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Prenatal phthalate, paraben, and phenol exposure and childhood 
allergic and respiratory outcomes: evaluating exposure to 
chemical mixtures

Kimberly Bergera, Eric Cokera, Stephen Raucha, Brenda Eskenazia, John Balmesa, Katie 
Koguta, Nina Hollanda, Antonia M. Calafatb, Kim Harleya

aCenter for Environmental Research and Children’s Health (CERCH), School of Public Health, 
University of California, Berkeley, 1995 University Avenue, Berkeley, CA, 94704 USA

bDivision of Laboratory Sciences, National Center for Environmental Health, Centers for Disease 
Control and Prevention, 4770 Buford Hwy, Atlanta, GA, 30341 USA

Abstract

Background: Chemicals found in personal care products and plastics have been associated with 

asthma, allergies, and lung function, but methods to address real life exposure to mixtures of these 

chemicals have not been applied to these associations.

Methods: We quantified urinary concentrations of eleven phthalate metabolites, four parabens, 

and five other phenols in mothers twice during pregnancy and assessed probable asthma, 

aeroallergies, and lung function in their age seven children. We implemented Bayesian Profile 

Regression (BPR) to cluster women by their exposures to these chemicals and tested the clusters 

for differences in outcome measurements. We used Bayesian Kernel Machine Regression (BKMR) 

to fit biomarkers into one model as joint independent variables.

Results: BPR clustered women into seven groups characterized by patterns of personal care 

product and plastic use, though there were no significant differences in outcomes across clusters. 

BKMR showed that monocarboxyisooctyl phthalate and 2,4-dichlorophenol were associated with 

probable asthma (predicted probability of probable asthma per IQR of biomarker z-score (standard 
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deviation) = 0.08 (0.09) and 0.11 (0.12), respectively) and poorer lung function (predicted 

probability per IQR = −0.07 (0.05) and −0.07 (0.06), respectively), and that mono(3-

carboxypropyl) phthalate and bisphenol A were associated with aeroallergies (predicted 

probability per IQR = 0.13 (0.09) and 0.11 (0.08), respectively). Several biomarkers demonstrated 

positive additive effects on other associations.

Conclusions: BPR and BKMR are useful tools to evaluate associations of biomarker 

concentrations within a mixture of exposure and should supplement single-chemical regression 

models when data allow.

Graphical Abstract
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Bayesian Kernel Machine Regression; Bayesian Profile Regression

1. Introduction

Prenatal exposure to some phthalates, parabens, and phenols (or their precursors) has been 

associated with increased risk of adverse childhood atopic and respiratory outcomes, 

including asthma (Buckley et al., 2018; Gascon et al., 2015; Jerschow et al., 2014; Larsson 

et al., 2010; Savage et al., 2014; Spanier et al., 2012; Spanier et al., 2014c; Vernet et al., 

2017; Whyatt et al., 2014a; Whyatt et al., 2014b; Zhou et al., 2017), aeroallergies (Clayton 

et al., 2011; Larsson et al., 2010; Savage et al., 2012; Spanier et al., 2014a), and spirometry 

(Cakmak et al., 2014; Spanier et al., 2014b; Spanier et al., 2014c). These chemicals are 

widely used in consumer products, with several of these compounds occurring in the same 

or similar products, often causing exposures to be correlated. For example, low molecular 

weight phthalates, parabens, and other phenols are used in personal care products: diethyl 

phthalate (DEP) and di-isobutyl phthalate (DiBP) have been used in fragrance and scented 

products (Kelley et al., 2011; Koniecki et al., 2011), dibutyl phthalate (DBP) in nail polish 

and other cosmetics (Kelley et al., 2011; Koniecki et al., 2011), and parabens as 

preservatives in cosmetics (Guo and Kannan, 2013; Liao and Kannan, 2014), while triclosan 

is an antibacterial agent formerly used in soap (Dann and Hontela, 2011) and 

benzophenone-3 is a sunscreen agent used in many personal care products (Han et al., 2016). 

2,4-dichlorophenol is a photo-degradation product of triclosan and an intermediate in 

pesticide manufacturing (Latch et al., 2005), and 2,5-dichlorophenol the main hydroxylated 

metabolite of 1,4-dichlorobenzene, which is used in moth balls and room and toilet 

deodorizers (Wei et al., 2014). Thus, individuals may be exposed to mixtures of several of 

these compounds based on their personal care product use. High molecular weight 

phthalates and bisphenol A (BPA) are used in the production of plastics, among other 
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products. High molecular weight phthalates such as di(2-ethylhexyl) phthalate (DEHP) and 

benzylbutyl phthalate (BBzP) are used to soften plastic products, particularly 

polychlorinated vinyl, and are used in building materials (Fierens et al., 2012; Kawakami et 

al., 2011), while BPA is used in the manufacture of hard polycarbonates (Vandenberg et al., 

2007). Phthalates, parabens, and other phenols (or their precursors) devolve quickly in the 

body and are excreted as urinary metabolites.

We previously found that urinary metabolites of several of these chemicals were associated 

with atopic and respiratory outcomes in children. Maternal prenatal urinary concentrations 

of monocarboxyisooctyl phthalate (MCOP), a metabolite of di-isononyl phthalate (DiNP), 

and monocarboxyisononyl phthalate (MCNP), a metabolite of di-isodecyl phthalate (DiDP), 

were associated with poorer lung function and increased odds of having probable asthma 

and aeroallergies in children at age seven (Berger et al., 2019), and monoethyl phthalate 

(MEP), a metabolite of DEP, was associated with poorer lung function (Berger et al., 2018a). 

Prenatal urinary concentrations of propyl paraben were unexpectedly associated with lower 

odds of probable asthma.

Although most people are routinely exposed to complex chemical mixtures, few studies have 

examined health outcomes associated with such exposures. There is currently a recognition 

that while we are exposed to many chemicals on a daily basis, epidemiologic research has 

not adequately explored the statistical methods needed to assess chemical mixtures (NIEHS, 

2018). In our previous papers, we included several phthalates, parabens, and other phenols 

as covariates in logistic and linear regressions to control for confounding by multiple 

exposure biomarkers. However, methods are needed that explore exposure to multiple 

chemicals together, in addition to simply controlling for them as confounders (Carpenter et 

al., 2002). The present paper addresses this gap in two ways: the first method groups 

individuals into clusters based on the urinary concentrations of multiple biomarkers, and the 

second computes risk for a health outcome as a nonlinear function of urinary concentrations 

of multiple biomarkers.

Bayesian Profile Regression (BPR) clusters participants into groups based on profiles of 

joint concentrations of urinary biomarkers of phthalates, parabens, and other phenols 

(Molitor et al., 2010). For example, some clusters may include people with relatively high 

concentrations of several biomarkers, while other clusters include those with relatively low 

concentrations. We can then evaluate how risk of a health outcome varies for individuals in 

different data-driven clusters.

Bayesian Kernel Machine Regression (BKMR) fits multiple biomarker concentrations into 

one model as joint independent variables into a nonlinear, flexible kernel function in relation 

to a health outcome (Bobb JF, 2015). It models each biomarker’s association with the health 

outcome in the context of the concentrations of all other biomarkers in the model.

BPR has been used in the current study population to examine the associations between 

exposure to pesticides and childhood neurodevelopment (Coker et al., 2017) and adult 

obesity (Warner et al., 2018). Several recent studies have applied BKMR methods to 

phthalates, parabens, or phenols (Bellavia et al., 2019; Hou et al., 2019; Mínguez-Alarcón et 
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al., 2019; Zhang et al., 2019), but this is the first study to use BPR or BKMR to analyze 

atopic and respiratory outcomes in association with any type of biomarker. To assess the 

relationship of prenatal exposures to all of these chemicals with childhood atopy, we 

measured maternal urinary concentrations of eleven phthalate metabolites, four parabens, 

and five other phenols at two time points during pregnancy and used BPR and BKMR to 

analyze associations with probable asthma, aeroallergies, and lung function when children 

were seven.

2. Methods

2.1 CHAMACOS Study.

Participants were mothers and their children in the Center for the Health Assessment of 

Mothers and Children of Salinas (CHAMACOS) study, a longitudinal study investigating 

early life exposures to environmental chemicals and a wide range of health outcomes across 

childhood. Mothers in the Salinas Valley of California, a largely Latino agricultural 

community, were recruited from participating prenatal clinics in 1999–2000. Women were 

eligible to participate if they qualified for MediCal (low income health insurance) and were 

at least 18 years old, less than 20 weeks’ gestation, and planning to deliver at the county 

hospital. Research protocols were approved by the University of California, Berkeley Office 

for the Protection of Human Subjects (OPHS). The Centers for Disease Control and 

Prevention (CDC) deferred to OPHS. Written informed consent was obtained from mothers 

and verbal assent was obtained from children at age seven. Mothers were interviewed twice 

during pregnancy (mean ± SD: 14.0 ± 5.0 and 26.9 ± 2.5 weeks gestation), at delivery, and 

when their child was six months, one year, two years, three and a half years, five years, and 

seven years old. Urine was collected from mothers at the two prenatal interviews. Of 531 

infants born into the study, 392 children had information on both prenatal urinary biomarker 

concentrations and either probable asthma, aeroallergies, or forced expiratory volume in one 

second (FEV1) at age seven. However, because BPR and BKMR only analyze complete 

cases, including covariate data, 319 children were ultimately included in the analyses.

2.2 Outcome definitions.

Outcomes of interest for this analysis were lung function, probable asthma, and aeroallergy 

when the children were seven years old. Outcome assessment methods are described 

elsewhere in detail (Berger et al., 2018a; Berger et al., 2019). Briefly, trained research 

assistants conducted lung function tests on the children at age seven, using EasyOne dry-seal 

spirometers. Children performed up to eight expiratory maneuvers and the spirometric 

software kept up to three best acceptable tests. All maneuvers were reviewed and verified by 

two physicians specializing in pediatric spirometry. FEV1 was measured from each 

maneuver and the highest measure was used in analysis. For a subset of children with 

reported respiratory symptoms, a bronchodilator was administered and the child repeated the 

spirometry 20 minutes later.

At the age seven visit, mothers also answered a detailed questionnaire about their child’s 

health and respiratory symptoms. We defined “probable asthma” at age seven as currently 

taking asthma medication or having two or more of the following criteria: any current 
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respiratory symptom, doctor diagnosis of asthma at any age, or a positive bronchodilator 

test. Cases of aeroallergies were defined as maternal report of any of the following in the last 

year: 1) a diagnosis of hay fever/rhinitis, 2) runny or itchy eyes apart from colds, or 3) 

sneezing or a runny nose apart from colds.

2.3 Exposure assessment.

Urine samples were collected from mothers at two interviews during pregnancy (mean ± SD: 

14.0 ± 5.0 and 26.9 ± 2.5 weeks gestation). Samples were collected in polypropylene urine 

cups, aliquoted into glass vials, and stored at −80°C until shipment to the CDC for analysis.

Solid phase extraction coupled with isotope dilution high performance liquid 

chromatography-electrospray ionization-tandem mass spectrometry was used to quantify 

concentrations of eleven phthalate metabolites of eight parent compounds: MEP, a 

metabolite of DEP; mono-n-butyl phthalate [MBP, a metabolite of DBP]; mono-isobutyl 

phthalate [MiBP, a metabolite of DiBP]; monobenzyl phthalate [MBzP, a metabolite of 

BBzP]; four metabolites of DEHP [mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-

hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and 

mono-(2-ethyl-5-carboxypentyl) phthalate (MECCP)]; MCOP, a metabolite of DiNP; 

MCNP, a metabolite of DiDP; and mono(3-carboxypropyl) phthalate [MCPP, a metabolite of 

several high molecular weight phthalates and a minor metabolite of dibutyl phthalate]; and 

nine phenols: methylparaben, butylparaben, propylparaben, triclosan, 2,4-dichlorophenol, 

2,5-dichlorophenol, benzophenone-3, and BPA. We dropped butylparaben from the analyses 

due to low detection frequency. Analytic methods have been published previously for both 

phthalates (Silva MJ, 2007) and phenols (Ye et al., 2005). Concentrations were reported in 

ng/mL of urine. Limits of detection (LOD) ranged from 0.2 ng/mL – 2.3 ng/mL. 

Concentrations below the LOD were assigned the instrumental reading values, if available, 

or an imputed value below the LOD selected randomly from the log-normal distribution 

using maximum likelihood estimation(Lubin et al., 2004).

Urinary specific gravity was measured using a hand-held refractometer (National Instrument 

Company Inc., Baltimore, MD). We corrected for urinary dilution using the formula: 

(analyte concentration * 0.24)/(sample specific gravity – 1) (Cone et al., 2009). We imputed 

urinary specific gravity based on urinary creatinine concentrations for 77 women missing 

specific gravity measurements.

2.4 Statistical analysis.

We used the log2 of the average of the two pregnancy biomarker measurements in all 

analyses. We examined DEHP as the sum of the four DEHP metabolites: MEHP, MEHHP, 

MEOHP, and MECPP (∑DEHP)(Berger et al., 2019). We conducted BPR to assign 

participants into clusters based on their joint biomarker concentration patterns, controlling 

for maternal age, parity, poverty at baseline, and family history of asthma. BPR clusters 

individual observations using model averaging with Markov chain Monte Carlo estimation 

and is based on Dirichlet Process mixture modeling (Molitor et al., 2010). The number of 

clusters is data-driven, not chosen by the researcher, and is allowed to vary across iterations 

of the model. We used Analysis of Variance (ANOVA) tests to assess if clusters had 
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significantly different mean biomarker concentrations. We then conducted chi squared tests 

and ANOVAs to evaluate if clusters differed significantly on frequency of probable asthma 

and aeroallergy cases, or the mean of FEV1. We also conducted logistic regressions for 

probable asthma and aeroallergies and a linear regression for FEV1 with cluster assignment 

as a categorical predictor and with no other variables in the models.

We used BKMR (Bobb JF, 2015) to separately model probable asthma, aeroallergies, and 

FEV1 as flexible kernel functions of urinary phthalates, parabens, and other phenols, also 

adjusted for maternal age, parity, poverty at baseline, and family history of asthma. BKMR 

reduces dimensionality by selecting variables into the model only if they show evidence of 

an association with the outcome, while penalizing the complexity of the multivariate surface. 

We used BKMR’s hierarchal variable selection option, which first selects at the group level 

(group one: phthalates, group two: parabens, group three: other phenols; groups determined 

by the authors) where each of the three groups is evaluated for its importance in the model; 

next, biomarkers are selected within their groups. We used this option because a few of our 

biomarkers were highly correlated within these groups. In sensitivity analyses, we used 

BKMR’s component-wise variable selection, which does not group biomarkers and 

performs selection only at the individual level. After variable selection, BKMR outputs 

Posterior Inclusion Probabilities (PIPs), which rank each group by importance in the model, 

and each biomarker by importance within its group. As they are probabilities, group PIPs 

sum to 100, and within each group the individual PIPs sum to 100. A biomarker with high 

individual and group PIPs can be interpreted as important in the model, while a biomarker 

with a high individual PIP but a low group PIP is relatively less important. Uncertainty in the 

variable selection process is then applied to the function estimation. The functions modeled 

with the selected variables are nonlinear and nonadditive, encapsulating many possible 

underlying functional forms.

For biomarkers that demonstrated multiplicative interaction in BKMR bivariate plots, we 

conducted regressions with interaction terms for the two biomarkers, controlling for the 

same covariates as in BKMR. We did not include other biomarkers in the model.

In further sensitivity analyses, we conducted BKMR for the first and second pregnancy 

measurements separately.

Both Bayesian analyses were conducted in R (Team, 2013) (Vienna, Austria): BPR with the 

PReMiuM package (Liverani et al., 2013) (version 3.1.4) and BKMR with the bkmr package 

(Bobb, 2017) (version 0.2.0). Details on BPR (Hastie et al., 2013; Liverani et al., 2013; 

Papathomas et al., 2011) and BKMR (Bobb JF, 2015; Coull et al., 2015) have been 

published previously. ANOVAs, chi squared tests, and regressions were conducted in Stata 

14 (College Station, TX).

3. Results

Table 1 shows the characteristics of the study population. Mothers tended to be young (42% 

were <25 years old), low income (62% were below 100% federal poverty), and already had 

two or more children (39%). Ten percent of children had a family history of asthma. We 
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classified 33 children (10%) as having probable asthma and 81 (25%) as having 

aeroallergies at age seven. FEV1 data were available for 282 children at age seven 

(Mean=1.8 liters (SD=0.5)). The 212 people removed due to missing data tended to be 

younger and to have lived in the US for less time.

Most biomarkers were detected in over 90% of samples, as shown in Supplemental Table S1. 

Figure 1 shows correlations for all biomarkers included in these analyses. The most highly 

correlated biomarkers were 2,4-dichlorophenol and 2,5-dichlorophenol (0.85, P<0.01). 

Remaining significantly correlated biomarkers ranged from 0.65 (MCNP and MCOP, 

P<0.01) to 0.11 (propylparaben and MCPP, P=0.05). Most moderate and high correlations 

were within chemical groups (phthalates, parabens, other phenols), but there were some 

moderate intergroup correlations as well. Most phthalates, with the exception of MEP, 

showed moderate correlation with each other and with BPA. The phenols were less strongly 

correlated, with a moderate correlation between methylparaben and propylparaben, and a 

strong correlation between the dichlorophenols.

3.1 BPR results

The BPR analysis yielded seven clusters, biomarker concentrations for which are shown in 

Figures 2 (phthalates) and 3 (parabens and other phenols). Cluster three (68 people) was 

characterized by high concentrations of most phthalates, parabens, and other phenols and the 

absence of low concentrations, relative to other clusters. Cluster five (45 people) was 

characterized by the inverse pattern: low concentrations of most biomarkers with no high 

concentrations, relative to other clusters. Clusters two (26 people) and seven (52 people) 

were characterized by high concentrations of personal care product biomarkers (low 

molecular weight phthalates, parabens, and other phenols) and low concentrations of 

biomarkers of chemicals used to manufacture plastics (high molecular weight phthalates and 

BPA), relative to other clusters, and cluster six (31 people) was characterized by the inverse 

pattern: high concentrations of biomarkers of chemicals used in plastics manufacture and 

low concentrations of personal care product biomarkers, relative to other clusters. Cluster 

four (51 people) was characterized by low concentrations of all biomarkers except the 

dichlorophenols and cluster one (46 people) was characterized by high concentrations of all 

biomarkers except the dichlorophenols, relative to other clusters. ANOVA p-values indicated 

mean concentrations of all biomarkers except triclosan differed significantly by cluster 

(Figures 2 and 3).

Table 2 shows summary statistics for each outcome across clusters and associations between 

cluster membership and each outcome. Chi squared tests indicated that cluster membership 

was not related to odds of having probable asthma, to FEV1, or aeroallergies. However, 

cluster three, characterized by relatively high concentrations of all biomarkers, exhibited the 

lowest average FEV1 volume when compared to the reference group of cluster five with the 

lowest exposure. Cluster five was chosen as the reference cluster because it was categorized 

by low concentrations of chemicals relative to other clusters. Regressing probable asthma, 

aeroallergies, and FEV1 on cluster assignment as a categorical predictor yielded no 

significant associations.
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3.2 BKMR results

The BKMR program determined that all 15 biomarkers were to be included in models for 

each outcome. Overall, PIPs from the BKMR models indicated that the phthalate group was 

most influential for probable asthma and FEV1, but that the other phenols group was most 

influential for aeroallergies (Table 3).

BKMR outputs univariate plots, bivariate plots, and cumulative plots. The univariate plots 

(Figures 4, 7, and 9) represent the predicted probability of a health outcome as a function of 

exposures to all included biomarkers, with each subplot focusing on the association of a 

particular biomarker with others held at their medians. The x-axis of each univariate plot 

represents the z-score of the biomarker’s concentration and the y-axis of each univariate plot 

represents the predicted probability of the health outcome. While the main advantage to 

these plots is their visualization of nonparametric overall trends, Table 4 attempts to 

summarize them for those more familiar with point estimates. It shows the predicted 

probability of each outcome associated with an IQR increase in each biomarker z-score, 

with all other biomarkers held at their medians. The data points in Table 4 come from the 

same data frame that generates the univariate plots. BKMR’s bivariate plots (Supplemental 

Figures 1–3) use the function of predicted probability to examine the relationship between 

each biomarker and an outcome as the concentration of a second biomarker increases in 

quantiles, while holding all additional biomarkers at their medians. These plots can show 

additive or multiplicative effects of mixtures of biomarkers. Biomarkers listed along the 

right side of the bivariate figures are represented in rows as the plots of their associations 

with the health outcome. Biomarkers listed at the top of the bivariate figures are represented 

in columns as five colored lines, each a different quantile of its concentration. Thus, within 

each bivariate plot, one can see the association between one biomarker and the outcome at 

different concentrations of a second biomarker. Cumulative plots (Figures 6, 8, and 11) show 

the predicted probability of the outcome associated with increasing quantiles of the total 

concentration of all biomarkers.

The PIPs indicate that MCOP, MCNP, propylparaben, and triclosan were the most influential 

biomarkers for probable asthma (Table 3). The univariate plots for probable asthma show 

that propylparaben (predicted probability per IQR of biomarker z-score = −0.18 (standard 

deviation = 0.11)), along with 2,5-dichlorophenol (predicted probability per IQR = −0.15 

(0.16)), appear to have strong negative (protective) relationships, while MCOP (predicted 

probability per IQR = 0.08 (0.09)), MCNP (predicted probability per IQR = 0.07 (0.09)) and 

2,4-dichlorophenol (predicted probability per IQR = 0.11 (0.12)) appear to have strong 

positive relationships (Figure 4, Table 4). Although triclosan was ranked highly in the PIPs 

for probable asthma, it only shows a slight positive relationship in the univariate plot 

(predicted probability per IQR = 0.10 (0.09)). This may be because it has a positive slope 

relative to many other biomarkers in the plot (e.g. MEP and BPA), and has relatively narrow 

credible intervals, unlike MCNP. Bivariate plots, which allow investigation of additive and 

multiplicative interactions between pairs of biomarkers while holding all others constant, are 

shown in Supplemental Figure 1 for probable asthma. Propylparaben appears to have a 

negative additive effect on associations of all other biomarkers for probable asthma: as 

propylparaben increases in quantiles of concentration as seen in the colored lines, the 
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intercepts of other biomarkers decrease while their slopes stay the same (propylparaben and 

∑DEHP are included as an example in Figure 5). 2,5-Dichlorophenol also appears to have a 

negative additive effect, while MCOP, MCNP, triclosan, and 2,4-dichlorophenol appear to 

have slight positive additive effects. The cumulative plot reflects both the protective and 

harmful associations seen in the univariate plots. The elevated risk at the lower quantiles is 

likely due to the associations seen with propylparaben and 2,5-DCP, whereas the elevated 

risk at the higher quantiles is likely due to those seen with MCNP, MCOP, and 2,4-DCP 

(Figure 6).

MCOP and 2,4-dichlorophenol had the highest PIPs for FEV1 (Table 3). Propylparaben and 

methylparaben both had high individual PIPs (which only indicates they were weighted 

relatively equally as there are only two biomarkers in the paraben group), however their 

group PIP was low which indicates relatively low importance in the model. The univariate 

BKMR plots for FEV1 volume show a strong negative association with MCOP (predicted 

probability per IQR = −0.07 (0.05)) (Figure 7, Table 4). The univariate plot also shows 

weaker negative associations with MEP (predicted probability per IQR = −0.05 (0.04)), 

MBzP (predicted probability per IQR = −0.04 (0.05))), and 2,4-dichlorophenol (predicted 

probability per IQR = −0.07 (0.06))), and a positive (protective) association with triclosan 

(predicted probability per IQR = 0.06 (0.04))). In bivariate plots, MCOP and 2,4-

dichlorophenol show weak additive effects on the associations of other biomarkers 

(Supplemental Figure 2). Similar to probable asthma, the cumulative plot for FEV1 reflects 

both the harmful associations seen with higher concentrations of MCOP and 2,4-DCP and 

lower concentrations of several other chemicals (Figure 8).

BPA and MCPP were the most influential biomarkers for aeroallergies as shown with PIP 

rankings (Table 3). In the univariate plots for aeroallergy, MCPP (predicted probability per 

IQR = 0.13 (0.09)) and BPA (predicted probability per IQR = 0.11 (0.08)) show strong 

positive (harmful) associations (Figure 9, Table 4). In bivariate plots, MCPP and BPA appear 

to have positive additive effects on the associations of other biomarkers (Supplemental 

Figure 3). The plot also suggests an antagonistic interaction between MEP and BPA: each 

biomarker shows a positive association on its own, but increasing levels of one of these 

biomarkers appears to attenuate the association of the other. This interaction appears to 

occur mainly at a z-score of 2 or higher for either chemical, which represents 17 (5%) 

participants. An enhanced plot of this relationship is shown in Figure 10. To further explore 

this antagonistic relationship, we conducted a logistic regression model with interaction 

terms for MEP and BPA, controlling for the same covariates as in BKMR. Odds ratios and 

confidence intervals for both biomarker concentrations were above 1 (MEP: OR=1.21, 95% 

CI: 1.01, 1.47; BPA: OR=6.79, 95% CI: 1.84, 25.03), and the odds ratio and confidence 

interval for their interaction was below 1 (OR=0.82, 95% CI: 0.70, 0.96), again indicating 

the biomarkers interact antagonistically. The cumulative plot for aeroallergies shows an 

increasing risk with increasing quantiles of cumulative urinary concentrations of all 

biomarkers (Figure 11).

In sensitivity analyses, we used the component-wise variable selection option in BKMR. 

Results in all plots were similar (not shown). We also examined BKMR associations using 

the first and second pregnancy measurements separately. Results were mostly similar to the 
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pregnancy-averaged results (Supplementary Figures 4–6), but there are exceptions. MEP at 

26 weeks showed a strong protective relationship with probable asthma (Supplementary 

Figure 4). The associations between FEV1 and PP and BPA are stronger with baseline data 

only, though the 2,4-DCP association was attenuated. With 26 week data, the association 

between 2,5-DCP became stronger (Supplemental Figure 5). The association between 

MCPP and allergy was attenuated with baseline only data, and the association between MBP 

and allergy at 26 weeks appears protective instead of null. (Supplemental Figure 6).

4. Discussion

We assessed urinary concentrations of multiple phthalate biomarkers, parabens, and other 

phenols often found in similar consumer products and their relationship to atopic and 

respiratory outcomes using two different methods: BPR and BKMR. We used BPR to cluster 

participants into groups based on their prenatal urinary concentrations of phthalates, 

parabens, and other phenols found in personal care products and plastics. We found that the 

seven clusters produced by BPR were characterized by patterns consistent with distinct 

personal care product and plastic use, but no cluster was significantly associated with 

probable asthma, aeroallergies, or FEV1. We also estimated a flexible kernel function of 

these biomarker concentrations with the same outcomes using BKMR. The BKMR analysis 

showed that, within the context of concentrations of all biomarkers, MCOP was associated 

with increased predicted probability of having probable asthma and with increased predicted 

probability of having a lower FEV1 volume, as was 2,4-dichlorophenol to a lesser extent. 

2,5-dichlorophenol and propylparaben showed associations with a decreased predicted 

probability of having probable asthma, but did not show an association with FEV1 volume. 

We also found that MCPP and BPA were associated with increased predicted probability of 

having aeroallergies. Several biomarkers that showed associations in the univariate plots also 

showed positive additive effects in bivariate plots, such as 2,4-dichlorophenol with probable 

asthma and MCPP with aeroallergy, and MEP and BPA showed an antagonistic 

multiplicative interaction in their relationship to aeroallergy.

The clusters produced by BPR, as well as the relative biomarker concentrations seen within 

them, are consistent with expected patterns of coexposures. Clusters two and seven, which 

were higher than other clusters in MEP, methylparaben, and propylparaben, may represent 

women who use more cosmetics or artificially scented products, as these biomarkers have 

been associated with use of makeup, lotion, deodorant, and perfume (Berger et al., 2018b; 

Braun et al., 2014; Meeker et al., 2013; Parlett et al., 2013). Cluster six, higher than other 

clusters in high molecular weight phthalates and BPA, may represent women with high 

molecular weight phthalates present in building materials, more use of plastic products, or 

specific dietary patterns, because diet appears to be an important source of exposure to these 

compounds (Quiros-Alcala et al., 2013; Zota et al., 2016).

The lack of significant associations in regressions with cluster assignments may reflect 

limited power to detect relationships once the unit of analysis is the clusters. The number of 

cases once split across the seven clusters may have been too low to power detecting a 

relationship. Strong associations of one biomarker may also be diluted by null or negative 

associtions of other biomarkers that characterize a cluster. Additionally, although the 
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ANOVA p-value indicated clusters did not differ significantly on outcomes, cluster three 

(characterized by higher concentrations of all biomarkers) had the lowest FEV1 volume, 

suggesting a possible relationship between respiratory health and high concentrations of 

many biomarkers.

The BKMR findings confirm the main results seen in our previous papers that looked at 

associations of these chemicals individually while controlling for additional biomarkers in 

the logistic and linear regressions (Berger et al., 2018a; Berger et al., 2019). Those analyses 

similarly found that MCOP, a metabolite of diisononyl phthalate, was associated with 

increased odds for probable asthma and with poorer lung function, and that propylparaben 

was associated with decreased odds for probable asthma. BKMR served as a useful tool 

alongside single-biomarker regression analyses to confirm if individual biomarker 

associations from traditional regression methods persist when accounting for joint exposure 

to other biomarkers.

There were several unexpected findings in this data set. The protective associations shown 

between propylparaben, 2,5-DCP and probable asthma have not been substantiated in 

previous longitudinal studies on asthma diagnoses (Buckley et al., 2018; Lee-Sarwar et al., 

2018; Vernet et al., 2017), though harmful associations have been found between 2,5-DCP 

and wheezing (Vernet et al., 2017) and asthma attacks (Buckley et al., 2018). The only 

previous longitudinal study to evaluate triclosan and FEV1 did not find a relationship 

(Vernet et al., 2017). We are unaware of any biological mechanisms that might explain our 

findings.

Although the BKMR plots point to trends in how biomarker concentrations are related to 

atopic and respiratory outcomes, the posterior probability distributions (represented by 

credible intervals) indicate that these trends may take another form within the credible 

interval. However, the parameter estimate line provides a useful representation of the most 

probable overall trend. With 15 biomarkers and three outcomes in this study, these credible 

intervals should also be interpreted with multiple comparisons in mind.

In bivariate BKMR plots, several biomarkers showed evidence of a positive additive effect 

when in the presence of other biomarkers. For example, at higher quantiles of MCPP, MEP 

was associated with even higher probability of aeroallergies while maintaining the slope of 

its overall positive trend. The biomarkers that showed these additive effects usually also 

showed an association in univariate plots, suggesting that if a biomarker is strongly 

associated with an outcome, it may also exert a positive additive effect on the association of 

other biomarkers and that outcome. Multiplicative, antagonistic interaction was seen in the 

plots of MEP and BPA in relation to aeroallergy, to the effect that high concentrations of 

each biomarker appeared to diminish the associations of the other. This was supported by 

interaction terms in a logistic regression model. There are no other epidemiologic studies on 

the joint effects of these two biomarkers (or their precursor in the case of MEP) on 

aeroallergies to compare to, nor are there animal or in vitro studies of this chemical 

combination to our knowledge. Existing literature on possible immunologic mechanisms of 

these chemicals does not suggest a biologically antagonistic relationship (Herberth et al., 

2017; Maruyama et al., 2007; Tian et al., 2003; Yan et al., 2008), but the interaction has not 
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been specifically studied. It may also be a statistical interaction influenced by confounding 

present at the extreme concentrations of either biomarker, or it may reflect statistical 

imprecision at these concentrations as only 17 participants had z-scores in the range the 

interaction appeared to mainly occur. Multiplicative interactions were not seen between 

MEP and BPA for the other outcomes.

The cumulative BKMR plots can help describe associations with total exposure to all 

biomarkers measured in a sample. They can, however, be difficult to interpret if any of the 

included biomarkers are associated in opposing directions, as seen with MCOP and 

propylparaben with probable asthma. These plots should likely serve as a compliment to 

other analytic methods.

In our sensitivity analyses examining the first and second pregnancy measurements 

separately, several associations changed, but with no apparent consistency. Very few studies 

have compared multiple measures of these chemicals during pregnancy in relation to asthma, 

lung function, or aeroallergies. Similar to our analyses, two studies also found a stronger 

association between respiratory outcomes and BPA earlier in pregnancy rather than later 

(Spanier et al., 2012; Spanier et al., 2014c), however another study found the opposite trend 

(Gascon et al., 2015). Our biomarker measurements do demonstrate relatively high 

variability between pregnancy timepoints: calculated from this cohort, the phthalates have 

intraclass correlation coefficients ranging from 0.14 to 0.39, while parabens range from 0.41 

to 0.46, and the other phenols range from 0.16 to 0.56. Therefore, results differing by 

timepoints could reflect either criticial susceptibility windows or variation in exposure over 

pregnancy. Due to the latter possibility, we have more confidence in the pregnancy-averaged 

results.

One statistical limitation of BKMR is that it holds additional biomarkers at a single level 

(typically at their medians). However, as evidenced by our BPR results, people may typically 

have relatively low exposure to some chemicals and high exposure to others simultaneously. 

Holding all additional biomarkers at one level, therefore, is not a natural simulation of 

exposures to multiple chemicals.

The concentrations of phthalates, parabens, and other phenols in our data were mostly 

moderately correlated and are thus more suited to these methods than to inclusion as 

confounders in traditional regression models, as both BPR and BKMR can better account for 

collinearity of data. However, moderate correlation between biomarkers could limit power to 

detect the effect of one biomarker in the context of exposure to others. For example, a subtle 

association between a biomarker and an outcome may not be apparent in a BKMR univariate 

plot, and BPR clusters do not allow us to discern the effects of any one biomarker within a 

cluster.

This study has several strengths. We measured urinary concentrations of biomarkers at two 

timepoints to help characterize more habitual exposure. Measuring the exposure during 

pregnancy is also an advantage as prenatal exposure may be more influential on the 

development of the respiratory system compared to later exposures. Another strength is our 
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dynamic case definition of probable asthma, which was based on both clinical and 

participant data sources.

Our data show that participants cluster into seven groups based on prenatal urinary 

concentrations of phthalates, parabens, and other phenols, and that these groups are not 

significantly related to atopic and respiratory outcomes. Our data also show that MCOP is 

associated with higher predicted probability of having probable asthma and with lower 

FEV1 volume, when accounting for exposure to other biomarkers. Clinical implications 

include that children who were prenatally exposed to MCOP, MCPP, or BPA may be at 

higher risk of developing respiratory or atopic diseases. Results from the BKMR analysis are 

similar to those from traditional regression methods but can additionally evaluate how the 

presence of a mixture of biomarkers influences the associations of any given biomarker.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

DEP diethyl phthalate

DiBP di-isobutyl phthalate

DBP dibutyl phthalate

BPA Bisphenol A

DEHP di(2-ethylhexyl) phthalate

BBzP benzylbutyl phthalate

MCOP monocarboxyisooctyl phthalate

DiNP di-isononyl phthalate

MCNP monocarboxyisononyl phthalate

DiDP di-isodecyl phthalate
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MEP monoethyl phthalate

MBP mono-n-butyl phthalate

MiBP mono-isobutyl phthalate

MBzP monobenzyl phthalate

BPR Bayesian Profile Regression

BKMR Bayesian Kernel Machine Regression

CHAMACOS Center for the Health Assessment of Mothers and Children of Salinas

OPHS Office for the Protection of Human Subjects

CDC Centers for Disease Control and Prevention

FEV1 forced expiratory volume in one second

MEHP mono-2-ethylhexyl phthalate

MEHHP mono-(2-ethyl-5-hydroxyhexyl) phthalate

MEOHP mono-(2-ethyl-5-oxohexyl) phthalate

MECCP mono-(2-ethyl-5-carboxypentyl) phthalate

MCPP mono(3-carboxypropyl) phthalate

LOD limit of detection

ANOVA Analysis of Variance

PIP Posterior Inclusion Probability
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Highlights

• Multiple chemical exposures may interact in a way not shown by traditional 

analyses

• We measured personal care product chemicals and plasticizers in 319 

pregnant women

• We measured respiratory and atopic outcomes in their children at age seven

• Bayesian Profile Regression clustered women into groups consistent with 

product use

• BKMR showed that monocarboxyisooctyl phthalate was related to probable 

asthma
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Figure 1. 
Correlations of log2 specific gravity corrected phthalate, paraben, and other phenol urinary 

concentrations of CHAMACOS mothers during pregnancy

*P<0.05
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Figure 2. 
Geometric means and geometric standard deviations of phthalate concentrations across 

clusters generated by Bayesian Profile Regression
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Figure 3. 
Geometric means and geometric standard deviations of paraben and other phenol 

concentrations across clusters generated by Bayesian Profile Regression
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Figure 4. 
Predicted probability of having probable asthma by z-score of log2 biomarker 

concentrations, holding all other biomarkers at their medians
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Figure 5. 
Predicted probability of having probable asthma by z-score of (A) ∑DEHP by quantiles of 

PP and (B) PP by quantiles of ∑DEHP
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Figure 6. 
Predicted probability of having probable asthma by quantiles of total biomarker 

concentration z-scores
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Figure 7. 
Predicted probability of FEV1 volume by z-score of log2 biomarker concentrations, holding 

all other biomarkers at their medians
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Figure 8. 
Predicted probability of FEV1 by quantiles of total biomarker concentration z-scores
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Figure 9. 
Predicted probability of having aeroallergies by z-score of log2 biomarker concentrations, 

holding all other biomarkers at their medians
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Figure 10. 
Predicted probability of having aeroallergies by z-score of (A) MEP by quantiles of BPA and 

(B) BPA by quantiles of MEP
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Figure 11. 
Predicted probability of having aeroallergies by quantiles of total biomarker concentration z-

scores
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Table 1.

Demographic characteristics of the study population, CHAMACOS Study, Salinas, CA

Characteristics at time of pregnancy

N (%)

Included in BKMR Excluded from BKMR

Age

   18–24 135 (42) 124 (58)

   25–29 106 (33) 52 (25)

   30–34 51 (16) 27 (13)

   35+ 27 (8) 9 (4)

Household income as a proportion of poverty

   <100% 198 (62) 131 (62)

   100–200% 109 (34) 74 (35)

   >200% 12 (4) 7 (3)

Maternal education

   6th grade or less 141 (44) 90 (42)

   7th-12th grade 107 (34) 85 (40)

   High school graduate or greater 71 (22) 37 (17)

Maternal country of birth

   United States 41 (13) 30 (14)

   Mexico 275 (86) 173 (82)

   Other 3 (1) 9 (4)

Years mother has lived in the United States

   Five or fewer 148 (46) 123 (58)

   Six to ten 85 (27) 31 (15)

   Eleven or more 86 (27) 58 (27)

Parity

   First child 102 (32) 79 (37)

   Second child 92 (29) 71 (33)

   Third child or greater 125 (39) 62 (29)

Child’s mother, father, or siblings have asthma history

   No 288 (90) 189 (89)

   Yes 31 (10) 23 (11)
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