, 50th Street Sacramento, CA, 95817, United States.
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times more likely to suffer from GI symptoms compared to age-matched
typically-developing children; in addition, GI symptoms were associated
with poorer behavioral assessment scores (Chaidez et al., 2014).

Immune dysfunction has been reported in approximately 60% of
children with ASD (Careaga et al., 2017). Although immune abnormal-
ities in ASD have been reported since the late 1970’s (Stubbs and
Crawford, 1977) a consensus for differences in cellular activation has not
yet been reached (Rose and Ashwood, 2014). In mainly mixed cultures of
peripheral blood mononuclear cells (PBMC), upon stimulation some
studies have observed elevated T-helper (TH)1 cytokines (Singh, 1996;
Croonenberghs et al., 2002a; Ashwood et al., 2011b; Ricci et al., 2013;
Careaga et al., 2017) while others found increased TH2 cell associated
cytokines (Molloy et al., 2006; Ashwood et al., 2011c; Goines et al.,
2011b; Careaga et al., 2017; Krakowiak et al., 2017); in addition to
elevated innate cytokines (Jyonouchi et al. 2001, 2005, 2014; Croon-
enberghs et al., 2002a; Enstrom et al., 2010; Ashwood et al., 2011b;
Malik et al., 2011; Careaga et al., 2017). A number of studies have found
altered frequencies or altered activation status of specific immune cells or
cell subsets (Gupta et al., 1998; Sweeten et al., 2003; Enstrom et al.
2009b, 2010; Mostafa et al., 2010; Ashwood et al., 2011a; Lopez-Cacho
et al., 2016; Ahmad et al., 2017), elevated chemokines concentrations
(Ashwood et al., 2011d; Manzardo et al., 2012; Al-Ayadhi and Mostafa,
2013; Zerbo et al., 2014), decreased soluble TNF receptors (Ashwood,
2018), altered immunoglobulin titers (Croonenberghs et al., 2002b;
Heuer et al., 2008; Enstrom et al., 2009a) and the presence of autoanti-
bodies to brain or CNS proteins (Singh et al. 1993, 1997; Singer et al.,
2006; Cabanlit et al., 2007; Braunschweig et al., 2008; Wills et al., 2009;
Goines et al., 2011a; Frye et al., 2016). A recent study seeking to better
characterize immune endophenotypes in ASD identified a subgroup of
individuals within the ASD population who exhibited elevated produc-
tion of inflammatory cytokines from stimulated immune cells. Using
cluster analyses, those with enhanced immune activation following im-
mune challenge displayed more severe core ASD features and impaired
behaviors (Careaga et al., 2017). This was true for both children with
ASD who displayed increased TH1 cytokine profiles and those with
increased TH2 cytokine profiles.

We hypothesize that immune activation involving several arms of the
immune system is observed in ASD, and that the unifying denominator
among these studies is in fact a decrease in immune regulation and
inability to control immune responses. Corroborating this hypothesis,
decreased levels of the regulatory cytokines transforming growth factor
(TGF)β1 (Okada et al., 2007; Ashwood et al., 2008; Abdallah et al.,
2013b), interleukin (IL)-10 (Jyonouchi et al. 2005, 2012, 2014; Abdallah
et al., 2012) and IL-35 (Rose and Ashwood, 2019) have been reported
from blood components or in stimulated immune cell cultures from in-
dividuals with ASD. In addition, decreased frequency of regulatory T cells
(Tregs) have also been found in individuals with ASD (Ashwood et al.,
2004; Mostafa et al., 2010; Ahmad et al., 2017). On a background of
decreased regulation, the varying pro-inflammatory immune abnormal-
ities reported in ASD may reflect the heterogeneity of ASD, genetic
background or environmental exposures, and illustrate the need to find
common subgroups within ASD, that may help define more targeted
treatments to benefit more individuals across the spectrum (Critchfield
et al., 2011; Coury et al., 2012; Ousley and Cermak, 2014).

We previously reported altered immune responses in children with
ASD who experience GI symptoms. Peripheral blood mononuclear cells
from children with ASD and GI symptoms produced increased mucosa-
related cytokines but decreased TGFβ after stimulation in vitro (Rose
et al., 2018), suggesting a net imbalance away from a regulated response.
In the current study we seek to expand upon these findings and further
characterize the cellular mediators that may be driving these differential
profiles. We utilized flow cytometry to identify and characterize T cells in
children with ASD who experience GI symptoms, children with ASD who
do not experience GI symptoms and in typically-developing children who
do not experience GI symptoms. T cells were identified and grouped
based on their expression of CD3, CD4, CD8, and CD25 and further
2

characterized by intracellular expression of interferon gamma (IFNγ),
IL-10, IL-13, IL-17. Furthermore, we also evaluated populations of T cells
expressing the gut-homing integrin α4β7.

2. Methods

2.1. Subjects

Children with ASD and GI symptoms of irregular bowel movements
(ASDGI) (n¼ 14), or children with ASD and no GI symptoms (ASDNoGI) (n
¼ 10), and typically developing children without GI symptoms (TD) (n ¼
15) were recruited into this study. Participants had previously been
enrolled in the Childhood Autism Risk from Genetics and Environment
(CHARGE) study (Hertz-Picciotto et al., 2006). A diagnosis of autism
spectrum disorder was confirmed at the UC Davis MIND Institute by
trained staff using the Autism Diagnostic Interview-Revised (ADI-R), and
the Autism Diagnostic Observation Schedule (ADOS). The Social
Communication Questionnaire (SCQ) was used to screen for behavioral
and developmental characteristics of ASD in the typically-developing
group. Participants in the TD groups had to score within the typical
range, i.e. below 15, on the SCQ and above 70 on the Mullen Scales of
Early Learning (MSEL) and Vineland Adaptive Behavior Score (VABS).
All participants were assessed using the Aberrant Behavior Checklist
(ABC) to assess impairments within the domains of irritability, lethargy,
social withdrawal, stereotypic behavior, hyperactivity and inappropriate
speech. Participants were randomly recruited from the CHARGE data-
base based on inclusion/exclusion criteria. A telephone interview, along
with GI and health questionnaires were used to assess participant eligi-
bility into the study. Medications and/or behavioral therapies used at the
time of enrollment or within the previous year were collected and
recorded. Participants were excluded if they had a known diagnosis of
other GI pathology (e.g. celiac disease or Inflammatory Bowel Disease),
use of antibiotics or antifungal medications within the prior month,
medications affecting GI transit (stool softeners), and/or recent evidence
of a GI infection based on stool laboratory tests. In addition, participants
were excluded if there was evidence of a seizure disorder, genetic dis-
orders (i.e. Fragile X syndrome, Tuberous Sclerosis Complex), liver or
pancreatic disease, cystic fibrosis, or chronic infection. Children
receiving clinically monitored and prescribed dietary interventions
under the guidance of trained nutritionists/clinicians, medications, or
complementary alternative treatments such as supplements other than a
standard daily multivitamin/mineral tablet were also excluded. How-
ever, for children who were receiving nutritional modifications that were
not overseen by trained nutritionists/clinicians, the dietary changes were
documented but the participants not excluded from the study. Parental
reports of suspected food sensitivities/intolerances that had not been
diagnosed through clinical assessment were also not grounds for exclu-
sion but were documented.

2.2. GI symptom evaluation

CHARGE GI history (GIH) survey and GI symptom survey (GISS),
based upon Rome III Diagnostic Questionnaire for the Pediatric Func-
tional GI Disorders (Walker et al., 2006) were obtained from parent/legal
guardians. The GIH (Chaidez et al., 2014) and GISS (Rose et al., 2018)
assessments have been reported previously. The GIH scores the fre-
quency; abdominal pain, blood in stool/vomit, constipation, diarrhea,
difficulty swallowing, gaseousness/bloating, pain on stooling, sensitivity
to foods, vomiting, on a Likert scale [(0) ¼ never, (1) ¼ rarely, (2) ¼
sometimes, (3) ¼ frequently and (4) ¼ always)]. The GIH assessed any
allergies to foods, if any foods caused or worsened symptoms, reported
dietary restrictions, by whom (child, parent or doctor) and for what
reason; food aversions and what they were, and; if a clinical GI diagnosis
had ever been given. The assessment was for both current (within the
past three months) and previous experiences. The GISS consisted of 7
sections, each section had 1 to 6 questions to determine if the participant
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met the criteria for constipation, diarrhea or irritable bowel syndrome
(IBS) (see (Chaidez et al., 2014) and (Rose et al., 2018) for more infor-
mation about the GIH and GISS).

Participants who met the criteria for constipation, diarrhea or IBS on
the GI history and symptom surveys were placed in their corresponding
GI group), those that did not meet criteria for irregular bowel move-
ments, GI symptoms and had consistent stooling patterns for the past 6
months were placed in the corresponding no GI group. Participants who
did not meet the criteria for constipation, diarrhea or IBS, but had
inconsistent stooling patterns during the last 6 months were excluded
from this study.

This study was approved by institutional review boards for the State
of California and the University of California, Davis. Both written and
informed consent was obtained from a legal guardian for all study par-
ticipants prior to data collection in accordance with the UC Davis IRB
protocol.

2.3. Blood collection and cellular assays

Peripheral blood was collected from each participant in acid-citrate
dextrose Vacutainers (BD Biosciences; San Jose, Ca). Each tube was
centrifuged at 2100 rpm for 10 min, plasma was removed and the
remaining blood components were layered onto lymphocyte separation
medium (Corning; Manassas, VA), and centrifuged at 1700 rpm for 30
min. PBMC from the buffy layer were collected and washed with Hanks
balanced salt solution (Corning; Manassas, VA). After isolation, PBMC
were allowed to rest overnight in complete media (RPMI 1640 (Invi-
trogen; Carlsbad, CA) with 10% Fetal Bovine Serum (FBS) (Corning;
Manassas, VA), 100 IU/ml penicillin (Invitrogen; Carlsbad, CA) and 100
IU/ml streptomycin (Invitrogen; Carlsbad, CA)). PMBC were then
divided and plated in complete media containing 10.6 μM Brefeldin A
and 2 μMMonesin (protein transport inhibitor cocktail (ebioscience; San
Diego,CA)) or in complete media containing 10.6 μM Brefeldin A, 2 μM
Monesin, 81 nM Phorbol 12-Myristate 13-Acetate (PMA) and 1.34 μM
Ionomycin (Cell Stimulation Cocktail (plus protein transport inhibitors)
(ebioscience; San Diego, CA)) for 4 h. Following stimulation, PBMC were
washed with PBS (Corning; Manassas, VA), 1 � 106 cells per well were
plated for each condition and stained with 100 μL of Live/dead amine
dye (LIVE/DEAD Fixable Aqua Dead Cell Strain Kit, for 405 nm excitation
(Invitrogen; Carlsbad, CA) for 20 min in the dark. PBMC were washed
with PBS, then reconstituted in 100 μL of PBMC wash (PBS (Corning),
FBS (Corning), sodium azide (Sigma-Aldrich; St. Louis, MO)) containing
10% FcR block (Miltenyi Biotec; San Diego, CA). Cells were incubated in
the dark for 10 min at 4 �C, antibody cocktails (see below) were added
and cells were incubated in the dark for another 30 min at 4 �C.
Following staining, cells were washed 3 times with PBMC wash and
resuspended in 100 μL of 1x Fix/Perm (BD Cytofix/Cytoperm solution;
BD Bioscience, San Jose, CA)) and incubated in the dark for 20 min at 4
�C. Cells were washed twice with 1x perm wash buffer (BD Perm/Wash
buffer (BD bioscience)) and resuspended in 50 μL of perm wash buffer
and intracellular antibody cocktail, followed by a 30 min incubation in
the dark at room temperature. Cells were subsequently washed twice
with 1x Perm wash buffer then resuspended in 100 μL 1% para-
formaldehyde (Sigma-Aldrich). Cells were stored in the dark at 4 �C until
analysis. Flow cytometric acquisition was performed on a LSR II flow
cytometer (BD Biosciences) using FACSDiva software (BD Biosciences)
and 100,000 acquired events were captured for each staining tube. Flow
cytometry data was analyzed with Flowjo software (Tree Star, Inc; Ash-
land, OR). Lymphocytes were gated using forward scatter and side scatter
parameters. Dead cells were excluded and live cells were gated for
presence of CD3 (T cells).

2.3.1. Antibodies
Antibodies were purchased from BioLegend: anti-human CD3 (clone

UCHT1)-brilliant Violet 421; anti-human integrin β7 (clone FIB27); anti-
human FoxP3 (clone 206D)-PE. The following antibodies were purchased
3

from eBioscience: anti-human CD8α (clone OKT8)-Alexa Fluor 700; anti-
human IL-17A (clone eBio64DEC17)-FITC; anti-human IL-13 (clone
85BRD)-FITC; anti-human CD25 (clone BC96)-Alexa Fluor 488; anti-
human IL-10 (clone JES3-9D7)-PE. Anti-human IFNγ (clone B27)-PE
was purchased from BD Bioscience.

2.4. Statistical analysis

One-way ANOVA were used to determine statistical significance of
cell population frequencies. Multiple comparisons were corrected for
using Tukey’s multiple comparison test; the adjusted probability (p)-
values were reported, except where noted, p-values < 0.05 were
considered statistically significant. Outliers were removed in Prism using
ROUT with the standard of Q ¼ 1%. Behavioral data (ABC subscales)
correlations to cell frequencies were analyzed utilizing using Spearman’s
correlation, p-values < 0.05 were considered statistically significant.

3. Results

PBMC were cultured with either a stimulation cocktail or a control
cocktail for 4 h prior to staining. Cell surface markers and intracellular
cytokines or transcription markers were assessed to identify and char-
acterize T cell populations. We did not find any significant differences
between live/dead cell populations among groups, nor did we observe
any differences among the frequencies of total T cell (CD3þ) population,
CD4 T cell population, or CD8 T cell sub-population. The frequencies of
α4β7 (as assessed by β7þ) T cell also did not differ between groups.

3.1. Intracellular cytokine profiles

In children with ASDwho experience GI symptoms (ASDGI), there was
over a 2-fold increased frequency of IL-17þ CD4 T cells (mean: 0.757%,
Standard Deviation: (0.313%)) (Fig. 1a) compared to both children with
ASDNoGI (0.39% (0.34%); adjusted p-value ¼ 0.0134) or to TD children
(0.297% (0.197%): p ¼ 0.0004). In cells that were β7Hi, elevated fre-
quencies of IL-17þ CD4 T cells were also observed (Fig. 1b) in ASDGI

(1.85% (1.42%)) compared to TD (0.70% (0.52%) p ¼ 0.0384). In ASDGI

there were also elevated populations of IL-17.1 CD4þ T cells that were
double positive for both IL-17 and IFNγ (0.20% (0.12%)) (Fig. 1c)
compared to both ASDNoGI (0.09% (0.09%); p ¼ 0.0162) and TD (0.09%
(0.05%); p ¼ 0.0062). In addition to elevated IL-17þCD4þ populations,
we observed increased IL-17þ CD8 T cell populations in ASDGI (0.05%
(0.04%)) compared to TD (0.01% (0.01%); p ¼ 0.0040). ASDNoGI (0.04%
(0.02%)) CD8þ IL-17þ cells were similarly elevated compared to TD,
however, significance was lost after correcting for multiple comparisons
(adjusted p-value ¼ 0.0632, uncorrected p-value ¼ 0.0251) (Fig. 1d).

We observed a 2-fold increased frequency of IL-13þ CD4 T in children
with ASDNoGI (2.02% (1.08%)) compared to TD (1.01% (0.58%); p ¼
0.0147) (Fig. 2a). The differences in frequency of IL-13þ CD4 T cells were
not observed for ASDGI compared to TD (p ¼ ns). Interestingly, no dif-
ferences in the frequency of canonically-defined TH1 (CD4þIFNγþ) were
identified between groups; however, we did observe an increase in me-
dian fluorescent intensity (MFI) for IFNγ for ASDNoGI (3112 (1017))
(Fig. 2b) compared to ASDGI (2241 (637); p ¼ 0.0266) and there was a
trend in TD that did not reach significance after correction (2398 (518);
adjusted p ¼ 0.0580; uncorrected p-value ¼ 0.0229).

3.2. Regulatory T cells

To determine the frequency of regulatory T cells we used CD25 (IL-2
receptor) and Forkhead P3 (FoxP3) transcription factor. These are
thought to define one of the major subsets of T cells with regulatory
function in humans; other cells with regulatory function do exist but were
not assessed here. We found significantly decreased frequencies of
β7hiCD25þFoxP3þ CD4 T cells in both ASDGI (1.93% (0.75%); p ¼
0.0473) and ASDNoGI (1.85% (0.89%); p ¼ 0.0448) compared to TD



Fig. 1. Frequency of cytokine positive CD4 T cells after 4h stimulation with phorbol 12-myristate 13-acetate (PMA)/ionomycin and the protein transport inhibitor,
brefeldin A. (a) Frequency of IL-17 positive CD4 T cells, (b) frequency of IL-17 positive β7Hi CD4 T cells, (c) frequency of double-positive IL-17 and IFNγ CD4 T cells.
(d) frequency of IL-17 positive CD8 T cells. Data depicted as box and whisker graphs. *denotes adjusted p-value < 0.05, y denotes uncorrected p-value < 0.05.

Fig. 2. T cell frequencies and median fluorescent intensities (MFI) of CD4 T cells after 4 h stimulation with phorbol 12-myristate 13-acetate (PMA)/ionomycin and the
protein transport inhibitor, brefeldin A. (a) IL-13 positive CD4 T cells (b) MFI of phycoerythrin (PE) conjugated to IFNγ. Data depicted as box and whisker graphs.
*denotes p-value < 0.05, y denotes uncorrected p-value < 0.05.
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(2.93% (1.16%)) (Fig. 3a). In addition, there were trends for decreased
frequencies of IL-10þ CD4 T cells in children with ASDGI compared to TD,
however, significance was lost after correcting for multiple comparisons
(adjusted p-value ¼ 0.0946; uncorrected p-value ¼ 0.0386) (Fig. 3b).
Considering the increased frequency of TH17 cells we identify in ASDGI

we examined the ratio of Treg/TH17 (CD4þCD25þFoxP3þ)/(CD4þIL-17þ)
populations among our groups. ASDGI had the lowest ratio of Treg to
TH17 cells (4.28, 1.96) compared to TD (15.89, 12.63; p ¼ 0.0230)
(Fig. 3c).

3.3. Behavior correlations

Regulatory T cell populations were negatively correlated with the
4

aberrant behavior checklist (ABC) subscale stereotypy (Spearman r ¼
�0.336, p ¼ 0.0072) suggesting the fewer the numbers of Tregs the worse
the behavior. CD8þIL17þ cell populations positively correlated with
increased stereotypy (0.245, p ¼ 0.0454) (Table 1).

4. Discussion

In this study we provide evidence of altered immune populations in
children with ASD who experience GI symptoms and in children with
ASD without GI symptoms compared to typically-developing children. In
the ASDGI group we found elevated frequencies of TH17 and TH17.1
populations, and coupled to this were decreased populations of IL-10
producing CD4 T cells, reductions in regulatory T cells, and decreased



Fig. 3. Frequency of regulatory CD4 T cell populations after 4 h stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin and the protein transport in-
hibitor, brefeldin A. (a) Frequency of double-positive, CD25 and FoxP3, β7Hi expressing CD4 T cells, (b) frequency of IL-10 positive CD4 T cells, (c) ratio of
CD25þFoxp3þ cells to CD4þIL-17þ cells. Data depicted as box and whisker graphs. *denotes p-value < 0.05, y denotes uncorrected p-value < 0.05.

Table 1
Aberrant behavior checklist (ABC) and cell population frequencies correlations.
Spearman’s rho (r) value and p-values are listed for ABC subscale hyperactivity
and stereotypy; p-values <0.05 are in bold.

Aberrant behavior Checklist Correlations

Cell Population Hyperactivity Stereotypy

Spearman r p value Spearman r p value

CD4 T cell: β7HiCD25þ �0.177 0.1528 �0.336 0.0072
CD4 T cell β7HiCD25þFoxp3þ �0.036 0.7657 �0.114 0.3549
CD4 IL10þ �0.149 0.1841 �0.095 0.4037
CD4 IL-13þ 0.075 0.5112 �0.090 0.4320
CD8 IL17þ 0.187 0.1214 0.245 0.0454
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ratios of regulatory T cells compared to inflammatory TH17 subsets.
Considering our previous findings of increased mucosa-related cytokines
and decreased regulatory cytokines, mainly active TGFβ1, in children
with ASD who experience GI symptoms (Rose et al., 2018), these data are
suggestive of impairments in immune regulation. Alterations in the
ASDNoGI group included elevated populations of IL-13þ CD4 T cells that
could represent a shift to a TH2 response. However, an increase in median
fluorescent intensity for PE-IFNγ in ASDNoGI children may suggest acti-
vation could be different within this group compared to children with
ASDGI, or that it is more heterogeneous.

The main aim of this study was to identify differences in inflamma-
tory and regulatory T cell populations in ASD with and without GI
symptoms compared to typically-developing children. Children with ASD
and GI symptoms displayed the largest number of differences in cell
frequencies and our major finding of increased populations of IL-17þ T
cells. TH17 cells play a central role in combating extracellular pathogens,
particularly in mucosal tissues (Kleinewietfeld and Hafler, 2013) where
they orchestrate immunity to extracellular pathogens by producing cy-
tokines that help to recruit, support, and promote neutrophils, monocytes
and other lymphocytes (Kolls and Khader, 2010; Onishi and Gaffen,
2010; Peck and Mellins, 2010). The major cytokine mediators produced
by TH17 cells include its eponymic cytokine, IL-17A, as well as IL-17F,
IL-21 and IL-22 (Kolls and Khader, 2010; Onishi and Gaffen, 2010;
Peck and Mellins, 2010). These cytokines, IL-17A in particular, act on
epithelial, mesenchymal and immune cells to produce an array of in-
flammatory mediators including neutrophil chemoattractants (CXCL1
CXCL2, CXCL5, CXCL8), monocyte chemoattractants and growth factors
(GM-CSF, CCL1, CCL2, CCL20), antimicrobial peptides, and acute phase
proteins, among others (Kolls and Khader, 2010; Onishi and Gaffen,
2010; Peck andMellins, 2010). While these inflammatory mediators help
to maintain an effective defense against pathogens, disruption in regu-
lation can lead to excessive inflammation and the TH17 pathway has been
implicated in many autoimmune disorders including those that affect the
GI such as Crohn’s disease and ulcerative colitis (UC) (Onishi and Gaffen,
2010; Galvez, 2014); as such, balance between TH17 and regulatory T
5

cell (Treg) responses are particularly crucial for maintaining equilibrium
between protection against pathogens and tolerating commensal mi-
crobes (Omenetti and Pizarro, 2015).

Studies regarding IL-17 producing cells and IL-17 related cytokines in
ASD have reported mixed findings. While some studies report elevated
levels of IL-17 in serum/plasma (Suzuki et al., 2011; Al-Ayadhi and
Mostafa, 2012), others have found no differences in circulating IL-17 or
by production of stimulated PBMC (Enstrom et al., 2008; Onore et al.,
2009; Jyonouchi et al., 2012). A handful of studies have begun to address
frequencies of IL-17 producing cells, particularly CD4þ helper T cells.
Ahmad et al. reported elevated CD4þRORγTþ, CD4þ GATA-3þ, and
CD4þT-betþ cells while simultaneously finding decreased CD4þFoxP3þ

populations (Ahmad et al., 2017). A more recent study also reported
elevated TH17 cells along with increased production of IL-17 but
decreased Treg populations and related cytokine production of IL-10 and
TGF-β (Moaaz et al., 2019). Another study examined frequencies of TH1,
TH2, and TH17 populations and while they did not find differences in
total TH17 frequencies they did report elevated frequencies of activated
TH17 cells, defined as CD3þCD4þCXCR3�CCR6þHLA-DRþCD38þ cells in
ASD compared to controls (Basheer et al., 2018). One explanation for the
discrepancies concerning IL-17 in ASD may involve the heterogeneity of
ASD and the co-morbidities that may accompany individuals with ASD. A
2017 study examining a non-overlapping cohort of the CHARGE study
reported elevated production of IL-17 by phytohemagglutinin-stimulated
PBMC in ASD compared to TD. Furthermore, when ASD and TD groups
where further stratified by a diagnosis of asthma, ASD with asthma
produced more IL-17 than any other group, including the TD plus asthma
group (Akintunde et al., 2015). This suggest that some groups may find
elevated TH17 cells and IL-17 when the study population is knowingly or
unknowingly enriched with co-morbidities that involve TH17 pathways,
such as asthma, autoimmunity, or GI related symptoms, such as we report
in the current study. Along these same lines we previously reported
finding no differences in TH17 populations between ASD and TD in an
earlier cohort of the CHARGE study (Onore et al., 2009), which was not
enriched for any particular co-morbidities but contained more children
with autism that had an early onset of symptoms vs. those that undergo
regression of autism.

Given the importance of balance between TH17 and Treg populations,
it is noteworthy to mention that in addition to increased TH17 pop-
ulations found in children with ASDGI, we also found evidence of
decreased Treg populations. Specifically, we found decreased frequencies
of IL-10þ CD4 T cells and β7þCD25HiFoxP3þ CD4 T cells, suggesting that
both peripheral and gut related Treg populations may be reduced in this
group. Our previous study also found lower production of active TGFβ1
from PBMC from ASDGI which supports the idea that immune regulation
is impaired in ASDGI (Rose et al., 2018). The stability of Treg is complex
and likely varies based on a number of factors including type of regula-
tory T cell. There are 2 main subsets of Treg: natural Treg (nTreg) derived
from the thymus and induced Treg (iTreg) that are induced in the
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periphery (Lin et al., 2013). While nTreg appear to be very stable, iTreg
may be more plastic and may possess the ability to become inflammatory
under certain conditions (Kleinewietfeld and Hafler, 2013). Stability of
Foxp3 is in part managed by epigenetic regulation and is essential for Treg
stability; in particular, demethylation of the Treg-specific demethylated
region (TSDR) at FOXP3 is required for differentiation and results in
FOXP3 expression and the suppressive function of Treg (Fontenot et al.,
2003; Floess et al., 2007; Toker et al., 2013; Feng et al., 2014). The lack of
appropriate demethylation or the gain of methylation at the FOXP3 TSDR
triggers Treg instability, allowing for loss of Treg suppressive functions and
gain of effector T cell functions, such as IL-17 production (Hoffmann
et al., 2009; Wang et al., 2013). Future studies are needed to further
explore the plasticity and stability of Treg in ASD, and how the microbiota
and other environmental influences contribute.

Plasticity of TH17 is not only limited to TH17/Treg relationships, re-
ports of TH17 cells gaining a TH1-like phenotype have also been
described (Harrington et al., 2006). While some TH17 cells that gain
TH1-like features and secrete IFNγ retain expression of IL-17, generally
they lose the ability to produce IL-17 and irreversibly transdifferentiate
into a TH1-like cell (Lee et al., 2009; Omenetti and Pizarro, 2015). TH17
cells that transdifferentiate have been termed ex-TH17 cells (Hirota et al.,
2011). Stability of TH17 cells is dependent on environmental signals,
importantly, TGFβ is required; in the absence of TGFβ and with exposure
to IL-12, TH17 cells can also express IFNγ (Kleinewietfeld and Hafler,
2013). Like Treg, TH17 stability is also linked to its epigenetic status,
which is controlled by both histone and DNAmethylation regulation. The
TH1 transcription factor gene promoter, tbx21, has a bivalent status in
TH17 cells characterized by dual-positive status of both H3K4me3 and
H3K27me3 leading to TH17 instability and the inclination of TH17 cells
to obtain a TH1-like phenotype after exposure to IL-12 (Wei et al., 2009).
Functionally, TH1-like, ex-TH17 cells have been characterized as highly
pathogenic, produce more inflammatory cytokines, have a higher pro-
liferative capacity than TH17 or TH1 cells, (Basdeo et al., 2017; Gartlan
et al., 2017) and have been reported to be elevated in rodent models of
autoimmune disorders. In experimental autoimmune encephalomyelitis
(EAE), fate-mapping experiments showed that the majority of myelin-s-
pecific CD4 T cells in the spinal cord were ex-TH17 cells (Hirota et al.,
2011). Our finding of elevated IL-17þIFNγþ CD4 T cell in children with
ASD who experience GI symptoms, lends further evidence to the
disruption of Treg/TH17 balance in ASDGI and is a commonality shared
with patients with IBD and other autoimmune disorders in which
increased populations of IL-17þIFNγþ CD4 T cells have also been iden-
tified (Annunziato et al., 2007; Galvez, 2014; Ueno et al., 2018), and in
addition to being described as more inflammatory, they may also be more
resistant to suppression by Tregs, at least in Crohn’s disease (Annunziato
et al., 2007). While we know these cells play a role in disease patho-
genesis, it is currently unknown if these cells have a role in heathy in-
dividuals. One explanation for the flexibility for TH17 cells to easily
transdifferentiate into a TH1-like phenotype is to enable a quick shift
from combating extracellular pathogens to intracellular pathogens (Zhou
et al., 2009).

As well as a change in the balance of immune activation in ASDGI we
also noted decreased regulation in ASDNoGI. In this context, IL-13þ CD4 T
cells but not IL-17 cells were increased in ASDNoGI. These data may
suggest that both ASDGI and ASDNoGI have decreased regulation and
increased inflammatory responses but that inflammatory signals may be
different and lead to different co-morbidities. IL-4, IL-5 and IL-13 are the
classical cytokines associated with TH2 responses (Nakayama et al.,
2017) and are the major cytokines involved with mediating type 2 re-
sponses. TH2 cells are important for humoral responses, protection
against extracellular parasites and are drivers of inflammation in asthma
and atopy (Paul and Zhu, 2010; Nakayama et al., 2017). ASD are often
accompanied with co-morbidities, including an increased proclivity to-
wards allergies and asthma (Mostafa et al., 2008; Sacco et al., 2012; Chen
et al., 2013; Kotey et al., 2014; Zerbo et al., 2015a). Epidemiology studies
have found associations between maternal asthma and increased risk for
6

developing a neurodevelopmental disorder (Croen et al., 2005; Leonard
et al., 2006; May-Benson et al., 2009; Langridge et al., 2013; Lyall et al.,
2014; Instanes et al., 2015; Gidaya et al., 2016; Theoharides et al., 2016),
furthermore, findings of elevated cytokines associated with a TH2
response have also been reported from mid-gestational maternal sera,
amniotic fluid, and in neonatal blood spots from children who later
developed ASD (Goines et al., 2011b; Abdallah et al., 2013a; Krakowiak
et al., 2015). Interestingly, studies in mice lacking T cells were shown to
have impairments in cognitive function (Kipnis et al., 2004; Brynskikh
et al., 2008), and in particular, IL-4 producing T cells in the meninges
were shown to be important in learning and memory (Derecki et al.,
2010). Mice who had undergoneMorris water training had an increase in
IL-4 producing meningeal T cells, moreover, mice who were deficient in
IL-4 (IL-4�/� mice) displayed learning defects that could be restored
upon adoptive transfer of T cells from wildtype mice (Derecki et al.,
2010). The impact of IL-4 on neurodevelopment is likely complex,
dependent on concentration, stage of development and region.

4.1. Study limitations

Our study does have several limitations, mostly revolving around
small sample sizes which restricted how we could stratify our study
population. In the future we would like to further stratify the GI pop-
ulations based on specific symptoms (constipation vs. diarrhea vs. IBS). A
fourth group of typically-developing children with GI symptoms of
irregular bowel movements (TDGI) were also recruited but due to a sta-
tistically lower median of age for the group TDGI as well as low recruit-
ment numbers (n¼ 5) we were not able to include this group in statistical
analysis. Furthermore, our population age range was wide and included
children 3–12 years of age, larger sample sizes would have made it
possible to compare data across age. Lastly, the smaller population size
made it difficult to study gender differences as our study is primarily
composed of males, which is consistent with the gender ratio of ASD
diagnosis, however, resulted in too few females to perform statistical
analysis. In order to analyze cytokine profiles of T cells, the cells first
required stimulation, for this we choose to use a standard stimulant and
timeframe to stimulate with (PMA/Ionomycin for 4 h), however, it is
possible that other routes of activation may reveal variation in results or
that a longer stimulation may show more dramatic results. IL-10 and IL-
17, for example, take longer to reach peak cytokine production. Despite
these limitations we feel that this study provides valuable insights on
immune regulation in children with ASD and GI symptoms.

5. Conclusions

Considering the heterogeneity of ASD and the varying types of im-
mune dysfunction reported in ASD, we sought to investigate differences
in T cell profiles in children with ASD who experience GI symptoms
compared to ASD without GI symptoms. We were able to find differences
in dominant T cell lineages based on whether or not GI symptoms were
present. One commonality among our ASD groups compared to the TD
group was evidence of decreased immune regulation; both ASDGI and
ASDNoGI displayed lower frequencies of B7þCD25þFoxP3þ CD4 T cells.
Moreover, this decrease in regulation was accompanied by an increase in
differential inflammatory T cell lineages; for ASDGI, this was elevated
TH17 populations and for ASDNoGI, increased TH2 populations. Elevated
TH17 populations have frequently been identified in autoimmune and GI
disorders and may provide a target for future treatments that may help
alleviate GI inflammation. The role TH2 cells play in ASD is currently
unknown and should be investigated further.
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