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ABSTRACT OF THE DISSERTATION

Essays in Macro-finance

by

Victor Sellemi

Doctor of Philosophy in Economics

University of California San Diego, 2024

Professor Allan Timmermann, Chair

This dissertation is comprised of three free-standing chapters, each focused on

topics in the intersection of financial economics and macroeconomics.

Chapter 1 examines the propagation of shocks in economic models with customer-

supplier networks. I show that the common assumption of idiosyncratic shocks at the firm

or industry levels implies empirically implausible sparsity restrictions on the input-output

network structure. Moreover, I provide evidence that substitutability between trade partners

is related to technological and product dispersion that is not captured by standard firm

and industry definitions, and thus generates non-negligible correlation in shocks. Finally,

I show that assets positively exposed to upstream and downstream shocks are useful

hedges and earn lower average risk premia than less exposed peers. This is confirmed by

statistically significant return spreads and a negative association between correlated shock

xii



propagation and aggregate growth.

Chapter 2 studies the role of time-to-build in federal defense when estimating

aggregate federal government spending multipliers. We find that the early impact of

defense news shocks on GDP is due to a rise in business inventories, as contractors

ramp up production for new defense contracts. These contracts do not affect government

spending (G) until payment-on-delivery, which occurs 2-3 quarters later. Novel data on

defense procurement obligations reveals that contract awards Granger-cause shocks to

G identified via Cholesky decomposition, but not defense news shocks. We show that

Cholesky shocks to G miss early changes in inventories, and thus result in lower multiplier

estimates relative to the narrative method.

Chapter 3 explores the permanent-transitory decomposition of stochastic discount

factor (SDF) processes in dynamic asset pricing models, in which the permanent component

captures pricing at long payoff horizons. Analytic solutions for the permanent component

are limited, and standard numerical methods are not well-suited to solve for them due to

the curse of dimensionality and lack of boundary conditions and/or parametric assumptions.

We propose a novel algorithm for computing the permanent-transitory decomposition for a

general class of asset pricing models without such restrictions. We validate the algorithm’s

accuracy in several workhorse structural asset-pricing models, and argue that our approach

applies to models whose state dynamics follow general and potentially high dimensional

Lévy processes.

xiii



Chapter 1

Risk in Network Economies

Abstract

Economic models with input-output networks assume that firm or sector growth

is driven by a combination of trade partners’ growth and idiosyncratic shocks. This

assumption generates unrealistic restrictions on network weights. Allowing for correlated

shocks exposes units to additional risk that captures their ability to substitute away from

supply and demand shocks. I provide evidence that substitutability between trade partners

is related to technological and product dispersion that is not captured by standard firm and

industry definitions. I propose a production-based asset pricing model in which supply

chain substitutability depends on product/technology dispersion and shock correlation

driven by shared suppliers and customers. The model predicts that assets positively exposed

to upstream and downstream shocks are useful hedges and earn lower average risk premia

than less exposed peers. This is confirmed by estimated return spreads of -11.4% and

-4.2% and a negative association with aggregate growth.

1



1.1 Introduction

The total value of intermediate inputs flowing through production networks in the

United States was more than $81 billion in 2023.1 Recent research finds that production

networks play an important role in shock propagation, business cycles, and systematic risk

in asset markets. However, the relationship between network linkages and comovement in

economic risk is not yet entirely clear, especially at a granular level. Features of the input-

output network are crucial to understanding the relationship between firm or industry-level

risk and economy-wide aggregate risk.

The benchmark network model of the economy assumes that idiosyncratic shocks

are drawn independently across units (i.e., firms or industries) before propagating to

connected units as a function of network weights. Network weights capture the relative

importance of each connection (edge) between units. As a result, shocks to any individual

unit can have systematic effects. Acemoglu et al. (2012a) argues that heavy tails in the

distribution of network weights can inhibit diversification and amplify the systematic

effects of idiosyncratic shocks. Similarly, Gabaix (2011) shows that skewness in the firm

size distribution also inhibits diversification away from shocks.

In this work, I show that realistic production network models of the economy must

account for correlation in unit shocks which is not driven by network connections. In

other words, the assumption of idiosyncratic shocks generates unrealistic restrictions on

the sparsity of customer-supplier relationships (e.g., no bilateral trade between firms). I

start from the reduced-form equation of static propagation of shocks, which links each

unit’s growth to the growth of its network connections plus a unit-specific shock. This

reduced-form is consistent with a broad class of structural economic models that assume

Cobb-Douglas aggregation of intermediate inputs in a production function.2 In this

equation, I show that imposing a diagonal structure on the variance-covariance matrix of

1This is equivalent to 74% of GDP according to data from the U.S. Bureau of Economic Analysis (See
e.g., link to FRED)

2Such models are common in the production network literature (e.g., Acemoglu et al. (2012b), Acemoglu
et al. (2016b), Ramı̀rez (2017), Herskovic (2018a), Herskovic et al. (2020b)).
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shocks implicitly leads to sparsity restrictions on the network weights permitted in the

model. More specifically, the set of permissible networks require either monopolistic trade

(pairs of firms which trade with each other can only trade with each other) or unilateral

trade (a firm is never both the customer and supplier of another firm). Neither restrictions

holds in the data on industry and firm trade relationships in the U.S.

As a result, I argue that researchers should account for correlation in shocks when

making use of network models. Practically speaking, there are several reasons why shocks

to units in the input-output network might be correlated, especially as the unit definitions

become less granular. For instance, two firms which produce the same goods should

experience correlation in demand shocks at the product level. If the two firms also produce

using similar inputs and/or technologies, then supply-side shocks are likely to be correlated

as well. Hoberg and Phillips (2016) show from text data that firms that produce similar

products often belong to different industries, which suggests that industries should also

experience some degree of comovement in demand shocks. Along these lines, Hottman

et al. (2016) show using scanner data that 69% of firms, which account for 99% of their

industries’ output, supply multiple and intersecting product varieties. In other words,

industry and firm definitions are too broad for the idiosyncratic risk assumption to be

reasonable.

Like product similarity, technological and geographic proximity might also generate

comovement in supply and demand shocks. Bloom and Shankerman (2013) shows that

regional shocks to research and development (R&D) incentives have correlated effects

on the growth of firms who operate in closely related technology spaces. Similarly, firms

operating in nearby locations are likely to be exposed to the same underlying geographic

shocks. For instance, Autor et al. (2013) and Mian and Sufi (2014) provide evidence that

local employment shocks have correlated effects within a region, and Tuzel and Zhang

(2017) studies correlated exposure to regional risk associated with changes in local prices

for factors of production. Even local climate risk could expose multiple firms to the same

regional risks (see e.g., Barrot and Sauvagnat (2016) and Kruttli et al. (2019)).

3



When shocks are idiosyncratic, each unit’s growth rate variance is the sum of

unit-specific shock variance and a network-weighted sum of shock variances of its trade

partners. Of course, the former term is unrelated to the presence of network connections.

In the homoskedastic case, the second term simplifies to a constant times a concentration

measure across each unit’s trade partners. Acemoglu et al. (2012a) show that aggregate

volatility shocks to this component decay at a rate slower than
√

n when network weights

follow a power law distribution. Herskovic et al. (2020b) focus on concentration of firm

reliance on customers, and argue that increases in concentration are related to increases

in firm size dispersion. Unlike these papers, this is the first work to investigate, both

empirically and theoretically, the relationship between exposure to correlated shocks in the

production network and realized variance.

In particular, when allowing for non-negligible correlation in unit-level shocks

shocks, the expression for growth rate variance gains an additional covariance component,

denoted concentration “between” trade partners. This new term captures the ability of

each unit in the network to substitute away from correlated shocks to its trade partners.

In particular, units are more substitutable (less concentrated) when they diversify trade

between partners that are exposed to negatively correlated shocks. When units trade with

partners that experience correlated shocks, they are more concentrated when the relative

importance of those trade partners is similar.

Building on this intuition, I estimate concentration between trade partners using

panel data at the industry level. Consistent with theory, I find that this new component

explains a significant amount of variation in the panel of realized industry variance. More

concentrated (less substitutable) industries are more volatile both in terms of market

returns and output growth. This relationship is robust to controls for relevant industry

characteristics such as size, centrality, concentration across trade partners, vertical position

in the supply chain, and durability of output.

This finding alone does not provide any insight on the underlying source of corre-

lated risks between trade partners. Diving deeper, I consider the results of Acemoglu et al.

4



(2016a), who argue that total factor productivity (TFP) shocks primarily propagate down-

stream while government spending shocks primarily propagate upstream from customers

to suppliers. Consistent with this finding, I show that the elasticity of realized variance

to concentration between trade partners is more precisely estimated on the supply-side

when constructed using pairwise industry correlations in TFP growth. On the other hand,

the elasticity of realized variance to concentration between customers is more precisely

estimated when using correlations in federal procurement demand shocks.

Additionally, I suppose that correlation between upstream and downstream prop-

agating shocks is driven by proximity of industries on a latent surface capturing final

good varieties. As a tractable simplification, I assume that correlation between demand

shocks is a function of product similarity, while correlation between supply shocks is

a function of technological similarity.3 I proxy product similarity using the text-based

scores from Hoberg and Phillips (2016) and technological proximity following Bloom and

Shankerman (2013). Similarly, I find that the elasticity of realized variance to between

concentration is more precisely estimated on the demand-side using product similarity and

on the supply-side using technological proximity.

These findings suggest one structural foundation for incorporating correlation in

supply and demand shocks in network models of the economy. To fully investigate the

risk implications of this correlation, I propose a production-based asset pricing model with

input-output networks in which firm-level technology shocks propagate downstream from

suppliers to customers and demand shocks propagate upstream from customers to suppliers.

Firms are both customers and suppliers. Unlike most existing models, I account for both

directions of propagation.4 Additionally, I introduce a novel mechanism for correlation

in shocks in which the propensity of shock transmission is a function of customer and

supplier substitutability at the firm level.

3This is no the only valid source of correlation. In principal, other factors such as input/raw-material
similarity or geographic proximity generate correlation in firm-level shocks. A more general model for this
is left for future work.

4For example, Shea (2002) and Kramarz et al. (2020), andHerskovic et al. (2020b) focus on upstream
propagation of demand shocks, while Acemoglu et al. (2012a) focus on downstream propagation.

5



In particular, I define substitutability as network weighted sum of latent distances

between a firm’s trade partners. Product distance characterizes customer substitutability,

while technological distance characterizes supplier substitutability. Shared customers

and suppliers between firms induce comovement in substitutability and thus correlation

in propagated shocks. The proportion of firms that are affected by network propagated

shocks is related to the changes in average propensity and average supply chain substi-

tutability. Importantly, the model predicts that average propagation in the upstream and

downstream directions represent distinct and negatively priced sources of systematic risk

in the economy.

I test this prediction by calibrating the model and constructing empirical analogues

of upstream and downstream network propagation risk factors. Consistent with theory, I

confirm empirically that upstream and downstream propagation risk factors are negatively

related to aggregate consumption growth, output growth, and dividend growth.5 Moreover,

a trading strategy which buys the highest and sells the lowest quintile upstream (down-

stream) propagation beta-sorted portfolio generates excess returns of -11.42% (-4.18%).

These factors survive the standard set of robustness checks.

The paper is structured as follows. Section 1.2 provides theoretical evidence that the

idiosyncratic risk assumption is overly restrictive in network models. Section 1.3 provides

empirical evidence that correlated shocks can explain heterogeneity in the industry panel

of realized variance. Section 1.4 proposes an asset pricing model which incorporates

supply-chain substitutability. Section 1.5 verifies the predictions of the model in the data.

Section 3.6 concludes.

1.1.1 Related Literature

This work most closely relates to the literature on static shock propagation through

input-output networks, and more specifically recent work on asset pricing in the presence

input-output networks. In both areas of research, one foundational assumption is that

5This links the model to a large class of consumption-based asset pricing models.
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shocks originate idiosyncratically at the firm or industry level. As far as I know, this is the

first work to directly challenge this assumption both theoretically and empirically.

Acemoglu et al. (2012a) focus on static production network economies and show

that the rate of decay of idiosyncratic supply-side shocks depends on the structure of the

input-output connections. Several studies also study upstream propagation of idiosyncratic

shocks (Shea (2002), Ozdagli and Weber (2017), Kramarz et al. (2020), Herskovic et al.

(2020b)). Acemoglu et al. (2016a) allow for both directions of propagation in the static

model and argue both theoretically and empirically that idiosyncratic technology shocks

mostly propagate downstream, while demand shocks mostly propagate upstream. This

work is most similar to Acemoglu et al. (2016a), as it studies both directions of shock

propagation. However, unlike these papers with idiosyncratic shocks, I allow for correlation

in the firm or industry level shocks which propagate through the network. I am also the

first to prove that the idiosyncratic shock assumption in the static network model implicitly

lead to overly restrictive network weights which are inconsistent with the data.

Many papers study the role of the network structure in driving systematic fluc-

tuations. Acemoglu et al. (2012a) focuses on volatility decay and the network weight

distribution. Herskovic et al. (2020a) study the relationship between customer concen-

tration and aggregate volatility. In financial markets, Herskovic (2018a) proposes two

network-based systematic risk factors, termed concentration and sparsity. One general

theme in this vein is that more concentrated networks leads to less diversification of

risk.6 However, these works do not account for correlation in shocks when proposing

measures of network concentration. This work proposes a novel notion of “concentration

and substitutability between” trade partners, which depends on both network weights and

correlations in shocks between shared trade partners.

This work also relates to the production-based asset pricing literature with input-

output networks. Herskovic (2018a) proposes asset pricing factors which depend directly

6Note that these papers assume networks are determined exogenously. This work does not really discuss
the relationship between macroeconomic forces and endogenous network formation (e.g., Baqaee (2018),
Taschereau-Dumouchel (2020))
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on the network structure. Ramı̀rez (2017) proposes a model for shock propagation between

firms and provides a theoretical foundation for Ahern (2013)’s result that more central

networks earn higher risk premia. This work introduces upstream and downstream network

propagation as systematic risk factors which capture the average ability of firms to diversify

away from shocks propagating through the network. Like Ramı̀rez (2017), I explicitly

introduce correlation in shocks, which is driven by product and technological dispersion.

This reasoning is closely tied to recent literature on new measures of firm-level

similarity and competition. Hoberg and Phillips (2016) propose a text-based measure

of product similarity, and find that product similarity implies firm-level clusters which

do not always align with industry clusters. Similarly, Hottman et al. (2016) show from

product-level data that most products or services are produced by multiple firms. On

the technology side, Bloom and Shankerman (2013) show that shocks to research and

development (R&D) have correlated effects on the productivity and growth of firms with

similar production technology. Finally, several papers propose geographic location as a

relevant source of firm-level correlations. These correlations might be generated by local

labor markets (see e.g., Autor et al. (2013), Mian and Sufi (2014)), local factor prices

(Tuzel and Zhang (2017), Grigoris (2019)), local technological progress (Oberfield (2018)),

or local weather events (Barrot and Sauvagnat (2016), Kruttli et al. (2019)).

1.2 Idiosyncratic Risk in Input-Output Networks

In an economy where sectors or firms are connected through a network of input-

output linkages, shocks to any individual unit might generate larger systematic effects.

Intuitively, firms or industries with close trade relationships should also experience some

degree of comovement in risk. Recent research proposes several approaches for modeling

the spread of small shocks from firms or disaggregated sectors.7 Since input-output

networks are observed in the data, these approaches are often the foundation for empirical

7See e.g., Gabaix (2011), Acemoglu et al. (2012a), Taschereau-Dumouchel (2020), and Baqaee and Farhi
(2019) for discussion on how microeconomic shocks can generate macroeconomic effects.
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studies on the importance of various channels of shock propagation.8

The benchmark model studied in much of the literature involves static propagation

of shocks through a deterministic network.9 The main idea is that a sector or firm’s

growth rates depend on a network-weighted sum of growth rates of trade partners and an

idiosyncratic shock which is drawn independently from the other units. Network weights

capture the importance of direct trade relationships between sectors and are generally

non-negative. Moreover, if the entries of the matrix are sales or purchase shares of inputs,

these weights are also bounded above by 1 and in most cases assumed to sum to 1 or less

than 1 for every unit. Typically no additional restrictions are imposed on the input-output

network structure (e.g., symmetry or sparsity).

However, in this section I show that in this benchmark model, the assumption of

idiosyncratic shocks across units is not consistent with such a general class of networks. In

particular, new results show that stronger restrictions on the input-output network weights

are required when the variance-covariance matrix of idiosyncratic shocks is diagonal.

These additional restrictions are inconsistent with almost all empirically observed input-

output networks at the industry or firm levels, and cannot be relaxed by adding omitted

macroeconomic factors or by accounting for multiple networks. Additionally, even if these

restrictions are satisfied, there is no definitive empirical evidence that supply and demand

shocks have zero pairwise correlation across all pairs of units.

After formally establishing this result, I explore the implications of accounting for

correlated shocks in this static framework. In this modified setting, sectors and firms are

still exposed to risk from direct and indirect trade partners, but now can also substitute

away from risk by having trade partners that are differentially exposed to supply and

demand shocks. More specifically, the variance of a sector’s growth rate inherits the

standard network component which is related to the concentration of risk across trade

partners, but also two additional components which capture a trade-off of concentration

8Generally the studies which rely on static models focus on propagation at business-cycle frequencies.
9Some examples include Acemoglu et al. (2012a), Acemoglu et al. (2016a), Ozdagli and Weber (2017),

Herskovic (2018b), Herskovic et al. (2020b).
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and substitutability between trade partners. Intuitively, higher concentration implies less

diversification in supply-chains and should imply higher volatility. On the other hand, high

substitutability implies that units can better diversify away the effects of shocks across

customers or suppliers. In the following sections, I provide both theoretical and empirical

motivation that researchers should account for correlated shocks when studying risk in

network economies.

1.2.1 Networks and Risk Comovement

In this section, I argue that realistic input-output models of the economy should

account for correlation in supply and demand shocks across units. In the benchmark

static model of sectoral shock propagation, I find that the set of stable input-output

networks that are consistent with the idiosyncratic risk assumption exhibit properties that

are empirically implausible. Mathematically, in this broad class of reduced-form linear

models, additional restrictions are required on the input-output network weights to be

consistent with an arbitrary covariance matrix of sector or firm-level growth rates and an

arbitrary diagonal covariance matrix of shocks. Although this result is not immediately

intuitive, the assumption of idiosyncratic shocks implicitly generates a strict relationship

on the interaction between network weights and elements of the variance-covariance matrix

of growth rates.

To illustrate this point, I start from the general reduced-form model of shock

propagation in which a firm’s output growth is driven by a network component and

firm-specific shocks.10 In Appendix 1.7, I show that this model is consistent with the

equilibrium outcome of a constant returns to scale economy in which Cobb-Douglas

producers experience productivity shocks that propagate downstream from suppliers to

customers and demand shocks that propagate upstream from customers to suppliers. In

10Similar models are used in Acemoglu et al. (2012a), Acemoglu et al. (2016a), Herskovic (2018a) and
Herskovic et al. (2020b).
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particular, for an n-firm economy, consider the commonly used static relationship:

y = Wy+u, (1.1)

where y is the n× 1 vector of firm-level output growth, W is the n× n network matrix

capturing interactions between industries, and u is the n×1 vector of firm-specific supply

or demand shocks. This framework is compatible with either direction of propagation,

upstream from customers to suppliers or downstream from suppliers to customers. The

following two assumptions require that the propagation matrix W implies is stable, and

that firm-specific shocks are idiosyncratic, respectively.

Assumption 1.2.1 (Stable Weighting Matrix). The weighting matrix W ∈ Mn is non-

negative, and has bounded spectral radius ρ(W)≤ 1.

Assumption 1.2.2 (Idiosyncratic Shocks). Firm-specific shocks ui ∼ Pi(0,σ2
i ) are drawn

independently across firms where Pi ∈ L2 has finite second moments. In other words, there

exists a positive diagonal matrix D ∈ Mn such that E[uu⊤] = D.

In the following proposition, I characterize a set of additional necessary restrictions on the

matrix W ∈ Mn to satisfy Assumption 1.2.2 and (1.1). This is a novel result.

Proposition 1.2.3 (Necessary Restrictions on W). Any weighting matrix W which satisfies

1.2.1 and 1.2.2 must have that for any pair of off-diagonal nodes wi j with i ̸= j, either

wi jw ji ≥ 1 or wi j > 0 and w ji = 0.

Proof. See Appendix 1.9.1.

This proposition highlights a key limitation of equation (1.1). To apply network

models in a way that is consistent with industry and firm-level data, researchers must either

restrict their focus to a very specific set of networks or allow for correlation in sectoral

or firm-level shocks. Under Assumptions 1.2.1 and 1.2.2, consistent networks have only

one-way connections or entries which are empirically implausible. In the structural model
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developed in Appendix 1.7, the entries of W are primitives of the production function

and depend on each unit’s sales and cost shares. For example, To capture the effect of

demand shocks propagating from j to i, the implied weight is wi j =
salesi→ j

salesi
. The first

restriction in Proposition 1.2.3 is that wi jw ji =
salesi→ j

salesi
· sales j→i

sales j
≥ 1 for all i ̸= j, which

implies that sectors which use each other’s inputs can only use each other’s inputs. If we

believe that bilateral trade is possible and firms have multiple customers and suppliers,

then this restriction is already violated. When weights are less than 1 (e.g., trade is shared

across multiple partners), then the second restriction (wi j > 0 and w ji = 0) implies that no

firm or industry can serve as both a customer and supplier. Input-output data in the US at

both the industry and firm-levels do not satisfy these restrictions.

Intuitively, one might argue that the static network model in (1.1) is too parsimo-

nious to capture all the sources of risk comovement in the economy. Although this is likely

true, the restrictions on W cannot be relaxed by adding omitted macroeconomic factors

driving common variation in risk nor by adding an omitted network component. Moreover,

Proposition 1.2.3 implies that there is no sufficient statistic that can be obtained from W

which fully characterizes cross-sectional variation in granular risk, even in a world where

sectoral shocks are identically distributed. Another interpretation of this result is that firm

and industry definitions are too broad for the idiosyncratic shock assumption to be viable.

See Appendix 1.12 for supporting numerical evidence. In the remainder of this section, I

explore the implications of allowing for correlation in demand and supply shocks across

units.

1.2.2 Granular Variance with Correlated Shocks

I investigate the variance predictions of (1.1) when shocks ui are allowed to be

correlated across units i (i.e., var(u) is not diagonal). Practically speaking, there are several

reasons why supply and demand shocks to units might be correlated, especially at the

granular level. For example, two sectors or firms that produce related goods or services are

likely to experience correlated demand shocks. If the two sectors produce using the same
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inputs, then supply-side shocks might be correlated as well. Hoberg and Phillips (2016)

show that firms with similar products might belong to different industries (according to

SIC or NAICS classifications).11 In the even more simple setting where multiple firms

produce the exact same goods and services, supply and demand shocks at the product level

mechanically generate correlation in supply and demand shocks at the firm level. Hottman

et al. (2016) provide empirical evidence that this is generally the case, with 69% of firms,

which account for 99% of industrial output, supplying multiple (and intersecting) products.

Like product proximity, both technological and geographic proximity might also

generate correlation in firm and sectoral shocks. For instance, Bloom and Shankerman

(2013) show that shocks to research and development (R&D) have correlated effects on the

productivity and growth of firms with similar technologies. Similarly, industries or firms

operating in nearby geographies are exposed to the same underlying shocks associated

with local labor markets (see e.g., Autor et al. (2013), Mian and Sufi (2014)), local factor

prices (Tuzel and Zhang (2017), Grigoris (2019)), local technological progress (Oberfield

(2018)), or local weather events (Barrot and Sauvagnat (2016), Kruttli et al. (2019)).

In the benchmark network model with uncorrelated shocks, the variance of growth

rates depends solely on the concentration of risk across independent suppliers and/or

customers. Herskovic et al. (2020b) provide theoretical and empirical evidence linking

firm volatility and customer concentration in terms of size dispersion in this setting.

However, allowing for correlated shocks implies two additional variance components.

These components capture the concentration and substitutability of risk between trade

partners, respectively. The distinction between concentration “across” and “between” trade

partners is important. Concentration across refers to the composition of a unit’s reliance on

any particular customer or supplier, while concentration between refers to the distribution

of reliance on a set of customers or suppliers that are exposed to the same shocks. On the

11More specifically, Hoberg and Phillips (2016) find that firms in the newspaper, printing, and publishing
industry (SIC3 271) are similar to firms in the radio broadcasting industry (SIC3 483) and argue that this
is driven by common customers who demand advertising services. They also find that Disney and Pixar
have similar products (movies) although they are in different industries (business services (SIC3 737) and
motion pictures (SIC3 781) industries, respectively). In this case, the differences in industry stem from the
production method and not the product offering.
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other hand, substitutability between customers and suppliers captures the distribution of

reliance on a diversified set of customers or suppliers that are exposed to shocks of the

opposite sign.

In other words, concentration between customers and suppliers captures compound-

ing effects of positively related shocks to similar trade partners, while substitutability

captures mitigating effects of spreading reliance on trade partners that are exposed to

negatively related shocks. Intuitively, a supplier with major customers that tend to reduce

demand at the same time is more risky than a supplier with some customers that increase

demand when the others reduce it. To see this mathematically, define [hi j]i j to be the set of

entries in the Leontief inverse matrix H := (I−W)−1 and recall that equation (1.1) can

equivalently by written as y = Hu. Note that in this setup the element hi j captures the

percent change in unit i’s growth after a 1% shock to unit j. Then the variance of unit i’s

growth rates can be written:

var(yi) = var
( n

∑
j=1

hi ju j

)
=

n

∑
j=1

h2
i j ·var(u j)+ ∑

j ̸=k
hi jhik · cov(u j,uk).

The first term is the standard expression for variance in this network model (see e.g.,

Acemoglu et al. (2012a)), while the second term is only non-zero when inter-industry

shocks are correlated. Next, I define the scalar s jk to be the sign of the pairwise correlation

between shocks to j and k (i.e., s jk := sgn(σ jk)≡ sgn(cov(u j,uk)) where sgn(.) is the sign

function). To build some more intuition on the additional terms, I can further decompose

the covariance term as follows:

var(yi) = h2
ii ·σ2

i︸ ︷︷ ︸
self

+ ∑
j ̸=i

h2
i j ·σ2

j︸ ︷︷ ︸
concentration “across”

+ ∑
j ̸=k,s jk=1

hi jhik ·σ jk︸ ︷︷ ︸
concentration “between”

+ ∑
j ̸=k,s jk=−1

hi jhik ·σ jk︸ ︷︷ ︸
substitutability

(1.2)

Consider a first order approximation of the Leontief inverse matrix such that

H ≈ I+W, where the weights in the propagation matrix W are related to sales shares

14



when modeling downstream propagation supply-side shocks, and purchase shares when

modeling upstream propagation of demand-side shocks.12 Suppose also that units are

homoskedastic such that var(u j) = σ2 for all j and cov(u j,uk) = ν · s jk for all j ̸= k, where

σ and ν are positive scalars. In this case, the first term (hiiσ
2
i = σ2

i ) is unrelated to the

network and captures the variance of supply or demand shocks to sector i. On the other

hand, the second component (concentration across network linkages) is non-negative

and large when reliance is highly concentrated across trade partners. Similarly, the third

term (concentration between network linkages) is non-negative and large when reliance is

concentrated between trade partners who experience positively correlated shocks.

Finally, the last term (substitutability of network linkages) is always non-positive

and is large in magnitude when reliance is spread equally between trade partners who are

likely to experience shocks of opposite sign. Additionally, the sum of the final two terms

captures explicitly the trade-off between concentration and substitutability of correlated

supply or demand shocks. Although this simplification is useful for building intuition, the

more realistic version of the variance decomposition should also take into account unit

heteroskedasticity. That is, two sectors with an equal set of input-output weights have

different network-implied variance only if their trade partners are exposed to differential

volatility in supply or demand shocks.

Consider for example the Printed Circuit Boards industry (SIC 3672), whose top 3

major manufacturing industry customers include Electronic Components (SIC 3679) and

Electronic Computers (SIC 3571), and Communications Equipment (SIC 3669). At first

glance, these customers appear very similar, and one might suspect that a negative demand

shock to one customer is likely to be correlated with a negative shock to the other, which

amplifies upstream propagation to their shared supplier. In other words, the Printed Circuit

Boards industry has high concentration between customers and a harder time substituting

12More specifically, the weight of downstream propagation of supply-side shocks from supplier j to
customer i is captured by wd

i j = sales j→i/purchasesi and the weight of upstream propagation of demand
shocks from customer j to supplier i is captured by wu

i j = salesi→ j/salesi. In general, these weights are both
asymmetric (i.e., wi j ̸= w ji) and different depending on the direction of propagation (i.e., wu

i j ̸= wd
i j).

15



away from upstream effects demand shocks to its major customers.13 On the other hand,

the three most important customers of the Jewelry and Precious Metal industry (SIC 3911)

include Watches, Clocks, and Clockwork Operated Devices (SIC 3873), Perfumes and

Cosmetics (SIC 5048), and Drawing and Insulating of Nonferrous Wire (SIC 3357). In

this case, customers produce seemingly unrelated goods (both durable and non-durable)

and there is evidence the demand shocks have zero or negative pairwise correlation.14 In

other words, the Jewelry and Precious Metal industry is able able to substitute away from

demand shocks propagating upstream from any individual customer.

There are similar examples of high concentration and substitutability on the supply-

side. For instance, the Computer Storage Devices industry (SIC 3572) has a highly

concentrated customer base composed of Electronic Components (SIC 3679), Electronic

Coils, Transformers, and other Inductors (SIC 3677), Semiconductors and Related Devices

(SIC 3674), and Electronic Connectors (SIC 3678). This industry is thus more exposed to

correlated supply-side risk. On the contrary, the Meat Packing Plants industry (SIC 2011)

can more easily substitute away from supply-side risk, with a more diversified set of major

suppliers like Poultry Slaughtering and Processing (SIC 2015), Plastics Film and Sheet

(3081), and Paper Mills (2621).

Although these network variance components are intuitive and theoretically jus-

tified if supply and demand shocks are correlated, an important practical concern is that

granular supply and demand shocks are not easily identified from available data, especially

at a high frequency. In the following section, I address this challenge and propose an

empirical methodology for estimating customer and supplier concentration and substi-

tutability at the industry and firm levels. I show that both supply and demand channels

explain cross-sectional heterogeneity in risk exposure, beyond what can be explained by

other determinants of variance identified by the literature.

13I find that the average product similarity score between these customer industries is in the top 10%
(based on the similarity score developed in Hoberg and Phillips (2016)). Additionally, I find significant
positive correlation in demand shocks to these industries such as changes of newly awarded federal defense
procurement contracts.

14The average pairwise correlation in federal procurement shocks and Chinese import penetration shocks
is -37% and -22%, respectively for the full set of Jewelry and Precious Metal customers.

16



1.3 Empirical Evidence

In this section, I provide empirical estimates of the network-implied variance

components motivated in equation (1.2). This requires granular data on input-output

relationships and estimates of the variance-covariance matrix of supply and demand shocks.

Consistent with theory, I find that these additional components explain important variation

in realized volatility, controlling for characteristics such as size, centrality, concentration

across trade partners, vertical position in the supply chain, and durability of output. These

results hold at both industry and firm levels. The main takeaway here is simple. When

accounting for input-output linkages and non-negligible correlation in supply and demand

shocks, heterogeneity in risk exposure is at least in part driven by differences in the ability

of network units to substitute away from correlated supply and demand shocks.

1.3.1 Setup

Consider the n-sector network model from equation (1.1) and add a time subscript

t. Suppose that in each period I obtain estimates for the n×n Leontief Inverse matrices

Ĥq,t and the variance-covariance matrices of supply and demand shocks Σ̂ΣΣq,t where q = u

for upstream propagation and q = d for downstream propagation. Then for both supply and

demand-side shocks, I can compute three empirical network-implied variance components,

denoted by “self-originating”, “across”, and “between” risk. The final component sums

the final two covariance terms from (1.2) and captures the concentration/substitutability

trade-off between trade partners. Low values of concentration between customers and

suppliers implies high substitutability. Then for each industry, direction, and time triple

(i,q, t), I compute self-originating risk as:

σ̂
2
iqt,sel f = [ĥqt ]

2
ii · σ̂2

i , (1.3)
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and across and between risk as:

σ̂
2
iqt,acr = ∑

j ̸=i
[ĥqt ]

2
i j · σ̂2

j , (1.4)

σ̂
2
iqt,bet = ∑

j ̸=k
[ĥqt ]i j · [ĥqt ]ik · σ̂ jk. (1.5)

In the next section, I provide details on the data sources, assumptions, and methodologies

used to estimate Ĥqt and Σ̂ΣΣqt . While the former can be observed directly, I need to make

some assumptions to identify the latter from available data sources. Then I compute all

three components at the industry-level and study their empirical relationship with realized

industry variance. I find that the elasticity of realized variance to all three components

is significant and positive for both directions of propagation, controlling for a variety of

industry characteristics.

1.3.2 Upstream and Downstream Propagation Networks

I begin by constructing the network of input-output linkages at the disaggregated

industry level from the Make and Use tables published by the Bureau of Economic Analysis

(BEA). The goal is to build a directed weighted network which captures the importance

of trade relationships over time and for the population of industries.15 Network weights

represent the strength of each unit’s reliance on customers and suppliers, and the network is

directed to capture differences in shock propagation in the upstream (customer to supplier)

and downstream (supplier to customer) directions. In particular, the BEA publishes these

tables annually between 1997-2020 for 66 industry groups.

More specifically, I construct downstream and upstream propagation matrices

Wd = [wd]i j and Wu = [wu]i j with entries:

[wd]i j =
sales j→i

costsi
, [wu]i j =

salesi→ j

salesi
, (1.6)

15As far as I know, this is the most disaggregated database on the entire population of input-output
relationships.
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where salesi→ j represents gross trade flows from i to j, and salesi and costsi represent the

total sales and costs of industry i, respectively. The downstream (upstream) weights are

non-negative and capture the direct reliance of industry i on supplier (customer) j. When

weights are large, direct effects of propagated shocks should also be large. To account

for higher order (indirect) network effects as well, I calculate the strength of network

propagation based on the Leontief inverse Hq := (I−Wq)
−1 of the propagation matrices

{Wq : q ∈ u,d}.16 The entries of Hq = [hq]i j capture the total percent effect on i of a 1%

shock to j traveling in the q-stream direction when accounting for all weighted direct and

indirect connections.

Appendix 1.10.2 reports summary statistics for observed input-output connections.

At the 66-industry granularity, tables are updated annually. I find that both propagation

and Leontief inverse weights are highly persistent with an average annual autocorrelation

of more than 95% for each entry. The cross-sectional correlation is about 8.55% between

upstream and downstream weights and about 11.08% between upstream and downstream

Leontief matrix entries, suggesting that propagation occurs differently in either direction.

1.3.3 Variance-Covariance Matrix of Supply and Demand Shocks

Unlike the sectoral input-output network, there is no definitive data source on supply

and demand shocks and their variance-covariance matrix. As a baseline, I implement an

empirical analog of the reduced-form equation in (1.1). In particular, consider the spatial

panel regression:

ỹit = δt +φ · ỹi,t−1 +βu ·
n

∑
j=1

wu,i jỹ jt +βd ·
n

∑
j=1

wd,i jỹ jt + εit , (1.7)

where ỹit := log(yit/yi,t−1) is output growth in industry i at quarter t and wq,i j is the (i, j)

entry of the q-stream propagation matrix Wq. Assuming the variance-covariance matrix of

residuals is static, then Σ̂ΣΣ is the empirical variance-covariance matrix of estimated residuals

16See e.g., Baqaee and Farhi (2019) and Herskovic et al. (2020a) for discussion on the importance of
higher order network effects.
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ε̂it . To ensure that my estimates for network components (1.4) and (1.5) are robust to

estimation error in Σ̂ΣΣ, I calculate the average value over samples in which I randomly

drop 10% of pairwise non-zero correlations.17 See Appendix 1.11 for more details and

alternative specifications.

Pairwise correlation in residuals is centered with a mean value of 0.5% (0.4%)

and a standard deviation of 25% (26%). The largest positive pairwise correlation is 82%

between the Primary Metals (BEA Code 331) and Wholesale Trade (BEA Code 42) and

81% between Housing (HS) and Educational Services (61). On the other hand, the largest

negative pairwise correlation is -80% between Primary Metals (331) and Federal Reserve

Banks, Credit Intermediation, and Related Activities (521CI) and -72% between Food and

Beverage and Tobacco Products (311FT) and Wholesale Trade (42).

1.3.4 Network Determinants of Realized Variance

After relaxing the idiosyncratic shock assumption, the benchmark input-output

propagation model predicts that realized variance should depend positively on three net-

work risk components: risk that is self-originating, risk across trade partners, and risk be-

tween trade partners. In the baseline setup, this might hold mechanically for self-originating

risk since it is estimated from the variance of residual output growth in equation (1.7).

However, both risk across and between trade partners contain only variance-covariance

information associated with other industries. I verify these predictions empirically using

panel regressions of the log of realized industry variance on the log of network components,

controlling for a variety of characteristics such as size, centrality, durability of output, and

industry cluster and time fixed effects.18 I measure realized industry variance using both

stock market and output growth data. I define market variance as the annual return variance

of an equal-weighted industry portfolio and fundamental variance as the variance of quar-

17Note that estimation error from Σ̂ΣΣq is magnified in estimated network components (1.4) and (1.5) at a
rate proportional to the number of nonzero row entries in the Leontief inverse matrix Hq.

18I adjust network components by a constant to ensure that the minimum value is positive so the log is
well defined. Industry clusters are defined by major industry groups (2-digit NAICS code).
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terly year-on-year output growth. I obtain similar results when using idiosyncratic variance

as the dependent variable.19 Although the annual variance across quarterly year-on-year

output growth and monthly returns are fairly noisy proxies for true realized cash-flow

variance, the results are robust for several specifications.

I summarize the main results in Table 1.1. Consistent with theoretical predictions

in equation (1.2), the elasticity of realized industry variance to concentration across and

between customers are both positive and significant in all specifications. This holds for

both market and output growth measures of variance. Conditional on both directions of

propagation and all controls, increasing concentration between customers from the median

to the 90th percentile increases industry sales growth variance by over 45% (about 0.37

standard deviations) and market variance by 15% (about 0.09 standard deviations). Simi-

larly, increasing concentration between suppliers from the median to the 90th percentile

increases industry sales growth variance by over 20% (about 0.17 standard deviations) and

market variance by 19% (about 0.11 standard deviations). Without controls, downstream

network risk explains 23% of time series variation in market variance and 22% of time

series variation in output growth variance. Similarly, upstream network risk explains

22% and 31% of market and output growth variance, respectively. Both directions of

propagation are important for explaining the panel dynamics of industry variance.

Consistent with the firm-level findings of Herskovic et al. (2020b), I find that

industry variance has a positive elasticity to concentration across customers and a negative

elasticity to average size. A new but related result is the positive elasticity of variance

to concentration across suppliers. Additionally, Ahern (2013) argues that more central

industries have greater market risk since they are more exposed to aggregate shocks, and

thus earn higher returns on average. On the other hand, my results suggest that more

central industries have less volatile stock returns, but also have less exposure to aggregate

19I define idiosyncratic market variance as the variance of equal weighted residual returns from a Fama
and French three-factor model. Similarly, I define idiosyncratic output growth as the residual of industry
output growth after a regression on aggregate output growth. Results also replicate for value-weighted
industry portfolios, or industry sales growth, which is constructed as the year-on-year change in the sum of
quarterly sales (reported on Compustat) for all public firms in the industry.
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volatility risk and lower idiosyncratic volatility.20 My results are thus consistent with

Ahern (2013), since stocks with lower exposure to aggregate volatility risk and lower

idiosyncratic volatility earn higher returns on average (see e.g., Ang et al. (2006)). Table

1.7 shows that there is no significant relationship between centrality and concentration

between or across trade partners.

1.3.5 Sources of Correlation in Network Propagating Shocks

So far, I have established both theoretically and empirically the importance of

accounting for correlation in shocks that propagate through the input-output network. In

particular, I show that concentration between trade partners explains a large amount of

variation in the industry panel of realized variance. However, statistical estimates for

the variance-covariance matrix of shocks do not provide much insight on the underlying

sources of correlation between industries. In this section, I argue that correlation in supply-

side shocks that propagate downstream can be explained by technological proximity

between sectors, while correlation in demand-side shocks that propagate upstream can be

explained by product similarity.

Observed Supply and Demand Shocks

Acemoglu et al. (2016a) argue that productivity shocks primarily propagate down-

stream while government spending and trade shocks primarily propagate upstream. In

this case, these shocks might help to capture differences in inter-industry correlations

which are specific to the direction of propagation. Along these lines, I construct an annual

industry panel of 5-factor total factor productivity (TFP) growth between 1959-2018 from

the NBER-CES Database (Becker et al., 2016). Since this measure of TFP controls for

materials, it does not mechanically encode any information related to downstream effects

20I find that industries in the highest average upstream (downstream) centrality decile have 31% (21%) less
exposure to systematic volatility risk than the lowest decile. Average upstream and downstream centrality
are positively correlated (56% cross-sectionally), and industries who are in the top decile for both average
centrality measures have a 52% lower exposure to aggregate volatility risk than industries in the bottom
decile for both. Moreover, top centrality decile stocks have 25% lower idiosyncratic volatility, on average.
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such as changes in price and/or quantity. Similarly, I construct a monthly panel of newly

awarded federal procurement contracts between Jan 2000-Jan 2021 from the universe of

contracts published in the Federal Procurement Data System (FPDS).21.

To focus on inter-industry correlations which are unrelated to common aggre-

gate factors (e.g., the secular decline in several manufacturing industries), I estimate the

variance-covariance matrix of residuals after an OLS regression on the cross-sectional av-

erage of shocks.22 I then estimate the corresponding network components using equations

(1.4) and (1.5) and study their relationship with realized variance. Table 1.8 shows that the

elasticity of realized variance to supplier concentration is positive and more precisely esti-

mated when calculating supply-side shock covariance as a function of productivity growth.

On the other hand, Table 1.9 reports more precise estimates for the elasticity of variance to

customer concentration when calculating demand shock covariance as a function of federal

procurement shocks. This suggests that productivity growth is more informative about

upstream network risk, while changes in government demand are more informative about

downstream network risk. This is consistent with the results of Acemoglu et al. (2016a).

Technological and Product Proximity

Suppose now that correlation between supply and demand-side shocks is a function

of underlying firm and industry characteristics. Intuitively, I might assume that correlation

in demand shocks propagating upstream is driven by product similarity and/or geographic

proximity of customers, while correlation in supply shocks propagating downstream is

driven by technological similarity and/or geographic proximity of suppliers.

More generally, I assume that each industry is associated with a vector of positions

in some latent surface zit ∈Ωz ⊂Rd and that the correlation between industry shocks can be

21I also consider other observed shocks in Appendix 1.11
22The cross-sectional mean approximates the first principal component of shocks when there are missing

values. For shocks dzt , I calculate the covariance between sectors k and j as cov(ukt ,u jt) where ukt is the
residual in the regression dzkt = α+β · d̄z.,t +ukt . Endogeneity of shocks is not a major concern assuming
any confounding shocks largely propagate in the same direction in the network. Given such a confounder,
my estimate for the variance-covariance matrix of shocks can be written as the true estimate plus some
measurement error.
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written as a function of the distance between these latent vectors.23 Under the assumption

of a factor structure of risk (see e.g., Herskovic et al. (2016)), aggregate movements in

this latent space be interpreted as factor innovations. Following McCormick and Zheng

(2015), I suppose that industry positions zit lie on the surface of a p-dimensional latent

surface on the p+1-dimensional unit hypersphere S p+1. This implicitly implies that latent

positions follow a uniform distribution across the sphere’s surface. Moreover, since the

hypersphere has bounded surface area, the distance between any two points is bounded. I

further assume that points in the same position have correlation 1 and points on opposite

sides of the sphere have correlation -1.

In practice, I experiment with constructing latent positions of industries using sev-

eral combinations of industry variables. For simplicity, my main results rely on univariate

distances in product and technology space.24 I measure product distance using use the

text-based scores developed in Hoberg and Phillips (2016) and technology distance using

patent-based technological proximity scores along the lines of Bloom and Shankerman

(2013). Since both of these scores are available at the firm-level, I first construct a firm-

by-firm product distance network where distances are inversely related to proximity. To

get the distance between sectors, I use the median length of the shortest weighted path

between firms in the two sectors, rescaled such that the furthest pairwise distance is 1 and

the shortest pairwise distance is zero. I calculate the shortest pairwise path between any

two nodes using Dijkstra’s Algorithm. I calculate these measures annually.

Transforming distances to correlations, I rescale by the variance estimates from

residuals in equation (1.7) and recompute network components. When using product

distance to calculate network risk, the elasticity of realized variance to concentration

between customers is significant and positive. On the other hand, the analogous elasticity

to concentration between suppliers is significantly negative, which suggests that product

similarity across suppliers actually indicates better substitutability away from supply-

23Latent surface models are often used to impute network relationships in microeconomic applications
(see e.g., McCormick and Zheng (2015), Breza et al. (2020)).

24Moreover, contours of the sphere present some calibration difficulties in higher dimension.
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side shocks. When approximating correlations based on technological distance, realized

variance has a positive elasticity to concentration between suppliers and customers, but

the elasticity is more precisely estimated on the supply side. Taken together, these results

suggest that technological proximity is a good proxy for correlated exposure to supply

shocks propagating downstream, while product proximity is a good proxy for correlated

exposure to demand shocks propagating upstream. Along these lines, Table 1.2 shows that

average technological proximity between sectors is closely related to correlation in TFP

growth shocks, while product similarity is closely related to correlation in federal defense

procurement shocks.

Accounting for Dynamics

To account for potential time-variation in industry correlations, I also compute

pairwise inter-industry correlations using the dynamic conditional correlation (DCC)

estimator from Engle (2002). In particular, I estimate bivariate DCC models for all pairs

of industries using Bayesian MCMC following Fioruci et al. (2013). Since product and

technological proximity are computed at an annual frequency, I am thus able to obtain a

one-to-one comparison between correlation in spatial panel residuals, observed shocks,

and distance based measures. Table 1.2 shows that accounting for dynamic changes in

industry correlations actually strengthens the consistency between network components

estimated in different ways.

More specifically, I find that networks components constructed using the dynamic

TFP variance-covariance matrix are more highly correlated with technological-proximity-

based components than their static variance-covariance counterparts. Similarly, network

components constructed using the dynamic procurement variance-covariance matrix are

more highly correlated with product proximity than their static counterparts. This suggests

that there are meaningful dynamics underlying these components which show up both in

observed shocks and fluctuations in latent product and technology space.
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Table 1.1: Network Determinants of Industry Variance
Panel A: Market Return Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.055** (0.022) 0.056** (0.024) 0.003 (0.028) 0.017 (0.028)

Across (demand) 0.094** (0.036) 0.083** (0.030) 0.081** (0.024) 0.072** (0.021)

Between (demand) 0.147*** (0.051) 0.122** (0.049) 0.197*** (0.053) 0.089** (0.038)

Self-origin (supply) 0.072*** (0.021) 0.073*** (0.023) 0.067*** (0.022) 0.083** (0.023)

Across (supply) 0.216*** (0.056) 0.156*** (0.054) 0.160*** (0.060) 0.154* (0.067)

Between (supply) 0.416*** (0.093) 0.317*** (0.095) 0.210** (0.088) 0.196** (0.073)

Size -0.378*** (0.094) -0.361*** (0.091) -0.289*** (0.104)

Upstream centrality -0.182* (0.103) -0.289*** (0.095) -0.232** (0.101)

Downstream centrality -0.051 (0.054) -0.086** (0.043) -0.023 (0.054)

Durability -0.167 (0.573) -0.404 (0.662) -0.637 (0.615)

Vertical position 1.550** (0.701) -0.756** (0.332) 1.970*** (0.710)

Constant -6.279 -3.26 -4.692 -1.082 -5.005 -3.608

Obs 1484 1484 1484 1484 1484 1484

Adj R2 0.231 0.292 0.159 0.223 0.245 0.330

Panel B: Output Growth Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.034 (0.026) 0.006 (0.026) 0.026 (0.030) 0.006 (0.028)

Across (demand) 0.159** (0.069) 0.074 (0.024) 0.157** (0.070) 0.095 (0.057)

Between (demand) 0.210*** (0.064) 0.281*** (0.078) 0.196*** (0.065) 0.280*** (0.082)

Self-origin (supply) 0.081** (0.021) 0.072 (0.022) 0.017 (0.024) 0.042 (0.025)

Across (supply) 0.128** (0.053) 0.114** (0.033) 0.098** (0.021) 0.091** (0.031)

Between (supply) 0.332** (0.098) 0.241*** (-0.079) 0.221** (0.103) 0.198** (0.092)

Size -0.046 (0.099) -0.185* (0.098) -0.110 (0.106)

Upstream centrality -0.127 (0.108) -0.096 (0.095) -0.131 (0.111)

Downstream centrality -0.218*** (0.056) -0.067 (0.042) -0.222*** (0.056)

Durability 0.115 (0.647) -0.038 (0.643) 0.024 (0.703)

Vertical position 1.545** (0.654) 0.181 (0.355) 1.375** (0.682)

Constant -5.088 -6.954 -6.818 -5.327 -6.17 -6.718

Obs 1484 1484 1484 1484 1484 1484

Adj R2 0.221 0.382 0.198 0.319 0.277 0.412

Notes: This table reports panel regressions of realized industry variance on a variety of characteristics, including the log variance of
supply and demand shocks (self-origin), log concentration across trade partners, log concentration between trade partners, log total
output (size), log centrality of the upstream and downstream propagation networks, durability of output, vertical position in the supply
chain, and industry cluster and year fixed effects. In Panel A, the dependent variable is the log variance of annualized monthly returns
on an equal-weighted industry portfolio. In Panel B, the dependent variable is the log variance of total quarterly year-on-year industry
sales growth. I obtain return data from CRSP and GDP data from the BEA. Concentration between and across trade partners is
calculated as the average value of estimates obtained using equations. 1.4 and 1.5. I calculate the variance-covariance matrix of shocks
using residuals from equation 1.7 and calculate the average value of components over 1000 random samples each randomly dropping
10% of pairwise correlations. Following Ahern (2013), I compute industry centrality as the eigenvector centrality of upstream and
downstream propagation adjacency matrices. I calculate durability as the proportion of sub-industries classified as durable by Gomes
et al. (2009), and I calculate vertical position of each industry following Antràs et al. (2012) and Gofman et al. (2020). ∗∗∗, ∗∗, and ∗
indicate significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered at the BEA major 15 major industry
group level. Sample is at an annual frequency from 1997 to 2019 for 66 BEA non-government industries.
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Table 1.2: Sources of Correlation in Supply and Demand Substitutability

Panel A: Upstream Supplier Substitutability (static)

Covariance Method Spatial TFP Procurement Prod Similarity Tech Proximity

Spatial 1 0.59 0.37 0.30 0.48

TFP 1 0.31 0.35 0.46

Procurement 1 0.62 0.39

Prod Similarity 1 0.27

Tech Proximity 1

Panel B: Downstream Customer Substitutability (static)

Covariance Method Spatial TFP Procurement Prod Similarity Tech Proximity

Spatial 1 0.55 0.61 0.43 0.35

TFP 1 0.27 0.20 0.48

Procurement 1 0.69 0.40

Prod Similarity 1 0.24

Tech Proximity 1

Panel C: Upstream Supplier Substitutability (dynamic)

Covariance Method Spatial TFP Procurement Prod Similarity Tech Proximity

Spatial 1 0.61 0.40 0.34 0.49

TFP 1 0.35 0.39 0.48

Procurement 1 0.65 0.42

Prod Similarity 1 0.25

Tech Proximity 1

Panel D: Downstream Customer Substitutability (dynamic)

Covariance Method Spatial TFP Procurement Prod Similarity Tech Proximity

Spatial 1 0.57 0.68 0.45 0.30

TFP 1 0.22 0.27 0.52

Procurement 1 0.70 0.38

Prod Similarity 1 0.30

Tech Proximity 1

Notes: This table reports the correlation across different measures of upstream and downstream substitutability measures (negative of
concentration “between”). Substitutability is calculated as the negative value of the log of (1.5) (plus a large enough constant) and
correlation between two measures xit and yit is defined by ρ̂ from the regression yit = ρ̂xit +uit , where xit and yit are transformed to
have mean zero and standard deviation one. Panels A and B rely no a static assumption for the variance-covariance matrix across
shocks, while Panels C and D estimate a dynamic conditional variance-covariance matrix à la Fioruci et al. (2013). Panels A and C
report results in the upstream (supply-side) direction and Panels B and D report results in the downstream (customer-side) direction.
Spatial covariance is based on the panel model in equation (1.7). TFP covariance is based on TFP growth measured in Becker et al.
(2016), procurement based on federal government shares interacted with the procurement proxy in Briganti and Sellemi (2022), product
similarity using the latent distance method and scores from Hoberg and Phillips (2016), and tech proximity constructed following
Bloom and Shankerman (2013).
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1.4 Dynamic Network Model of Supply-Chain Substi-

tutability

In this section, I incorporate the supply chain substitutability-concentration trade-

off and my empirical results from the previous section in a structural dynamic asset pricing

model detailed in Appendix 1.7. This model builds on existing production-based models

with input output networks (see e.g., Ramı̀rez (2017), Herskovic (2018b), or Gofman et al.

(2020)). Unlike existing models, I introduce a correlation structure in shocks to firm growth

rates which propagate both upstream and downstream in an input-output network.25 Firms

are subject to both productivity shocks which propagate downstream and demand shocks

which propagate upstream. Shocks are drawn from a joint distribution with finite second

moments and in which correlation across firm-level shocks is induced by shared variation

in firms’ input-output substitutability. More specifically, firms’ ability to substitute away

from productivity (demand) shocks is inversely related to concentration of trade partners in

latent technology (product) space and correlated between firms who share trade partners.

1.4.1 Setting

Consider a discrete-time economy with n distinct goods and n firms. Output goods

are characterized by vector in product-technology space, which is fixed exogenously for

each good. Firm output (cash flow) depends on aggregate economic conditions and the

cash flows of its customers and suppliers. There are two kinds of random shocks in this

economy, productivity shocks which propagate downstream from suppliers to customers,

and demand shocks which propagate upstream from customers to suppliers. The input-

output network is captured by two sequences of graphs with n nodes for each firm and

weighted directed edges capturing the importance of firm-to-firm trade relationships. In

the customer (supplier) network, the edge from i to j represents the relative reliance of j

25To my knowledge, this is the first network model to feature both correlated shocks and two directions of
propagation.
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on customer (supplier) i.

For tractability, I assume that trade relationships are exogenously determined at the

start of each period. Additionally, the model features a representative investor with constant

relative risk aversion (CRRA) preferences who owns all firms and lives off labor wages

and dividends. Next, I describe the process for firm cash flows, the network structure, and

the mechanism of shock propagation through the input-output network. Then I derive

equilibrium consumption growth and asset prices. For ease of exposition, I provide details

on the production side of the economic since that is the primary source of risk. Further

details are left to Appendix 1.7.

1.4.2 Substitutability and Firms’ Cash Flows

Firms are exposed to undiversifiable aggregate risk factors and risk from trade

partners which can be mitigated with diversification of customers and suppliers. Every firm

is both a customer who purchases inputs from other firms, and a supplier who produces a

single final good. Final goods are characterized by a latent position in technology-product

space, which fluctuates according to a persistent stationary process discussed in Appendix

1.8.26 Latent position dynamics are exogenous to firm and household decisions and can be

interpreted as random changes in product differentiation. For example, Syverson (2004)

argues that the same products might be perceived differently as a result of intangible factors

like delivery speed, documentation, product support, or branding and advertising.

In reduced-form, firm cash flows are determined by random shocks each period

which propagate stochastically both downstream to customers and upstream to suppliers.

The probability that a shock propagates through the supply chain is a function of firms’

customer and supplier substitutability. Consistent with the empirical results from Section

1.3, I assume that a firm’s customer substitutability depends on the product diversity of the

goods sold by its customers. Likewise on the supply-side, a firm’s suppliers substitutability

depends on the technological diversity of its suppliers. When supply chains are highly
26This assumption is justified empirically by the results of Section 1.3, which suggest both that distances

in product space and technology space change over time.
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substitutable, shocks are less likely to propagate.

In particular, firm cash-flow growth has the following reduced-form equation:

∆yi,t+1 = ∆zi,t+1 +∆gi,t+1, (1.8)

where ∆zi,t+1 = log(zi,t+1/zit) is a shock to productivity and ∆gi,t+1 = log(gi,t+1/git) is

a shock to government demand. I assume that dependence across shocks is determined

by both the firm’s input-output network and the relative location of its final good in

product-technology space. Productivity growth follows the process:

∆zi,t+1 = γu ·at+1 −βu · εiu,t+1, (1.9)

where at ∼iid N (0,σ2
a) is aggregate productivity growth at time t, γu and βu are positive

scalars, and εiut is a Bernoulli shock that negatively affects productivity and originates

upstream. Similarly, government demand growth follows the process:

∆gi,t+1 = γd ·gt+1 −βd · εid,t+1, (1.10)

where gt ∼iid N (0,σ2
g) is aggregate growth in government spending at time t, γd and βd

are positive scalars, and εidt is a Bernoulli shock which negatively affects demand and

originates downstream. In other words, εidt (εiut) is equal to one when firm i experiences

a demand (supply) shock which originates at i and/or propagates from its downstream

customers (upstream suppliers). Shocks propagating in different directions are independent

(i.e., εidt ⊥ εiut for all i and t).

1.4.3 Network Structure

The propagation of shocks depends on the sequence of input-output network

connections between firms, defined as follows. The sequence of upstream and downstream

graphs (Gn,u,t)n and (Gn,d,t)n are n-node graphs with weighted edges given by wu
i jt and
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wd
i jt , respectively. Weights capture the importance of the directed relationship i → j from

the perspective of i and are fixed exogenously at the start of period t.

To ensure that the input-output network is realistic, I assume that all weights are

between 0 and 1 and introduce some additional restrictions on the growth rates of input-

output connections relative to the number of firms. In particular, I assume that the number

of shared customers and suppliers between two firms cannot grow at a rate faster than the

total number of firms in the economy n, and that the maximum number of firm suppliers or

customers must grow slower than the total number of possible edges. First consider the

following definitions.

Definition 1.4.1 (Paths). A k-path between nodes i and j in graph G is a length k-sequence

{aℓ}k
ℓ=1 where a1 = i, ak = j, and waℓaℓ+1 > 0 for all ℓ = 1, ...,k− 1. Denote by Ai j(G)

the set of paths between nodes i and j and by Ai := {k : Aki(G) ̸= /0} the set of nodes for

which a path to i exists.

Definition 1.4.2 (Maximal Dependency). The maximal dependency of an n-vertex graph

Gn is given by:

M̄n(Gn) := sup
i, j

[
card

(
Ai(Gn)∩A j(Gn)

)]
(1.11)

Definition 1.4.3 (Maximal Degree). The maximal (unweighted) degree in an n-vertex

graph Gn is given by:

D̄n(Gn) = sup
i

[ n

∑
j=1

card
(
A ji(Gn)

)]
(1.12)

If only direct connections exist, then M̄n(Gn) = supi, j ∑
n
k=11{wki>0}1{wk j>0} and D̄n(Gn) =

supi ∑
n
j=11{w ji>0}. Given these definitions, the following assumptions formally restricts

the growth rate of input-output connections as the number of firms n grows. These

assumptions are fairly general and relevant for deriving tractable theoretical properties of

the model.
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Assumption 1.4.4 (Bounded Growth Rate of Maximal Degree Sequence). For all q and t,

the maximal degree sequence grows at a rate strictly less than n2:

D̄nq = o(n2)

These assumptions are intuitive and weaker than the restriction that no firms can

serve as a customer or supplier to all other firms. In this case, both the maximal dependency

and the maximal degrees must grow at a rate slower than n.

Assumption 1.4.5 (Bounded Growth Rate of Maximal Dependency). For all q and t, the

maximal dependency sequence grows at a rate strictly less than n:

M̄nq = o(n)

1.4.4 Shock Propagation Mechanism

For tractability, productivity and demand shocks propagate in a single direction

within period t and die out in the following period. Network connections induce correlation

across firm-level shocks. At the start of period t, shocks are drawn from distributions

εidt ∼ Bernoulli(pidt) and εiut ∼ Bernoulli(piut) where pidt and piut represent time-varying

propensities for firms to experience downstream (demand-side) or upstream (supply-

side) shocks, respectively. Propensities are a function of the network structure and firm

substitutability, both of which are fixed exogenously at the start of each period.

Intuitively, firms with more substitutability across customers (suppliers) should

have a lower average propensity pidt (piut) to experience shocks. Mathematically, I assume

propensities follow a logistic (sigmoid) curve:

piqt = g(siqt ;kiq,xiq) =
1

1+ exp
{

kiqt · (siqt − xiqt)
} , q ∈ {u,d}, (1.13)
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where siut (sidt) is the supply-side (demand-side) substitutability of firm i, kiqt is the

sensitivity (steepness) of firm propagation to substitutability, and xiqt is a scalar midpoint.

The cross-sectional normalization ensures that firms with substitutability xiqt have a 50%

chance of being shocked. Substitutability captures network-weighted dispersion in i’s

supplier-technology (customer-product) space, while xiqt and kiqt jointly characterize the

firm-specific risk of firm i. Inverting terms in the “between” concentration measure from

(1.5), I assume substitutability can be written:

siqt = log ∑
j ̸=k

wq
i jt ·w

q
ikt ·δ

q
jkt , (1.14)

where wq
i jt represents the importance of trade between j and i in the q-stream direction

and δ
q
jkt is normalized distance between industries j and k in latent product (q = d) or

technological (q = u) space. See Appendix 1.8 for details. Shared customer and supplier

connections induce correlation in substitutability siqt across firms. This also implies the

shock transmission propensities piqt are also correlated. Time-variation in firm product

differentiation generates correlated changes in substitutability across firms who share

customers and suppliers. When there are no network connections, firms are hit by shocks

with probability piqt = 1/(1+ exp(−kiqtxiqt)). For remaining sections, I assume that

kiqt = kiq and xiqt = xiq are time invariant.

1.4.5 Consumption Growth and the Stochastic Discount Factor

I assume that representative households in this economy own shares in each firm

and have the following preferences:

u(c1t , ...,cnt , ℓt) =
1

1− γ
·
( n

∏
i=1

cβi
it

)1−γ

·ϕ(ℓt), (1.15)

where cit is the consumption of good i with preference weights βi such that ∑i βi = 1, γ

is risk aversion, and ϕ(.) is a decreasing and differentiable function capturing disutility
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of labor ℓt . In Appendix 1.7, I show that equilibrium consumption growth and output

growth are equal such that ∆c̃i,t+1 := log(ci,t+1/cit) = ∆ỹi,t+1 for all i and t. I also derive

an appropriate price normalization such that equilibrium consumption expenditure is given

by Ct = ∏i cβi
it = ∑i pitcit for a given set of positive prices pit . Finally, the following

proposition derives the expression for growth in aggregate consumption expenditure under

the same assumptions.

Proposition 1.4.6 (Aggregate Consumption and Output Growth). Assuming βi = 1/n for

all i and under the price normalization in Appendix 1.7, aggregate consumption growth

can be written:

∆c̃t+1 = γu ·at+1 + γd ·gt+1 −βu ·Wu,t+1 −βd ·Wd,t+1, (1.16)

where Wut =
1
n ∑

n
i=1 εiut and Wdt =

1
n ∑

n
i=1 εidt and γu,γd,βu,βd are positive scalars.

Proof. See Appendix 1.9.2.

This proposition decomposes aggregate consumption growth into four components.

The first two components capture innovations to aggregate productivity and demand growth

(at and gt , respectively), both of which are positively related to output and consumption

growth. On the other hand, the next two components are negatively related to output

and consumption growth and capture the average impact of bad shocks to productivity

originating upstream (Wut), and the average impact of bad shocks to demand originating

downstream (Wdt). Combining this result with (1.35), the log stochastic discount factor

(SDF) can be written:

mt+1 = logβ− γ
(
γu ·at+1 + γd ·gt+1 −βu ·Wu,t+1 −βd ·Wd,t+1

)
, (1.17)

where β is the intertemporal discount factor and γ is risk aversion. This implies that

aggregate productivity and demand growth have a positive price of risk while average

upstream and downstream propagation have a negative price of risk.
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1.4.6 Additional Theoretical Results

This section summarizes some additional relevant theoretical results from the

model. The following proposition states that the conditional distribution of consumption

growth in this model is asymptotically normal as the number of firms grows.

Proposition 1.4.7 (Distribution of Consumption Growth). Under Assumption 1.4.4, the

sequence of consumption growth is asymptotically normal as n → ∞, conditional on time t

for all t:

∆c̃t+1
d−→ N (µc,t+1,σ

2
c,t+1), (1.18)

where:

µct := Et [∆c̃t ] =
1
n

n

∑
i=1

(piut + pidt),

σ
2
ct := vart [∆c̃t ] = σ

2
g +σ

2
a + vart(Wut +Wdt).

Proof. See Appendix 1.9.4.

Although the conditional mean of consumption growth is known in this model, there is no

closed form expression for the conditional variance term. This follows from the fact that

shock transmission propensities follow a logistic normal distribution (see Appendix 1.8).

After deriving the asymptotic distribution of consumption growth, the next corollary char-

acterizes the probability the Wnqt deviates from its cross-sectional mean when propensities

are known.

Corollary 1.4.8 (Concentration of Network Factors). Under Assumption 1.4.5 and if

M̄nqt > 1, the propagation factor Wqt can be written:

Wnqt = µnqt|t + εnqt|t (1.19)
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where µnqt|t =
1
n ∑i piqt|t and εnqt|t ∼ N (0,σ2

nqt|t) where:

σ
2
nqt|t ≤

M̄nqt

n
= o(1) (1.20)

Moreover, for any k > 0, the magnitude of εnqt|t can be upper bounded as follows:

Pr
(
|εnqt|t | ≥ 2k(M̄qt/n)

)
≤ 1

k2

Proof. See Appendix 1.9.3.

1.5 Testable Implications

In this section, I verify the main quantitative predictions of the model using financial

and macroeconomic data. According to equation (1.17), innovations in average supply and

demand shock propagation have a negative price of risk. In addition, level changes in these

components should be negatively correlated with aggregate consumption growth.

1.5.1 Data and Calibration

I construct a panel of firms between 1997-2019 whose North American Industry

Classification System (NAICS) are in the set of industries for which BEA Input-Output

accounts are available. I obtain annual and quarterly firm variables from Compustat and

stock return data from CRSP for share codes 10, 11, and 12.27 I obtain aggregate time

series of Total Factor Productivity growth from Fernald (2012a), government demand

growth from the procurement proxy in Briganti and Sellemi (2022), and annual market

and risk-free returns from Kenneth French’s Website.

I begin by computing input-output propagation factors, denoted by Ŵut and Ŵdt . In

Section 1.3, I introduce a latent distance approach to compute the panel of industry concen-

tration and substitutability between customers and suppliers from equation (1.5). Assuming

27Firm and return variables are winsorized at the 1% level unless otherwise specified.
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that substitutability is the same for firms in a given industry, I can then directly compute ŝiqt

for any firm with industry data available. The expression for p̂iqt = g(ŝiqt ;kiq,xiq) follows

directly from equation (1.13) conditional on scalar parameters kiq and xiq. To calibrate

these parameters, I first estimate the following panel regression:

∆ỹi,t+1 = γuat+1 + γdgt+1 + controls+ εi,t+1, (1.21)

where ∆ỹi,t+1 is year-on-year sales growth, at+1 is TFP growth, and gt+1 is growth in the

federal defense. Controls include year and industry fixed effects, lagged firm size, age, and

return on assets to ensure that changes in εi,t+1 is unrelated to aggregate economy-wide

or industry-level forces or trends in large, young, or profitable firms.28 Then let ε̂i,t+1

denote residual sales growth, and let ωiu (ωid) denote the average cost share (sales share)

of intermediate inputs in i’s industry, and choose values of kiq ≥ 0 and siq ∈ R such that:

v̂ar(ε̂i,t+1) =
exp(kiq(s̄iq − xiq))(

1+ exp(kiq(s̄iq − xiq))
)2 , and ωiq =

(
1+ exp(kiq(s̄iq − xiq))

)2(
1+ exp(−kiqxiq))

)2 ,

for q ∈ {u,d} where s̄iq = 1
T ∑t siqt is firm i’s average substitutability over time. The

first restriction is based on equation (1.8) and ensures that the variance of a typical

Bernoulli(piqt) shock is equal to residual sales growth variance, while the second restriction

requires ωiq proportion of this variance to be attributed to network propagation. Together,

the system of equations uniquely identify kiq and xiq. Table ?? summarizes the calibrated

parameter values. I then approximate each realized network propagation factor with its

cross-sectional empirical mean as follows:

Ŵqt ≈
1
n

n

∑
i=1

p̂iqt , q ∈ {u,d}, (1.22)

where p̂iqt is the empirical propensity. I use the cross-sectional mean since realized shocks

cannot be identified even when firm propensities piqt are known. In practice, this is not

28Industry fixed effects are at the two-digit NAICS granularity.
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a large concern, as Proposition 1.4.8 shows that the measurement error can be bounded

arbitrarily by increasing the sample size.29 I plot the estimated series in Figure 1.1 and

report summary statistics in Table 1.3. See Appendix 1.14 for more details.

Table 1.3: Descriptive Statistics Network Propagation Factors

Wut Sut Wdt Sdt gt at σciv
t σmkt

t AC(1)

Wut 1 -0.81 0.13 0.17 0.25 -0.20 -0.38 -0.31 0.26

Sut 1 -0.36 -0.03 -0.21 -0.16 0.62 0.52 0.20

Wdt 1 -0.44 -0.05 -0.13 -0.22 -0.06 0.01

Sdt 1 -0.15 -0.17 0.13 -0.14 0.04

gt 1 0.05 0.00 0.26 0.62

at 1 -0.19 -0.43 0.30

σciv
t 1 0.53 -0.30

σmkt
t 1 -0.21

Notes: This table reports the time-series correlation and first-order autocorrelation of network propagation factors Wut and Wdt , average
industry substitutability Sut and Sdt , procurement demand growth gt , productivity growth at , innovations to common idiosyncratic
volatility σciv

t , and innovations to market volatility σmkt
t . I calculate gt as the first log difference in the federal procurement proxy from

Briganti and Sellemi (2022), at as the first difference in the TFP series from Fernald (2012a), innovations in common idiosyncratic
volatility as the first log difference in the first principal component of firm volatility following Herskovic et al. (2016), and innovations
in market volatility as the first log difference in market return volatility.

(a) Panel A: Propagation Factors (b) Panel B: Innovations in Avg Substitutability

Figure 1.1: Network Propagation Risk Factors

Notes: This figure plots the time series of network propagation risk factors (Panel A), the cross-sectional average industry
substitutability (Panel B). Shaded regions indicate NBER-dated recession periods.

29As a heuristic evaluation of this bound, suppose I restrict our sample to only firms that show up in the
Customer Segments database (M̄nqt = 149 and n = 12489), then the probability that the measurement error
more than 10% is less than 1%.
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1.5.2 Asset Pricing Tests

To verify the prices of risk predicted in (1.17), I sort stocks based on their exposure

to factors and form quintile-sorted portfolios. In particular, for every stock i I regress

annual excess returns rit − r f t on a constant, aggregate demand and productivity growth,

and additional controls.30 The main regression is given by:

rit − r f t = αi +βiaat +βiggt +βiuWut +βidWdt + εit , (1.23)

where equation (1.17) implies that stocks with high βia and βig should have higher expected

excess returns and stocks with high βiu and βid should have lower expected excess returns.

For each year t, I compute stock exposure to factors on a 15-year rolling window from

t−14 to t using (1.23), and then sort stocks into five portfolios on each beta both separately

(one-way sort) and pairwise (two-way sort). Then I construct value and equal-weighted

portfolios over the subsequent year t+1 and compute average out-of-sample excess returns

for each portfolio.

Table 1.4 provides evidence of a significant return spread in one-way beta sorted

portfolios. In particular, the highest quintile upstream propagation beta portfolio earns

-11.42% lower annual returns than the lowest quintile portfolio, while the highest quin-

tile downstream propagation beta portfolio earns -4.18% lower annual returns than the

lowest quintile portfolio. Both return spreads are statistically significant, although more

pronounced for upstream propagation beta sorted portfolios.31 This is consistent with

Herskovic et al. (2020b), who argue that upstream propagation is the more important

channel.

I also observe a return spread in post-sample alphas from the CAPM and Fama

and French (FF3) three factor models, which implies that network propagation risk is not

30I test several specifications including controlling for lag factor levels. Results are robust to several
specifications on the set of controls, including the baseline without controls.

31I also test for monotonicity of returns in upstream and downstream propagation betas, following Patton
and Timmermann (2010). I reject this null hypothesis at the 10% level for upstream beta sorted portfolios,
but fail to reject for downstream beta sorted portfolios.
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captured by market returns or FF3 factors. In light of the variance results of Section 1.3,

I also verify that return spreads are not explained by market volatility or idiosyncratic

volatility factors in Table 1.16.32 Additionally, return spreads cannot be explained by

differences in return volatility, average size, or average book-to-market ratios. Finally,

the average correlation between upstream and downstream propagation betas is 8.6%,

suggesting that the two network factors are distinct sources of risk.

Return spreads are robust to the choice of trailing window length, equal or value

weighting in portfolios, control variables, and show up in double-sorted portfolios as well.

See Appendix 1.14 for more details.

32I measure market volatility as the annual volatility of market returns and idiosyncratic volatility following
Herskovic et al. (2016).
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Table 1.4: One-Way Sorted Portfolios on Network Propagation Factors

Panel A: One-way sorts on upstream propagation beta (controlling for at and gt )

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 18.10 12.81 10.59 9.42 6.69 -11.42 -13.22 0.07

αcapm 0.29 -0.1 -0.23 -0.31 -1.02 -1.32 -15.71 0.05

α f f 3 0.08 -0.09 -0.22 -0.29 -0.54 -0.63 -8.61 0.09

Volatility (%) 15.54 13.89 13.59 13.03 19.66 - - -

Book-to-market 0.52 0.56 0.53 0.55 0.50 - - -

Market value ($bn) 6.46 16.99 10.62 15.15 9.11 - - -

Panel B: One-way sorts on downstream propagation beta (controlling for at and gt )

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 13.54 13.23 11.02 9.77 9.36 -4.18 -7.56 0.25

αcapm -0.04 -0.18 -0.28 -0.38 -0.60 -0.56 -4.78 0.00

α f f 3 -0.11 -0.14 -0.23 -0.28 -0.36 -0.25 -3.62 0.03

Volatility (%) 15.44 13.95 18.58 12.99 13.88 - - -

Book-to-market 0.52 0.56 0.55 0.53 0.51 - - -

Market value ($bn) 15.84 7.45 4.54 17.6 12.72 - - -

Panel C: One-way sorts on upstream propagation beta (no controls)

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 15.15 12.61 11.46 9.44 7.23 -7.91 -11.57 0.07

αcapm 0.09 -0.15 -0.17 -0.28 -1.09 -1.18 -17.53 0.26

α f f 3 -0.12 -0.14 -0.18 -0.22 -0.58 -0.46 -9.96 0.31

Volatility (%) 15.26 14.23 13.57 12.61 20.97 - - -

Book-to-market 0.54 0.58 0.52 0.52 0.50 - - -

Market value ($bn) 6.87 17.48 10.92 16.38 6.56 - - -

Panel D: One-way sorts on downstream propagation beta (no controls)

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 12.66 11.94 11.8 8.34 5.13 -7.53 -8.65 0.42

αcapm -0.15 -0.18 -0.19 -0.4 -0.64 -0.49 -11.37 0.41

α f f 3 -0.10 -0.21 -0.21 -0.29 -0.32 -0.22 -4.76 0.44

Volatility (%) 14.09 13.9 14.44 13.22 31.95 - - -

Book-to-market 0.54 0.49 0.58 0.51 0.54 - - -

Market value ($bn) 15.97 12.79 6.33 16.88 6.34 - - -

Notes: This table reports average excess returns and post-sample alphas in annual percentages for value-weighted portfolios sorted into
quintiles on annual upstream and downstream propagation factors. Sample is between 1997-2021 for more than 10,000 stocks
belonging to the BEA 66 non-government industry classifications. Panels A and B control for productivity growth and federal
procurement demand growth, while Panels C and D have no controls. I also report average return volatility, book-to-market ratio and
market value for each portfolio. To test for significant return spreads, I report t-statistics for the null hypothesis H0 : xr5 = xr1, where
xrq is the average return of the qth quintile single sorted portfolio. Moreover, I report p-values for the test H0 : xrq+1 < xrq∀q ≤ 4,
calculated via bootstrap following Patton and Timmermann (2010).
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1.5.3 Verifying Macroeconomic Predictions

Equation (1.16) predicts that upstream and downstream propagation factors should

be negatively correlated with consumption, output growth, and aggregate dividend growth.

To test this, I construct aggregate series between 1997-2021 for consumption and output

growth from the National Income and Product Accounts (NIPA) and corporate dividend

growth from BEA data. Then I regress each outcome on network propagation factors,

controlling for aggregate productivity and federal procurement demand growth. I stan-

dardize each variable to have zero mean and unit standard deviation. Consistent with the

predictions of the model, Table 1.5 reports negative and statistically significant coefficients

on both upstream and downstream propagation risk factors. The factors explain a large

portion of time variation in consumption, output, and dividend growth with R2 values of

56%, 68%, and 26%, respectively.

The coefficients on downstream propagation are -0.17 (t = −1.89), -0.60 (t =

−2.57), and -0.01 (t =−0.52) for aggregate consumption, output, and dividend growth

regressions, respectively. On the other hand, the coefficients on upstream propagation

are not significant for aggregate consumption and output growth regressions, although

the coefficient in the dividend growth regression is −0.03 (t = −1.80). Additionally,

the coefficients on upstream propagation are significant when the dependent variable

is limited to only durable consumption or output growth, -0.111 (t = −2.39) and -1.38

(t = −2.39), respectively. This suggests that durable consumption is more sensitive to

upstream (supply-side) risk.
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Table 1.5: Network Propagation and Macroeconomic Factors

Variable ∆ct ∆cdur
t ∆cnondur

t ∆yt ∆ydur
t ∆ynondur

t ∆Dt

Wut 0.003 -0.111** -0.158 -0.112 -1.383** -0.416 -0.033*

(0.103) (0.048) (0.087) (0.275) (0.607) (0.229) (0.021)

Wdt -0.174* -0.031 -0.022 -0.598** -0.387 -0.058 -0.010

(0.074) (0.054) (0.101) (0.222) (0.684) (0.267) (0.021)

at 0.321** 0.128** 0.197** 1.018** 1.607** 0.520** 0.018

(0.114) (0.055) (0.108) (0.271) (0.689) (0.285) (0.010)

gt 0.271 -0.056 0.604 -0.011 -0.704 1.592 0.029

(0.332) (0.276) (0.638) (0.956) (3.450) (1.682) (0.109)

Intercept -0.485 -0.111 -0.205 1.218 4.09 2.023 0.042

Obs 24 24 24 24 24 24 24

R2 0.56 0.537 0.376 0.679 0.537 0.376 0.257

Notes: This table reports results of OLS regressions of aggregate consumption growth, output growth, and dividend growth on
input-output network propagation risk factors, controlling for productivity and federal procurement demand growth. The columns
represent different dependent variables corresponding to aggregate PCE growth, durable consumption growth, non-durable
consumption growth, output growth, durable output growth, non-durable output growth, and dividend growth. All series are
standardized to have zero mean and unit variance. Sample is at an annual frequency between 1997-2021.

1.6 Conclusion

In this work, I prove that the idiosyncratic shock assumption in network mod-

els with static shock propagation generates empirically implausible restrictions on the

network structure. Empirical evidence confirms the importance of correlation in shocks

for explaining variance dynamics. As an alternative to the standard model, I propose a

production-based asset pricing model with input-output networks, in which correlation in

firm level supply and demand shocks is driven by technological and product proximity.

This model implies upstream and downstream propagation systematic risk risk factors

which I find are negatively priced in the cross-section of returns, and are associated with

lower aggregate consumption, output, and dividend growth.
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Future work might investigate in more depth the sources of correlation in supply

and demand shocks and generate more granular estimates of the agents’ ability to substitute

away from them. Moreover, an open question is whether there exist firm-level clustering

in which the idiosyncratic shock assumption might be consistent with empirical data.
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Appendices

1.7 General Equilibrium Model of Input-Output Link-

ages

In this section, I show that (1.1) can be cast as an outcome of a production-based

asset pricing model. This model provides a structural foundation for the theoretical

contributions of this work and is closely related to Acemoglu et al. (2012a), Acemoglu

et al. (2016a), Ramı̀rez (2017), and Herskovic (2018b). Consider a competitive economy

with n production units (firms or industries) with Cobb-Douglas technology, representative

households with constant relative risk aversion (CRRA) preferences over a basket of

goods and who work and own shares in all firms and live off wages and dividends, and a

government that finances purchases with a lump-sum tax. In this economy, Hicks-neutral

productivity shocks propagate downstream from suppliers to customers, while government

demand shocks propagate upstream from customers to suppliers.

1.7.1 Production

Production unit i’s output is a constant returns to scale function of labor and

intermediate inputs:

yit = exp(zit)ℓ
αiℓ
it

n

∏
j=1

xwi jt
i jt , (1.24)
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where xi jt is the amount of product j used as input by industry i at time t, ℓit is labor input,

and zit is a Hicks-neural productivity shock, respectively. I assume that for all i and t, the

labor share of production is positive (i.e., αiℓ > 0) and intermediate input shares are non-

negative (wi jt ≥ 0) and sum to the capital share of production (i.e., (∑n
j=1 wi jt = 1−αiℓ).

Taking both spot market prices and input shares as given, production units optimize

dividends (denoted Dit) as a function of input and labor purchases:

Dit = max
{xi jt}n

j=1,ℓit
pityit −

n

∑
j=1

p jtxi jt − pwtℓit (1.25)

subject to (1.24) and ℓit ∈ (0,1). Suppose further that Mt+1 is the stochastic discount factor

(SDF) that prices all assets in the economy. Then the cum dividend value of firm i (denoted

Vit) satisfies the following Bellman equation:

Vit = Dit +Et [Mt+1Vi,t+1]. (1.26)

1.7.2 Government

The government purchases goods Git from each unit i at time t and finances them

via a lump-sum tax Tt . Taking prices as given, the government’s financing constraint

implies that Tt = ∑
n
i=1 pitGit .

1.7.3 Households

Assume that the representative household owns shares in each unit and has the

following preferences:

u(c1t , ...,cnt , ℓ) =
1

1− γ
·
( n

∏
i=1

cβi
it

)1−γ

·g(ℓt), (1.27)

where cit is the consumption of good i with preference weights βi such that ∑i βi = 1 and

g(.) = (1− ℓt)
ν is a decreasing and differentiable function capturing disutility of labor.
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Households also have a time-discount factor of β and cannot store goods from one period

to another. In equilibrium, households hold a zero net position in a risk-free asset and

choose to own ϑit in each unit according to the following budget constraint:

Tt + pwtℓt +
n

∑
i=1

pitcit +
n

∑
i=1

ϑi,t+1(Vit −Dit) =
n

∑
i=1

ϑi,tVit , (1.28)

where the right hand side is total value of investments and the left hand side is the sum of

taxes paid, wages earned, cost of consumption, and unrealized capital gains, respectively.

The household’s optimization problem satisfies the Bellman equation:

Ut = max
{cit ,ϑi,t+1,ℓ}n

i=1

u(.)+βEt [Ut+1], (1.29)

subject to (1.28).

1.7.4 Equilibrium

The competitive equilibrium of the economy consists of spot market prices {pit}n
i=1,

consumption bundles {cit}n
i=1, share holdings {ϑit}n

i=1, labor supply ℓt , wages pwt , and

input bundles {xi jt}n
i, j=1 such that both production units and households exhibit optimal

behavior and good/asset markets clear.

Market Clearing

In equilibrium, all good markets clear such that:

yit = cit︸︷︷︸
final consumption demand

+
n

∑
j=1

x jit︸ ︷︷ ︸
intermediate demand

+ Git︸︷︷︸
government consumption

,

and all asset markets clear ϑit = 1 for all i and t.
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Producer Optimality

Taking prices as given, unit i’s first order dividend maximizing conditions satisfy

wi jt =
p jtxi jt

pityit
≡

sales j→i

salesi
(1.30)

and

αiℓ =
pwtℓit

pityit
(1.31)

Consumer Optimality

Given the Cobb-Douglas aggregation in preferences over goods (i.e., Ct := ∏i cβi
it ),

utility maximizing households consume βi of income on good i and hold shares fixed at

ϑit = 1. More specifically, letting λt be the Lagrange multiplier for the period t household

budget constraint, the first-order condition for consumption is written:

λt =
C−γ

t

pit
· ∂Ct

∂cit
. (1.32)

This implies that equilibrium consumption satisfies:

pitcit = βi

(
pwtℓ

∗
t +

n

∑
j=1

D jt −Tt

)
. (1.33)

where ℓ∗t solves:

pwtℓ
∗
t

pwtℓ
∗
t +∑

n
j=1 D jt −Tt

=−ℓ∗t g′(ℓ∗t )
g(ℓ∗t )

(1.34)
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Asset Prices

From (1.32), the stochastic discount factor can be written:

Mt+1 = β
λt+1

λt
= β

(
Ct+1

Ct

)−γ pit ·∂Ct+1/∂ci,t+1

pi,t+1 ·∂Ct/∂cit
. (1.35)

Following Herskovic (2018a), I assume that prices are normalized such that pit = ∂Ct/∂cit ,

or equivalently that ∏ j pβ j
jt = ∏ j β

β j
j for all i and t. This implies the the utility aggregator

is equal to the household’s consumption expenditure Ct = ∑
n
i=1 pitcit .33. Then (1.35)

simplifies to:

Mt+1 = β

(
∑

n
i=1 pi,t+1ci,t+1

∑
n
i=1 pitcit

)−γ

. (1.36)

Shock Propagation

I now derive closed form expressions for the effects of productivity and government

demand shocks on output growth in this model. The main takeaway is that output growth

is captured by the following reduced form expression:

d logyt = Hdown,tdzt +Hup,tdGt ,

where H.,t are n×n Leontief inverse propagation matrices. I provide a derivation for each

component separately.

Productivity Shocks Totally differentiate the expression in (1.24) to obtain:

d logyit = dzit +αiℓd logℓit +
n

∑
j=1

wi jtd logxi jt (1.37)

33I further assume that Ct = pwtℓt .
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Totally differentiating (1.30), (1.31), and (1.33) and plugging in to this expression yields:

d logyit = dzit +αiℓd logℓit +
n

∑
j=1

wi jt(d logyit +d log pit −d log p jt)

= dzit +αiℓ(d logyit −d logcit)+
n

∑
j=1

wi jt(d logyit −d logcit +d logc jt).

Given constant returns to scale (αiℓ+∑ j wi j = 1), this expression can be further simplified

as follows:

d logci = dzit +
n

∑
j=1

wi jtd logc j

or in vector notation:

d logct = dzt +Wtd logct ,

where Wt has entries wi jt . Note that market clearing and profit maximization conditions

together imply that:

y jt

c jt
= 1+

n

∑
i=1

wi jt
βiyit

β jcit

which implies that equilibrium consumption growth is equal to equilibrium output growth:

d logct = d logyt (1.38)

and thus that:

d logyt = (I−Wt)
−1dzt , (1.39)

where Hdown,t := (I−Wt)
−1 is the Leontief inverse of Wt . Here, the Wt matrix determines

the strength of downstream propagation of productivity shocks.
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Demand Shocks To study the effects of government spending shocks in the model,

normalize zt = 0 and consider the unit cost function for i:

Cit(pt , pwt) = Ait pαiℓ
wt

n

∏
j=1

pwi jt
jt , where Ait = α

−αiℓ
iℓ

n

∏
j=1

w−wi jt
i jt .

The zero productivity normalization implies zero dividends for production units, and

combined with the price normalization for wages, this implies that:

log pit = logAit +
n

∑
j=1

wi jt log p jt

Conditional on productivity vector zt and defining the vector at with entries logAit , prices

are a function of the network and cost but not government purchases:

logpt = (I−Wt)
−1at .

Setting ν = 1 Then (1.34) and the fact that Tt = ∑i pitGit implies that:

ℓt =
1
2
+

1
2

n

∑
i=1

pitGit (1.40)

and thus:

pitcit = βi[pwtℓt −Tt ] =
βi

2

(
1−

n

∑
j=1

p jtG jt

)
.

Differentiating and combining with the resource constraint and profit maximization condi-

tions yields:

d(pityit)

pityit
=

n

∑
j=1

w jit
d(p jty jt

pityit
+

dGit

yit
− βi

2

n

∑
j=1

d(p jtG jt)

pityit
.
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Since prices are constant (i.e., d(pityit)/pityit = d logyit), I can write in vector notation:

d logyt = Hup,tdGt, (1.41)

where Hup,t = (I−W⊤
t )

−1ΛΛΛt is the upstream propagation Leontief inverse and ΛΛΛt is a scal-

ing matrix with diagonal entries (1−βi/2)/pityit and off-diagonal entries −(βi/2)/pityit

for row indices i.

1.8 Product Varieties in Latent Space

Suppose that each industry (or firm) is associated with a random position zit :=

(cosθit ,sinθit) on a circular surface on the 3-dimensional hypersphere S p+1. Suppose

that the surface represents the space of varieties in production technology space. I also

assume each unit corresponds to a position in latent product variety space, and that product

positions are independent of technological positions. The stochastic process for positions

is the same in both spaces and depends on changes in the angle θit as follows:

θit = ρ ·θi,t−1 + εit , εit ∼iid N (0,σ2
θ), (1.42)

where θit is measured in radians. The distance between two points i and j can then be

written:

δi jt =
1

2π
|θit −θ jt |. (1.43)

This implies a correlation structure in the distances between units as follows:

corr(δi jt ,δkmt) =


0 if i /∈ {k,m}∩ j /∈ {k,m},

1 if i ∈ {k,m}∪ j ∈ {k,m},
, (1.44)
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or equivalently that:

cov(δi jt ,δkmt) =


0 if i /∈ {k,m}∩ j /∈ {k,m},√

var(δi jt)var(δkmt) if i ∈ {k,m}∪ j ∈ {k,m},
, (1.45)

where:

σ
2
d := var(δi jt) = var(θit)+var(θ jt)−E[|θit −θ jt |]2 =

2σ2
θ

1−ϕ2 −
(4/π)σ2

θ

1−ϕ2 ,

Define the set of i’s q-stream located trade partners by Aiqt := {k : Aki(Gqt) ̸= /0}.

Note that in technology space, q refers to upstream propagation. Combining with equation

(1.14) yields:

cov(siqt ,s jqt) = ∑
k ̸=ℓ

∑
m ̸=p

wiktwiℓtw jmtw jpt · cov(δkℓt ,δmpt)

= ∑
k,ℓ∈Aiqt ;m,p∈A jqt

wiktwiℓtw jmtw jpt ·σ2
d ·1{(m ∈ Aiqt)∪ (p ∈ Aiqt)}

Additionally, siqt are jointly distributed as a folded truncated normal with variance-

covariance matrix ΣΣΣqt = [cov(siqt ,s jqt)]i j and mean vector µµµqt = [µiqt ]i with entries:

µiqt := E[siqt ] =−σd
√

8/π · ∑
j<k; j,k∈Aiqt

wi jtwikt .

When i = j, I can further simplify as follows:

var(siqt) = 4σ
2
d · ∑

j<k; j,k∈Aiqt

(wi jtwikt)
2.

Next, using equation (1.13), I can write the log-odds function as follows:

liqt := log
(

piqt

1− piqt

)
= k
(

siqt −
1
n

n

∑
i=1

siqt

)
= k
(

ê⊤in −
1
n

ι
⊤
n

)
sqt ,
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where êin is the ith column of an n×n identity matrix and ιn is an n×1 vector of ones.

Equivalently, the vector lqt := (l1qt , ..., lnqt)
⊤ can be written:

lqt = k
(

In −
ιnι⊤n

n

)
sqt ∼ N

(
Bk,nµµµqt ,B

⊤
k,nΣΣΣqtBk,n

)
,

where Bk,n := k(In−ιnι⊤n /n). Notice that piqt =F(liqt) where F(x)= (1+exp(−x))−1 and

thus the vector pqt has a logistic normal distribution and thus no closed form representation

for its mean vector and variance-covariance matrix. However, I can write median(pqt) =

F(Bk,nµµµqt).
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1.9 Proofs

1.9.1 Proof of Proposition 1.2.3

I begin by characterizing the family of matrices W ∈ Mn that are consistent with

Assumptions 1.2.1 and 1.2.2 with a sequence of if and only if relationships. First define

ΣΣΣy := V[y] to be the variance-covariance matrix of sectoral production, and notice that

Assumption 1.2.2 implies that ΣΣΣy = (I−W)−1D(I−W⊤)−1 is non-negative. This is

because ΣΣΣy is the product of non-negative matrices by definition since (I − W)−1 =

I+W+W2 +W3 + ...≥ 0 and D ≥ 0. The former decomposition is only possible when

ρ(W)≤ 1. Rearranging terms, I obtain:

D = V[(I−W)y] = (I−W)ΣΣΣy(I−W⊤).

For ease of notation, let hi j := 1{i= j}−wi j and ρi jσiσ j to be the (i, j) entries of H := I−W

and ΣΣΣy, respectively. Then the matrix Qn := HΣΣΣyH⊤ = [qi j] is diagonal with entries:

qi j =
n

∑
k=1

n

∑
m=1

hikh jmρkmσkσm

Notice that Qn is symmetric and since it is also diagonal, then the following must hold:

det
(
Qn
)
=

n

∏
i=1

( n

∑
k=1

n

∑
m=1

hikhimρkmσkσm

)
.

Additionally, PQnP⊤ is also diagonal for any permutation matrix P ∈ Mn so I can exchange

the ordering of units without loss of generality. Consider the Laplace expansion of Qn by

minors along row i. Set i = 1 arbitrarily and notice that:

det
(
Qn
)
= q11 ·det

(
Qn[1,1]

)
+

n

∑
k=2

(−1)1+kq1k ·det
(
Qn[1,k]

)
,
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where Qn[i, j] is a size n−1 sub-matrix of Qn obtained by deleting row i and column j.

Since the principal sub-matrix Qn[1,1] is also diagonal, its determinant is ∏
n
i=2 qii and thus

the second term in the above expression must be zero. This implies that the determinant

for any size 2 principal sub-matrix of Qn with size n−2 index set α and entries ai j must

satisfy:

det
(
Qn[α]

)
= a11a22 −a12a21 = a11a22

Note that the indices (1,2) refer without loss of generality to any arbitrary pair of sectors in

the set {1, ...,n}, and all of the following results must hold for all nC2 pairwise combina-

tions of units. Substitute terms and notice that all principal sub-matrices of a symmetric

matrix must also be symmetric (i.e., a12 = a21) to obtain the equivalent restriction:

0 = a12 = w12σ
2
2 −ρ12σ1σ2(1+w21w12)+w21σ

2
1

Or identically:

w21V[y1]+w12V[y2]− cov(y1,y2)(1+w12w21) = 0, (1.46)

where V[yi] and cov(yi,y j) are the (i, i)th and (i, j)th entries of ΣΣΣy, respectively. I consider

two different cases.

Case 1. At least one of w21 or w12 is zero. If both are zero, then (1.46) holds trivially.

However, if wi j = 0 for all i ̸= j, then W no longer has full rank. If only one is zero (e.g.,

w12 = 0), this implies that cov(y1,y2) = w21V[y1] which is consistent with (1.1).

Case 2. Both w21 and w12 are positive. Redefine ỹ1 := y1/
√

w21 and ỹ2 := y2/
√

w12 and

apply the Cauchy-Schwarz Inequality:

(V[ỹ1]+V[ỹ2])
2

(w21w12) · (1+w21w12)2 = cov(ỹ1, ỹ2)
2 ≤ V(ỹ1)V(ỹ2) (1.47)
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For now write c := w21w12(1+w21w12)
2:

V[ỹ1]
2 +V[ỹ2]

2 +2V[ỹ1]V[ỹ2]≤ cV(ỹ1)V(ỹ2)

V[ỹ1]
2 +V[ỹ2]

2 +(2− c)V[ỹ1]V[ỹ2]≤ 0

The left hand side is a quadratic equation in R2
+ of the variables V[ỹ1] and V[ỹ2]. Suppose

without loss of generality that V[ỹ1] = V[ỹ2]> 0, then c must satisfy:

(4− c)V[ỹ]2 ≤ 0,

which implies that c ≥ 4, or equivalently:

w21w12(1+w12w21)
2 ≥ 4

Recall that since W is a non-negative matrix, any pair of weights which satisfy this

inequality must have w12w21 ≥ 1. Note that due to (1.47), this restriction is necessary but

not sufficient. Moreover, since the spectral radius ρ(W)≤ 1, there must be at least one row

or column bounded above by one (see e.g., Theorem 8.1.22 in Horn and Johnson (2013)).
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1.9.2 Proof of Proposition 1.4.6

Assuming βi = 1/n for all i, equilibrium consumption expenditure is given by Ct =

∑
n
i=1 pitcit = ∏

n
i=1 c1/n

it . Given the price normalization in Section A.4.4. from Appendix

1.7, I can write:

∆ct+1 := log(Ct+1/Ct) = log
( n

∏
i=1

(
ci,t+1

cit

)1/n)
=

1
n

n

∑
i=1

log(ci,t+1/cit)

=
1
n

n

∑
i=1

log(yi,t+1/yit)

Plugging in the reduced form from (1.8) yields:

∆ct+1 =
1
n

n

∑
i=1

(
∆zi,t+1 +∆gi,t+1

)
= γu ·

1
n

n

∑
i=1

at+1 + γd ·
1
n

n

∑
i=1

gt+1 −βu ·
1
n

n

∑
i=1

εiu,t+1 −βd ·
1
n

n

∑
i=1

εid,t+1

1.9.3 Proof of Proposition 1.4.8

The proof of Proposition 1.4.7 established the asymptotic normality of Wnqt for all

q and t. I omit subscripts and write:

σ
2
n = var(Wn) =

1
n2

n

∑
i=1

var[εi]+
1
n2 ∑

i ̸= j
cov(εi,ε j)

=
1
n2

n

∑
i=1

pi(1− pi)+
1
n2 ∑

i̸= j
cov(εi,ε j) ·1{1{i, j ∈ Ai(Gnq)∩A j(Gnq)}}

When n > 1. This quantity can be bounded above by:

σ
2
n ≤

1
n
+

M̄n

n
≤ 2

M̄n

n
= o(1),
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where the final equality follows from Assumption 1.4.5. Moreover, for k > 0 Chebyshev’s

Inequality yields:

Pr
(
|Wn −E[Wn]| ≥ 2kM̄n/n

)
≤ Pr

(
|Wn −E[Wn]| ≥ kσn

)
≤ 1

k2

1.9.4 Proof of Proposition 1.4.7

This proof is an application of Theorem 2 from Janson (1988). Fix t and q and

omit the time-subscript without loss of generality. Since εiq ∼ Bernoulli(piq), the mean

and variance of firm cash flow shocks conditional on piq can be written:

E[εiq] = piq, var(εiq) = piq(1− piq),

and the covariance between firm shocks can be written:

cov(εiq,ε jq) = E[εiqε jq]−E[εiq]E[ε jq] = Pr(εiq = 1,ε jq = 1)︸ ︷︷ ︸
=:pi jq

−piq p jq > 0.

Therefore, the mean and variance of Wnq =
1
n ∑

n
i=1 εiq can be written:

µnq := E[Wnq] =
1
n

n

∑
i=1

E[εiq] =
1
n

n

∑
i=1

piq

σ
2
nq := var

[
Wnq
]
=

1
n2

n

∑
i=1

var[εiq]+
1
n2 ∑

i̸= j
cov(εiq,ε jq)

≥ 1
n2

n

∑
i=1

var[εiq],

=
1
n2

n

∑
i=1

piq(1− piq)

≥ 1
n
·min

i
piq

Let D̄nq denote the maximal number of edges incident to a single vertex in graph

Gnq. Theorem 2 from Janson (1988) requires that Xn,m = o(1) for some integer m, where
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Xn,m is given by:

Xn,m :=
(

n
D̄nq

)1/m

·
D̄nq

nσnq
=

D̄1−1/m
nq

n
· 1

nσnq
≤ D̄1−1/m

nq

n
.

Assumption 1.4.4 implies:

Xn,2 = o(1),

and therefore:

(Wnq −µnq)/σnq
d−→ N (0,1)

Combine this result with the assumptions that at ∼ N (0,σ2
a) and gt ∼ N (0,σ2

g) to get the

final distribution of consumption growth.
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1.10 Upstream and Downstream Propagation Matrices

1.10.1 Construction from BEA Data

In this section, I discuss a simple method for constructing from the data the

upstream and downstream propagation matrices developed in the previous section.34 These

matrices capture the strength of a connection between an industry and its customer or

supplier industries. Shocks transmitted from customer i to supplier j (supplier i to customer

j) should depend on the strength of the connection in the upstream (downstream) direction.

I construct these matrices directly from the BEA make and use tables described in Horowitz,

Planting, et al. (2006). Consider again an economy with n industries.

The Make Table I extract from the BEA make table an n×n industry-by-commodity

matrix with entries:

(MAKE)i j = OUTi→ j ≡ dollar value of commodity j produced by industry i

Note that the BEA makes a slight distinction between commodities and industries, since in

principle an industry might produce another industry’s commodity as a by-product of its

own output. Next, I denote the total production of commodity j by OUTj := ∑
n
i=1 OUTi→ j.

Using the notation in Horowitz, Planting, et al. (2006), I define the market share matrix

with the following entries:

(MKT SHARE)i j =
(MAKE)i j

OUTj
=

OUTi→ j

OUTj

Here, the (i, j) entry describes the share of industry i in the total production of commodity j.

Equivalently, I can write MKT SHARE = MAKE ⊙ (ιιιn ·S) where ⊙ denotes the Hadamard

(elementwise) product and S = (OUT−1
1 , ...,OUT−1

n ) is the 1×n scaling vector.

34Similar procedures are discussed in Acemoglu et al. (2016a), Ozdagli and Weber (2017), and Gofman
et al. (2020).
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The Use Table Similarly, I extract from the BEA use table an n× n commodity-by-

industry matrix with entries:

(USE)i j = INi→ j ≡ dollar value of commodity i used as input by industry j

Define the total output of industry i by yi.35 Then I construct the input requirement matrix

by rescaling the value of an industry’s inputs by the industry’s total value as measured by

output. The entries of this matrix are given by:

(INPUT REQ)i j =
(USE)i j

y j
=

INi→ j

y j
. (1.48)

The (i, j) entry of the above matrix describes the importance of industry j’s inputs from

industry i relative to j’s total size.

Scrap Adjustment The BEA input-output tables include scrap as a commodity which

includes any by-products of production with zero market demand. I therefore redefine

the total output of an industry as the non-scrap output. Mathematically, this adjustment is

implemented using the non-scrap ratio, calculated as follows:

θi =
yi − scrapi

yi
,

where scrapi denotes the total scrap produced by industry i. I then write the entries of the

scrap-adjusted market share matrix as follows:

˜(MKT SHARE)i j =
OUTi→ j

OUTj
· 1

θ j

35I calculate total industry output from the BEA use table as the sum of total intermediates, scrap, and
value added. An industry’s value added is defined by the BEA as the “market value it adds in production, or
the difference between the price at which it sells its products and the cost of the inputs it purchases from
other industries”.
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Direct Requirements From the market share and input requirements matrices, I then

construct the industry-by-industry direct requirement table, denoted by W:

W︸︷︷︸
industry×industry

= ˜MKT SHARE︸ ︷︷ ︸
industry×commodity

· (INPUT REQ)︸ ︷︷ ︸
commodity×industry

.

To understand this construction, consider the entries of W:

(W)i j =
1
y j

n

∑
k=1

OUTi→k

OUTk ·θk︸ ︷︷ ︸
share of i in producing k

· INk→ j︸ ︷︷ ︸
use of k by j

.

Here, the (i, j) entry captures industry j’s total dependence on inputs from industry i

relative to it’s total output y j. The key assumption here is as follows. If industry j

purchases X of commodity K, then the proportion of K coming from industry i is equal to

i’s adjusted market share of production of K. This is a reasonable assumption on average.

Given this assumption, the following identity holds:

(W)i j ≡
SALESi→ j

SALES j
⇐⇒ (W⊤)i j =

SALES j→i

SALESi

The downstream weighting matrix is thus defined:

A ≡ Wdown := W⊤,

whose (i, j) entry in the above matrix represents the dependence of industry i on input

from industry j (i.e., shocks to supplier j propagate downstream to customer i according

to the corresponding downstream weight). The sum of row i in this matrix is equal to xi/yi

where xi is industry i’s total input purchases relative to its size (normalized by i’s total

output). For the upstream weighting matrix, I require the intermediate rescaling matrix R

63



with entries (R)i j = y j/yi. The upstream weighting matrix is thus defined:

Â⊤ ≡ Wup := W⊙R,

where ⊙ is the Hadamard (elementwise) product. The (i, j) entry in the above matrix

represents the dependence of industry i on sales to industry j (i.e., shocks to customer j

propagate upstream to supplier i according to the corresponding upstream weight)

(W⊙R)i j =
SALESi→ j

SALESi
.

1.10.2 Descriptive Statistics

(a) Kernel Density (b) Empirical CCDF

Figure 1.2: Weighted In-Degree Distribution

Notes: This figure visualizes the empirical distribution of weighted in and out-degrees across 66 non-government industries as defined
in the Bureau of Economic Analysis (BEA) Make and Use Tables. The left panel shows the Gaussian kernel density estimate of the
distribution, and the right panel shows the empirical counter-cumulative distribution function.
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(a) Kernel Density (b) Empirical CCDF

Figure 1.3: Weighted Out-Degree Distribution

Notes: This figure visualizes the empirical distribution of weighted in and out-degrees across 66 non-government industries as defined
in the Bureau of Economic Analysis (BEA) Make and Use Tables. The left panel shows the Gaussian kernel density estimate of the
distribution, and the right panel shows the empirical counter-cumulative distribution function.

(a) Kernel Density (b) Empirical CCDF

Figure 1.4: Distribution of Downstream Centrality

Notes: This figure visualizes the empirical distribution of weighted log eigenvector centrality of the upstream propagation matrix across
66 non-government industries as defined in the Bureau of Economic Analysis (BEA) Make and Use Tables. The left panel shows the
Gaussian kernel density estimate of the distribution, and the right panel shows the empirical counter-cumulative distribution function.
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(a) Kernel Density (b) Empirical CCDF

Figure 1.5: Distribution of Upstream Centrality

Notes: This figure visualizes the empirical distribution of weighted log eigenvector centrality of the upstream propagation matrix across
66 non-government industries as defined in the Bureau of Economic Analysis (BEA) Make and Use Tables. The left panel shows the
Gaussian kernel density estimate of the distribution, and the right panel shows the empirical counter-cumulative distribution function.

Table 1.6: Correlation of Input-Output Shares

Entry wd,i j,t−1 wu,i j,t−1 hd,i j,t−1 hu,i j,t−1 wd,i j,t wu,i j,t hd,i j,t hu,i j,t

wd,i j,t−1 1 0.086 0.970 0.096 0.991 0.086 0.961 0.096

wu,i j,t−1 1 0.094 0.967 0.084 0.994 0.093 0.961

hd,i j,t−1 1 0.110 0.962 0.095 0.990 0.111

hu,i j,t−1 1 0.095 0.962 0.109 0.994

wd,i j,t 1 0.086 0.970 0.096

wu,i j,t 1 0.095 0.967

hd,i j,t 1 0.111

hu,i j,t 1

Notes: This table report correlations between entries in the upstream and downstream propagation matrices Wqt and their Leontief
inverses Hqt . I construct annual matrices from the BEA Input-Output Accounts for 66 non-government industries between 1997-2020.
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(a) In-Degree (downstream) (b) Out-Degree (upstream)

Figure 1.6: Visualizing Weighted Degree by Industry

Notes: The left panel shows the average weighted in-degree by sector as constructed from the downstream propagation network Wdown.
The right panel shows the average weighted in-degree by sector as constructed from the upstream propagation network Wup. The
sectors are numbered identically in both panels, according to the BEA 66 non-government industry classification.
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1.11 Determinants of Network Variance

Table 1.7: Correlation in Predictors of Realized Variance
Predictor βvol Cu Cd Between (d) Between (s) Size Across (s) Across (d) VP mkt ivol mkt vol

βvol 1 -0.329 -0.130 -0.308 0.072 0.285 0.061 -0.128 -0.225 0.287 0.406

Cu 1 0.284 0.356 -0.251 0.131 -0.441 0.319 0.423 -0.383 -0.396

Cd 1 0.588 -0.018 -0.128 -0.116 0.288 0.289 -0.003 -0.022

Between (d) 1 -0.205 -0.113 -0.156 0.704 0.708 -0.270 -0.311

Between (s) 1 -0.133 0.056 -0.163 -0.313 0.073 0.054

Size 1 -0.230 0.018 -0.111 -0.386 -0.275

Across (s) 1 -0.088 -0.159 0.205 0.255

Across (d) 1 0.627 -0.224 -0.249

VP 1 -0.279 -0.322

mkt ivol 1 0.965

mkt vol 1

Notes: This table reports the average correlation between predictors in the panel regression from Table ??. Cu and Cd refer to upstream
and downstream centrality, the (d) and (s) labels denote demand and supply-side concentration, size is average output, and VP is
vertical position. Idiosyncratic volatility is calculated from FF3 residual returns.
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Table 1.8: Network Determinants of Industry Variance (TFP growth shocks)
Panel A: Market Return Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.365*** (0.038) 0.246*** (0.039) 0.217*** (0.021) 0.119*** (0.022)

Across (demand) 0.100*** (0.020) 0.084*** (0.018) 0.085*** (0.020) 0.119*** (0.019)

Between (demand) 0.043** (0.018) 0.010 (0.022) 0.091*** (0.019) -0.076*** (0.020)

Self-origin (supply) 0.039* (0.029) 0.149*** (0.038) 0.217*** (0.021) 0.119*** (0.022)

Across (supply) 0.119*** (0.021) 0.147*** (0.026) 0.270*** (0.027) 0.170*** (0.037)

Between (supply) 0.085*** (0.019) 0.042** (0.019) 0.086*** (0.025) 0.179*** (0.034)

Size -0.202*** (0.030) -0.325*** (0.023) -0.183*** (0.034)

Upstream centrality -0.145** (0.062) 0.129** (0.051) -0.238*** (0.066)

Downstream centrality 1.956*** (0.145) 0.296** (0.125) 2.137*** (0.165)

Durability 1.088*** (0.153) 0.389*** (0.108) 1.164*** (0.156)

Vertical position 3.890*** (0.116) 0.243*** (0.083) 4.063*** (0.134)

Constant -2.123 -0.634 -2.821 -0.096 -1.473 -0.693

Obs 2359 1626 2861 2138 2114 1471

Adj R2 0.225 0.607 0.083 0.191 0.288 0.633

Panel B: Cash Flow Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.363*** (0.072) 0.009 (0.093) 0.190*** (0.037) 0.017 (0.049)

Across (demand) 0.038 (0.039) -0.050* (0.039) 0.011 (0.040) 0.099** (0.042)

Between (demand) 0.136*** (0.037) 0.128*** (0.042) 0.156*** (0.039) 0.184*** (0.047)

Self-origin (supply) 0.026 (0.065) 0.286*** (0.076) 0.190*** (0.037) 0.017 (0.049)

Across (supply) 0.250*** (0.051) 0.384*** (0.062) 0.309*** (0.061) 0.107* (0.091)

Between (supply) 0.093** (0.044) 0.169*** (0.055) 0.202*** (0.057) 0.162** (0.086)

Size -0.161** (0.064) -0.333*** (0.052) -0.155** (0.075)

Upstream centrality -0.069 (0.150) 0.562*** (0.132) -0.100 (0.162)

Downstream centrality 2.193*** (0.343) -0.070 (0.305) 2.315*** (0.379)

Durability 2.204*** (0.272) 1.172*** (0.182) 2.307*** (0.285)

Vertical position 3.502*** (0.268) 1.142* (0.181) 3.590*** (0.320)

Constant -4.201 -0.711 -5.246 0.023 -4.123 -0.75

Obs 2359 1626 2861 2138 2114 1471

Adj R2 0.074 0.248 0.017 0.080 0.087 0.271

Notes: This table reports panel regressions of realized industry variance on a variety of characteristics including the average log
variance of supply and demand shocks, log concentration across trade partners, log concentration between trade partners, log total
employment (size), log centrality of the upstream and downstream propagation networks, durability of output, vertical position in the
supply chain, and industry cluster and year fixed effects. I calculate network components as the average value of 1000 bootstrap
samples that randomly drop 10% of estimated pairwise non-zero correlations. In Panel A, the dependent variable is the log variance of
annualized monthly returns on an equal-weighted industry portfolio. In Panel B, the dependent variable is the log variance of total
quarterly year-on-year industry sales growth. I obtain return data from CRSP and sales data from Compustat. Concentration between
and across trade partners are calculated as in 1.4 and 1.5, where I calculate the variance-covariance matrix of supply and demand shocks
directly from four-factor TFP growth in the NBER-CES Database (Becker et al., 2016). Following Ahern (2013), I compute industry
centrality as the eigenvector centrality of upstream and downstream propagation adjacency matrices. I obtain durability classifications
from Gomes et al. (2009) and calculate vertical position of each industry as in Antràs et al. (2012) and Gofman et al. (2020). ∗∗∗, ∗∗ and
∗ indicate significance at the 1%, 5%, and 10% levels, respectively. Standard error are clustered at the BEA 15 major industry group
level. Sample is at an annual frequency from 1988 to 2017 for 479 BEA manufacturing industries.
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Table 1.9: Network Determinants of Industry Variance (federal procurement shocks)
Panel A: Market Return Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 1.058*** (0.157) 0.903*** (0.200) 0.166* (0.111) 0.558*** (0.121)

Across (demand) 0.088** (0.041) 0.314*** (0.059) 0.062* (0.044) 0.356*** (0.070)

Between (demand) 0.149*** (0.040) 0.153*** (0.039) 0.437*** (0.055) 0.261*** (0.077)

Self-origin (supply) 0.219*** (0.044) 0.363*** (0.056) 0.166* (0.111) 0.558*** (0.121)

Across (supply) 0.142*** (0.036) 0.094* (0.052) 0.072 (0.072) 0.088 (0.079)

Between (supply) 0.150*** (0.034) 0.062 (0.039) -0.063 (0.075) -0.13 (0.077)

Size 0.059 (0.053) -0.242*** (0.047) -0.033 (0.053)

Upstream centrality -2.434** (1.053) -4.885*** (1.116) -2.140* (1.269)

Downstream centrality 10.76*** (2.686) 13.06*** (2.501) 10.55*** (3.043)

Durability 4.128*** (0.511) 1.991*** (0.407) 3.884*** (0.460)

Vertical position 11.74*** (0.915) 4.334*** (0.595) 10.66*** (0.930)

Constant -6.278 -3.489 -5.461 -4.234 -6.781 -3.419

Obs 839 666 1003 828 839 666

Adj R2 0.595 0.76 0.071 0.331 0.666 0.762

Panel B: Cash Flow Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.425 (0.421) 1.853* (0.951) 0.267 (0.293) 1.025** (0.488)

Across (demand) 0.057 (0.090) 0.790*** (0.215) 0.183* (0.121) 0.768*** (0.207)

Between (demand) 0.309*** (0.091) 0.461*** (0.121) 0.524*** (0.146) 0.471** (0.199)

Self-origin (supply) 0.310*** (0.109) 0.004 (0.185) 0.267 (0.293) 1.025** (0.488)

Across (supply) -0.184* (0.101) 0.002 (0.139) 0.136 (0.193) 0.327* (0.258)

Between (supply) 0.235** (0.092) 0.028 (0.112) -0.247* (0.192) -0.268 (0.244)

Size 0.183 (0.209) -0.406*** (0.122) -0.141 (0.214)

Upstream centrality 1.430 (3.309) 3.297* (2.975) 4.077* (3.421)

Downstream centrality 5.582 (8.923) -5.585 (6.799) 0.810 (8.718)

Durability 5.285*** (1.493) 1.175 (0.847) 5.536*** (1.677)

Vertical position 12.20*** (3.184) 0.948 (1.236) 12.73*** (4.096)

Constant -1.223 -1.809 -7.991 1.81 -10.389 -0.263

Obs 839 666 1003 828 839 666

Adj R2 0.239 0.211 0.043 0.08 0.248 0.215

Notes: This table reports panel regressions of realized industry variance on a variety of characteristics including the average log
variance of supply and demand shocks, log concentration across trade partners, log concentration between trade partners, log total
employment (size), log centrality of the upstream and downstream propagation networks, durability of output, vertical position in the
supply chain, and industry cluster and year fixed effects. I calculate network components as the average value of 1000 bootstrap
samples that randomly drop 10% of estimated pairwise non-zero correlations In Panel A, the dependent variable is the log variance of
annualized monthly returns on an equal-weighted industry portfolio. In Panel B, the dependent variable is the log variance of total
quarterly year-on-year industry sales growth. I obtain return data from CRSP and sales data from Compustat. Concentration between
and across trade partners are calculated as in 1.4 and 1.5, where I calculate the variance-covariance matrix of changes in total
obligations from newly awarded federal procurement contracts measured from FPDS. Following Ahern (2013), I compute industry
centrality as the eigenvector centrality of upstream and downstream propagation adjacency matrices. I obtain durability classifications
from Gomes et al. (2009) and calculate vertical position of each industry as in Antràs et al. (2012) and Gofman et al. (2020). ∗∗∗, ∗∗ and
∗ indicate significance at the 1%, 5%, and 10% levels, respectively. Standard error are clustered at the BEA 15 major industry level.
Sample is at an annual frequency from 1991 to 2011 for 479 BEA manufacturing industries.
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Table 1.10: Network Determinants of Industry Variance (technological proximity)
Panel A: Market Return Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.257*** (0.046) 0.352*** (0.043) 0.286*** (0.050) 0.308*** (0.047)

Across (demand) 0.102*** (0.011) 0.120*** (0.013) 0.124*** (0.011) 0.145*** (0.013)

Between (demand) 0.246*** (0.013) 0.117*** (0.018) 0.227*** (0.013) 0.058*** (0.018)

Self-origin (supply) 0.290*** (0.035) 0.258*** (0.039) 0.229*** (0.040) 0.419*** (0.043)

Across (supply) 0.009 (0.027) 0.032 (0.036) 0.223*** (0.031) -0.035 (0.042)

Between (supply) 0.190*** (0.031) 0.168*** (0.043) 0.284*** (0.034) 0.143** (0.051)

Size -0.343*** (0.031) -0.312*** (0.027) -0.334*** (0.030)

Upstream centrality -0.755*** (0.108) -0.102* (0.087) -0.543*** (0.104)

Downstream centrality 3.933*** (0.279) 1.052*** (0.190) 3.632*** (0.275)

Durability -0.195* (0.112) -0.177* (0.098) -0.076 (0.108)

Vertical position 1.669*** (0.152) 0.130 (0.086) 2.160*** (0.172)

Constant -7.926 -1.275 -3.85 -0.341 -8.468 -1.177

Obs 1994 1467 1994 1467 1994 1467

Adj R2 0.593 0.642 0.127 0.279 0.61 0.665

Panel B: Cash Flow Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.391*** (0.103) 0.521*** (0.103) 0.473*** (0.102) 0.548*** (0.103)

Across (demand) 0.065** (0.028) 0.061* (0.033) 0.050* (0.029) 0.049* (0.034)

Between (demand) 0.253*** (0.030) 0.139*** (0.045) 0.172** (0.077) 0.217* (0.122)

Self-origin (supply) -0.019 (0.076) -0.245*** (0.087) -0.162** (0.079) -0.185* (0.097)

Across (supply) 0.175*** (0.067) 0.138* (0.100) 0.072 (0.068) 0.160* (0.102)

Between (supply) 0.307*** (0.076) 0.228** (0.119) 0.271*** (0.031) 0.179*** (0.048)

Size -0.298*** (0.070) -0.332*** (0.066) -0.298*** (0.071)

Upstream centrality 0.113 (0.267) 0.355* (0.276) -0.068 (0.280)

Downstream centrality 3.217*** (0.665) 0.311 (0.599) 3.555*** (0.680)

Durability 0.574*** (0.210) 0.265* (0.211) 0.481** (0.218)

Vertical position 1.922*** (0.323) -0.311 (0.208) 1.493*** (0.373)

Constant -10.991 -1.043 -5.631 -0.101 -11.776 -1.152

Obs 1994 1467 1994 1467 1994 1467

Adj R2 0.21 0.23 0.011 0.051 0.216 0.233

Notes: This table reports panel regressions of realized industry variance on a variety of characteristics including the average log
variance of supply and demand shocks, log concentration across trade partners, log concentration between trade partners, log total
employment (size), log centrality of the upstream and downstream propagation networks, durability of output, vertical position in the
supply chain, and industry cluster and year fixed effects. I calculate network components as the average value of 1000 bootstrap
samples that randomly drop 10% of estimated pairwise non-zero correlations. In Panel A, the dependent variable is the log variance of
annualized monthly returns on an equal-weighted industry portfolio. In Panel B, the dependent variable is the log variance of total
quarterly year-on-year industry sales growth. I obtain return data from CRSP and sales data from Compustat. Concentration between
and across trade partners are calculated as in 1.4 and 1.5, where I calculate the variance-covariance matrix of supply and demand shocks
using the weighted technological similarity scores following Bloom and Shankerman (2013). Following Ahern (2013), I compute
industry centrality as the eigenvector centrality of upstream and downstream propagation adjacency matrices. I obtain durability
classifications from Gomes et al. (2009) and calculate vertical position of each industry as in Antràs et al. (2012) and Gofman et al.
(2020). ∗∗∗, ∗∗ and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered at the BEA 15
major industry group level. Sample is at an annual frequency from 1988 to 2018 for 479 BEA manufacturing industries.
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Table 1.11: Network Determinants of Industry Variance (product similarity)
Panel A: Market Return Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.136** (0.056) 0.354*** (0.040) 0.303*** (0.046) 0.321*** (0.041)

Across (demand) 0.103*** (0.013) 0.071*** (0.011) -0.065*** (0.013) 0.051*** (0.012)

Between (demand) 0.131*** (0.013) 0.081** (0.012) 0.384*** (0.014) 0.058*** (0.016)

Self-origin (supply) 0.096*** (0.027) 0.056* (0.033) -0.047 (0.033) 0.207*** (0.034)

Across (supply) 0.147*** (0.015) 0.137*** (0.020) 0.186*** (0.020) -0.000 (0.021)

Between (supply) -0.086*** (0.012) -0.106*** (0.016) -0.362*** (0.017) -0.071*** (0.020)

Size -0.361*** (0.025) -0.257*** (0.021) -0.310*** (0.024)

Upstream centrality -0.149*** (0.053) 0.031 (0.049) -0.176*** (0.055)

Downstream centrality 2.660*** (0.174) 0.811*** (0.117) 2.891*** (0.180)

Durability 0.216** (0.102) 0.265*** (0.096) 0.286*** (0.098)

Vertical position 3.414*** (0.086) 0.368*** (0.076) 3.336*** (0.106)

Constant -5.915 -0.862 -3.631 -0.263 -8.380 -0.937

Obs 3800 2430 3819 2430 3800 2430

Adj R2 0.359 0.625 0.037 0.175 0.488 0.639

Panel B: Cash Flow Variance

(1) (2) (3) (4) (5) (6)

Self-origin (demand) 0.357*** (0.091) 0.549*** (0.090) 0.544*** (0.091) 0.558*** (0.091)

Across (demand) 0.112*** (0.023) 0.055** (0.027) -0.059** (0.025) 0.011 (0.030)

Between (demand) 0.118*** (0.023) 0.066** (0.030) 0.373*** (0.027) 0.108*** (0.040)

Self-origin (supply) 0.030 (0.060) -0.026 (0.073) -0.141* (0.062) 0.084* (0.078)

Across (supply) 0.129*** (0.029) 0.199*** (0.039) 0.170*** (0.031) 0.091** (0.043)

Between (supply) -0.074*** (0.023) -0.156*** (0.032) -0.347*** (0.028) -0.157*** (0.041)

Size -0.313*** (0.050) -0.242*** (0.048) -0.273*** (0.051)

Upstream centrality 0.185* (0.135) 0.327** (0.132) 0.090 (0.138)

Downstream centrality 3.213*** (0.406) 0.791*** (0.300) 3.587*** (0.413)

Durability 1.097*** (0.171) 1.104*** (0.171) 1.145*** (0.170)

Vertical position 3.495*** (0.193) 0.226 (0.164) 3.102*** (0.251)

Constant -10.060 -1.041 -5.694 -0.256 -12.580 -1.162

Obs 3800 2430 3819 2430 3800 2430

Adj R2 0.15 0.235 0.005 0.047 0.205 0.242

Notes: This table reports panel regressions of realized industry variance on a variety of characteristics including the average log
variance of supply and demand shocks, log concentration across trade partners, log concentration between trade partners, log total
employment (size), log centrality of the upstream and downstream propagation networks, durability of output, vertical position in the
supply chain, and industry cluster and year fixed effects. I calculate network components as the average value of 1000 bootstrap
samples that randomly drop 10% of estimated pairwise non-zero correlations. In Panel A, the dependent variable is the log variance of
annualized monthly returns on an equal-weighted industry portfolio. In Panel B, the dependent variable is the log variance of total
quarterly year-on-year industry sales growth. I obtain return data from CRSP and sales data from Compustat. Concentration between
and across trade partners are calculated as in 1.4 and 1.5, where I calculate the variance-covariance matrix of supply and demand shocks
using the product similarity distances from Hoberg and Phillips (2016). Following Ahern (2013), I compute industry centrality as the
eigenvector centrality of upstream and downstream propagation adjacency matrices. I obtain durability classifications from Gomes et al.
(2009) and calculate vertical position of each industry as in Antràs et al. (2012) and Gofman et al. (2020). ∗∗∗, ∗∗ and ∗ indicate
significance at the 1%, 5%, and 10% levels, respectively. Standard error are clustered at the BEA 15 major industry group level. Sample
is at an annual frequency from 1988 to 2018 for 479 BEA manufacturing industries.
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1.12 Simulation Evidence

Proposition 1.2.3 claims that there is no matrix W with entries wi j ∈ (0,1) such that

Assumption 1.2.2 and (1.1) are satisfied. This implies that ∆ := ||(I−W)ΣΣΣy(I−W)−ΣΣΣu||

should always be different from zero when ΣΣΣu is diagonal. I test H0 : ∆ = 0 numerically as

follows:

1. Fix dimension n, number of iterations S, and consider the following constrained

optimization problem:

fmin(ΣΣΣu) = min
wi j,i̸= j∈(0,1)

f (W;ΣΣΣu) = min
wi j,i̸= j∈(0,1)

∣∣∣∣∣∣∣∣ΣΣΣu − (In −W)−1
ΣΣΣu(In −W⊤)−1

∣∣∣∣∣∣∣∣
F
,

(1.49)

2. Draw two random samples Sd
u and S∗u for the variance-covariance matrix of residuals

ΣΣΣu such that Sd
u is diagonal and S∗u is not. I sample the non-diagonal matrix as

follows:

S∗u(s)∼iid W −1(ΨΨΨu,ν),

where W −1(ΨΨΨ,ν) denotes an Inverse-Wishart random variable with scale ΨΨΨ and

degrees of freedom ν > n−1. On the other hand, the diagonal matrix is given by:

Sd
u(s) = diag(X1, ...,Xn), Xi ∼iid Γ

−1(αi,βi),

where Γ−1(αi,βi) denotes an Inverse-Gamma distribution such that αi > 1 and

E[Xi] =
βi

αi−1 = [Ψu]ii for all i. This ensures that the means of diagonal elements are

the same across the two samples.

3. Solve equation (1.49) using off-the-shelf constrained quasi-Newton algorithms in

both cases and construct S realizations of f ∗s = fmin(S∗u) and f d
s = fmin(Sd

u) for
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s = 1, ...,S.

4. Construct the numerical p-value using

p =
1
S

S

∑
s=1

1{ f ∗s ≥ f d
s },

and repeat Step 3 for different values of n and ΦΦΦu. Reported results in Table 1.12.

5. For optimal W spec
min = argmin f (W,Sspec

u ), consider the n×n elementwise difference

∆̃s for each iteration s:

∆̃s = f (W d
min,S

d
u)− f (W ∗

min,S
∗
u)

Then I test the marginal hypotheses H0 : [∆̃s]i j = 0 for all i, j. This test corresponds

to the numerical t-statistic ti j = mi j/SEi j, where mi j and SEi j are the mean and

standard error of [∆̃s]i j, respectively. Reported results in Table 1.13.

Table 1.12: Simulation p-values
Specification n=2 n=3 n=4 n=5

(1) 0.000 0.002 0.036 0.004
(2) 0.000 0.000 0.041 0.005
(3) 0.000 0.003 0.046 0.006
(4) 0.000 0.001 0.048 0.009
(5) 0.000 0.000 0.053 0.008
(6) 0.000 0.003 0.060 0.008
(7) 0.000 0.001 0.061 0.006
(8) 0.000 0.001 0.061 0.010
(9) 0.000 0.004 0.068 0.011
(10) 0.000 0.001 0.072 0.011

Notes: This table reports numerical p-values from the procedure described in Appendix 1.12 for different values of n and ΦΦΦ. Number of
iterations is S = 1000.
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Table 1.13: Simulation t-statistics
n=2 n=3 n=4 n=5

121 -27 -54 -118
863 48 133 201
861 60 163 152
-504 48 2 -502

-68 133 -152
80 -247 201
60 -26 -583
80 190 172
-91 163 205

-26 61
-255 152
204 172
2 -177

190 174
204 138
-60 -502

205
174
-89

-334
-152
61

138
-334
-75

Notes: This table reports elementwise t-statistics from the procedure described in Appendix 1.12 for different values of n and a fixed
value ΦΦΦ. Number of iterations is S = 1000.
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1.13 Comovement in Industry Volatility

Recent research documents significant common variation in both market and

fundamental volatility at the granular level.36 Importantly, the factor structure in volatility

is significant even after removing all common variation in returns and cash flow growth,

which suggests that this is being driven by underlying sources of systematic risk and

rather than an omitted set of returns or sales growth factors.37 When economic units are

connected via input-output networks, a shock to any given unit can generate systematic

effects. Moreover, networks mechanically generate volatility comovement regardless of

whether shocks to individual units are uncorrelated. When shocks are correlated, this

comovement is even more pronounced.

My results so far establish a significant relationship between network concentration

across and between customers and suppliers and realized variance. Consequently, comove-

ment in supply chain concentration should also generate comovement in realized variance.

Table 1.14 reports average loadings and R2 values of univariate factor regressions for panel

of industry network concentration and realized volatility measures. The main takeaway

is that 20-30% of dynamic variation in input-output concentration and return and sales

growth volatilities across industries of these variables can be explained by a single factor.

Moreover, there is a significant degree of comovement between these common factors.

That is, network concentration factors can explain up to 40% of time-series variation in

both market and sales growth volatility factors. These results are robust to a variety of

specifications.

36Herskovic et al. (2016) show that a single common factor explains around 30% of variation in log
variance for the panel of CRSP stocks. Other work also documents common variation in option-implied
volatilities (Engel and Figlewski (2015)), intra-daily returns (Barigozzi et al. (2014)), and dispersion in firm
sales growth (Bloom et al. (2018)).

37Herskovic et al. (2016) verify that there is a factor structure even when the pairwise correlation between
idiosyncratic return or sales growth residuals is statistically indistinguishable from zero. I also verify that the
factor structure holds in residual returns after a non-parametric regression using deep feed-forward neural
networks, which have favorable universal approximation properties (see e.g., Hornik et al. (1989)).
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Table 1.14: Comovement in Industry Variance

Panel A: Loadings

Factor / Outcome Across (d) Between (d) Across (s) Between (s) Var (mkt) Var (cf)

Across (d) 0.788 1.576 0.364 0.507 0.410 0.574

Between (d) 0.584 0.735 0.394 0.567 0.206 0.383

Across (s) 0.701 1.185 0.700 0.518 0.156 0.497

Between (s) 0.455 0.422 0.401 0.736 0.157 0.310

Var (mkt) 0.091 0.124 0.016 0.035 0.880 0.185

Var (cf) 0.109 0.181 0.156 0.218 0.283 0.721

Panel B: R2 (avg univariate)

Factor / Outcome Across (d) Between (d) Across (s) Between (s) Var (mkt) Var (cf)

Across (d) 0.201 0.258 0.217 0.318 0.170 0.079

Between (d) 0.189 0.318 0.257 0.400 0.174 0.087

Across (s) 0.164 0.274 0.229 0.344 0.168 0.082

Between (s) 0.189 0.322 0.265 0.347 0.165 0.086

Var (mkt) 0.042 0.046 0.041 0.042 0.343 0.068

Var (cf) 0.063 0.097 0.085 0.115 0.147 0.104

Panel C: R2 (aggregate)

Factor / Outcome Across (d) Between (d) Across (s) Between (s) Var (mkt) Var (cf)

Across (d) 1 0.620 0.575 0.566 0.373 0.352

Between (d) 1 0.628 0.670 0.255 0.422

Across (s) 1 0.668 0.196 0.469

Between (s) 1 0.229 0.428

Var (mkt) 1 0.165

Var (cf) 1

Notes: This table reports the results of factor regressions for industry variance components. I calculate factors as the first principal
component of an industry panel of the variable of interest. Panels A and B report the average loading and R2 from the regressions
outcomeit = αi +βi · ft +uit , respectively. Each column, row pair denotes a different outcome, factor pair. Panel C reports the R2 of
aggregate time-series regressions of factor pairs (i.e., yt = α+β · xt +ut , where yt is the column factor and xt is the row factor). All
variables are log-transformed. Sample is at an annual frequency from 1997 to 2019 for 66 non-government BEA industries.
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1.14 Additional Firm-Level Results

Table 1.15: Predicting Firm Sales Growth

Variable (1) (2) (3)

at−1 0.031** 0.029** 0.007**

(0.002) (0.001) (0.000)

gt−1 -0.016** -0.018** 0.015

(0.003) (0.003) (0.011)

ROAi,t−1 0.080** 0.063** 0.064**

(0.003) (0.002) (0.002)

sizei,t−1 -0.008** -0.008** -0.008**

(0.000) (0.000) (0.000)

agei 0.037** 0.050** 0.046**

(0.004) (0.004) (0.003)

Constant 0.44 0.372 0.39

Obs 259,976 259,976 259,976

Adj R2 0.265 0.259 0.258

Notes: This table reports the regression results based on the model in (1.21). The dependent variable is year-on-year quarterly sales
growth and the covariates are aggregate TFP growth from Fernald (2012a), procurement proxy from Briganti and Sellemi (2022), log
return on assets, size (log market value), and age as year appears on the database. Each column reports results for different industry
aggregations: (1) is 66 BEA non-government industries, (2) is 405 BEA non-government industries, and (3) is 15 major BEA
non-government industries. Standard errors are clustered at the same granularity. ∗∗ and ∗ indicates significance at the 1% and 5%
levels, resp. Sample is quarterly between 1997-2019 for 10,700 firms.
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(a) ki (b) xi (c) p̄i

Figure 1.7: Distribution of Calibrated Propensities with No Network Connections

Notes: This figure plots the kernel density of calibrated parameters kiq and xiq as described in Section 1.5. Note that
p̄iq = 1/(1+ exp(−kiqxiq)).
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(a) Panel A: Propagation Factors

(b) Panel B: Innovations in Average Substitutability

(c) Panel C: Productivity and Demand Growth

Figure 1.8: Network Propagation Risk Factors

Notes: This figure plots the time series of network propagation risk factors (Panel A), the cross-sectional average industry
substitutability (Panel B), and aggregate TFP and procurement demand growth (Panel C). Shaded regions indicate NBER-dated
recession periods.
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Table 1.16: One-Way Sorted Portfolios on Network Propagation Factors (controlling for volatility factors)

Panel A: One-way sorts on upstream propagation beta (controlling for at , gt , and σciv
t )

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 12.97 12.12 11.34 10.44 10.11 -2.86 -5.83 0.22

αcapm -0.04 -0.21 -0.21 -0.28 -0.68 -0.64 -4.06 0.00

α f f 3 -0.10 -0.14 -0.17 -0.25 -0.39 -0.29 -0.83 0.01

Volatility (%) 13.37 14.81 14.71 19.1 12.64 - - -

Book-to-market 0.52 0.53 0.58 0.54 0.50 - - -

Market value ($bn) 12.18 6.21 18.07 6.14 15.75 - - -

Panel B: One-way sorts on downstream propagation beta (controlling for at , gt , and σciv
t )

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 14.97 12.94 12.15 9.78 9.35 -5.61 -9.36 0.09

αcapm 0.03 -0.24 -0.29 -0.32 -0.39 -0.43 -1.88 0.00

α f f 3 -0.02 -0.10 -0.26 -0.29 -0.30 -0.29 -3.40 0.01

Volatility (%) 18.69 16.42 12.11 14.20 13.02 - - -

Book-to-market 0.59 0.55 0.51 0.51 0.52 - - -

Market value ($bn) 5.11 12.13 8.96 16.43 15.64 - - -

Panel C: One-way sorts on upstream propagation beta (controlling for at , gt , and σmkt
t )

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 13.83 13.07 11.33 10.10 9.73 -4.09 -8.10 0.21

αcapm 0.01 -0.26 -0.28 -0.35 -0.45 -0.47 -6.84 0.04

α f f 3 -0.07 -0.17 -0.20 -0.29 -0.30 -0.23 -2.06 0.03

Volatility (%) 13.68 16.44 17.09 14.12 13.03 - - -

Book-to-market 0.51 0.54 0.55 0.54 0.53 - - -

Market value ($bn) 11.43 5.87 7.24 19.44 14.40 - - -

Panel D: One-way sorts on downstream propagation beta (controlling for at , gt , and σmkt
t )

1 (Low) 2 3 4 5 (High) H-L t(H-L) MR p-val

E[r]− r f 13.66 13.5 12.67 9.77 9.24 -4.42 -7.17 0.37

αcapm 0.07 -0.26 -0.32 -0.39 -0.41 -0.48 -1.81 0.00

αcapm 0.02 -0.17 -0.24 -0.25 -0.33 -0.35 -1.52 0.01

Volatility (%) 19.47 12.94 15.7 14.27 13.03 - - -

Book-to-market 0.63 0.54 0.44 0.53 0.52 - - -

Market value ($bn) 4.60 10.24 13.33 15.77 14.30 - - -

Notes: This table reports average excess returns and post-sample alphas in annual percentages for value-weighted portfolios sorted into
quintiles on annual upstream and downstream propagation factors. Sample is between 1997-2021 for more than 10,000 stocks
belonging to the BEA 66 non-government industry classifications. Panels A and B control for productivity growth and federal
procurement demand growth, while Panels C and D have no controls. I also report average return volatility, book-to-market ratio and
market value for each portfolio. To test for significant return spreads, I report t-statistics for the null hypothesis H0 : xr5 = xr1, where
xrq is the average return of the qth quintile single sorted portfolio. Moreover, I report p-values for the test H0 : xrq+1 < xrq∀q ≤ 4,
calculated via bootstrap following Patton and Timmermann (2010).
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Chapter 2

Why Does GDP Move Before G? It’s all

in the Measurement

Abstract

We find that the early impact of defense news shocks on GDP is due to a rise in

business inventories, as contractors ramp up production for new defense contracts. These

contracts do not affect government spending (G) until payment-on-delivery, which occurs

2-3 quarters later. Novel data on defense procurement obligations reveals that contract

awards Granger-cause shocks to G identified via Cholesky decomposition, but not defense

news shocks. We show that Cholesky shocks to G miss early changes in inventories, and

thus result in lower multiplier estimates relative to the narrative method.
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2.1 Introduction

The fiscal policy literature has long aimed to quantify the effects of government

spending (G) and its underlying transmission mechanism. To do so, researchers must first

identify unpredictable government spending shocks that are exogenous to the business

cycle. According to Ramey (2016), the two most commonly used approaches for identifi-

cation are the Cholesky decomposition (Blanchard and Perotti (2002)) and the narrative

method (Ramey (2011)). The Cholesky decomposition approach places G first in a vector

autoregressive (VAR) model, relying on the assumption that G is predetermined at time t

due to decision lags. Practically, this entails regressing G on its lags and on lags of other

pertinent state variables, assuming that the resulting OLS residuals represent structural

shocks (henceforth Cholesky shocks). By contrast, the narrative approach uses an external

instrument (e.g., defense news shocks) which reflects the anticipated shifts in defense

spending brought on by exogenous military events, and places this instrument first in a VAR.

Both approaches are valid under the right assumptions. Yet, the Cholesky-based method

estimates smaller multipliers than the narrative method (i.e., “multiplier-gap”), especially

at small horizons. This paper provides an empirical explanation of the multiplier-gap.

We start from the key empirical finding that GDP increases immediately while

G increases with a delay following narratively-identified shocks to government spend-

ing.1 Since narrative shocks predict Cholesky-identified shocks to G, proponents of the

narrative approach use this as evidence that Cholesky-identified shocks fail to account

for anticipation effects of fiscal policy. For instance, Ramey (2011) shows that war-dates

Granger-cause (or predict) Cholesky shocks, thus leading to an identification problem

since those shocks capture military build-ups with a delay. Moreover, delaying war-dates

in the VAR can reconcile resulting estimates from the two methods (i.e., “it’s all in the

timing”).

1See Ramey and Shapiro (1998), Edelberg et al. (1999), Burnside et al. (2004), Eichenbaum and Fisher
(2005), Ramey (2011), Barro and Redlick (2011), Ben Zeev and Pappa (2017) and Ramey and Zubairy
(2018). Leeper et al. (2013)’s also suggests to control for anticipation effects to correctly identify fiscal
shocks.
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However, one question still remains. What causes GDP to move before G in

the narrative approach? Ramey (2011) suggests that it is Ricardian behavior of agents

to drive the anticipation effect of government spending. In particular, the existence of

implementation lags during military build-ups leads to a time-mismatch between the agents’

expectations of future G and the actual change in G. Since Ricardian agents respond to

changes in the present discounted value of G and taxes, GDP responds even before any

actual change in G. However, the strength of this mechanism is still a matter of debate

among economists.2

We provide empirical evidence of an alternative mechanism. In particular, we

show that an increase in business inventories accounts for the initial movement of GDP

following a narrative shock. We trace back the inventory effect to an increase in newly

awarded defense procurement contracts following a defense news shock. However, war-

related contract awards and associated early-stage production occur several quarters before

payment-on-delivery. Since government spending tracks payments, early-stage production

is recorded in aggregate inventories until delivery. The differential response of aggregate

inventories explains the difference in government spending multipliers calculated via the

narrative method and the Cholesky decomposition (i.e., “it’s all in the measurement”).

We start by decomposing the increase in GDP after a defense news shock, using

quarterly data from the National Income and Product Accounts (NIPA). At the aggregate

level, we observe that G responds two quarters after the defense news shock, while GDP has

a positive and significant response on impact and in the first quarter. The impact (horizon

0) response is entirely driven by durable consumption, but is not robust to the exclusion of

the Korean war from the sample.3 The horizon 1 response is entirely driven by a strong

and robust increase in aggregate investment, and more specifically the business inventories

component of investment. Even more specifically, we find from a panel of manufacturing

industries that the increase in inventories after war events is driven exclusively by higher

2For instance, Monacelli and Perotti (2008), Galı́ et al. (2007) and Gabaix (2020) propose theoretical
models which can dampen the strength of this mechanism. Coibion et al. (2020) find little survey evidence
in support of a strong negative income effect.

3This is a well-known fact in the fiscal policy literature (see Perotti (2014) and Ramey (2016)).
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real inventories in defense sectors. In other words, the response of inventories is a result of

contractors ramping-up production.

We directly document the time delay between obligations and payments using our

novel quarterly time-series of defense procurement spending and defense procurement

obligations. We find that obligations precede payments (and G) by an average of 2-3

quarters. The time-mismatch is discussed in the Department of Commerce’s Government

Transaction Methodology Paper, which shows that the production of government con-

tractors is not immediately reflected in government spending. Rather, G primarily tracks

payments which occur after the delivery of the ordered items, and defense production takes

time. To summarize, the recorded time-delay between payments and new orders provides

an accounting origin of the positive response of inventories during a military build-up: it is

the unpaid production-in-progress which does not yet show up in G.

To better capture shocks to obligated government funds, we order defense procure-

ment obligation first in a VAR. We show that these shocks Granger-cause the Cholesky

shocks of government spending. Shocks to obligations, however, do not predict defense

news shocks. Intuitively, fluctuations in real government spending, as measured by NIPA,

reflect changes in defense spending brought on by military events. The Cholesky shocks to

NIPA government spending thus capture these fluctuations. The timing of these shocks,

however, is delayed relative to the initial economic impact of a military event reflected in

new government orders. As a result, shocks to defense procurement obligations predict the

Cholesky shocks. On the other hand, defense news shocks are recorded at the start of a mil-

itary build-up, when new contracts are awarded and contractors increase production. Thus,

defense news shocks are not predictable by shocks to defense procurement obligations.

Finally, we show that narrative shocks lead to higher estimates of the fiscal mul-

tiplier than the Cholesky shocks and, on average, more than 84% of their difference

(multiplier-gap) is explained by the differential response of inventories. In other words,

whenever defense production is characterized by long time-to-build, and contractors are

paid after-delivery, the Cholesky shocks will overlook the initial production by defense
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contractors that is recorded in inventories. Therefore, under these conditions, our findings

support the robustness of the narrative method in accurately (i) identifying government

spending shocks, and (ii) estimating fiscal multipliers. Under the assumption that obligated

funds are predetermined, identification via Cholesky decomposition is still valid as long as

the government spending variable is set to obligations, which better captures the timing of

federal funds as soon as they are committed to be spent.

The idea that inventories absorb the time-to-build of defense contractors can be

traced back to ?’s analysis of the US economy during the Korean war. Ginsburg argues

that changes in government spending have effects before the actual disbursement of money,

as captured by G, and that these effects are temporarily reflected in inventories.4 Therefore,

researchers should take into account new government orders to fully understand the impact

of government spending changes. To overcome this implementation lag problem, Leduc

and Wilson (2013) study the effects of local fiscal policy using obligations rather than

outlays.

Similarly, Brunet (2020) suggests that the National Income and Product Account

“measures G too late in the process”, and constructs an annual measure of funds appro-

priations by the Department of Defense, termed budget authority. Brunet finds that this

measure leads G and uses it to estimate a fiscal multiplier between 1.3 and 1.6, which is

higher than typical estimates from the national multiplier literature (see Ramey (2016)).

Brunet attributes the difference to implementation-lags and time-to-build in the govern-

ment spending process, which leads to increased production reflected in private inventory

investment before government expenditures.

Our work contributes to this literature in a few ways. To the best of our knowledge,

we are the first to study the aggregate and sectoral effects of fiscal shocks on invento-

4Extract from page 10 of their NBER book: “It is apparent that a defense mobilization will provide a
stimulus to economic expansion if government expenditures increase the aggregate demand for goods and
services. However, the expansion need not await the actual growth of government expenditures. In the first
place, some government expenditures for defense will lag behind the placement of orders. For a time, the
increased production consequent on the orders will be reflected in private inventory investment rather than
in government expenditures.”
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ries.5Although ? also studies inventories, the analysis is restricted to the outbreak of the

Korean War. Moreover, we focus on national government spending multipliers and relate

them to aggregate obligations. This complements the cross-sectional analysis of Leduc and

Wilson (2013), who use obligations to study the effects of state-level highway-construction

expenditure, and estimate cross-sectional government spending multipliers.6

We also build on the work of Brunet (2020), who provides accounting evidence on

the behavior of inventories during a military build-up. We verify this theory empirically

using both an aggregate and sectoral analysis of inventories. Additionally, our novel

quarterly measure of federal defense procurement obligations has several advantages

relative to Brunet (2020)’s annual budget authority series. Firstly, our measure is available

at the quarterly frequency rather than annual, which (i) considerably increases the sample

size, (ii) allows for a more direct comparison with the other quarterly multiplier estimates

from the literature, and (iii) allows us to understand the time-mismatch between contracts

and payments at sub-annual frequencies.

With two quarterly series on defense procurement obligations and defense pro-

curement spending, we are able to precisely quantify the time-mismatch between newly

awarded contracts and payment to contractors. The focus on defense contracts illustrates

the role of time-to-build in generating an accounting delay. Our results show that obliga-

tions precede payments (and G) by an average of 2-3 quarters, which could not have been

detected with annual data. Finally, we directly relate this accounting delay to the anticipa-

tion effect measured by Ramey (2011), and use our findings to reconcile the difference in

multiplier estimates obtained using narrative and Cholesky shocks.

The paper is organized as follows. Section 2.2 establishes the positive response of

5Researchers have historically overlooked the role of inventories in analyzing government spending
shocks, likely due to the use of log-transformations in VAR models, which cannot handle negative inventory
values. However, the adoption of other transformation of the data, such as the Gordon and Krenn (2010)’s
transformation, does not require the adoption of logs and allows us to analyze the response of aggregate
inventories to fiscal policy shocks.

6It is well-known that national and local multipliers are two different objects. In particular, the local
multiplier is a rough lower bound of the deficit-financed, closed-economy, no-monetary-policy-response
national multiplier (see Chodorow-Reich (2019)).
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contractor inventories following a defense news shock. Section 2.3 carries out the sectoral

level analysis of inventories. Section 2.4 studies the underlying economic and accounting

mechanisms driving the response of inventories using novel procurement data. Section

2.5 explores implications of our results in estimating government spending multipliers.

Section 3.6 concludes.

2.2 Response of Inventories to Fiscal Shocks

In this section, we decompose changes in the components of real output that are

driven by news about future government spending rather than actual government spending.

We find that the early response of GDP to defense news shocks is driven by a positive and

robust response in business inventories.7

Our starting point is Ramey (2011), who finds that aggregate output reacts imme-

diately to news about future war-related defense spending (defense news shocks), while

government spending itself has a delayed response.8 We replicate this result in the top

panels of Figure 2.1. Note that GDP responds immediately, while G only responds starting

from the second period, marked with a dashed red line.

In particular, we estimate the quarterly impulse response function (IRF) of some

outcome yt of interest (e.g., GDP) using lag-augmented local projections:9

yt+h = θh ·Shockt +β ·Xt + εt+h (2.1)

where yt+h is the outcome, Shockt is the updated series of narratively identified defense

7Note that we use the term “inventories” to refer to “Aggregate Changes in Business Inventories”, which
is one component (along with fixed - residential plus non-residential - investment) of I in the decomposition
GDP =C+ I +G+NX .

8See similar results in Ramey and Shapiro (1998), Edelberg et al. (1999), Eichenbaum and Fisher (2005),
Ben Zeev and Pappa (2017).

9See Jordà (2005) for local projections, LPs, and Montiel Olea and Plagborg-Møller (2020) for economet-
ric details on lag-augmented LPs. Notice that the IRFs obtained via LPs are asymptotically equivalent to the
IRFs estimated via VAR (Plagborg-Møller and Wolf (2020)). LPs are more precise in terms of bias-reduction
than VAR, however, this comes at a great efficiency cost (Li et al. (2021)). We use LPs for their simplicity
and to compare with the literature (e.g. Ramey and Zubairy (2018)).
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news shocks from Ramey and Zubairy (2018), and Xt is a vector of four lags of shocks,

government spending, consumption, investments, net-exports, hours worked by the private

sector, the three-month Treasury Bill rate and a linear time trend. Following Ramey and

Zubairy (2018), we divide all nominal variables by real potential output and the GDP price

deflator.

Figure 2.1: Response of GDP and its Components to a Defense News Shock

Notes: IRFs of GDP, G, Investment and Changes in Inventories to a defense news shock are obtained via lag-augmented local
projections. Bands represent the 68% and 90% heteroskedasticity robust standard errors. Defense news shocks are obtained from the
updated series in Ramey and Zubairy (2018). Sample goes from 1947Q1 to 2015Q4. Values in the Figures are normalized by the peak
response of G.

To further investigate the underlying mechanism here, we decompose GDP and

estimate the aggregate response of consumption, fixed investment, inventories, government

spending, and net-exports to defense news shocks. Note that the IRF of GDP (top-left

panel) can be obtained by summing up the ones of all its components.10 The middle-left

panel of Figure 2.1 shows the IRF of Fixed Investments, the middle-right panel the one of

Inventories, the bottom-left panel the one of consumption and, finally, the bottom-right

panel the one of net-export. Values are normalized by the peak response of G.
10This follows from (i) the linearity of the OLS estimator used in local projections and (ii) the way NIPA

constructs GDP, as the sum of the components of final demand. See Online Appendix A for the formal proof.
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Firstly, consumption at horizon 0 is almost 50% of the peak response of government

spending and accounts for almost all of the impact response of GDP. However, it is a well-

known fact in the fiscal policy literature that this response is driven by durable consumption

at the onset of the Korean war.11

Secondly, the positive response of inventories at horizon 1 is equal to more than

50% of the peak response of G. Since we detect either negative or insignificant responses

of fixed investment (middle-left panel), consumption (bottom-left panel) and net-export

(bottom-right panel) at horizon 1, it is clear that the early increase in GDP relative to G

following a defense news shock initially shows up as an increase in inventories.

To the best of our knowledge, we are the first to detect positive effects of inventories

to defense news shocks and relate it to the anticipation effect of G detected in Ramey

(2011).12

Robustness The positive response of inventories is robust to the exclusion of the Korean

War (the largest military build-up after World War II) from the sample, indicating that the

response of inventories is not driven by periods in which defense shocks dominate.13

Secondly, we find that the positive response of inventories is robust to the adoption

of other types of fiscal shocks. In particular, we use the Cholesky shocks and shocks

identified from a VAR which orders defense procurement obligations first, where defense

procurement obligations capture the all universe of defense prime contract awards (we

will discuss the construction of this variable in the next sections). We report all robustness

checks in the Online Appendix B.

Next, we show in the panel of manufacturing industries that the aggregate response

of inventories is driven by an increase in industries which heavily contract to the federal

government.
11See ?, ?, Ramey (2016) and Binder and Brunet (2021). Consistently with the literature, we detect no

significant effect of durables in samples which exclude the Korean war.
12? estimate the effect of shocks to G identified via Cholesky decomposition on a multitude of variables

and also find a positive early response of inventories. They do not discuss this result in the paper.
13We believe that it is important to include the largest war events in the sample as they mimic natural

experiments involving government spending. However, we are aware of potential confounding factors (see
Perotti (2007), Fisher and Peters (2010), Perotti (2014) and Ramey (2016)).
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2.3 Industry Analysis: Who is Responding?

Given the positive and robust aggregate response of inventories, we study het-

erogeneity in this response across industries in response to war events. We find that

the positive response is driven by defense industries which increase inventories during a

military build-up. To do so, we use monthly data from the Bureau of Economic Analysis

(BEA) to construct a panel of real inventories for 18 manufacturing industries between

January 1959 and December 1997.14

The production of defense goods is concentrated in the manufacturing sector (see

e.g., Ramey and Shapiro (1998), Nekarda and Ramey (2011) and Cox et al. (2021)).

However, the level of government involvement varies greatly among manufacturing sub-

industries. For example, the “Other Transportation Equipment” sector has 34% of its sales

directly from the government. Accounting for indirect sales via input-output connections,

the sector’s dependence on government purchases rises to 42% and 44% with first and

second order downstream connections included (as done in Nekarda and Ramey (2011)).

This heavy reliance on government purchases is unsurprising given that the sector includes

sub-industries like Aircraft, Ship Building, Guided Missiles, and Space Vehicles. Con-

versely, the “Wood Products” sector has no sales to the government as it does not include

any defense item producers.

Therefore, we construct a weight θi for each industry which captures the long-run

average share of industry sales coming from government purchases. Using industry-

by-industry input-output matrices, our weights include up to second-order downstream

connections.15 Then we estimate the following equation:

Invti,t+h = λih +αh ·Wart +βh ·Wart ·θi +
12

∑
p=1

ϕph · Invti,t−p + εi,t+h (2.2)

14We thank Valerie Ramey for providing this data. Our data ends in 1997, however, most of the variation
in defense spending comes from before the Nineties (Vietnam War and Soviet invasion of Afghanistan).

15We don’t find that downstream linkages matter beyond the second order degree of connection. See
Online Appendix C.2 for a detailed derivation of industry weights.
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where h = 0,1, ...,24, Invtit is total real inventories of industry i in month t, λih is an

industry fixed-effect, and Wart is war dates.16 Consistent with Ramey and Shapiro (1998)

and Eichenbaum and Fisher (2005), our war event variable is a weighted dummy with

value 1 on March 1965 and 0.3 on January 1984 to indicate the start of the Vietnam War

and Soviet invasion of Afghanistan, respectively.

We are interested in the estimands αh and αh +βh. The former is the response

of inventories for those industries not connected to the government (i.e., θi = 0). The

latter is the response of industries which are highly connected to the government through

government purchases (i.e., θi = 1). If war dates have a differential positive effect on

sectoral inventories which is proportional to the degree of connection to the government,

we expect βh > 0.17

Figure 2.2 shows a significant positive and long-term differential response (αh+βh)

of defense industries’ inventories to war dates. On the other hand, the change in inventories

for those industries who do not supply the government (αh) is negative and close to zero.

Therefore, all of the effect of war dates on inventories is explained by the degree of

connection of each sector to the government.

Robustness We verify that this differential response of defense industries’ inventories

is not driven by their different sensitivity to the business-cycle. In particular, we replace

Wart with monetary policy shocks constructed narratively by Romer and Romer (2004)

and updated by Wieland and Yang (2020) and estimate the differential response (αh +βh)

to be statistically indistinguishable from zero. This confirms that the reaction of federal

contractors to defense news shocks is driven by war-related forces and not the associated

16We use war dates instead of defense news shocks since the former can easily be converted into monthly
frequency to match our inventories data.

17Our approach differs from traditional shift-share methods, such as those examined in Goldsmith-Pinkham
et al. (2020) and Borusyak et al. (2022). Unlike those studies, which primarily focus on cross-sectional
frameworks and require instrumental variables, we investigate the impact of an aggregate exogenous shock
(i.e., war-dates) on sectoral inventories and its heterogeneous effects on defense industries, as captured by
the interaction between the shock and industry weights. Moreover, since we use long-run averages for our
industry weights and we account for any time-invariant fixed effects through industry fixed effects, we are
not concerned about the potential endogeneity of our industry weights.
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Figure 2.2: Response of Sectoral Inventories to War Events

Notes: Left panel shows estimates of αh (response when θi = 0), right panel reports estimates of αh +βh (response when θi = 1).
Weights are normalized by maximum weight (i.e. the one of Other Transportation Equipment Manufacturing). Since Real Inventories
are trending, data is filtered using Hamilton (2018)’s filter (we set h = 24 and p = 12, that is two years lag plus one more year of lags).
The unit of real inventories is millions of 2005 chained dollars. Sample goes from 1959-Jan to 1997-Dec and uses 18 sectors breakdown
of Manufacturing. Confidence bands are 68% and 90%. Standard errors are obtained via Bootstrap (standard Stata routine for xtreg:
we use vce(boot) and set the seed for replicability of results; Stata uses a non-parametric type of bootstrap which resamples data with
replacement).

business-cycle fluctuations.18

Furthermore, we make sure that the differential response of defense industries

during a military build-up is not driven by spurious correlation. In particular, we re-

estimate Equation (2.2) using randomly re-shuffled weights as commonly done in the

production network literature (e.g. see Ozdagli and Weber (2020)). Again, we estimate the

differential response (αh +βh) to be statistically indistinguishable from zero and we report

the results of these robustness checks in the Online Appendix C.1.

18We thank Juan Herreño for suggesting this test.
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2.4 Why Inventories and not G?

This section explains why the early stage production of defense industries during

a military build-up is absorbed by inventories and not government spending (G). Briefly,

part of the production process occurs between contract award and delivery, and contractors

are paid after delivery. Since G is constructed primarily using payments, it measures

production with delay (see also Brunet (2020)). To accurately track production as it hap-

pens, NIPA uses inventories to align the timing of production with the contract award and

payment. Chapter 7 of NIPA’s Handbook states:19

“A general principle underlying NIPA accounting is that production should be

recorded at the time it occurs. [...] The recording of movements of goods in inventory —

materials and supplies, work-in-process, and finished goods — and from inventories to

final sales provides the means to allocate production to the period in which it occurred.”

The Procurement Process In the defense procurement process, obligations and spending

are two distinct stages. The process starts with the award of a contract, which is when the

government is legally bound to pay for goods/services. Although contractors are notified

of contract opportunities before the award date through pre-award solicitations, these

solicitations are typically posted in the same quarter as the award date and made available

to contractors on a federally managed online database.20

After contracts are awarded, contractors launch a potentially long production

process. In particular, contract-level data indicates that the mean and median duration of

$1 defense procurement contract are 4.2 and 5.4 years, respectively. We measure duration

as the period of performance, or the number of days between award date and contract end

(full delivery) date. We find that total defense procurement spending is dominated by few

very large contracts with very long duration. Using the same data, Cox et al. (2021) report
19We thank Junyuan Chen and Valerie Ramey to bring up to our attention this meaningful passage.
20Generally, solicitations are posted on beta.sam.gov and are linked to the eventual contract award using

the solicitation ID. Further discussion can be found in the Online Appendix D.5
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a very short average contract duration. However, their estimated duration is not weighted

by contract size. Weighting is necessary to find the duration of $1 of spending and not the

average duration of contracts. This difference matters, since most of procurement spending

comes from few very large contracts. If we do not weigh by contract size, our results are

consistent.21

Given that production takes a long time, when do associated payments actually

occur? According to the Federal Acquisition Regulation (FAR), the canonical rule for

payments to federal contractors from government agencies is payments-after-delivery (see

FAR 32.904).22 Finally, NIPA constructs G using mainly outlays, that is, payments to

contractors (see Brunet (2020)).

Therefore, NIPA’s accounting rules result in a delay in tracking defense production

due to the time it takes to produce items. In the following sections, we create a measure of

defense procurement spending and obligations to directly observe the time gap between the

start of production (when the contract is awarded) and when NIPA records it (at delivery).

Construction of Defense Procurement Spending and Obligations We construct a

novel database of defense procurement spending and obligations. Spending measures

payments from federal agencies to contractors, while obligations measure the total value of

federal funds as soon as they are contractually obligated to firms. To construct the spending

21We use defense contract data from the federal procurement data system (FPDS) from 2000 to 2020.
FPDS encompasses every federal transaction at daily frequency. We report results in the Online Appendix
D.2.

22Certain contracts are also subject to partial-delivery-payments. However, given the multiple year average
duration of $1 of procurement spending, we still observe several quarter-long delays in partial deliveries. We
further clarify this point in the Online Appendix D.3.
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series, we use the accounting identity discussed in Cox et al. (2021):23

(Procurement Spending)t ≈ (Intermediate Goods & Services Purchased)t+

+(Change in Government Fixed Assets)t+

− (Investment R&D)t

≈ (Payment to Contractors)t ,

where all variables are obtained from the National Income and Product Accounts (NIPA).

The top panel of Figure 2.3 plots this measure of defense procurement spending along with

the annual measure of procurement spending of Dupor and Guerrero (2017), aggregated

over states. The two measures are virtually identical before 1984, but afterwards the

Dupor and Guerrero (2017) series omits contract actions with value less than $25,000 and

thus systematically underestimates our NIPA-based series. From 2000 onward, we also

aggregate federal agency payments from the universe of procurement contracts, available

in the Federal Procurement Data System (FPDS), and find that our measure is consistent.

To construct the obligations series, we aggregate the value of procurement contracts

awarded by the Department of Defense (DoD) from the universe of procurement contracts

recorded in the Federal Procurement Data System (FPDS). Since this data is only available

from 2000 onward, we also collect historical information from the periodical Business

Conditions Digest (henceforth BCD) which is available from January 1951 to November

1988. We use information from the contract and spending data to impute missing quarters

and construct a quarterly time series of defense procurement obligations.24

Direct Evidence of Time Mismatch in Defense Procurement The bottom-left panel

of Figure 2.3 plots spending and obligations from Jan 1951-Nov 1988, and the bottom-

23Further details on the accounting origin of procurement spending is discussed in the Online Appendix
D.1.

24Many thanks to Valerie Ramey for providing the BCD data. We remand to our Online Appendix D.4 for
extra details on the sources of contract level data and the construction of the series.

97



(a) Annual Defense Procurement Spending

(b) Time Lag in “BCD”

Figure 2.3: Federal Defense Procurement Obligations vs Spending

Notes: Top panel (a) compares different measures of defense procurement at annual frequency. The bottom-left panel (b) compares
defense procurement spending (i.e. payments) as we construct it from NIPA data, to defense procurement obligations (i.e. awards) from
“BCD”. The bottom-right panel shows the lead-lag correlation map between the two: Corr (∆1(Obligations)t ,∆1(Payments)t+i), where
∆1 is the first difference operator. Sample: 1951Q1 to 1988Q4.

right panel reports the lead-lag correlation.25 From the right panel, the average lead-lag

correlation significantly peaks in the North-East quadrant of the map. This suggests that

25Lead-lag correlations are useful for studying relationships in time between variables. For example,
Smets et al. (2019) use it to study the timing of propagation of inflation from upstream to downstream
sectors.
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changes in obligations are more highly correlated with delayed changes in spending rather

than current changes in spending. The results replicate for more recent obligations data

obtained from FPDS and when we look at quarterly year-to-year changes instead of simple

changes. We report these robustness checks in the Online Appendix D.2. On average, we

find that obligations lead spending by 2-3 quarters.

The payment (or government outlay) thus occurs several quarters after the defense

contract award. This finding is consistent with the results of Leduc and Wilson (2013) and

Brunet (2020) in the context of highway spending and the aggregate annual defense bud-

get. Moreover, this is confirmed directly by the Department of Commerce’s Government

Transaction Methodology Paper:26

“The largest timing difference is for national defense gross investment for relatively

long-term production items, such as aircraft and missiles, for which the work in progress

is considered as part of business inventories until the item is completed and delivered to

the Government.”

In other words, early-stage production associated with long procurement contracts

is recorded at an aggregate level in inventories until the delayed payment-on-delivery. The

value of completed and paid contract work is then moved from inventories to G. We can

observe the delay between defense contract awards and payment directly from our data.

Finally, in the Online Appendix E, we distinguish between the response of defense

contractors to actual contract awards and the anticipation of future contract awards. Firms

may increase their inventories in preparation for future awards, whether to minimize

adjustment costs or reduce delivery times (i.e., production smoothing). While we identify

evidence of the latter, it is of lesser importance compared to the response to actual contract

awards.
26Many thanks to Gillian Brunet for redirecting us to that document.
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2.5 Implications for the Government Spending Multiplier

In this section, we argue that the Cholesky shocks to government spending as

measured by NIPA do not capture early-stage production associated with newly awarded

federal procurement contracts during a military build-up. This leads to lower multiplier

estimates relative to the narrative method. We show that 84% of the difference in multipliers

(multiplier gap) is driven by a differential early response of inventories following a defense

news shock.

Shock Predictability Ramey (2011) shows that narrative shocks predict (Granger-cause)

the Cholesky shocks, which implies that those shocks are missing part of the early response

in GDP. To show that the missing early response is associated with early-stage production

related to defense procurement contracts, we further show that shocks to defense procure-

ment obligations Granger-cause the Cholesky shocks to G, while do not Granger-cause

defense news shocks. We construct defense procurement obligation shocks by ordering

defense procurement obligations first in a VAR.27 In turn, we use two series of defense

procurement obligations: one which goes from 1947Q1 to 1988Q4, which uses data from

BCD (“BCD series”) and one which uses information from defense procurement spending

and FPDS to extend the BCD data up to 2015Q4 (“extended series”). Our full sample

spans 1947Q1 to 2015Q4, and Table 2.7 summarizes the results.

27The variables employed here are identical to the ones utilized in Section 2.2.
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Table 2.1: Predictability of Cholesky Shocks via Obligations

Predicted Predictor F Pvalue Korea

Cholesky Shocks Obligation Shocks (Extended Series) 5.63 0.0% Yes

Cholesky Shocks Obligation Shocks (BCD Series) 3.45 0.1% Yes

Cholesky Shocks Obligation Shocks (Extended Series) 4.24 0.0% No

Cholesky Shocks Obligation Shocks (BCD Series) 2.41 1.9% No

Obligation Shocks (Extended Series) Cholesky Shocks 1.07 38.7% Yes

Obligation Shocks (BCD Series) Cholesky Shocks 0.57 84.2% Yes

Obligation Shocks (Extended Series) Cholesky Shocks 1.67 10.7% No

Obligation Shocks (BCD Series) Cholesky Shocks 1.12 35.31% No

Defense News Shocks Obligation Shocks (Extended Series) 0.73 66.1% Yes

Defense News Shocks Obligation Shocks (BCD Series) 0.75 64.4% Yes

Defense News Shocks Obligation Shocks (Extended Series) 0.32 95.7% No

Defense News Shocks Obligation Shocks (BCD Series) 0.59 78.7% No

Notes: Granger Causality test is a Wald test on the 8 lags of the predictor while controlling for 4 lags of the predicted

variable. In Appendix F, we report analogous results for Cholesky shocks to an index of Top 3 defense contractor excess

returns, constructed as in Fisher and Peters (2010). We find no significant predictability in either direction for this index.

The top panel of Table 2.7 shows that shocks to defense procurement obligations

predict the Cholesky shocks. On the other hand, the second panel shows a much weaker

relationship in the other direction, especially when you omit the Korean War from the

sample. Our results are consistent with Ramey (2011). The bottom panel shows that shocks

to defense procurement obligations do not predict defense news shocks. This indicates

that early economic effects of newly awarded contracts, which are missed by the Cholesky

shocks to G, are captured using defense news shocks.

Government Spending Multipliers In most macroeconomic studies, researchers are

interested in the economic effects of government spending from the moment funds are

contractually obligated and contractors begin reacting. In this setting, the actual transfer of

cash is not the main focus. Given our results from the previous section, we argue that the

Cholesky shocks are capturing transfers of cash rather than obligation of funds.

We begin with an illustrative example of this problem around the outbreak of the

Korean War in the top-panel of Figure 2.4.
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(a) Illustration of the Delay - Korean War

(b) Consequences of the Delay - Multiplier Underestimation

Figure 2.4: Illustration and Consequences of the Delay

Notes: Top panel (a) illustration of the delay during the Korean war. The bottom-left panel (b) compares the point estimates of the
calculated fiscal multipliers from horizon 0 to 12 quarters. Sample: 1947Q1 to 2015Q4. The bottom-right panel shows the share of
multipliers-gap explained by the differential response of inventories (dashed black line is the average of the response). Share is
calculated only when the multiplier gap is finite and positive.

In the summer of 1950 (Q3), we observe a large defense news shock associated

with the outbreak of the Korean War. However, the Cholesky shock to NIPA’s measure of

G does not spike until 2-3 quarters later. Unsurprisingly, G has a slow positive response.

On the other hand, defense procurement obligations react almost immediately to the shock.
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In other words, the DoD begins awarding defense procurement contracts at the onset of

the war. We also observe quick increases in inventories starting from 1950Q4 as well

as in defense production, proxied by average hours of production and non-supervisory

workers in the aircraft industry.28 Therefore, the Cholesky shocks fail to capture the initial

production of defense industries in response to newly granted contracts at the onset of the

Korean war. This is consistent with our previous Granger-causality test results.

We now show that this delay leads to the underestimation of the fiscal multiplier

when using Cholesky decomposition as an identification method. In particular, we show

that, on average, 84% the difference in fiscal multipliers estimated using the Cholesky

and narrative methods is explained by a difference in capturing the early response of

inventories.

Following Ramey (2016), we estimate cumulative fiscal multipliers using LP-IV

with both Cholesky shocks to G and narratively identified defense news shocks. We use

the following estimation equation:29

H

∑
h=0

yt+h = γH +M̂ (H) ·
H

∑
h=0

gt+h︸ ︷︷ ︸
instrument with Shockt

+lagst + εt+h, (2.3)

where M̂ (H) is the cumulative government spending multiplier at horizon H, yt is GDP

at time t, gt is government spending at time t, Shockt is an exogenous instrument for

cumulative government spending, and lagst contains lagged values of the shock, govern-

ment spending, consumption, investment, hours worked and 3 months T-Bill rate. We

rescale nominal variables by potential output. The narrative method sets Shockt equal to

the defense news shock variable, while the Cholesky identification is equivalent to setting

28Production workers account for 82% of total private employment, on average (see Nekarda and Ramey
(2020)). We choose the Aircraft industry since it specializes in defense production and we use average hours
of production workers since total hours is a lagged measure of production (see Bils and Cho (1994) and
Fernald (2012b)). We further clarify this point in the Online Appendix C.3. Furthermore, in the Online
Appendix C.1 we show that this measure of defense production responds strongly and positively to both
defense news shocks and defense procurement obligations.

29More technical details on LP-IV are available in Stock and Watson (2018).
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Shockt equal to G.

The bottom-left panel of Figure 2.4 shows that the Cholesky method delivers

uniformly lower point estimates of the multiplier relative to the narrative method. To

investigate how much of the multiplier gap can be explained by a differential response in

inventories, we break down the multiplier in different components, each accruing to one of

the components of GDP.

We start from the result discussed in Ramey (2016) and Stock and Watson (2018),

that the one-step LP-IV approach delivers an estimate of the multiplier which is analytically

equivalent to the one obtained following a two steps procedure consisting in (i) estimating

the cumulative impulse response functions of GDP and G to a government spending shock

via local projections and (ii) by taking their ratio:

M̂GDP(H) =
∑

H
h=0 θ̂GDP,h

∑
H
h=0 θ̂G,h

, ∀H = 0,1, ....

where θ̂GDP,h and θ̂G,h are the estimated IRFs of G and GDP to a government spending

shock. For instance, if we used defense news shocks, they would be equal to the estimated

IRFs of GDP and G shown in the top-left and top-right panel of Figure 2.1. Furthermore,

since IRF of GDP can be obtained by summing up the IRFs of each of its components, we

can break down the fiscal multiplier as follows:

∑
H
h=0 θ̂GDP,h

∑
H
h=0 θ̂G,h︸ ︷︷ ︸

M̂GDP(H)

= 1+
∑

H
h=0 θ̂C,h

∑
H
h=0 θ̂G,h︸ ︷︷ ︸
M̂C(H)

+
∑

H
h=0 θ̂IFixed,h

∑
H
h=0 θ̂G,h︸ ︷︷ ︸

M̂IFixed(H)

+
∑

H
h=0 θ̂IInvy,h

∑
H
h=0 θ̂G,h︸ ︷︷ ︸

M̂IInvy(H)

+
∑

H
h=0 θ̂NX ,h

∑
H
h=0 θ̂G,h︸ ︷︷ ︸
M̂NX(H)

Notice that each component of the fiscal (GDP) multiplier corresponds to the ratio of the

area under the IRF of the corresponding component of GDP and the area under the IRF of

G. For instance, the inventory-multiplier obtained via defense news shocks, M̂ News
IInvy

(H), is

equal to the area under the IRF of inventories up to horizon H, shown in the middle-right

panel of Figure 2.1, divided by the one of Government spending, plotted in the top-right

panel of the same figure.
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If we differentiate the above expression, and divide by the left-hand side, we have:

(∀H) 1 =
dM̂IInvy(H)

dM̂GDP(H)︸ ︷︷ ︸
:=∆%IInvy(H)

+
dM̂C(H)

dM̂GDP(H)
+

dM̂IFixed(H)

dM̂GDP(H)
+

dM̂NX(H)

dM̂GDP(H)︸ ︷︷ ︸
∆%Other(H)

1 = ∆%IInvy(H)+∆%Other(H),

where ∆%IInvy(H) represents the share of the multiplier-gap, dM̂GDP(H), explained by

differences in the response of inventories, dM̂IInvy(H), while d∆%Other(H) refers to all

the other components of GDP.

Therefore, we calculate and breakdown the fiscal multiplier using both defense

news shocks (News) and Cholesky shocks (Chol), then we calculate the share of multiplier

gap explained by inventories, as suggested by the previous expression:

∆%IInvy =
M̂ News

IInvy
(H)−M̂ Chol.

IInvy
(H)

M̂ News
GDP (H)−M̂ Chol.

GDP (H)

which computes the proportion of the multiplier gap (denominator) arising from using

the narrative and Cholesky methods, explained by differences in the inventory multiplier

(numerator). The bottom-right panel of Figure 2.4 plots ∆%IInvy(H) up to horizon 8 (solid

pink line) along with its average (dark dash line). On average, 84% of the multiplier gap

can be explained by the differential response of inventories as captured by the shocks. In

the Online Appendix F, we show that this result is robust to the exclusion of the Korean

War.

To summarize, the identification of government spending shocks via Cholesky

decomposition fails to fully capture early-stage defense production which is reflected

in inventories, which results in underestimated multipliers. This is due to NIPA G’s

delayed tracking of defense production during military build-ups. Our Granger-causality

test results are consistent with this intuition. This finding raises a major challenge in

identifying government spending shocks through the Cholesky decomposition, provided
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there exists a long enough time-mismatch between orders and payments in the government

spending process.

2.6 Conclusion

The National Income and Product Accounts (NIPA) tracks production by mon-

itoring changes in inventories. During a military buildup, defense industries increase

production in response to new procurement contracts, which results in a rise in inven-

tories and GDP. Once the production of defense items, such as aircraft and missiles, is

finished, they are delivered to the government and the contractors receive payment. This

causes inventories to decrease and government spending (G) to increase as payments are

recorded. The onset of a war results in GDP responding faster than G due to (1) accounting

procedures and (2) the time required for production in the defense sector.

The findings of our study support the idea that the early rise in GDP relative to G

after a defense news shock, as described by Ramey (2011), can be attributed to an increase

in inventories. Our analysis of manufacturing sector data reveals that defense industries

are responsible for the rise in inventories. By creating new quarterly time series that track

defense procurement contract awards and payments, we were able to observe a 2-3 quarter

gap between the two. This delay provides evidence for the existence of a time-to-build

period for defense production.

Our study has three significant implications. Firstly, it provides a straightforward

explanation for the early reaction of GDP compared to G in response to a defense news

shock, which was previously believed to be due to households’ Ricardian behavior (neg-

ative wealth effect). Secondly, the results indicate that shocks to defense procurement

obligations predict Cholesky shocks to government spending, which is a major issue in

the identification of macroeconomic shocks (as noted by Ramey (2016)). Lastly, the

delay in these shocks leads to an under-estimation of the response of inventories which is

responsible for 84%, on average, for the under-estimation of the fiscal multiplier estimated
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by the narrative method. The impact of shocks to defense procurement obligations on

macroeconomic variables extends beyond the scope of this paper and remains a subject for

future investigation.

Our findings highlight the significance of the early effects of G, as reflected in the

increase in inventories. Policymakers and economists should take into account measure-

ment delays in government spending when evaluating the impact of government purchases

on the economy.
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Appendices

2.7 Breaking Down the Response of GDP

In this section, we decompose the response of GDP to a defense news shock into

its underlying components. To do so, we exploit the linearity of the OLS estimates which

are used to construct the impulse response functions (IRFs) via local projection.

In particular, we first calculate the IRF of GDP to a defense news shock by re-

gressing GDP on defense news shocks and four lags of investment, government spending,

net-export, consumption total hours worked in the private sector, the 3-months T-Bill rate,

defense news shocks and a linear time trend. We divide all nominal variables by nominal

potential GDP (we take real potential GDP from Ramey and Zubairy (2018) and multiply

it by the GDP price deflator). In particular, we group this set of lagged variables and the

time trend into matrix Xt , and the IRF of GDP is the coefficient θGDP
h in the following

linear equation:

GDPt+h = θ
GDP
h ·Newst +Xt ·βββGDP + εt+h h = 0,1, ...,8.

We report the estimated IRF of GDP in the left panel of Figure 1 in the main text. Repeating

this procedure for all four components of GDP, we estimate the following set of linear
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equations:

Gt+h = θ
G
h ·Newst +Xt ·βββG + ε

G
t+h h = 0,1, ...,8

Ct+h = θ
C
h ·Newst +Xt ·βββC + ε

C
t+h h = 0,1, ...,8

It+h = θ
I
h ·Newst +Xt ·βββI + ε

I
t+h h = 0,1, ...,8

NXt+h = θ
NX
h ·Newst +Xt ·βββNX + ε

NX
t+h h = 0,1, ...,8

Given that the decomposition of GDP is additive and all equations have the same set of

controls Xt , it is easy to show that:

θ̂
GDP
h = θ̂

G
h + θ̂

C
h + θ̂

I
h + θ̂

NX
h for all h = 0,1, ...,8.

where theˆdenotes an OLS estimate. Therefore, we decomponse IRF of GDP to a defense

news shock into its four underlying components, reported in Figure 2.5.

Figure 2.5 shows that aggregate consumption at horizon 0 and aggregate investment

at horizon 1 drive the early increase in GDP after a defense news shock.

Consumption and Investment We can further decompose the responses of consumption

and investment to better understand what drives their early response. In particular, we

apply the same methodology to estimate the IRFs of inventories and residential plus non-

residential fixed investment (components of investment) to a defense news shock. Similarly,

we estimate the IRFs of durable consumption and the sum of non-durable and service

consumption. As before, we consider variables in nominal terms, divide by the GDP price

deflator and multiply by real potential output (Gordon and Krenn (2010) transformation).

We report the IRFs of these four components of consumption and investments to a

defense news shocks in Figure 2.6. We observe that the horizon 0 response of consumption

largely shows up in durables while the horizon 1 response of investment is driven by

inventories.
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Figure 2.5: Response of GDP Components to a Defense News Shock

Notes: IRFs of GDP, G, Investment and Changes in Inventories to a defense news shock are obtained via lag-augmented local
projections. Bands represent the 68% and 90% heteroskedasticity robust standard errors. Defense news shocks are obtained from the
updated series in Ramey and Zubairy (2018). Sample goes from 1947Q1 to 2015Q4. Values in the Figures are normalized by the peak
response of G.

Figure 2.6: Response of Consumption and Investment to a Defense News Shock

Notes: See notes of Figure 2.5
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2.8 Robustness - Section I of the Paper

Figure 2.7: Response of Inventories - Robustness

Notes: Response of inventories to different fiscal shocks over two samples (with and without Korean war). All the rest is identical to
notes of Figure 2.5.

In Figure 2.7, we verify that the positive response of inventories is robust to the

inclusion of the Korean War in the sample period. In particular, we estimate IRFs of

inventories via lag-augmented local projections with respect to three different fiscal shocks

(narratively identified, recursively identified, and shocks to obligations) over two samples.

The first sample includes the Korean war and goes from 1947Q1 to 2015Q4 (top row of

Figure 2.7). The second sample runs from 1954Q1 to 2015Q4 and excludes the Korean

war (bottom row of Figure 2.7).

For all results, we control for a linear time trend and four lags of government

spending, consumption, investment, net-export, hours in the private sectors and 3-months
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T-Bill rate. To implement the narrative method, we include defense news shocks and its four

lags and estimate the IRF using the OLS coefficients associated with defense news shocks

(first column of Figure 2.7). To implement the recursive method, we add contemporaneous

government spending and obtain the IRF from its OLS coefficient (second column of

Figure 2.7). Finally, we consider shocks to defense procurement obligations. We control

for four lags of obligations using the series discussed in the main text of the paper, and

estimate the IRF from the OLS coefficient on contemporaneous defense procurement

obligations (third column of Figure 2.7).

Although excluding the Korean War from the sample leads to less precise estimates

of the IRF, our results are still significant especially at early horizons. The difference in

precision is not a surprising result since the Korean War represents the largest military

build-up after WWII. As discussed in the paper, we support the idea of including the

Korean war in the sample since wars represent natural experiments where G increases

exogenously.
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2.9 Details on Industry Level Analysis

In this section, we implement robustness checks for the industry-level analysis

of inventories (see Appendix 2.9.1) and provide details on our construction of industry

weights θi (see Appendix 2.9.2).

2.9.1 Robustness - Section II in the Paper

Figure 2.8: Response of Sectoral Inventories to War Events (Robustness).

Notes: Same as in Figure 2 of the paper.

Figure 2.8 shows the results of the robustness checks associated with Section II

of the main text. The first column replicates the results reported in the paper, where our

Shockt variable is war dates and industry weights (θi) are baseline weights constructed

directly from the BEAs Make and Use tables. We report IRFs conditional on setting θi = 0

(top panel) and θi = 1 (bottom panel). Recall that setting θi = 0 indicates the effect of a
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shock on a sector not connected to the government while setting θi = 1 indicates the effect

of such a shock on a sector which is fully connected to the government.

Additionally, in the middle panels we report the same results using shuffled weights.

In this case, we randomly assign a weight θ j to an industry i to verify that the result is not

driven by the aggregate distribution of weights. Lastly, the right panels report the results

when the weights are fixed at their empirical value, but where the shock is a monetary

policy shock rather than a war date. The goal of this robustness check is to verify that

the result is not driven by industry-level exposure to the business cycle. Notice that the

inventory response of industries connected to the government θi = 1 (bottom panels)

vanishes for both robustness checks.

The Response of the Aircraft Industry Here we estimate the following lag-augmented

local projection:

h̄aircra f t
t+h = βh ·Shockt + lagst + εt+h

where h̄aircra f t
t+h is average hours of production workers in the aircraft industry in quarter

t+h, Shockt is either defense news shocks or defense procurement obligations, lagst is four

lags of the dependent variable and four lags of the shock. We believe average hours of

production workers in the aircraft industry is an excellent proxy for defense production

(see Appendix 2.9.3). We report IRFs in Figure 2.9. We observe that defense production

quickly ramps up in response to defense news or newly awarded procurement contracts.
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Figure 2.9: Effects of Military Build-ups on Defense Production

Notes: IRFs are obtained via lag-augmented local projections. Sample goes from 1947Q1 to 2002Q4 (sample stops in 2002 because
data are no longer available). Data Source: BLS Discontinued Databases. Standard errors are heteroskedasticity robust. Confidence
bands are 90% and 68%.

2.9.2 Construction of Industry Weights

To construct industry weights, we combine information from the Make and Use

table with more than 60 non-government sectors between 1963 to 1996. Following

Horowitz and Planting (2009), we derive direct requirement industry-by-industry matrices

At and direct sales from the private sectors to the government. We use these two elements

to construct our final industry weights as follows.

Government Direct Purchases. We construct a vector of government purchases (i.e.,

direct requirements) relative to industry output:

γγγ0,t
n×1

=


SALES1→G,t

SALES1,t
...

SALESn→G,t

SALESn,t
,


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where t denotes the year, n is the number of manufacturing sub-industries, G denotes the

federal general government, and the 0 subscript in a vector’s name refers to the order

of included input-output connections (e.g., a zero subscript suggests that the vector only

accounts for direct sales to the government). Moreover, SALESi→G,t for a given sector i

includes government gross investments, which show up as final uses in the Use tables. We

report the time-average values of γγγ0,t in the third column of Table 2.2.

Government Indirect Purchases Following Nekarda and Ramey (2011), we also include

downstream input-output linkages to account for indirect sales to the government. In order

to do so, we construct yearly n×n input-output matrices At in which (i, j)th element of

matrix At is given by:
SALESi→ j,t

SALESi,t
.

We then construct a vector of direct and first-order indirect sales shares as follows:

γγγ1,t = (In +At) · γγγ0,t .

Notice that the ith element of γγγ1,t is given by:

γ1,i,t =
SALESi→G,t

SALESi,t︸ ︷︷ ︸
Direct Sales

+
n

∑
j=1

SALESi→ j,t

SALESi,t
·

SALES j→G,t

SALES j,t︸ ︷︷ ︸
Indirect Sales.

We report the time-average of γγγ1,t in the fourth column of Table 2.2. Similarly, we construct

direct, first and second order indirect sales to the government, shares of total output as:

γγγ2,t =
(
In +At +A2

t
)
· γγγ0,t .
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We report the time-average values of γγγ2,t in the fifth column of Table 2.2. Finally, we

construct our industry weights θi as:

θi :=
E
[
γ2,i,t

]
maxiE

[
γ2,i,t

]
We report the weights in the last column of Table 2.2.

Table 2.2: Industry Weights

Sector Commodity Description: γ0,i γ1,i γ2,i θi

3364 Other transportation equipment 34.43% 42.00% 43.94% 1.00

334 Computer and electronic products 13.09% 17.04% 18.38% 0.42

323 Printing and related support activities 7.98% 9.35% 9.95% 0.23

332 Fabricated metal products 3.73% 4.78% 5.37% 0.12

3361 Motor vehicles, bodies and trailers, and parts 2.09% 3.70% 4.64% 0.11

339 Miscellaneous manufacturing 2.31% 3.80% 4.49% 0.10

333 Machinery 2.65% 3.84% 4.44% 0.10

335 Electrical equipment, appliances, and components 2.37% 3.66% 4.31% 0.10

325 Chemical products 1.91% 3.50% 4.27% 0.10

324 Petroleum and coal products 2.71% 3.50% 4.17% 0.09

326 Plastics and rubber products 1.13% 2.20% 2.89% 0.07

337 Furniture and related products 0.66% 1.63% 2.19% 0.05

331 Primary metals 0.54% 1.44% 2.06% 0.05

313 Textile mills and textile product mills 0.48% 1.31% 2.01% 0.05

315 Apparel and leather and allied products 0.57% 1.37% 1.98% 0.05

327 Nonmetallic mineral products 0.49% 1.35% 1.91% 0.04

322 Paper products 0.51% 1.25% 1.83% 0.04

311 Food and beverage and tobacco products 0.38% 1.16% 1.77% 0.04

321 Wood products 0.19% 0.91% 1.53% 0.03

Notes: Last column divides θ2,i by the maximum value (i.e. the one of Other Transportation Equipment Manufacturing). In the paper,
the weights θi that we use are the ones which include second order degree of connections, normalized (last column).
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2.9.3 Tracking Defense Industrial Production

In Section II of the paper, we use use Average Hours of Production Workers of the

Aircraft industry to keep track of the “defense production machine”. We now explain the

reasons behind that choice. Firstly, we plot the quarterly time series in Figure 2.10.

Figure 2.10: Average Hours of Production Workers in the Aircraft Industry

Aircraft Industry We choose the Aircraft industry for two reasons: (i) great data

availability (monthly data from BLS discontinued series starting from 1939) and (ii) high

dependency on government purchases (see Nekarda and Ramey (2011)).

Hours-per-Worker In general, there are no direct measures of industrial output. In the

case of the aircraft industry, we do not observe the exact number of aircraft produced

every month nor their percentage of completion. However, we have three variables which

can proxy for industrial production: (i) average weekly hours of production workers, (ii)

number of production workers (i.e., employment) and (iii) their product, namely total hours

worked. The first one is a measure of intensity of production, while the other two are stock

variables measuring the extensive margin of production.
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In order to understand which one is more suitable to measure changes in production,

we consider as an illustrative example the outbreak of the Korean War. During this period,

defense manufacturers foresee a period of high demand of weapons by the government

and adjust production accordingly. The first sensible thing is to increase production, given

the predetermined level of capital and labor inputs. For instance, increasing production

requires extra use of electricity to operate machinery in the assembly lines as well as a

higher number of shifts with longer duration for production workers. By consequence,

hours per worker increase immediately. Over time, contractors expand production by

widening their stock of capital and workers, thus overcoming problems related to capital

immobility (see e.g., Ramey and Shapiro (1998)) and labor market frictions. As contractors

expand their production facilities and hire new production workers, intensity of production

returns back to normal.

This example highlights two facts. Firstly, intensity of production of manufacturing

industries is a good indicator of switches in the production regime. Secondly, intensity of

production leads employment and other stock variables which tend to move more slowly.

This intuition is consistent with Bils and Cho (1994), who find that hours per worker lead

employment and the business cycle. Moreover, they emphasize how hours-per-worker

co-moves with other relevant but unobserved measures of intensity of production.30 Along

these lines, Fernald (2012b) suggest to use hours of production workers to proxy other

unobserved measures of intensity of production. According to them, a cost-minimizing

firm operates on all margins simultaneously, both observed (i.e., hours per worker) and

unobserved (i.e., labor effort and workweek of capital).

In what follows, we show that (i) hours-per-worker in the aircraft industry leads

employment and (ii) employment drives the dynamics of total hours, overshadowing very

informative lumpy changes in hours-per-worker. In light of all this, hours-per-worker is

the most suitable variable to timely measure changes in production.

30They find that (i) “looms hours” are strongly related to hours per worker in the US textile industry and
(ii) electricity use of manufacturing industries and hours worked per week co-moves. On the contrary, they
find that the relationship between their measures of capital utilization and the number of production workers
is much weaker.
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Hour per Worker, Employment and Total Hours in the Aircraft Industry Figure 2.11

shows in its top-left panel the lead-lag correlation map between changes in average hours

of production workers and changes in the number of production workers in the Aircraft

industry. Clockwise from the top-right panel we show the time series of average hours of

production workers (h̄t), number of production workers (et) and total hours of production

workers (h̄t ·et) around the onset of the Korean war for the Aircraft industry (i.e., 1950Q3),

respectively.

Figure 2.11: Average Hours of Production Workers Vs Production Workers - Aircraft
Industry

Firstly, from the lead-lag correlation map, we observe that average hours of pro-

duction workers lead employment. This is consistent with the findings of Bils and Cho

(1994). Secondly, notice that the dynamics of total hours is dominated by employment, and

not by average hours per worker. Therefore, if we gauge industrial production by simply

looking at the dynamics of total hours, we would conclude that the response of the Aircraft

industry at the outbreak of the Korean war was mild and slow. On the contrary, average

hours per production worker anticipated the peak response of employment and total hours

of production, signaling that defense production had already fired up at the onset of the
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war.

We further clarify what is happening by breaking down the change in total hours

into two components, one which accrues to changes in hours worked (intensive margin)

and one which accrues to changes in number of workers (extensive margin):

Ht = h̄t · et

where zt is a defense news shock. We break down the dynamic response of total hours to

the Korean War using the previous expression:

(H1950Q3+h −H1950Q2) =
(
h̄1950Q3+h − h̄1950Q2

)
· e1050Q3+h︸ ︷︷ ︸

Intensive Margin

+(e1950Q3+h − e1950Q2) · h̄1050Q3+h︸ ︷︷ ︸
Extensive Margin

with h = 0,1, ...,H. We show this breakdown in Table 2.3:

Table 2.3: Breakdown Total Hours - Korean War
Date h̄t et Ht H1950Q3+h −H1950Q2 Int. Margin Ext. Margin Int. Margin (%) Ext. Margin (%)

1950Q2 40.60 186.83 7585.43 0.00 0.0 0.0 - -

1950Q3 42.10 200.00 8420.00 834.57 300.0 554.3 35.9% 66.4%

1950Q4 42.53 239.70 10195.24 2609.81 463.4 2248.6 17.8% 86.2%

1951Q1 43.70 284.57 12435.56 4850.13 882.2 4270.9 18.2% 88.1%

1951Q2 44.03 321.00 14134.70 6549.27 1102.1 5907.8 16.8% 90.2%

1951Q3 43.77 356.37 15596.98 8011.55 1128.5 7419.9 14.1% 92.6%

1951Q4 43.70 389.27 17010.95 9425.52 1206.7 8846.3 12.8% 93.9%

1952Q1 43.13 432.00 18633.60 11048.17 1094.4 10574.9 9.9% 95.7%

1952Q2 42.50 461.07 19595.33 12009.90 876.0 11654.9 7.3% 97.0%

1952Q3 42.83 494.30 21172.52 13587.08 1103.9 13169.8 8.1% 96.9%

1952Q4 43.33 534.37 23155.89 15570.46 1460.6 15059.8 9.4% 96.7%

1953Q1 42.87 569.43 24409.71 16824.28 1290.7 16400.8 7.7% 97.5%

Notice that the dynamic of Total hours, Ht is dominated by the extensive margin.

Therefore, using total hours would overshadow the early change in hours-per-worker,

which is a clear signal that contractors were already responding to the shock in the third
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quarter of 1950.

Delay in the FED’s Defense Industrial Production Index Notice that the Board of Gov-

ernors of Federal Reserve System constructs a monthly real index of industrial production

of manufacturing equipment in defense industries.31

The Fed makes clear that such defense production index is mainly obtained from

BLS data on production-hours (i.e., total hours). Hours are then used to infer output.

However, we have just seen that the dynamics of total hours worked are delayed relative to

average hours worked. In fact, we now show that hours-per-worker in the Aircraft industry

leads defense production as measured by the Fed.

In particular, we study the lead-lag correlation map between each labor margin and

defense procurement obligations, production, and spending. Figure 2.12 plots the results.

31Data is available from 1947 to present at monthly and quarterly frequency, both seasonally adjusted and
not. It can be downloaded at this link. Detailed information on the Real Index of Industrial Production of
Manufacturing Equipment in Defense sector is available at this link. In particular, the underlying industries
used for the construction of the series are discussed in these two tables: (i) market structure (Equipment); (ii)
Industry Group (defense and space).
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Figure 2.12: Lead-Lag Correlation Graph - Defense Industrial Production

Notes: Defense procurement spending is constructed as discussed in the paper and therefore tracks payments to contractors (sample
from 1947Q1). Defense procurement obligations come from the original series from Business Condition Digest, discussed in Appendix
2.10.2 and track new contract awards (monthly data from 1951M1 to 1988M11). Defense Production is the monthly seasonally adjusted
index constructed by the Fed (data available from 1947M1). Hours and employment data come from the BLS discontinued data series
on production workers data (available from 1939M1 to 2003M12).

Firstly, looking at the first row, average hours of production workers in the Aircraft

industry (intensive margin) appear to: (i) co-move with obligations, (ii) lead industrial

output by 8 months (2 quarters), and (iii) lead payments by 4 quarters.

From the second row, we notice that the number of production workers (extensive

margin) appear to: (i) lag behind obligations (the delay is about 3 quarters), (ii) co-move

with the production index and (iii) co-move with payments.

Finally, the third row shows that total hours of production workers co-move with

industrial production as measured by the Fed. This confirms the fact that the Federal

Reserve adopts total hours to construct the defense production variable. Moreover, the

maps of total hours and employment are basically identical, confirming our previous

finding that the dynamics of employment drive movements in total hours.

To summarize, we show that the Fed measures defense production using total hours

of production workers. However, the dynamics of total hours is dominated by employment,
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which is a delayed measure of production and overlooks the ability of producers to ramp-up

production by using more intensively their input of production (i.e., capital utilization and

average hours worked). Specifically, the Fed’s measure lags behind defense procurement

obligations but co-moves with spending. This confirms that the Fed’s production index

is subject to the same delays which characterize employment. In light of this, we believe

that using average hours of production workers in the Aircraft industry is best suited for

capturing real-time changes in defense production.

2.10 Details on Defense Procurement in the Data

In this section, we outline the details about measurement of defense procurement

spending.

Section 2.10.1 clarifies the accounting origin in the NIPA of outlays which refer to

the purchase of goods. Section 2.10.2 shows how we calculate the 2 to 3 quarters delay

between defense procurement obligations and spending. Section 2.10.3 uses contract level

data from the 2000 to rationalize the existence of a time delay and address the issue of

partial delivery payments. Section 2.10.4 illustrates how we construct the quarterly time

series of defense procurement obligations. Section 2.10.5 uses data from the 2000 on

contracts’ opportunities (i.e., contract level solicitations) to show that it is unlikely for

contracts awards to be anticipated by more than one quarter.

2.10.1 Accounting Origin of Procurement in the NIPA

In this section, we provide further details on the accounting origin of public

procurement contracts in the NIPA tables. Figure 2.13 summarizes the accounting of G,

according to Chapter 9 of Bea (2017), which explains how the NIPA record all the entries

of G. It highlights in red the two entries which contain public procurement spending: (i)

Intermediate Goods and Services and (ii) Investment in Fixed Assets.
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Figure 2.13: Accounting of G - Summary

Notes: CFC means “Cost of Fixed Capital” and measures depreciation of government assets. PCE means Personal Consumption
Expenditure, the NIPA measure of Consumption which absorbs reduced charge services from the government (e.g. tuition fees from
public universities). Own Account Investment is own resources reinvested in the public capital stock.

First of all, notice that G is made of two components, consumption and investments:

G = Government Consumption Expenditure︸ ︷︷ ︸
GC

+Government Gross Investments︸ ︷︷ ︸
GI

Government Consumption Expenditure Government consumption originates from

the gross output of the government after deducting (i) Sales to Other Sectors and (ii)

Own-Account Investments:

GC = Compensations+CFC+ Intermediates and Services Purchased︸ ︷︷ ︸
Gross Output of General Government

−...

−Own Account Investments−Sales to Others

When a general government entity (e.g., DoD) decides to purchase goods and/or services,

they are mainly accounted as Intermediates, which eventually end up in G as government

consumption.
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Government Gross Investments The government also makes three types of investments.

Firstly, the General Government makes Own-Account-Investments, which are deducted

from the gross output of general government, in order to account them as investments.

Secondly, both the General Government and Government Enterprises make investments in

fixed assets. Investment in Fixed Assets contain other purchases from the private sector.

Example 2.10.1 (Purchasing a Missile). To clarify this point, consider the case of the

government purchasing a new set of guided missiles:

1. The missile is accounted as Equipment in the Federal Defense category of Change

in Government Fixed Assets and therefore contributes to G as part of Government

Gross Investments.

2. Installation, Maintenance, Quality Control and other services related to the Missile

are accounted as Intermediate Goods and Services Purchased (input of production).

3. The missiles and the related services are used to produce a non-market output of

production, namely, national defense.

The production of the missile shows up in business inventories as long as the contractor

supplying the missile delivers it to the government. Once delivered, inventories decrease

and government investment increase. Notice that the reduction in inventories and the

corresponding increase in G is a zero-sum game which does not increase GDP (recall that

GDP in the US is constructed as the sum of final demand). GDP increases while production

takes place and is recorded as inventories. In absence of time-to-build, inventories do

not increase and the purchase of the item by the government directly shows up in G.

For instance, this is the case of the Installation, Maintenance, Quality Control and other

services related to the missile purchased by the Government.

Figure 2.14 provides an example of official accounting table of G, namely NIPA

Table 3.10.5A, taken from Bea (2017).

Finally, to clarify the timing, we provide a visual representation of the process in

Figure 2.15.
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Figure 2.14: NIPA Table 3.10.5A - Example

Figure 2.15: Timeline of Procurement Contracts

Notes: The procurement timeline follows information from the Federal Acquisition Regulation (FAR) and the BEA’s Concepts and
Methods of NIPA.

2.10.2 Time Mismatch Between Obligations and Payments

In Section 2.10.2, we show how we construct a proxy for defense procurement

spending using data from the NIPA. We now show how we construct the defense procure-

ment obligation proxy. Recall that obligations arise when the DoD awards new contracts

while spending reflect government outlays, that is, payment to contractors. We observe

obligations through two data sources, discussed below.

Business Condition Digest The periodical Business Conditions Digest, available on

Fraser at this link, provided Business Cycle Indicators, among which a list of Defense

Indicators. The original source of the data was the Department of Defense, Office of the
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Assistant Secretary of Defense (seasonal adjustment implemented by BEA). In particular,

we use Series 525, “Defense Prime Contracts Awards”. This series was firstly collected by

Valerie Ramey for her papers: Ramey (1989) and Ramey (1991). We are grateful to her for

providing the data. The periodical was issued monthly from October 1961 until March

1990. However data is available from January 1951 to November 1988.

Business Condition Digest was discontinued in March 1990, and data on prime

contracts is no longer recorded starting December 1988 (all year 1989 is missing). Most

business indicators on Business Condition Digest were moved to another monthly peri-

odical, namely the Survey of Current Business. Prime award contracts (series 525) was

preserved and moved to Appendix C on Business Cycle Indicators (section 2.4: other

important economic measures/government activities). Data is available in the form of

scanned versions of the Survey of Current Business at this link. For some reason, data

starting from 1991 does report values of prime contract awards for months in the fourth

quarter (Q4) of every year. We believe this is a systematic omission, which results in

less reliable data for this time period. Finally, due to reorganization of resources at the

BEA, the Business Cycle Indicators section was discontinued, and prime award contracts

were no longer disclosed to public, following the joint November-December 1995 issue.

Therefore data is not available after this date.

To summarize, we obtain reliable monthly data on prime contract awards from

January 1951 to November 1988. We plot defense prime contract awards versus defense

procurement spending in the top-left panel of Figure 5 of the paper. Notice that in order

to match the quarterly frequency of procurement spending, obligation data is aggregated

by quarters. Moreover, since NIPA data are annualized (their quarterly averages return

their yearly values), we do the same for obligation data to allow for a closer comparison

between the two series.

We observe from the graph that obligations lead spending. Notice that obligation

data tends to be more noisy than spending data. The main reason for this is that large

contracts are often awarded and then terminated a few months later for convenience, or
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due to litigation with a losing offeror (this is also highlighted in Auerbach et al. (2020)).

Moreover, obligations are more lumpy than payments which get smoothed over the duration

of a contract. In order to account for this, we use a simple MA smoother (red line in the

graph). We then provide a quantitative assessment of the delay by looking at the lead-lag

correlation map between the growth rates of smoothed obligations and the growth rates of

spending (see top-right panel).32

Overall, we find a positive correlation between the two series which increases when

obligations are delayed (top-right quadrant of the lead-lag correlation map). In particular,

correlation spikes when obligations are delayed by 2, 5 and 8 quarters. Results are robust to

a different approach which looks at the lead-lag correlation between year-to-year quarterly

changes (∇4 xt = (1−L4)xt = xt − xt−4) of original -i.e., not smoothed - obligations and

spending. In this case, the spikes happen at 2 and 5 quarters.

Federal Procurement Data System Next Generation On September 26th 2006, the

Federal Funding and Accountability Act is passed by congress as a first step towards

a more transparent procurement system, which allows full disclosure of information

involving federal contracts. The transparency effort by FFATA culminates in 2019 with

the opening of a public website, USASpending.gov, which discloses information on all

federal procurement contracts.33 Data from USASPending.gov is pulled from FPDS-NG,

the Federal Procurement Data System Next Generation, which actually includes the whole

universe of procurement contracts. FPDS is the system used by government contracting

officers to officially input data on awarded contracts in the government-wide system. Data

from FPDS can be downloaded from USASpending.gov. The data spans 2000Q4 to the

present with a caveat: contract data awarded before the beginning of the construction of the

database could have been lost or not recorded. We collect data on all defense procurement

contracts on FPDS between 2000Q4-2020Q3.

We again compare obligations and spending in Figure 2.16. The top-right panel

32We look at growth rates (∆1 xt = (1−L)1xt = xt − xt−1) to cope with the non-stationarity of the series.
33More information on the history of USASpending.gov can be found here.
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plots again the lead-lag correlation between the growth rates of (smoothed) obligations

and the growth rates of spending. The highest correlation is recorded when obligations

are delayed by 1 quarter. Once again, the results are robust to looking at the lead-lag

correlation of year-to-year quarterly changes between original obligations and spending.

In this case, the peak occurs from 0 to 2 quarters.

Figure 2.16: Accounting Mismatch - January 2000 onward

Notes: Figure 2.16’s notes: the FPDS measure of obligation (blue line) is constructed by: (i) summing the daily data to obtain quarterly
data; (ii) convert to annual units using NIPA’s procedure; (iii) seasonally adjust data data using Brockwell and Davis (1991)’s method
(the Matlab code can be found here.

Before the signing of the FFATA in 2006, obligations seem under-reported relative

to spending, thus inducing a downward bias in estimates of the accounting time-mismatch.

We have two possible explanations for this counter-intuitive result, either this is a con-

sequence of missing contract modifications awarded before the introduction of FPDS,

or those modifications could have been classified before FFATA made most of contracts

available to the public. In fact, FPDS-obligation data catches up and starts leading spending

after the signing of the FFATA. Moreover, we show in Figure 2.17 that the share of large

contracts (top 1%, 5% and 10%) out of all procurement spending stabilizes after 2006,

indicating that large classified contracts are not showing up in FPDS.
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We take this into account and we repeat the analysis only on those quarters follow-

ing the signing of the FFATA (bottom panel of Figure 2.16). We observe a single clear

spike in the lead-lag correlation, which indicates that obligations are delayed by 3 quarters

relative to payments.34

Summary of Time Mismatch We summarize the time delay between obligations and

spending in Table 2.4

Table 2.4: Summary of Time Mismatch Between Spending and Obligations

Period Data Source
Correlation Spike Delay (Quarters)
∆1 ∇4

1951M1 to 1988M11 BCD 2-5 2-5
2000M10 to 2020M9 FPDS 1 2
2006M1 to 2020M9 FPDS 3 -

These results suggest that the accounting delay between beginning of production

(award date) and the first payment (outlay) is on average between 2 to 3 quarters. Notice

also that the time delay seems to shorten over time, when we use FPDS data.

Overall, our results are consistent with anecdotal evidence that government pay-

ments happen once every 180 days.35

2.10.3 Rationalizing the Time Mismatch

In this section, we rationalize the existence of an aggregate time-mismatch between

defense procurement obligations and spending. In particular, we provide both theoretical

and empirical micro-level evidence of the time mismatch.

Duration of Defense Procurement Contracts Firstly, a necessary condition for the

existence of an accounting mismatch is the long duration of contracts. If contracts were

34The peculiar non-trending sinusoidal-wave shape of the data referring this period allows us to directly
look at the correlation between the two series in levels. The super-positioning of waves which happen when
we shift one series back and forth in time, allows to observe a single clear spike which refers to the exact
period when the two series overlap. The correlation spikes when obligations are delayed by 3 quarters.

35We confirm this timeline in discussions with several federal procurement contractors.
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less than 90 days in duration, then payments would be processed in the same quarter as the

award date.

We use FPDS data pulled from USASpending.gov from 2000Q4 to 2020Q3 to

construct the distribution of duration of defense government contracts. In this context,

contracts have two main types: (i) single transaction and (ii) multiple transaction.36 We

calculate the duration of a single transaction contract from the award date to the end of

work. The award date almost always indicates the start of work associated with a contract.

To calculate the duration of multiple transaction contracts, we take the oldest contract

modification end date and subtract from it the “new-action” award date.37 Table 2.5

shows contract durations without distinguishing between single and multiple transaction

contracts.

Table 2.5: (Log)Duration of Defense Contracts

Stats
Unweighted Weighted (by Obligation)

Duration (days) Log-Duration Duration (days) Log-Duration

Percentiles

1% 0 0 0 0
5% 0 0 46 3.85

10% 0 0 193 5.27
25% 3 1.39 514 6.24
50% 20 3.04 1519 7.33
75% 126 4.84 2962 7.99
90% 377 5.93 4844 8.49
95% 794 6.68 5464 8.61
99% 2584 7.86 6887 8.84

Mean 173.03 3.09 1988.02 6.94
Std. 485.32 2.14 1746.81 1.57

Min. 0.00 0 0.00 0
Max. 7300.00 8.89 7300.00 8.89

Table 2.5: defense contracts are identified by reporting DoD as funding/awarding agency. Data
is taken from FPDS, all defense contracts from 2000Q1 to 2020Q1. Sample is restricted to those
contracts for which the entire history of transactions (from the first new contract to the last
modification) are available. Number of contracts in the sample is about 17 millions. Almost
5 thousands contracts with duration more than 20 years (7,300 days) are eliminated from the
sample.

36Transactions which refer to the same contracts are pooled together through a unique contract identifier
field in FPDS.

37This is possible because FPDS reports both the beginning and the end of the PoP (Period of Performance).
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The median contract duration is 20 days and 90% of contracts have duration less

than one year. These results are in line with the findings of Cox et al. (2021) and suggest

that contracts have a short duration.38 However, this measure does not take into account

the size of contracts, as larger contracts might have longer duration. The right columns

of Table 2.5 report the distribution of the contracts’ (log)duration, weighted by the total

obligation amount. The weighted distribution can be interpreted as the duration distribution

of a $1 of spending in defense procurement. The following remark characterizes the mean

and median of this distribution.

Remark [Median/Mean Duration of $1] The median duration of $1 of defense procure-

ment spending is 4.16 years. The mean duration of $1 of defense procurement spending is

5.44 years.

Notice that after weighting, the shape of the distribution drastically changes. This

suggests that procurement spending is characterized by a small number of large and long-

duration contracts. We confirm this in Figure 2.17, which plots the share of total spending

of the largest 1%, 5% and 10% of contracts. We find that the largest 10% of contracts

account for 95% of total spending, on average. Similarly, the top 1% of contracts accounts

for roughly 80% of total spending on average.

To summarize the results of this section: (i) large contracts make the bulk of defense

spending and (ii) large contracts have long duration.

Partial Delivery Payments Now, we want to rationalize the observed aggregate time

delay. We do so by assuming there exists a “representative large contract” which follows a

specific delayed payment schedule consistent with partial delivery payments.

Firstly, consider an example of a top 5% defense contract from FPDS. For in-

stance, on December 22nd, 2015, the Department of Defense (DoD) awards a new “multi-

transactions” contract to L-3 Communications Corporation.39 The contract has a duration

38They use a sample from 2001 to 2018 and find a median duration of defense contracts of 26 days and
90% of them have duration less than a year.

39See contract here.
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Figure 2.17: Large Contracts Share of Total Procurement Spending

of two years and involves the reparation and maintenance of some aircraft components

and accessories.40 At the time of obligation, this contract has several components, denoted

child contracts, and 24 contract modifications. Each modification represents a new child

contract with its own duration.41

In the top panel of Figure 2.18, we show on the left axis the amount of dollars

obligated every quarter by this contract, and on the right axis the number of (child) contracts

signed every quarter. The bottom panel shows the corresponding payment schedule which

assumes that payments are disbursed once every 180 days, by uniformly spreading the

initial amount of obligated funds over a contract duration.42

For instance, the first new child contract, signed in December 2015, lasts 375 days

and obligates almost $3 million by the DoD. The payment schedule assumes that the

contractors start producing the parts to be replaced immediately with partial delivery and

partial reimbursement after 180 days, Therefore, the contractor is paid $1.5 million in June

40Duration is measured as the number of days between the Period of Performance (PoP) end date and the
PoP start date.

41Modifications can have two types: (i) uni-lateral (e.g., administrative actions which obligate new funds
for the specific contract) or (ii) bi-lateral (e.g., change to the original orders or additional work).

42This assumption is also made in Auerbach et al. (2020).
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2016. Finally, in December 2016, the period of performance ends and the DoD pays to the

contractor the remaining half of obligated funds.

Figure 2.18: Example of a Contract’s Obligation and Payment Schedule

Notice that payments look like a delayed version of obligations for this particular

contract. The choice of 180 days delay between payments is consistent with our estimates

for the average time mismatch between defense obligations and payments found earlier.

The assumption of uniform production and payments is standard and consistent with the

work of Auerbach et al. (2020). In general, contractors are often incentivized to distribute

production associated with an obligation throughout the whole duration of the contract.43

In the data, cost-overruns and delays are common (see e.g., Gonzalez-Lira et al. (2021)).

Therefore, consider a representative contract with a structure similar to the one just

analyzed: few new child contracts followed by several modifications. Overall, the contract

lasts 48 months - consistent with the median weighted duration of defense contracts (see

Table 2.5) and is characterized by payments disbursed once every 6 months (for a total

of 8 payments). If we denote by Pt the total payments to contractors at time t and by

Ot the amount of obligations, it is easy to show that the mapping between spending and
43Consider a simple firm optimization problem with convex adjustment costs.
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obligations is given by the following equation:

Pt =
1
8
·

8

∑
j=1

Ot−6· j. (2.4)

We take the obligation data from BCD and feed it into Equation (2.4) to construct a time

series of simulated payments. The left panel of Figure 2.19 plots BCD defense obligations

data and the so constructed payments.

Figure 2.19: BCD Obligations and Simulated Payments

Despite the simplicity of the payments data generating process given by Equation

(2.4), the simulated payments data approximate quite well the actual ones shown in Figure

5 of the paper. Similarly, the right panel shows the lead-lag correlation map between the

growth rates of (smoothed) obligations and simulated payments. Notice that the results are

very similar to the ones obtained using real spending data.44

44We highlight that by allowing time varying number of payments (here 8) and payments delays (here
6 months), we can improve by far the approximation to the actual data. Here, we preferred to keep things
simple in the interest of brevity and clarity.
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2.10.4 Construction of Quarterly Defense Obligation

We show here how we construct the time series of defense procurement obligations.

We face two main challenges: (i) we have obligations data only from 1951 to 1989

and from 2000 onward; (ii) obligations are very lumpy because contracts also get cancelled

and we want to focus on obligations which turn into actual production.

i. We turn BCD and FPDS monthly data into quarterly annualized data (sum monthly

observations within a quarter and multiply by 4).

ii. We apply the standard Brockwell and Davis (1991) filter to seasonally adjust the data.

iii. We construct a time trend which takes value of 1 in 1947Q1. Denote it by t.

iv. We predict obligations using 4 leads and lags and contemporaneous defense procure-

ment spending, as well as time trends t and t2.

v. We construct obligations from 1951Q1 to 1988Q4 using the predicted values from

the previous regression. We use the estimated coefficients and the values of defense

procurement spending from 1947 to 1951 to extrapolate obligations for those years.

vi. We predict obligations from year 2006 onward (FFATA introduction) in the same way.

We use the predicted values to be our new series of obligations for those years. Since

defense procurement (smoothed) obligations and spending overlap from 2000 to 2006,

we use actual defense procurement spending for those years.

vii. From 1989 to 2000 we use defense procurement spending to proxy obligations which

turn into actual production.

Figure 2.20 plots the so constructed defense procurement obligations variable

(pink dash line) along with defense procurement spending (blue line) and original defense

procurement obligations (dark solid line).
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Figure 2.20: Quarterly Defense Obligation and Spending

2.10.5 What Goes On Before Contract Awards?

Although there is still uncertainty about the contract award when a pre-award

notice is posted, firms might still take action in anticipation of the award. This might

occur if a firm wants to become more competitive in the bidding process or predicts a

contract win with a high probability. In addition, some pre-award notices justify the lack

of competition in a sole-sourced contract proposal. In this case, the contractor might even

predict a contract award with full certainty.

We argue from the data that any anticipatory behavior is likely to occur at a

frequency higher than the frequency of aggregate analysis in this work. In other words,

almost all information about contract opportunities is revealed to contractors within the

quarter of the contract award. We summarize this finding by notice type in Table 2.6 and

plot the distribution of pre-award notice lags in Figure 2.21.
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Table 2.6: Average Lag Between Pre-Award Notices and Award Date

Notice Type Avg Lag in Days Proportion of Notices

Justification / Fair Opportunity 87 1.2%

Other 54 62.5%

Special Notice 41 2.1%

Pre-Solicitation 28 14.6%

Sources Sought 21 4.1%

Solicitation/Contract Solicitation 16 15.5%

TOTAL 43

Notes: Based on matched notices between FPDS and Contract Opportunities.

Figure 2.21: Empirical CDF of (Weighted) Solicitation Lag

Notes: Weighted duration between Contract Solicitation and Award dates measured in days. Dark dashed line represents 1 quarter (90
days). The Empirical CDF is estimated using Gaussian Kernel Density.
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Detailed Description of Solicitation Process: Although public procurement contracts

are awarded at a highly decentralized level (i.e., by over 69 federal agencies, 209 sub-

agencies), all contracting officers are required to abide by the guidelines proposed in the

Federal Acquisition Regulation (FAR). The FAR is a set of principles and procedures

intended to organize and guide the procurement process across all federal agencies. In this

section, we focus on the publicizing requirements associated with procurement contracts,

depicted in Figure 2.22.

Figure 2.22: Timeline of the Procurement Process

Notes: Notice prior to contract award step occur on average within the quarter. Source: beta.sam.gov daily files.

In particular, FAR Part 5 (Publicizing Contract Actions) requires that contractors

publicize contract opportunities with the goal of increasing competition, broadening in-

dustry participation, and assisting small businesses in obtaining contracts. Since October

1, 2001, contract actions with an expected value of over $25,000 must be publicized in

an online and easy-to-access government platform, which we refer to as Contract Oppor-

tunities. Contract actions below the threshold might still be posted to increase visibility.

On the other hand, FAR allows for exemptions to the requirement above the threshold
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when the posting might “compromise national security” or when the posting is “not in

the government’s interest”. The result is that many contracts which are awarded are never

solicited. When the regulation applies, Contract Opportunity notices are posted publicly at

beta.sam.gov and include award notices such as solicitations, pre-solicitations, or other

pre-award and post-award actions.

We describe the types of contract notices below.45

Special Notice Agencies use Special Notices to announce important pre-award events

such as business fairs, long-run procurement forecasts, or pre-award conferences and

meetings. Special Notices might also refer to “Requests for Information” (RFI) or draft

solicitations.

Sources Sought Agencies post Sources Sought Notices in order to seek possible sources

for a project. As discussed in FAR 7.3, the Sources Sought notice is not a solicitation for

work or a request for proposal. Agencies typically use Sources Sought notices to collect

industry feedback on key contracting strategy decisions and to perform market research on

firm capabilities.

Pre-Solicitation Agencies post a pre-solicitation to notify vendors that a solicitation may

follow. Potential vendors might then express interest in the contract by adding themselves

to the Interested Vendors List. Government agencies use pre-solicitations to determine the

number of qualified vendors to perform the desired work. Contracting officers can also use

pre-solicitations to gather information on interested suppliers and determine if a set-aside

for a small business might be applicable.

45Gonzalez-Lira et al. (2021) also provides a useful description and analysis of the publicizing requirements
for Federal Procurement and the effects of information diffusion via public notices. We thank Andres
Gonzales-Lira for directing us to the General Services Administration Technical Documentation for the
FedBizOpps (FBO) website, whose information is now migrated to Contract Opportunities.

141

beta.sam.gov


Intent to Bundle Requirements Agencies post “Intent to Bundle Requirements (DoD-

Funded)” (ITB) whenever awarding actions are funded solely by the DoD. ITB supports the

requirements in Section 820 of the Fiscal Year (FY) 2010 National Defense Authorization

Act (NDAA) for contracting officers to post a notice of intent to use contract bundling

procedures 30 days prior to releasing a solicitation or placing an order - if a solicitation is

not required.

Solicitation Agencies post a solicitation to clearly define government requirements

for a potential contract so that businesses can submit competitive bids. A “Request for

Proposal” (RFP) is the most common type of solicitation used by federal agencies. The

solicitation also sets conditions and requirements for contractor proposals and includes the

government’s plan for evaluating submissions for potential award.

Combined Synopsis/Solicitation Agencies post a combined synopsis/solicitation when

a contract is open for bids from eligible vendors. The Synopsis/Solicitation includes

specifications for the product or service requested and a due date for the proposal, as well

as the bidding procedures associated with the solicitation.

Award Notice Agencies post an award notice when they award a contract in response

to a solicitation. Federal agencies may choose to upload a notice of the award to make

aware other interested vendors of the winning bid. Note that the requirement guidelines

for posting the award notice vary based on the agency and the solicitation.

Justification Agencies are required to post a justification in order to obtain approval

to award a contract without posting a solicitation as required by FAR 41 U.S.C. 253(c)

and 10 U.S.C. 2304(c). Under certain conditions, agencies are authorized for contracting

without full and open competition. The Department of Defense, Coast Guard, and National

Aeronautics and Space Administration are subject to 10 U.S.C. 2304(c). Other executive

agencies are subject to 41 U.S.C. 253(c). Contracting without providing for full and open
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competition or full and open competition after exclusion of sources is a violation, unless

permitted by one of the exceptions in FAR 6.302.

Sale of Surplus Property Agencies post a sale of surplus property notice when they

wish to sell federal real estate properties for public use. These properties are typically made

available for public use to state and local governments, regional agencies, or nonprofit

organizations to state and local governments. Public uses for properties are those that are

accessible to and can be shared by all members of a community, and include community

centers, schools and colleges, parks, municipal buildings and many more.
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2.11 Time-to-build or Production Smoothing?

We decompose the early response of inventories to a defense news shock into

time-to-build and production smoothing. We already have contract level evidence of a long

time-to-build, but at the onset of a military build-up, contractors should also presumably

change their expectations about future government demand. Even if contractors lack

resources to forecast government demand, federal agencies are required by the FAR to

provide procurement forecasts each quarter.46 If contractors anticipate winning future

contracts, they might decide to increase production today to smooth convex adjustment

costs or reduce future delivery times. We do not take a stance on the exact mechanism

here. We consider a recent example of this type of behavior.

Example 2.11.1 (Lockheed Martin in 2022). In the context of an ongoing military conflict

between Russia and Ukraine, new military tests in North Korea, and escalating tension in

relationship between China and Taiwan, US-based contractors have modified expectations

about future defense spending. In particular, the largest American defense contractor,

Lockheed Martin, decided in October 2022 to increase production of HIMARS (High

Mobility Artillery Rocket System). When asked about this decision, CEO Jim Taiclet

responded as follows:47

“The company has met with its long lead supply chain and spent $65 million — which will

eventually be paid back by the US government — to fund parts in advance, shortening the

time needed to manufacture the rocket system. That was without a contract or any other

memo or whatnot back from the government. We just went ahead and did that because we

expected it to happen. So those parts are already being manufactured now”.

In order to measure production smoothing, we first provide a formal definition.

Definition 2.11.1 (Production Smoothing of Defense Industries). We define production

46See e.g., Agency Recurring Procurement Forecasts.
47Find the associated article on Breaking Defense. here.
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smoothing ∆(h) as the effect of a defense news shock on inventories, orthogonal to

shocks to newly awarded contracts (i.e., defense procurement obligations). In particular,

production smoothing is the impulse response of inventories to a defense news shock

conditional on zero shocks to defense procurement obligations (i.e. orthogonalized IRF):

∆(h) = Et [Invtt+h|Zt = 1,εO
t = 0]−Et [Invtt+h|Zt = 0,εO

t = 0], (2.5)

where Invtt is changes in aggregate inventories as from the NIPA, Zt is a defense news

shock, and εO
t is a shock to defense procurement obligations.

We estimate production smoothing using the following tri-variate VAR using quarterly

data from 1948Q1 to 2015Q4:


1 0 0

−α 1 0

−βNews −βOblg 1

 ·


Zt

Ot

Invtt


︸ ︷︷ ︸

XXX3
t

= BBB3(L)
3×3

·XXX3
t + εεε3,t

where B3(L) is a polynomial in the lag operator. The parameter α captures the contempo-

raneous effect of a defense news shock on obligations, while βNews and βOblg capture the

contemporaneous effect of shocks to news and obligations on inventories.

By including our aggregate series for defense procurement obligations Ot , we are

able to calculate the effect of defense news shocks on inventories which is independent of

the effect of shocks to newly awarded contracts. Figure 2.23 shows the impulse response

function to a defense news shock estimated using the above tri-variate VAR as well as the

total response of inventories estimated in a bi-variate VAR without obligations.
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Figure 2.23: Orthogonalized VAR Impulse Response Functions

Notes: Variables are divided by potential GDP and include a linear time trend. Sample goes from 1948Q1 to 2015Q4. Confidence
Bands are 68% and 90%. Values are rescaled by the peak response of Inventories to a defense news shock from the bivariate VAR
which excludes defense procurement obligations.

The top-left panel of Figure 2.23 shows the positive response of defense procure-

ment obligations to a defense news shock. This indicates that new contracts start being

awarded as soon as a defense news shock occurs. This confounds the effects of news (i.e.,

anticipation) with the effects of newly awarded contracts which show up in G with delay.

In the bottom-left panel of the figure, we show the effect of shock to obligations εO
t , on

inventories, orthogonal to defense news. The effect is positive and significant. Additionally,

the top-right panel reports production smoothing, or the response of inventories to a defense

news shock which is orthogonal to newly awarded contracts. The positive and significant

estimates of ∆(h) at horizons 1 and 3 suggest that production smoothing plays a role in the

response of inventories. The bottom-right panel shows the IRF of inventories to a defense

news shock without including obligations in the VAR, i.e. bivariate VAR.

For interpretability, we rescale the IRFs by the peak response of inventories to

a defense news shock in the bivariate VAR occurring at horizon 1. Since the horizon 1

response of inventories to a defense news shock in the tri-variate VAR is slightly more

than 0.4 it means that roughly 40% of the response of inventories at horizon 1 comes
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from production smoothing, while the residual part (gap between bottom-right and top-

right responses) originates from the effects of newly awarded contracts, i.e. time-to-build

production. Intuitively, this can be seen by shrinking the tri-variate VAR into a bivariate

one by plugging obligations into the equation of inventories:

 1 0

−
(
βNews +α ·βOblg

)
1

 ·
 Zt

Invtt


︸ ︷︷ ︸

XXX2
t

= BBB2(L)
2×2

·XXX2
t + εεε2,t

Notice that the impact effect of a defense news shock on inventories is the combination of

production smoothing (βNews) and the effect of a shock to new contracts on inventories

triggered by the news (α ·βOblg). Basically, without controlling for new contracts, defense

news shock capture both production smoothing and the time-to-build, while augmenting

the VAR with new contracts allows us to tell-apart the two effects.
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2.12 Robustness - Section IV in the paper

Firstly, we construct an index of cumulative excess returns similar to the Top3

index constructed in Fisher and Peters (2010). The variable is shown in Figure 2.24 along

with red lines denoting the Ramey-Shapiro episodes.

Figure 2.24: Top3 Defense Contractors Cumulative Excess Stock Returns Index

Notes: Red solid lines are the Ramey-Shapiro episodes.

Similarly to Fisher and Peters (2010), the Top3 index onlr responds to the Vietnam

war and 9/11, but not the Carter-Reagan military build-up nor the Korean war.

We construct shocks to this variable by ordering it first in the same VAR used in

Section I in the paper. Furthermore, we complement the Granger Causality test in the

paper by using these new shocks. Results are shown in table below.
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Table 2.7: Predictability of Recursive Shocks via Obligations

Predicted Predictor F Pvalue Korea

Recursive Shocks Top3 0.26 97.84% Yes

Obligation Shocks Top3 1.25 26.81% Yes

Defense News Shocks Top3 0.42 90.67% Yes

Recursive Shocks Top3 0.63 74.93% No

Obligation Shocks Top3 0.88 53.53% No

Defense News Shocks Top3 0.62 76.22% No

Top3 Recursive Shocks 1.00 43.57% Yes

Top3 Obligation Shocks 0.49 86.54% Yes

Top3 Defense News Shocks 0.89 52.84% Yes

Top3 Recursive Shocks 0.94 48.09% No

Top3 Obligation Shocks 0.39 92.70% No

Top3 Defense News Shocks 0.46 88.44% No

Notes: Granger Causality test is a Wald test on the 8 lags of the predictor while controlling for 4

lags of the predicted variable.

It is clear from Table 2.7 that we find no significant predictability in either direction

for the Top3 index.

Secondly, we replicate the bottom panel of Figure 4 in the paper, by excluding the

Korean war from the sample. Results are shown in Figure 2.25.
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Figure 2.25: Cumulative Fiscal Multipliers and Multiplier-Gap (Robustness)

Notes: Sample goes from 1954Q1 to 2015Q4. All the rest is identical to Figure 7 in the Paper.
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2.13 Comparison of Multipliers with Brunet (2020)

Finally, we estimate multipliers using our new quarterly measure of defense pro-

curement obligations. We compare our results to the recent estimates from Brunet (2020),

who also uses a measure of government spending which is better aligned with the timing

of obligated funds. In particular, Brunet (2020) estimates multipliers by regressing cumu-

lative changes in GDP on cumulative changes of Budget Authority, which tracks defense

spending when it is authorized, before funds are dispersed from the Treasury:

H

∑
k=0

GDPt+h −GDPt−1

GDPt−1
= M (H) ·

H

∑
k=0

BAt+h −BAt−1

GDPt−1
+ lags+ εt+h

where BAt is Budget Authority in year t. We report these estimates in Table 2.8 for two

post WWII samples which either include or do not include the Korean War.

Table 2.8: Multiplier Comparison

Sample Horizon (Years) 0 1 2 3 4

Post WWII Sample

Budget Authority
1.76 1.51 1.30 1.28

(4.08) (2.73) (1.63) (1.29)

Def. Proc. Oblig.
4.84 3.96 1.61 1.27 1.17

(1.71) (3.01) (3.94) (3.18) (2.61)

Post Korean War

Budget Authority
1.83 1.84 1.72 1.67

(4.54) (3.56) (2.25) (1.66)

Def. Proc. Oblig.
1.44 1.7 1.15 1.09 1.14

(2.85) (2.46) (1.99) (2.04) (2.09)

Notes: t-statistics reported in parentheses below the multipliers’ point estimates. Budget Authority samples go from 1948 to 2016 and
from 1955 to 2016 (annual frequency). Samples using defense procurement obligations go from 1948Q1 to 2015Q4 and from 1954Q1
to 2015Q4 (quarterly frequency).

On the other hand, we estimate multipliers as suggested in Ramey (2016), instru-

menting the cumulative change in the NIPA-measured government spending, G, with

151



defense procurement obligations (one step LP-IV).48 We plot our estimates of cumulative

fiscal multipliers in Figure 2.26 for the two sample periods from Brunet (2020).

Figure 2.26: Cumulative Fiscal Multipliers via Shocks to Defense Procurement Obligations

Notes: Standard errors are two-stage-least-squares robust standard errors and bands are the 68% and 90% confidence levels. Dark
horizontal lines referring to the values of zero and one. Data are quarterly.

Notice how in both sample periods, the multipliers are higher at short horizons and

smaller at longer horizons. This is a consequence of anticipation effects: GDP increases

even before G moves.49 We also report the point estimates of the multipliers in Table 2.8

for different years. This is done to facilitate the comparison with the results of Brunet

(2020).

In the top panel of the table, it is clear that analysis on both Post WWII samples

deliver similar results, particularly at the three-year horizon. On the contrary, results

slightly differ from each other when the Korean war is excluded from the sample. In fact,
48Recall that this is equivalent in population to ordering defense procurement obligations first in a VAR.
49When the Korean war is in the sample, anticipation is so strong that the multiplier is infinite until horizon

4.
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our point estimates are smaller than Brunet (2020), even if they both remain above one.

Finally, our multipliers tend to be more statistically significant at longer horizons, which is

likely due to the fact that our analysis is carried out at quarterly frequency rather than an

annual frequency.

Despite minor discrepancies between our results and those of Brunet (2020), our

obligations-based method also delivers point estimates for the multiplier which are greater

than one. Nevertheless, we note three important differences in our methodology, without

taking a stand on the relative effects of each. First of all, defense procurement obligations

is a quarterly variable which captures the whole universe of newly awarded defense

procurement contracts, while Budget Authority is an annual variable which captures

authorizations for defense-spending and is broader than procurement spending. Secondly,

our LP-IV multiplier is interpretable as the ratio of the IRFs of GDP and G following a

shock to defense procurement obligations, and is therefore a spending multiplier. On the

contrary, Brunet (2020) regresses cumulative changes of GDP on cumulative changes of

Budget Authority. Since Budget Authority does not map directly to NIPA defense spending

(i.e., changes in Budget Authority are not necessarily changes in NIPA G), their estimates

cannot be directly interpreted as a spending multiplier. Thirdly, contemporaneous changes

in non-defense spending are not captured in the Budget Authority measure.
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Chapter 3

Deep Learning and Long-Run Risk

Abstract

In dynamic asset pricing, stochastic discount factor (SDF) processes summarize

the relationship between equilibrium asset prices and underlying economic conditions.

SDFs can be factorized into permanent and transitory components, where the permanent

component captures pricing at long payoff horizons. Hansen and Scheinkman (2009) show

that the permanent-transitory decomposition can be cast as the unique solution to a Perron-

Frobenius eigenvalue problem, for which analytic solutions are only available for a limited

array of examples. Moreover, standard numerical approaches are not equipped to handle

this general class of problems due to the curse of dimensionality and lack of well-developed

boundary conditions or parametric restrictions. We develop a novel algorithm for solving

this class of eigenvalue problems in a very general class of asset pricing models without

boundary conditions or parametric assumptions on the eigenfunctions. We demonstrate

the accuracy of the algorithm in the context of several workhorse structural asset-pricing

models, and argue that our approach applies to models which feature a very general class

of Lévy processes in arbitrarily high dimensions.
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3.1 Introduction

Asset prices encode dynamic information about magnitude and duration of ex-

posure to risk and uncertainty in future cash flow growth. To capture these trade-offs

in arbitrage-free markets, dynamic asset pricing models summarize the relationship be-

tween equilibrium asset prices and underlying economic conditions (state variables) using

stochastic processes called stochastic discount factors (SDFs). To study the limiting be-

havior of asset prices as the investment horizon gets very large, Alvarez and Jermann

(2005) and Hansen and Scheinkman (2009) develop a factorization of SDF processes into

permanent and transitory components. The permanent component characterizes prices

over long investment horizons, while the transitory component is related to the return of a

discount bond with (infinitely) long maturity. Our focus is long-run permanent-transitory

components of SDFs in continuous-time asset pricing models.

Alvarez and Jermann (2005) and Bakshi and Chabi-Yo (2012) demonstrate that

both permanent and transitory components of SDFs must be non-trivial in order to match

key features of historical returns data. Moreover, Qin and Linetsky (2017) show that the

permanent-transitory decomposition is a fundamental feature of arbitrage-free asset pricing

models in very general semi-martingale environments. However, quasi-analytical solutions

for the permanent and transitory components are only available for a very limited subset of

examples, which is a challenge to verifying that the long-run predictions of asset pricing

models are consistent with very salient features the data.1 In this work, we develop a

flexible non-parametric numerical approach for computing the long-run components in

very general set of asset pricing models.

Our starting point is the seminal work of Hansen and Scheinkman (2009), who show

that the permanent and transitory components of SDFs can be constructed as the principal

1Christensen (2017) develops a non-parametric empirical framework for estimating the permanent
component of SDF processes from historical data. Such empirical benchmarks can be used to compare
predictions of asset pricing models to estimated properties. Alvarez and Jermann (2005) and Bakshi and
Chabi-Yo (2012) also develop bounds on the various moments of the permanent and transitory components
as a function of asset returns.
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solution to a corresponding Perron-Frobenius eigenvalue problem. The eigenfunction

captures dependence of the price of long-horizon payoffs on the underlying economic state,

while the principal eigenvalue determines the average yield on asymptotically long-horizon

payoffs. In other words, the eigenfunction of the SDF operator fully characterizes the

probability measure relevant for pricing assets of asymptotically long maturity.2 However,

analytic solutions to this eigenvalue problem are rare, and standard numerical approaches

either suffer from the curse of dimensionality or require strict parametric assumptions.

To overcome these limitations, we build on recent developments in the intersection

of computational physics and deep learning (e.g., E and Yu (2017), Han et al. (2020)).

We start by augmenting a time dimension and transforming the stationary eigenvalue

problem into a parabolic partial differential equation (PDE). We conveniently construct the

PDE such that its stationary solutions correspond to eigenpairs of the SDF operator. Our

object of interest is the principal eigenpair, which characterizes its permanent-transitory

components. However, the PDE transformation is still numerically intractable, especially

in high dimensions. We therefore leverage the Feynman-Kac Theorem to map the PDE

to a more tractable stochastic differential equation (SDE) counterpart with the same

stationary solutions. Like the PDE, the SDE process depends on both the eigenvalue and

eigenfunction.

Since the eigenvalue and eigenfunction are unknown to us ex-ante, we initialize

them randomly. We draw from a uniform distribution for the eigenvalue, and from a

flexible class of deep feed-forward neural networks (DNNs) for the eigenfunction.3 We

then optimize both our eigenvalue and neural network approximation of the eigenfunction

via gradient descent, by minimizing a squared error fixed-point loss function which is equal

to zero at stationary solutions of the SDE. We add a penalty to avoid convergence to the

trivial solution. Moreover, since the fixed-point loss function is non-convex, we validate

2See Hansen (2012), Backus et al. (2014), Borovička et al. (2016), Qin and Linetsky (2017) for additional
theoretical results.

3Related research in economics also leverages the flexibility and computational efficiency of deep neural
networks to solve Hamilton-Jacobi-Bellman equations, options pricing problems, and heterogeneous-agent
macroeconomic models (see e.g., Han et al. (2018), Germain et al. (2021), Han et al. (2022)).
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the optimization with different initial conditions to ensure that we are truly converging to

the stationary solution corresponding to the principal eigenpair, which can then be used to

construct the permanent and transitory SDF components.4

When the dimension of the (Markov) state variable is low enough, we might opt

for classic numerical approaches such as finite differences, finite elements, or the spectral

method to approximate the eigensolutions. However, besides the common requirement of

specified boundary conditions, such approaches suffer from the curse of dimensionality as

number of degrees of freedom grows exponentially with the dimension of the problem. We

find that performance of these benchmark deterministic approaches deteriorates in multi-

variate asset pricing models with more than a single state variable. Since the dimension of

the Markov state corresponds to the number of variables required to summarize the state of

the economy, most realistic asset pricing models tend to have at least two dimensions (e.g.,

mean and volatility of aggregate growth rates). To overcome the curse of dimensionality,

our proposed algorithm leverages more tractable stochastic elements. Moreover, to avoid

making parametric assumptions and for robustness to arbitrary high dimensionality, we

leverage flexible neural network approximations of the eigenfunction.5

We demonstrate the accuracy of our approach in the selected set of (low-dimensional)

workhorse structural macro-finance models whose permanent-transitory decomposition has

a known closed form solution. Moreover, according to recent research, these models are a

good starting point for our analysis since they showcase challenges that many standard

asset pricing models have in explaining key features of historical returns data. The first

4Under non-convex loss, we cannot guarantee global convergence to the true solution. However, Hansen
and Scheinkman (2009) and Qin and Linetsky (2016) prove that the principal eigenvalue associated with a
wide class of multiplicative SDFs is strictly positive. As long as the principal eigenvalue of the SDF operator
is bounded away from zero, the true solution is guaranteed to at least be a local minimum. Given the (recent)
advances in computational efficiency of gradient-based optimization (e.g., Kingma and Ba (2017)), we are
able to easily validate the optimization under various perturbations to the algorithm initialization.

5The two alternative stochastic approaches (common in quantum and statistical physics) for solving
high-dimensional eigenvalue problems are variational and diffusion Monte Carlo (see e.g., Ceperley et al.
(1977), Blankenbecler et al. (1981), Zhang et al. (1997), Foulkes et al. (2001), Needs et al. (2009)), but
typically require researchers to specify a parametric form for the solution eigenfunction and/or two-sided
boundary conditions. See Hornik et al. (1989) for one of the earliest proofs of the universal approximation
property of Neural Networks. See Bauer and Kohler (2019) for theoretical and empirical evidence that neural
networks perform well in the high dimensional setting.
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two examples are special cases of the Breeden (1979) model and the Kreps and Porteus

(1978) model with Duffie and Epstein (1992) stochastic differential utility. Backus et al.

(2014) shows that these standard consumption-based models correspond to SDFs which

cannot generate large enough permanent components in line with empirical measurements

without also generating unrealistically large spreads between long- and short-term yields.

Our third example, the Bansal and Yaron (2004) long-run risk model, tries to amplify

long-run risk premia by combining intertemporal preferences and predictable components

in consumption and consumption volatility. We find that this model does not fully resolve

the previous critique.6

Given its flexibility and scalability, our proposed approach is a useful model

selection and analysis tool for addressing these limitations using asset pricing models

which do not have solutions for the long-run risk components. One important set of models

without well-developed permanent-transitory components introduce jump processes in the

underlying state dynamics to help explain key features of the data. For instance, Bansal

and Shaliastovich (2011) propose a model with jumps in asset prices to capture large return

fluctuations observed in the data. Similarly, Shaliastovich and Tauchen (2011) motivate

the importance of incorporating very general Lévy processes with a potentially infinite

number of jumps to explain higher order moments of consumption and dividend growth

rates. Although these new models are able to better capture some important features of the

data, it remains unclear on if jumps can directly resolve the critique raised by Alvarez and

Jermann (2005) and Backus et al. (2014) that asset pricing models undershoot empirically

observed permanent-transitory SDF components. We provide evidence that incorporating

jump processes in the state dynamics amplifies the long-run risk components in the

Breeden (1979) and Kreps and Porteus (1978) models. Building on recent developments

in numerical solutions to PDEs from Gnoatto et al. (2022), we argue that our solution

algorithm can be extended to approximate the permanent-transitory components of asset

6The other issue, pointed out by Bakshi and Chabi-Yo (2012), is that the long-run risk model cannot
replicate the empirically observed positive covariance between the permanent and transitory components of
SDFs.
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pricing models whose underlying state dynamics follow very general Lévy processes,

including processes which feature infinite jumps.

The paper is structured as follows. Section 3.2 introduces eigenvalue problems

in the asset pricing setting. Section 3.3 presents and develops our solution algorithm.

Section 3.4 demonstrates the accuracy of our algorithm in settings with known solutions.

Section 3.5 develops the extension of the algorithm to more general processes. Section 3.6

concludes.

3.2 Long-Run Asset Prices as an Eigenvalue Problem

3.2.1 Setup

Our setting is the continuous-time Markovian environment developed in Hansen and

Scheinkman (2009) (HS henceforth).7 Consider an economy whose state is summarized

by a d-dimensional continuous-time Markov state process (Xt)t≥0 with completed natural

filtration (Ft)t≥0 generated by its history.8 In particular, the process Xt is a vector-valued

diffusion capturing dynamic economic information relevant for valuation, such as aggregate

growth rates or stochastic volatility. Under the no-arbitrage assumptions, there exists a

strictly positive stochastic discount factor (SDF) process (St)t≥0 that is Ft-adapted, and

can price assets with payoffs at time t (i.e., contingent t-claims). In particular, the current

(time zero) price, P0, of a claim with payoff Πt at time t can be written as follows:

P0 = E [StΠt |F0] , (3.1)

7Hansen (2012), and Borovička et al. (2016), Qin and Linetsky (2017) also develop this theoretical
framework.

8More formally, (Xt)t≥0 is a time-homogeneous, strictly stationary, and ergodic Markov process, defined
on probability space (Ω,F ,P), and taking values in X ⊆ Rd .
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where the (Πt)t≥0 is also an Ft-adapted random process, and the expectation operator

E[.] is taken with respect to investor beliefs.9 Note that St must satisfy S0 = 1 under

the no-arbitrage assumption. To price the payoff Πt at intermediate times τ ≤ t, we can

re-index the pricing equation in (3.1) and write:

Pτ = E [St−τΠt |Fτ] . (3.2)

The law of one price guarantees that a date zero claim to the date τ purchase price Pτ is

equivalent to a date zero claim to Πt , or alternatively, a date zero claim to payoff Πt/S

where S = Sτ is the realized value of the SDF process at time τ.10 We can leverage this

property to infer future prices based on a ratio date zero stochastic discount factors, and

rewrite the price in (3.2) as follows:

Pτ = E
[

St

Sτ

Πt

∣∣∣∣Fτ

]
. (3.3)

Suppose the random payoff Πt can be written as a function of the current Markov state

(i.e., Πt = φ(Xt)), then the Markov restriction in asset pricing models ensures that current

prices only depend on the current Markov state. To capture, this we define the pricing

operator S= (S)t≥0 which maps random future payoffs to time zero prices as a function of

time zero state x:

Stφ(x) := E [Stφ(Xt)|X0 = x] . (3.4)

We can price the same payoff at intermediate dates τ ≤ t based on the representation in

(3.3).11 In this specification, the ratio St/Sτ depends only the evolution of the Markov state

9See e.g., Hansen and Renault (2010) for more details on the probability measure underlying this
expectation operator.

10The law of one price implies that P0 = E[SτPτ|F0]. We can use this to verify that Pτ is the time zero
price of an asset that pays off Πt/Sτ at time t as follows: E[St(Πt/Sτ)|F0,Sτ] = E[E[StΠt |F0]/Sτ|Fτ] =
E[P0/Sτ|Fτ] = E[E[SτPτ|F0]/Sτ|Fτ] = Pτ.

11We can also use the operator St−τ to price this payoff. Note that S0 = I and St = St−τSτ ensures that S
satisfies the semi-group property, a property remarked in early work by Garman (1985).
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process between τ and t, and can be written as follows:

St

Sτ

= St−τ(θτ), (3.5)

where θτ is an operator that shifts the Markov process forward by τ time units (i.e.,

Xτ(θt) = Xt+τ).12 The property in (3.5) along with the boundary condition S0 = 1 define a

semigroup family of multiplicative pricing functionals. HS prove that this family of SDF

operators permit the following multiplicative factorization:

St = exp(λt)Ŝt
e(X0)

e(Xt)
, (3.6)

where Ŝt is a martingale whose log has stationary increments and e(.) is a positive func-

tion.13 Intuitively, the scalar λ can be thought of as a deterministic growth rate, while

the ratio of positive random variables (e(X0)/e(Xt)) is the transitory contribution of the

Markov state. Although this decomposition is not necessarily unique, HS prove that

these is a unique pair of values (λ,e(.)) under which Xt remains stationary and ergodic

(stochastically stable). This unique solution characterizes pricing for payoffs with (in-

finitely) long horizons. To see this, recall from HS that the martingale Ŝt defines a new

probability measure via P̂(A) = E(1AŜt) for all A ∈ Ft . Taking expectations under this

twisted probability measure P̂ (denoted similarly by Ê), we can write the time-zero price

of a long-term discount bond by:

p0 = E[St |X0 = x] = exp(λt) · Ê
[

e(x)
e(Xt)

∣∣∣∣X0 = x
]
. (3.7)

12θ : Ω → Ω maps current states to future states.
13Qin and Linetsky (2017) extend this decomposition to very general semi-martingale environments.
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Rearranging the above expression and taking limits as the payoff horizon tends to infinity

(t → ∞), we can write:

lim
t→∞

E[St exp(−λt)] = lim
t→∞

Ê
[

1
e(Xt)

]
e(x), (3.8)

where the left-hand side is the value of a discount bond with an infinitely long payoff

horizon, and the right-hand side, particularly e(x), captures the dependence of long-run

prices on the current state x.14

HS show that we can rewrite e(x) and λ > 0 as the principal eigenfunction and

eigenvalue of the valuation operator S. By definition, we rewrite the pricing equation from

(3.7) as follows:

Ste(x) = E[Ste(Xt)|X0 = x] = exp(λt)e(x). (3.9)

Next, we divide both sides by t and take the limit as t ↓ 0 to obtain the time-invariant

eigenvalue problem associated with long-run prices:

Se = λe, (3.10)

where e : Rd →R+. In later sections, we provide the few examples of asset pricing models

with closed form expressions for e and λ. However, as highlighted by HS, there is no

analytical solution method for solving this general class of problems. Moreover, standard

deterministic numerical approaches tend to be very error-prone or completely intractable at

values of d > 1. In the following section, we propose a novel algorithm for solving (3.10)

with arbitrarily high dimension d. Before doing so, we provide some concrete examples of

of the permanent-transitory decomposition discussed above.

14This limit is only possible since Xt is stochastically stable under P̂.
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3.2.2 Examples from Structural Asset Pricing

In this section, we consider the few continuous-time structural macro-finance

models with closed form solutions for the permanent-transitory SDF components. These

decompositions have been well-developed in papers such as Hansen and Scheinkman

(2009), Hansen (2012), and Borovička et al. (2016). In these cases, the closed-form

solutions to (3.10) are obtained using a “guess-and-check” approach which was only

viable due to the low dimensionality d = 2. As far as we know, Models with higher

dimensionality or a vastly different structural formulation have not been solved analytically

in the literature.

For each of these models, we write down the eigenvalue problem in (3.10) and its

analytic solution. In Section 3.4, we verify that our proposed algorithmic approach is able

to accurately converge to the known solutions under standard calibration.15

Breeden Model Our first example is a continuous-time case of the Breeden (1979)

consumption-based asset pricing model.16 Assume that the Markov state has two compo-

nents Xt = (Xo
t ,X

f
t ), where Xo

t is a real-valued Ornstein-Uhlenbeck process and X f
t is a

positive Feller square root process:

dXo
t = ξo(x̄o −Xo

t )dt +σodW o
t

dX f
t = ξ f (x̄ f −X f

t )dt +
√

X f
t σ f dW f

t ,

where (ξi, x̄i)i∈{o, f} > 0 and σo > 0 are positive scalars, and 2ξ f x̄ f ≥ σ2
f to ensure that X f

t

is positive and stationary. In this model, the process Xo
t captures aggregate growth rates,

while X f
t captures aggregate market volatility. Suppose that the equilibrium dynamics of

log consumption are as follows:

d log(Ct) = Xo
t dt +ϑodW o

t +

√
X f

t ϑ f dW f
t , (3.11)

15See Appendix 3.8, for model calibrations
16For more details, see also example 3.8 in Hansen and Scheinkman (2009).
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where ϑo,ϑ f > 0 and investors have power utility:

U((Ct)t≥0) = E0

∫
∞

0
exp(−bt)

C1−a
t

1−a
dt,

for constants a,b > 0. Then the implied stochastic discount factor thus has the following

dynamics:

d logSt = (−aXo
t −b)dt −aϑodW o

t −a
√

X f
t ϑ f dW f

t .

Kreps-Porteus Model We also consider a special case of the Kreps and Porteus (1978)

with Duffie and Epstein (1992) stochastic discounted utility, which leads to the same

long-run risk formulation.17 In this setup with time separable logarithmic utility, log-

consumption is related to the investor continuation process W which satisfies:

dWt

dt
= b(Wt − log(Ct)).

HS prove that Wt takes the following form:

Wt =
1

1−a
exp
[
(1−a)(w f X f

t +w0Xo
t + ct + w̄)

]
.

Moreover, HS solve this model assuming that consumption follows the same dynamics

as in (3.11), and show that the SDF is the product of two multiplicative functionals (i.e.,

logSt = AB
t +Aw

t ), where the first functional AB
t takes the exact same form as the Breeden

model:

AB
t =−

∫ t

0
Xo

s ds−bt −
∫ t

0

√
X f

s ϑ f dB f
s −

∫ t

0
ϑodBo

s .

17See e.g., Duffie and Epstein (1992), Schroder and Skiadas (1999) and Hansen and Scheinkman (2009)
for details.
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The second term, exponential of Aw
t , is a martingale constructed from the forward-looking

continuation value process implied by the recursive utility function:

Aw
t = (1−a)

∫ t

0

√
X f

s (ϑ
f
s +w f σ f )dB f

s +(1−a)
∫ t

0
(ϑo +woσo)dBo

s

− (1−a)2

2

∫ t

0
X f

s (ϑ f +w f +σ f )
2ds− (1−a)2(ϑo +woσo)

2

2
t.

For both the Breeden and Kreps-Porteus models mentioned above, HS show that the

principal long-run eigenfunction e : R2 → R+ implied by (3.10) takes the form:

e(x) = exp(coxo + c f x f ), (3.12)

where the constants co and c f are given by:

co =
−a
ξo

, c f =
(ξ f +ϑ f aσ f )±

√
(ξ f +ϑ f aσ f )2 −σ2

f (ϑ f a)2

σ2
f

, (3.13)

and corresponding long-run eigenvalue is given by:

λ =−b+
1
2
(aϑo)

2 + c f ξ f x̄ f + co(ξox̄o −aϑoσo)+
1
2

c2
oσ

2
o. (3.14)

To summarize, the pricing operator corresponding to (3.10) is given by:

S= σγ∇+0.5|γ|2 +β, (3.15)

where γ(x) = (−ϑ f a√x f ,−ϑoa) and β(x) =−axo −b.

The Long-Run Risk Model As another example, we consider the structural asset pricing

model from Bansal and Yaron (2004), which features growth rate predictability and

stochastic volatility in aggregate consumption. Borovička et al. (2016) solve for this model

analytically and show that it implies a large martingale component, and is thus a good
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benchmark model for our numerical approach.18 Assume that the economy is driven

by a (2×1) vector of state variables (Xt)t≥0, where the terms represent the predictable

component of the growth rate and stochastic volatility. The state variables evolve according

to the Itô process

dXt = µx(Xt)dt +σx(Xt)dWt ,

where (Wt)t≥0 is a 3-dimensional standard Brownian motion. Following Hansen and

Scheinkman (2009), we parameterize the model by

µ(x) = µ̄(x− ι), σ(x) =
√

x2σ̄,

where

µ̄ =

µ̄11 µ̄12

0 µ̄22

 , σ̄ =

σ̄1

σ̄2

 , ι =

ι1

ι2

 ,
and σ̄1, σ̄2 are both (1 × 3) row vectors and ι is the vector of means in a stationary

distribution. The dynamics imply that Xt is a mean-reverting Markov process. In addition,

the stochastic discount factor process (St)t≥0 evolves according to

d logSt =−δdt −d logCt +d logHt ,

where δ is a time discount factor, Ct is aggregate consumption and Ht is a continuous-time

martingale constructed from the forward-looking continuation value of a representative

agent with recursive homothetic preferences (see Borovička et al. (2016) for further details).

Borovička et al. (2016) show that the SDF inherits the functional form

d logSt = βs(Xt)dt +αs(Xt)dWt ,

18This model is first developed in Hansen et al. (2007). Our benchmark results rely on the calibrated
consumption dynamics from the original paper.
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where

βs(x) = βs,0 +βs,1 · (x− ι)

αs(x) =
√

x2ᾱs.

The scalars βs,0, ᾱs and vector βs,1 can be constructed from the parameters driving the con-

sumption process (Borovička et al., 2016, Appendix D). The resulting valuation operator

can be written as follows:

Se =
(

βs(x)+
1
2
|αs(x)|2

)
e+∇e · (µ(x)+σ(x)αs(x))+

1
2

Tr
(

Hess(e)σ(x)σ(x)⊤
)

(3.16)

Borovička et al. (2016) show that when the principal eigenfunction is constrained to be

positive, there exists a unique eigensolution corresponding to the smallest eigenvalue. In

particular, this solution, uniquely characterizes the measure which renders the (Xt)t≥0

process stationary after a change of measure. The solutions to this eigenvalue problem are

well-defined and are characterized as follows:

ê(x) = exp
(
ē1x1 + ē2x2

)
, (3.17)

where our coefficients are determined by a system of equations (see Appendix 3.7.1 for a

detailed derivation). Since these models can be solved analytically, we can use them to

validate our proposed methodology before applying more broadly to asset pricing models

that do not have well-known solutions. We discuss our proposed approach in the next

section.
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3.3 Methodology

3.3.1 Setup and Objective Function

In this section, we develop a non-parametric stochastic approach to solving the

eigenvalue problem in (3.10). To do so, we start by recasting the problem in terms of a

partial differential equation. Recall that the linear pricing operator S : C2(Rd)→ C(R)

depends on the underlying dynamics of the Markov state process. The general form is

written as follows:

Se(x) = f (x) · e(x)+∇e(x) ·b(x)+ 1
2

Tr
(

σ(x)σ(x)⊤Hesse(x)
)
, (3.18)

where f : Rd → R is the stationary component, b : Rd → Rd is the drift component,

and σσ⊤ : Rd → Md×d(Rd) is the volatility component.19 Without loss of generality,

we restrict the eigenfunction e ∈ C2(Rd) to a compact domain Ω ⊂ Rd . Applying the

Feynman-Kac Formula20 , we augment a time-dimension and consider the following

backward parabolic parabolic partial differential equation (PDE) in the interval t ∈ [0,T ]:


∂tu(x, t) =−Su(x, t)+λu(x, t) t ∈ [0,T ],x ∈ Ω

u(T,x) = e(x) x ∈ Ω

(3.19)

We can write solutions of (3.19) in terms of a backward propagation operator (P λ
t )t

such that P λ
t e(x) = u(T − t,x).21 This formulation guarantees that if e(.) is a stationary

solution of (3.19) satisfying P λ
T = u(T,x) = e(x), then (λ,e) must be an eigenpair of

S (i.e., Se = λe). In other words, eigenpairs of S are local minima of the fixed-point

squared error loss function ||P λ
T e− e||2. Moreover, the results of HS guarantee that the

smallest positive eigenvalue λ and its corresponding eigenfunction uniquely characterize

19We assume that the volatility component σ(·)σ(·)⊤ is uniformly elliptic.
20See e.g., Theorem 8.2.1 in Oksendal (1992).
21Note that P forms a semigroup. Han et al. (2020) argue that such a PDE formulation is a continuous

time analog of the power method for discrete matrix eigenvalue problems.
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the permanent-transitory decomposition in (3.6).

Like the eigenvalue problem in (3.10), this PDE is difficult or impossible to solve

in closed form and deterministic numerical approaches are subject to the curse of dimen-

sionality. Stochastic numerical approaches such as variational and diffusion Monte Carlo

(see e.g., Ceperley et al. (1977), Blankenbecler et al. (1981), Zhang et al. (1997), Foulkes

et al. (2001), Needs et al. (2009)) are popular options for solving this problem in domains

with two sided boundary conditions and strict parametric restrictions on the eigenfunction

(e.g., trigonometric). Our asset pricing applications do not fit this narrow structure.

Recent work such as Han et al. (2019) and Pfau et al. (2020) introduce neural

networks in the variational Monte Carlo approach to overcome these parametric limitations,

but still in a very specific use case. Along these lines, recent work from E and Yu (2017) and

Han et al. (2020) develop more general frameworks which combines the stochastic elements

of Monte Carlo approaches with the flexibility of deep neural networks.22 We adapt this

class of approaches for the asset pricing setting.23. Intuitively, although differential

equations are difficult to solve in high dimensions, we leverage the fact that stochastic

processes are fairly easy to simulate (See e.g., Cochard (2019)). We consider the following

Itô process:

Xt = X0 +
∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs, (3.20)

where Wt is a standard Brownian motion. Applying Itô’s Lemma, the solution to (3.19)

satisfies:

u(t,Xt) = u(0,Xt)+
∫ t

0

(
λu(s,Xs)− f (Xs)u(s,Xs)− (b(Xs)−µ(Xs))∇u(s,Xs)

)
ds

+
∫ t

0
∇u(s,Xs)

⊤
σ(Xs)dWs.

(3.21)

Since the eigenfunction e(x) and eigenvalue λ are a priori unknown, we cannot directly

simulate the process in (3.19). Universal approximation properties of neural networks (see

22Hornik et al. (1989) demonstrates the universal approximation properties of neural networks. See e.g.,
Bauer and Kohler (2019) for more discussion on overcoming the curse of dimensionality with DNNs.

23Table 3.3 compares advantages and disadvantages of our proposed approach relative to other numerical
benchmarks from the literature
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e.g., Hornik et al. (1989)) implies that we can approximate eigenfunction arbitrarily closely

with a fully-connected feed-forward neural network with a finite number of parameters

θ ∈ Θ ⊂ [−1,1]N ,N < ∞, without loss of generality. We denote this approximation by

Ne(x;θ).24 At a high level, we propose an iterative algorithm which starts by randomly

initializing the eigenvalue λ̂(0) ∼ Uniform[0, λ̄] and neural network parameters θ̂(0) ∼

Uniform[−1,1]N (see e.g., Glorot and Bengio (2010)) for uniform distributions.25 We

simulate approximate sample paths from (3.5) and iteratively update estimated parameters

(θ̂(s))s=1,2,...,S and λ̂
(s)
s=1,2,...,S for iterations s = 1,2, ...,S using gradient descent (see e.g.,

Kingma and Ba (2017)). To converge to a valid eigenpair of S, our objective is to minimize

the following fixed-point squared error loss:

min
θ̂

∣∣∣∣∣∣∣∣Ne(x; θ̂)−u(T,XT |θ̂)
∣∣∣∣∣∣∣∣2

2
, (3.22)

where the simulated process u(t,x; θ̂) also depends on the estimated neural network (eigen-

function) parameters. The loss function in (3.22) attains a local minimum at stationary

solutions of the propagator PT (λ̂). Although this optimization problem is non-convex, we

know that there exists an initialization (λ̂(0), θ̂(0)) such that this iteration we converges to

the true principal stationary solution of P λ
T .

3.3.2 Solution Algorithm

Our proposed algorithm is implemented as a numerical analogue to the the fixed

point optimization defined in (3.22). For numerical tractability, we consider a discrete

partition of the interval T into N sub-intervals with ∆t = T
N and tn = nT

N (n = 0,1, . . . ,N).

We apply an Euler-Maruyama (E-M) scheme (see e.g., Lamba et al. (2006)) to discretize

24In practice, we compute the gradient of Ne(x;θ) with respect to θ numerically. For very high dimen-
sions, numerical differentiation may not scale well, and thus we can initialize a second neural network to
approximate the gradient.

25Since λ corresponds to an infinitely long bond yield, we know it can be bounded by 1 (λ̄ < 1), although
we can further refine this bound when considering specific problems. In practice, we consider several initial
conditions with extensive cross-validation to ensure our solution is not sensitive to the choice of λ̄.
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the Itô processes Xt and u(t,Xt) as follows:

Xtn+1 = Xtn +µ(Xtn)∆t +σ(Xtn)∆Wn

Utn+1 = Utn +
(
λUtn −N ⊤

σ⊤∇e(Xtn)α(Xtn)− f (Xtn)Utn
)
∆t +N

σ⊤∇e(Xtn)
⊤

∆Wn,

(3.23)

where α is defined by b = µ + σα. Note that that the two equations have the same

realization of Brownian motion. Here, we denote by Xtn and Utn the discrete analogues of

the continuous processes Xt and u(t,Xt), respectively. ∆Wn ∼ N(0, T
N Id) are independent

samples of Brownian increments. For a tractable initialization, we uniformly sample

X0 ∼ Unif(Ω). At each iteration of the algorithm s = 1,2, ...,S, we sample K trajectories

and denote each trajectory by X (k)
tn and U(k,s)

tn based on the estimated parameters (θ̂(s), λ̂(s))

. To avoid the trivial (zero) solution, we define the following normalization factor:

Ẑ(Ne,X0; θ̂) =

(
1
K

K

∑
k=1

Ne(X
(k)
0 ; θ̂)2

) 1
2

. (3.24)

Here, the notation X0 denotes the collection of {X (k)
0 }K

k=1. Then the initialization for U in

the E-M scheme (3.23) is

U(k)
0 =

Ne(X
(k)
0 ; θ̂, λ̂

Ẑ(Ne,X0; θ̂, λ̂)
. (3.25)

To update estimated neural network parameters θ̂ and estimated eigenvalue λ̂, we minimize

the discrete analogue of (3.22) based on the simulated processes of X (k)
T and the estimated

eigenfunction:

L̂(θ,λ) =
1
K

K

∑
k=1

(
Ne(X

(k)
T ,θ)

Ẑ(Ne,X0,θ)
−U(k)

T (θ,λ)

)2

. (3.26)

In practice, introduce an absolute value in the final layer of Ne to ensure non-negativity

of the solution. Furthermore, we optimize (3.26) using stochastic gradient descent as in

Kingma and Ba (2017) with early stopping as in Shen et al. (2022). We consider multiple

initialization of our neural network approximation (sampled as in Glorot and Bengio

(2010)), and we use cross-validation to verify that the converged solution is robust to the
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choice of algorithm hyperparameters. We provide pseudocode in Algorithm 1 below.

Algorithm 1: Valuation Eigensolver
Input: Valuation operator S, number of time intervals N, terminal time T ,

number of iterations

Hyperparameters: batch size K, loss hyperparameters γ, learning rate,

network architecture

Output: Function approximation of smallest non-negative eigenfunction Ne(x)

and corresponding eigenvalue λ.

Randomly initialize eigenvalue λ, neural network Ne, and N
σ⊤∆e

while i < max iterations or ∆loss < ε: do
Sample K initial points X0 and K discretized Brownian motion paths

Simulate discrete U process

Compute gradient of the empirical loss (3.26) with respect to neural

network parameters and eigenvalue

Update parameters using Adam optimizer

end

Return (Ne,λ)

3.4 Numerical Results

In this section, we validate the performance of our proposed Valuation Eigensolver

in approximating the long-run components in the models from Section 3.2.2. Under base-

line algorithm hyperparameters and asset pricing model calibrations detailed in Appendix

3.8, we can obtain closed form expressions for the long-run eigenfunction and eigenvalue

of the two sets of models. We measure the accuracy of our eigenfunction approximation in

terms of root mean squared approximation error (RMSE):

R̂MSE =

[
1
K

K

∑
k=1

(
Ne(Xk; θ̂)

Ẑ(Ne; θ̂)
− e(Xk)

)2]1/2

, (3.27)
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where Ne(.; θ̂) is our neural network approximation with normalization Ẑ(Ne; θ̂) and

learned parameters θ̂, e(.) is the true function implied by the model, and (Xk)
K
k=1 is a set of

points sampled from a uniform distribution on the domain of the eigenfunction. To ensure

that our learned approximation is stable at all points in the domain, we also report the

maximum approximation error:

L̂∞ = max
k

∣∣∣∣Ne(Xk; θ̂)

Ẑ(Ne; θ̂)
− e(Xk)

∣∣∣∣. (3.28)

For the eigenvalue approximation, we report accuracy in terms of absolute errors (∆̂λ = |λ̂−

λ|). We compare performance of our proposed algorithm to two benchmark alternatives,

one deterministic and one stochastic. The deterministic benchmark is a computationally

optimized version of finite elements called stabilized multi-scale finite element (MSFE)

(see e.g., Pichler et al. (2013)), which requires manually specified boundary conditions.

Our other benchmark is the stochastic Deep-Ritz approach developed in E and Yu (2017),

which also requires us to specify at least a one-sides boundary condition to converge. We

are not aware of any other approaches which can be applied off-the-shelf in this class of

problems.

Table 3.1 reports the error metrics for the proposed approach relative to the above

benchmarks. The Valuation Eigensolver achieves a better eigenfunction approximation

without any specified boundary conditions, achieving a worst-case approximation error

of 2% across both model specifications, compared to about 4% in the two competing

approaches. Similarly, the Valuation Eigensolver approximates the eigenvalue within 1%

for both the Breeden/Kreps-Porteus and Bansal-Yaron specifications, with an absolute

approximation error of 0.02 and 0.03 bps, respectively. Table 3.2 reports approximated vs.

actual model-implied annualized eigenvalue, with values of 0.2% and 0.4% per year for

the Breeden/Kreps-Porteus and Bansal Yaron models, respectively.

We further verify the robustness of our converged solution. Figure 3.1 plots

the density of the approximated eigenfunctions on a uniform sample from the domain.
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Notice that our approximation is stable across the entire domain of values, including the

boundaries, even without explicitly specifying boundary conditions in any step of the

solution algorithm. Additionally, Figures 3.6 and 3.4 verify that the converged solution

is stable in both dimensions by comparing the approximated and actual eigenfunction

densities when one dimension is fixed at its stationary mean. In Appendix 3.9, we also

verify the robustness of the convergence under multiple specifications of initial value and

model parameters.

Table 3.1: Eigenfunction and Eigenvalue Approximation Errors

A. Breeden/Kreps-Porteus Models

L̂2 L̂∞ ∆̂λ (bps)

Valuation Eigensolver 0.005017 0.018248 0.014061

DeepRitz 0.009963 0.044081 0.019319

MSFE 0.009159 0.039357 0.019422

B. Bansal-Yaron Long-Run Risk Model

L̂2 L̂∞ ∆̂λ (bps)

Valuation Eigensolver 0.004987 0.020841 0.031218

DeepRitz 0.010094 0.037994 0.049837

MSFE 0.008968 0.034615 0.044381

Notes: We report approximation errors of our proposed Eigensolver relative to MSFE and DeepRitz. Panel A reports results for the
Breeden and Kreps-Porteus model, while Panel B reports results for the Bansal-Yaron model. The first two columns report the R̂MSE
and L̂∞ of the estimated eigenfunction on a set of 10,000 points sampled uniformly from the state domain Ω, where
Ω = [0,0.02]× [0.08,0.72] for the Breeden model and Ω = [−0.006,0.006]× [0.6,1.6] for Bansal-Yaron model. Both models are
calibrated to the monthly frequency. The final column reports the absolute approximation error of the eigenvalue, whose units are
reported in basis points (bps).

175



(a) Breeden / Kreps-Porteus (b) Bansal-Yaron

Figure 3.1: Approximated vs. Actual Eigenfunction Density

Notes: We plot the density of the actual model-implied and approximated eigenfunctions, evaluated on a set of 10,000 points sampled
uniformly from the state domain Ω, where Ω = [0,0.02]× [0.08,0.72] for the Breeden/Kreps-Porteus model and
Ω = [−0.006,0.006]× [0.6,1.6] for Bansal-Yaron model. Both models are calibrated to the monthly frequency.

Table 3.2: Approximated vs. Actual Long-Run Yields

λ̂ λ

Breeden/Kreps-Porteus 0.00189 0.00187

Bansal-Yaron 0.00375 0.00379

Notes: We report the annualized approximated vs. actual eigenvalues λ̂ and λ for both the Breeden / Kreps-Porteus model and the
Bansal-Yaron model.

3.5 Extension to Models with Jumps

In the previous section, we demonstrate the accuracy of the Valuation Eigensolver

in solving for the long-run components of the SDF in two common structural macro-finance

models. In particular, the approximated eigenvalue corresponds to the estimated yield of an

infinite horizon bond, the permanent component of the SDF. Christensen (2017) provides

the first empirical estimates of this quantity under various assumptions about investor

discounting and risk-aversion, and obtains a lower bound of around 1% per quarter. This

is much larger than our model implied approximations of about 0.2% and 0.4% per year.

Our findings are thus consistent with the critique raised Alvarez and Jermann (2005) and

Backus et al. (2014) that consumption-based asset pricing models tend to lead to SDFs

which underestimate the magnitude of the permanent component observed in the data. Our
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Valuation Eigensolver provides a path forward to reconciling model predictions with the

data, namely, by solving for these components in models whose underlying state dynamics

have jumps.

Recall the aggregate growth process in the Breeden/Kreps-Porteus specification,

which we originally assumed to follow an Ornstein-Uhlenbeck process. Following Duffie

et al. (2000), we can augment an affine jump component as follows:

dXo
t = ξo(x̄o −Xo

t )dt +σ0dW o
t +dZt , (3.29)

where Zt is a pure jump process whose jumps have a fixed probability distribution ν

and arrive with intensity Λ(x) = ω̄1x f + ω̄2 with ω̄1, ω̄2 ≥ 0, and can be modelled by the

function κ(y,x) = κ̄(yo − xo) such that
∫ d
R exp κ̄(z)dv(z)< ∞. The implied SDF still takes

the multiplicative form (i.e., St = exp(At)), but in this case At includes another term:

At = β̄t +
∫ t

0
βoXo

s ds+
∫ t

0
β f X f

s ds+
∫ t

0
γodW o

s +
∫ t

0

√
X f

s γ f dW f
s +∑

s≤t
κ̄(Xo

s −Xo
s−),

(3.30)

Hansen and Scheinkman (2009) show that this also adds an additional terms to the eigen-

value, as follows:

λ = β̄+
γ2

o
2
+ c f ξ f x̄ f + co(ξox̄o + γoσo)+ c2

o
σ2

o
2
+ ω̄2

∫ [
exp

β0

ξo
z−1

]
exp[κ̄(z)]dν(z).

(3.31)

This provides a path forward for us to amplify the model predictions of the long-run

component to be more consistent with the empirical estimates provided in Christensen

(2017). Although we are still able to obtain a closed-form solution in this case, Hansen

and Scheinkman (2009) emphasize the importance of developing a general computational

approach that can be applied outside the limited array of such examples that can be solved.

Before we demonstrate that our approach continues to work in this affine jump setting, we

also argue that this is enough to generalize our approach to a very general class of Lévy

process. Infinite jump processes cannot be simulated exactly on a pre-specific grid of time
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increments (see e.g., Fournier (2009)). To address this, we rely on recent results from

Gnoatto et al. (2022), who show that we can approximate an infinite jump diffusion with a

diffusion that has finitely many jumps. The residual small jumps can either be truncated or

approximated by increasing the volatility of the diffusion component.

First, note that the updated SDF in (3.30) implies the following operator:

Se(x) =
1
2

Tr
(

Hess(e)σ(x)σ(x)⊤
)
+∇e · (µ(x)+σ(x)αs(x))

+

(
βs(x)+

1
2
|αs(x)|2

)
e+Λ(x)

∫
(e(x+ z)− e(x))exp(κ̄(z))dν(z),

(3.32)

where the last term above comes from the jump. Cohen and Rosiński (2007) show that

we can approximate this integration accurately as long as
∫
R |z|2dv(z) < ∞. For a jump

diffusion with infinitely many jumps, our approach remains the same but with additional

approximation error. To see this, we take ε ∈ (0,1] and decompose the Poisson measure as

the sum of two components, one corresponding to big jumps and one corresponding to

small jumps:

v(dz) = 1|z|>εv(dz)︸ ︷︷ ︸
vε(dz)

+1|z|≤εv(dz)︸ ︷︷ ︸
vε(dz)

. (3.33)

We then approximate the big jump component vε with a finite jump affine process, as

above. Jum (2015) bounds the approximation error induced by excluding small jumps and

shows that it can be made arbitrarily small by decreasing ε ↓ 0.26

We leverage this approximation extend the Valuation Eigensolver to general Lévy

processes with finite or infinite jumps. We continue with the extended Breeden/Kreps-

Porteus specification from (3.29). We start by simulating the Markov state Xt = (Xo
t ,X

f
t ),

accounting for the new jump term in Xo
t . Applying Itô’s Lemma, we rewrite to capture the

26See Proposition 4.1.2.
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additional integration term over the jump measure:

u(t,Xt) = u(0,Xt)+
∫ t

0
∇u(s,Xs)

⊤
σ(Xs)dWs +

∫ t

0

[
(λ−βs(Xs)−

1
2
|αs(Xs)|2)u(s,Xs)

−λ(Xs)
∫
(u(s,Xs + z)−u(s,Xs))exp(κ̄(z))dν(z)

]
ds.

(3.34)

Recall that (3.34) is the solution to the backward parabolic PDE (3.19). Let N(tn) denote

the number of jumps in the state process occurring in the interval [0, tn]. In this example,

N(tn) is zero in the second dimension (i.e., κ(0,x) = 0 for any x). We then update the

Euler-Maruyama discrete representation to include the additional integration term:

Xtn+1 = Xtn +µ(Xtn)∆t +σ(Xtn)∆Wn +
N(tn+1)

∑
i=N(tn)+1

κ̄(Xtn,zi)−∆t
∫
R

κ̄(Xtn,z)v(dz)

Utn+1 = Utn +

(
ηUtn − (β(Xtn)+

1
2
|α(Xtn)|2)Utn

)
∆t +N

σ⊤∇e(Xtn)
⊤

∆Wn

−λ(Xtn)I(Xtn;Ne)∆t,

where I(Xtn;Ne) denote the integration with respect to measure v(dz) of our neural network

approximation evaluated at Ne at Xtn . In low dimensions, one option is to use a simple

Monte Carlo integration to compute I(Xtn;Ne), but this can be computationally taxing

as part of the training process. As an alternative, we follow Gnoatto et al. (2022) to

approximate the entire integration term with a second family of neural networks NI(Xtn;θI):

NI(Xtn;θI)≈ I(Xtn ;Ne) =
∫
R

Un(Xn + κ̄(Xn,z))−Un(Xn)v(dz), (3.35)

which is trained as part of the learning process according to the fixed point loss in (3.22).

We demonstrate the accuracy of the adapted version of the algorithm in approximating the

solution from the above example.

We start by assuming that κ̄(z) = κ̄ ∈ R is a constant function, and that the jump

size distribution v(dz) = ϕ(z)d(z) is Gaussian. Panel A in Figure 3.2 plots actual vs.

approximated eigenvalues from (3.31) for different values of ω̄2 ≥ 0 and κ ∈ R, while
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Panel B plots the actual vs. approximated eigenfunction. In the example with jumps,

the Eigensolver achieves an average eigenvalue approximation error of 2.6%, and eigen-

function approximation errors of L̂2 = 3% and L̂∞ = 5%. This approximation error is

slightly higher relative to the no-jump case, likely due to additional discretization error

from approximating the integration term in (3.35). Panel A in Figure 3.2 also demonstrates

that adequate parametrization of the additional jump term can reconcile the Breeden/Kreps-

Porteus specification with the empirical estimates in Christensen (2017). See Appendix

3.9 for additional robustness checks on the algorithm convergence.

(a) Long-Run Yield (b) Eigenfunction

Figure 3.2: Approximated vs. Actual Eigensolutions of Breeden/Kreps-Porteus model
with jumps

Notes: Panel A plots the actual vs. Eigensolver approximation of λ from the Breeden/Kreps-Porteus model with jumps, (3.31) for
different values of ω̄2 · exp κ̄, scaled by 100. Panel B plots the density of the actual model-implied and approximated eigenfunctions,
evaluated on a set of 10,000 points sampled uniformly from the state domain Ω, where Ω = [0,0.02]× [0.08,0.72]. We fix w̄1 = 0.001
such that the eigenfunction boundary conditions are the same as the no jump case. We keep the same calibration from 3.8. To compute
the actual eigenvalue, we approximate the addition integral term in (3.31) numerically numerical quadrature as in Piessens et al. (1983).
The dotted blue lines in Panel A denote the range of semi-parametric empirical estimates for λ obtained in Christensen (2017).

3.6 Conclusion

In this paper, we propose a novel algorithm to compute the permanent-transitory

components of stochastic discount factors in continuous time asset pricing models. We

demonstrate the accuracy of our approximation and argue that the approach can be extended

to a very general class of asset pricing models beyond those in which quasi-analytical

solutions are available, including models which feature infinite jumps in the state dynamics.

Future work could better develop the theoretical conditions under which our fixed point
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loss is minimized at the true value. Moreover, although our focus has been on the dominant

eigenpair of valuation operators, our approach could likely be extended to solve for more

refined characterizations of the long-run approximation which include non-dominant

eigenpairs as well.
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Appendices

3.7 Derivations

3.7.1 Bansal-Yaron Eigenfunction Coefficients from Section 3.2.2

We solve for the coefficients in (3.17) by providing the system of equations needed

to pin down the unknowns in the model. The PDE that needs to be solved is given by

(
βs +

1
2

αs
2
)

ê+ êx · (µ+σαs)+
1
2

Tr(êxxσσ
′)−ηe = 0.

Plugging the guess (3.17) into the PDE renders

(
βs,0 + β̄1 · (x− ι)+

1
2

αs
2 −η

)
ê+ ê

ē1

ē2

 ·

µ̄11(x1 − ι1)+ µ̄12(x2 − ι2)

µ22(x2 − ι2)

+ x2

σ̄1αs

σ̄2αs




(3.36)

+
1
2

ê
(
ē2

1σ1σ
′
1 +2ē1ē2σ1σ

′
2 + e2

2σ2σ
′
2
)
= 0.

(3.37)

Notice that the coefficients on x1,x2 all have to be zero, in addition to solving the system.

For example in the equation above we get the coefficient of x1

β̄s,11(x1 − ι1)+ ē1µ̄11(x1 − ι).
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This gives rise to the parameter restriction

0 = β̄s,11 + ē1µ̄11.

The other restrictions are given by

η = β̄s,0 − β̄s,11ι1 − β̄s,12ι2 − ē1(µ̄11ι1 + µ̄12ι2)− ē2µ̄22ι2

0 = β̄s,12 +
1
2

αs
2 + ē1(µ̄12 + σ̄1ᾱs)+

1
2

ē2
1σ̄

2
1 + ē2(µ̄22 + σ̄2ᾱs + ē1σ̄1σ̄

′
2)+

1
2
(ē2)

2
σ̄

2
2.

The last equation is quadratic in ē2 and we pick the solution that leads to the smallest

eigenvalue η̂.
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3.7.2 Breeden/Kreps-Porteus Model with Jumps

Suppose that we augment the state variable Xo with an affine jump component

as in Duffie et al. (2000). The process is no longer an Ornstein-Uhlenbeck process and

instead satisfies:

dXo
t = ξo(x̄o −Xo

t )dt +σodBo
t +dZt ,

where Z is a pure jump process, whose jumps have compensator ν : R→ [0,1] and arrive

with intensity Λ(x) = ω̄1x f + ω̄2 with ω̄1 ≥ 0 and ω̄2 ≥ 0. The no-jump operator S now

adds another term:

Se(x) =
1
2

Tr
(

Hess(e)σ(x)σ(x)⊤
)
+∇e · (µ(x)+σ(x)αs(x))

+

(
βs(x)+

1
2
|αs(x)|2

)
e+Λ(x)

∫
(e(x+ z)− e(x))exp(κ̄(z))dν(z)︸ ︷︷ ︸

Jump term

.

For an eigenfunction of the form e(x) = exp(c f x f + coxo), the additional jump term

becomes:

(ω̄1x f + ω̄2)exp(c f x f + coxo)
∫
R
[exp(coz)−1]exp(κ̄(z))dν(z).

As in the no-jump example we can write co = βo/ξo, while c f must satisfy the following

equation:

β f + γ
2
f /2+ c f (γ f σ f −ξ f )+ c2

f σ
2
f /2+ ω̄1

∫
R

(
exp(βoz/ξo)−1

)
exp(κ̄)dν(z) = 0,

and the eigenvalue must satisfy:

λ = β̄+
γ2

o
2
+ c f ξ f x̄ f + co(ξox̄o + γoσo)+ c2

o
σ2

o
2
+ ω̄2

∫
exp

β0

ξo
z−1exp[κ̄(z)]dν(z).
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3.8 Algorithm Details

3.8.1 Comparison to Alternatives

Table 3.3: Comparison of Valuation Eigensolver to Alternatives
Algorithm Eigensolver* DeepRitz MSFE VMC DMC

Parametric Form None None Smooth Trig Trig
Boundary Conditions None Required Required Required Required
Nonlinear Operators Yes Yes Yes No No
Dimensionality High High d ≤ 2 High High
Theoretical Guarantees None None Yes, optimal rate No No
Solves for Derivatives Yes No No Yes No
Handles Jumps Yes No No No No
Stochastic Stochastic Stochastic Deterministic Stochastic Stochastic

Works for Asset Pricing Yes Yes, if BCs Yes, if d ≤ 2 + BCs No No

Notes: We compare our proposed Eigensolver to competing algorithms, including DeepRitz from E and Yu (2017), Multi-Scale Finite
Elements from Pichler et al. (2013), the Variational Monte Carlo (VMC) approach from Han et al. (2019), and the Diffusion Monte
Carlo Approach from Pfau et al. (2020).

3.8.2 Implementation Details and Hyperparameters

Eigensolver requires Pytorch v2.1.0 and Python 3.8. We implement gradient

descent via Pytorch class Adam with manual learning rate decay and Pytorch Autograd

class for automatic differentiation with gradient clipping. We implement iteration on a

single NVIDIA V100 SMX2 GPU node with 284 GB DDR4 DRAM. We also introduce

Wake/Sleep training for eigenvalue updating with a 3-step iteration cycle. Table 3.4

summarizes the implementation details, which are the same across all three models.
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Table 3.4: Eigensolver Hyperparameters

Model Bansal-Yaron Breeden No Jumps Breeden with Jumps

Hidden Dimension 40 40 40

Number of Layers 2 2 2

Learning Rate [1e-2, 5e-4, 1e-4] [1e-2, 5e-4, 1e-4] [1e-2, 5e-4, 1e-4]

Learning Rate Boundaries [300, 600] [300, 600] [300, 600]

Batch Size 1024 1024 1024

Number of Iterations 1000 1000 1000

Total Training Time (minutes) 0.05 0.1 0.19

Eigenvalue Initialization Range [0,0.5] [0,0.5] [0,0.5]

(a) Breeden (b) Bansal-Yaron (c) Breeden with jumps

Figure 3.3: Eigenfunction Training Curves

Notes: This figure plots the eigenvalue during training and the L2/L∞ errors of the eigenfunction every 200 iterations of the algorithm.
We start both figures at iteration one.
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3.8.3 Baseline Calibration

Table 3.5: Baseline Calibrated Parameters for Long-Run Risk Model

Parameter Calibration

µ̄11 -0.021

µ̄12 0

µ̄21 0

µ̄22 -0.013

σ̄1 [0,0.00034,0]

σ̄2 [0,0,−0.038]

ι1 0

ι2 1

β̄c0 0.0015

[β̄c1, β̄c2]
⊤ [1,0]⊤

ᾱc [0.0078,0,0]⊤

δ 0.002

γ 10

Notes: We set baseline parameters for the long-run risk model based on the monthly calibration provided in Borovička et al. (2016) (see
e.g., Figure 1 in that paper).
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Table 3.6: Baseline Calibrated Parameters for Breeden and Kreps-Porteus Models

Parameter Value

ξ f 0.2

ξo 0.2

x̄ f 0.2

x̄o 0.02

σ f -0.04

σo 0.2

a 5

b − log(0.99)

ϑ f 1

ϑo 1

Notes: We calibrate the parameters in the Breeden and Kreps-Porteus to match aggregate asset returns data. Note that we must satisfy
the restrictions ξi, x̄i > 0 for i ∈ {o, f}, σo > 0, and 2ξ f x̄ f ≥ σ2

f to ensure that X f
t is positive and stationary. The corresponding

parameters in the eigenfunction expression are c f = 0.4 and co =−2.11.

3.9 Convergence Robustness

(a) e(x1, x̄2) (b) e(x̄1,x2)

Figure 3.4: Breeden/Kreps-Porteus Approximated vs. Actual Eigenfunction Density in 1D

Notes: In this figure, we plot the eigenfunction in 1-dimension, holding one state variable fixed at its stationary mean and varying the
other state variable across its domain.
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(a) e(x1, x̄2) (b) e(x̄1,x2)

Figure 3.5: Bansal-Yaron Approximated vs. Actual Eigenfunction Density in 1D

Notes: In this figure, we plot the eigenfunction in 1-dimension, holding one state variable fixed at its stationary mean and varying the
other state variable across its domain.

(a) e(x1, x̄2) (b) e(x̄1,x2)

Figure 3.6: Breeden/Kreps-Porteus (with jumps) Approximated vs. Actual Eigenfunction
Density in 1D

In this figure, we plot the eigenfunction in 1-dimension, holding one state variable fixed at

its stationary mean and varying the other state variable across its domain.
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Figure 3.7: Approximated vs. Actual Eigenvalues of Breeden/Kreps-Porteus model with
jumps

Notes: We plot the actual vs. Eigensolver approximation of λ from the Breeden/Kreps-Porteus model with jumps, (3.31) for different
values of ω̄2 · exp κ̄, scaled by 100 and different values of ω̄1. We keep the same calibration from 3.8. To compute the actual eigenvalue,
we approximate the addition integral term in (3.31) numerically numerical quadrature as in Piessens et al. (1983). The dotted blue lines
in Panel A denote the range of semi-parametric empirical estimates for λ obtained in Christensen (2017).

Figure 3.8: Eigenvalue Approximation Error under Various Initializations

Notes: We plot the Eigensolver approximation of λ from all three model specifications under various initial values of λ when training.
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