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The Impact of Complex and Informed Adversarial Behavior in
Graphical Coordination Games

Keith Paarporn?, Brian Canty?, Philip N. Brown, Mahnoosh Alizadeh, and Jason R. Marden

Abstract—How does system-level information impact the abil-
ity of an adversary to degrade performance in a networked
control system? How does the complexity of an adversary’s
strategy affect its ability to degrade performance? This paper
focuses on these questions in the context of graphical coordination
games where an adversary can influence a given fraction of the
agents in the system, and the agents follow log-linear learning, a
well-known distributed learning algorithm. Focusing on a class
of homogeneous ring graphs of various connectivity, we begin
by demonstrating that minimally connected ring graphs are
the most susceptible to adversarial influence. We then proceed
to characterize how both (i) the sophistication of the attack
strategies (static vs dynamic) and (ii) the informational awareness
about the network structure can be leveraged by an adversary to
degrade system performance. Focusing on the set of adversarial
policies that induce stochastically stable states, our findings
demonstrate that the relative importance between sophistication
and information changes depending on the the influencing power
of the adversary. In particular, sophistication far outweighs
informational awareness with regards to degrading system-level
damage when the adversary’s influence power is relatively weak.
However, the opposite is true when an adversary’s influence
power is more substantial.

I. INTRODUCTION

A networked system can be viewed as a collection of
subsystems, each required to make local and independent
decisions in response to available information. The infor-
mation available to each subsystem could pertain to local
environmental conditions or the behavior of a selected group
of neighboring agents in the system; hence, the information
available to one subsystem could be vastly different than the
information available to other subsystems. Regardless of the
specific problem domain and informational characteristics, the
underlying goal is to derive agent control policies that ensure
the emergent collective behavior is desirable with respect to a
system-level performance metric.

A central focus of such systems is the design of networked
control algorithms that provide strong guarantees on the qual-
ity of emergent outcomes. A networked control algorithm
can be viewed as a decision-making rule that specifies how
subsystems respond to local conditions. There are several
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noteworthy results in this domain ranging from consensus and
flocking [2], [3], sensor allocation [4], [5], coordination of
unmanned vehicles [6], and many others. A common theme
in all of these works is the following: If all agents follow the
prescribed decision-making rules, then the emergent behavior
is both stable and desirable. In contrast to this work, here we
seek to address whether such decision-making rules are robust
to adversarial interventions.

While the decentralization associated with distributed archi-
tectures is undoubtedly appealing for a host of reasons, it is
important to highlight that this also introduces vulnerabilities.
In particular, the decision-making process of individual sub-
systems can potentially be influenced by adversarial actors in
the system through corrupting or augmenting the information
to the subsystems. Accordingly, in this paper we ask whether
an adversary can exploit these interconnections to negatively
influence the quality of the emergent collective behavior.
Formal analysis of this interplay has emerged in recent years,
often in the context of robust consensus, distributed optimiza-
tion, and cyber-physical system security [7]–[9].

The focus of this paper is the susceptibility of a distributed
algorithm known as log-linear learning in networked control
systems [10]–[12]. Log-linear learning has received significant
attention recently in the area of distributed control, as it can
often be employed to ensure that the resulting behavior is
near optimal. A representative set of examples range from
control of wind farms [13], sensor networks [4], [5], [14]–
[16], task assignment [17], among others [18]. However, the
susceptibility of this approach to adversarial interventions is
generally unknown.

The goal of this paper is to shed light on the susceptibility of
log-linear learning to adversarial interventions. To that end, we
focus on a well-studied class of systems known as graphical
coordination games [19], [20]. Graphical coordination games
model strategic scenarios where agents are tasked with adopt-
ing conventions and derive benefits from coordinating with
the choices of their neighbors, e.g., adoption of technology
or conventions [20], [21]. Regardless of the specifics of the
graphical coordination game, log-linear learning is known to
asymptotically achieve optimal system-level behavior. In this
work, we focus on characterizing the degree to which the
performance guarantees of log-linear learning algorithms can
be undermined by adversarial manipulations.

In particular, our goal is to evaluate how different adver-
sarial features can inflict harm on the system. How much
more of a threat is an adversary that knows the underlying
network structure versus one that does not? An adversary that
can dynamically alter its strategy versus one that can not? We
begin by stating our model to ensure that our contributions are
clear.
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A. Model: Graphical Coordination Games

We consider the framework of graphical coordination games
where there is a collection of agents N = {1, 2, . . . , n}
enmeshed in an underlying undirected network G = (N , E)
where E ⊆ N × N defines the inter-agent interconnections.
There are two different conventions, denoted by x and y, and
each agent i ∈ N must decide between a set of conventions
Ai ⊆ {x, y}. Note that if Ai = {y}, this means that agent i is
required to select convention y. The benefit agent i associates
with a choice x or y depends on how many of its network
neighbors Ni = {j ∈ N : (i, j) ∈ E} have selected the
same convention. More formally, given a joint action profile
a = (a1, . . . , an) ∈ A := A1 × . . .An, the total benefit agent
i experiences is given by

Ui(a) :=
∑
j∈Ni

V (ai, aj). (1)

where V : {x, y}2 → R defines the per agent benefit of
coordinating with a neighboring agent on a given convention.
Throughout, we consider V of the following form

x y
x 1 + α, 1 + α 0, 0
y 0, 0 1, 1

where α > 0. The system welfare associated with the action
profile a ∈ A is given by

W (a) :=
∑
i∈N

Ui(a). (2)

The goal of a system operator is to assign decision-making
rules for the agents such that their emergent collective behavior
optimizes the system welfare, i.e., the emergent action profile
is of the form

aopt ∈ arg max
a∈A

W (a). (3)

One such algorithm that achieves this objective is log-linear
learning [11], [14], [22], [23]. Log-linear learning is a stochas-
tic distributed algorithm that governs the evolution of agents’
decisions over time. More formally, log-linear learning pro-
duces a sequence of joint action profiles {a(t)}∞t=0, which we
also call states, determined by the following process:

Definition 1 (Log-Linear Learning). Let a(0) ∈ A be any
action profile. At each time t ≥ 1, one agent i ∈ N
is selected uniformly at random and allowed to alter its
action choice. All other agents are required to repeat their
previous action, i.e., a−i(t) = a−i(t − 1) where a−i =
{a1, . . . , ai−1, ai+1, . . . , an} captures the action choice of all
agents 6= i. The updating agent i selects any action ai ∈ Ai
at time t with probability

eβUi(ai,a−i(t−1))∑
ãi∈Ai e

βUi(ãi,a−i(t−1))
(4)

where β > 0 is a given algorithm parameter. Once agent i
selects her action, the process is repeated.

Log-linear learning induces in an ergodic process over the
joint action profiles A in any graphical coordination game

of the above form. The stochastically stable states, which we
express by LLL(G,A, α) ⊆ A is defined as the support of the
limiting distribution as β → ∞. In the context of graphical
coordination games, log-linear learning ensures that

LLL(G,A, α) = arg max
a∈A

W (a). (5)

Note that log-linear learning guarantees that the emergent be-
havior optimizes the system-level objective irrespective of the
graph G, the convention choices available to the agents A, and
the value of α. Note that in the special case when Ai = {x, y}
for all i ∈ N , then LLL(G,A, α) = {~x = {x, . . . , x}} is
the all x convention. For alternative choices of A, the action
profiles that optimize system welfare is not as straightforward.

B. Models of Adversarial Interventions

In this paper we consider an adversary seeking to influ-
ence the decision-making process of log-linear learning by
strategically integrating S = {1, . . . , |S|} adversarial nodes
into the system. Each of the adversarial nodes s ∈ S will be
integrated into the network through a connection to a unique
single agent i ∈ N that the adversarial node is tasked with
influencing though a choice as = {x} or as = {y}. Let
Sx, Sy ⊆ N , |Sx| + |Sy| ≤ |S|, denote the set of agents
that are being influenced by an adversary promoting {x} and
{y} respectively. Given Sx and Sy , the influenced utility of
an agent i ∈ N is of the form

Ũi(a;Sx, Sy) :=

Ui(a) + V (ai, x) if i ∈ Sx
Ui(a) + V (ai, y) if i ∈ Sy
Ui(a) else

(6)

In words, an agent i ∈ Sy (resp. i ∈ Sx) experiences the
usual benefits from its neighbors in Ni, plus an additional
utility of 1 if ai = y (resp. 1 + α if ai = x). While
the adversarial nodes S do not directly contribute to the
system-level objective as defined in (2), they modify the
network agents’ utility functions, which invariably influence
the resulting asymptotic behavior associated with log-linear
learning. We now denote by LLL(G,A, α, π) the (possibly
modified) stochastically stable states, where π defines the
process, or policy, through which Sx and Sy are chosen.
Technically speaking, the sets Sx(t), Sy(t) are drawn from
the distribution π(t). The performance degradation associated
with the adversarial policy π is measured by

η(G,A, α, π) := min
a∈LLL(G,A,α,π)

{
W (a)

W (aopt)

}
≥ 0. (7)

We will focus on graphical coordination games where the
agents have full choice of conventions, i.e., Ai = {x, y} for
all i ∈ N . For that setting, we will omit highlighting the
dependence of A in the definition of η(·) and LLL(·), i.e. we
will instead write η(G,α, π) and LLL(G,α, π).

C. Summary of Contributions

The focus of this manuscript is on characterizing the sus-
ceptibility of log-learning learning to adversarial interventions
in networked coordination games. In particular, our goal is
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to identify the salient features of the worst-case adversarial
policies. Specifically, we focus on identifying the importance
of the following two attributes:
- Informational Awareness: Does the adversary know the
network structure?
- Strategic Sophistication: Can the adversarial nodes dynam-
ically alter their location and convention choice over time?

The above attributes define four classes of adversarial
policies, which we represent by {ΠI,D,ΠI,ΠD,Π}, where the
subscript I denotes informationally aware and the subscript
D denotes dynamic adversarial policies. The absence of a
subscript distinction means the negation. For example, ΠI,D
denotes the set of adversarial policies that are dynamic and
can utilize information about the network structure. On the
other hand, Π denotes the set of adversarial policies that
are static and agnostic to network structure. By dynamic, we
mean that the adversary can alter its behavior based on the
current network state. That is, we consider stationary policies1

{Sx(a(t)), Sy(a(t))}t=1,2,.... A static policy does not allow
this flexibility: Sx(a(t)) = Sx and Sy(a(t)) = Sy ∀t.

Our first set of main results identify the most vulnerable
graph structures. Focusing on a class of homogeneous ring
graphs where an adversary can influence at most γ ·n agents,
where γ ∈ [0, 1], we demonstrate that the most susceptible,
i.e., graphs that lead to the lowest efficiency as defined in
(7), are minimally connected ring graphs. We demonstrate this
over the set of adversarial policies Π and ΠD (Theorems 2.1
and 2.2). This matches intuition as the graph with the fewest
internal edges are in fact the most susceptible to adversarial
interference.

Our second set of results focus exclusively on these ring
graphs and seek to identify how information regarding the
network structure can be exploited by the adversary. In
doing so, we characterize the tight worst-case performance
guarantees as in (7) over policies belonging to ΠI and ΠI,D
(Theorems 3.1 and 3.2). Figure 1 highlights an instance
of worst-case performance guarantees for all four types of
policies {ΠI,D,ΠI,ΠD,Π} when α = 0.5. As expected, the
adversary leverages information and sophistication to most
effectively degrade performance guarantees. However, the
regimes where each of these attributes is most valuable is not
so predictable. When an adversary has limited strength, i.e.,
γ < 0.5, sophistication is far more valuable than informational
awareness to the adversary. That is, the best adversarial policy
in ΠD significantly outperforms the best adversarial policy
in ΠI . When an adversary has more substantial strength, i.e.,
γ > 0.5, the opposite is true. We formalize these conclusions
in Theorem 3.3. Theorem 3.4 highlights the performance
differences between static and dynamic policies. In particular,
dynamic policies can achieve the same performance as static
ones using fewer adversarial nodes, but such performance
saturates above a threshold budget. We provide proofs in
Sections IV (static adversaries) and V (dynamic adversaries).

1In this paper, we restrict attention to adversarial policies that induce
stochastically stable states – in particular, static policies and dynamic policies
that are stationary. It will be of interest in future work to investigate other
types of dynamic policies that may not guarantee a SSS is induced.

Minimum efficiency induced,  = 0.5

Static uninformed

Static informed

Dynamic uninformed

Dynamic informed

Fig. 1: This figure highlights the interplay between an adversary’s
informational awareness (informed vs uninformed), strategic sophis-
tication (static vs dynamic), budget, and the minimum efficiency
it can induce on the system. The green and red lines characterize
minimum efficiencies induced from four different adversarial models
on ring networks of sufficiently large size, as a function of fractional
budget γ ∈ [0, 1] (the fraction of agents the adversary can influence).
At γ = 0, neither adversarial model can induce any damage on
efficiency (black circle). For low budgets (i.e. γ < 0.5), strategic
sophistication is more valuable than having system-level information
about the network. The converse holds true for higher budgets (i.e.
γ > 0.5): system-level information is more valuable than the ability
to implement dynamic policies.

For space concerns, proofs of omitted results can be found in
an online version https://arxiv.org/pdf/1909.02671.pdf.

D. Related Work

Previous work has studied to what extent networked dis-
tributed algorithms, designed to operate in the absence of
adversarial interference, are susceptible to such influence [9],
[24]–[28]. For example, distributed multi-agent optimization
algorithms are shown to easily be compromised by adversarial
behaviors [9], [28]. Indeed, there are fundamental limitations
to these algorithms and their variants. Such algorithms cannot
perform optimally in the absence of adversaries as well as be
resilient to adversarial attacks at the same time [9], [28].

How emergent behavior associated with game-theoretic
learning algorithms, such as log-linear learning, could be
influenced by adversarial nodes was initially studied in [29].
The focus centered on how easily adversarial nodes could steer
agents towards an inefficient Nash equilibrium. In this paper,
we instead focus on an adversary seeking to minimize system-
level performance.

II. ANALYSIS OF SUSCEPTIBLE GRAPHS

This section focuses on identifying which graph structures
are most susceptible to adversarial influence. To that end, we
will focus on a class of graphs that we term k-connected ring
graphs, for k ∈ {1, . . . , bn/2c}. A graph G = (N , E) is a k-
connected ring graph if Ni = {i−k, . . . , i−1, i+1, . . . , i+k}
for each agent i ∈ N , where addition and subtraction are both
modulo n. Note that when k = 1 we have the usual ring
graph and when k = bn/2c we have the complete graph.
Let us denote Gkn as the set of all k-connected ring graphs
of size n. The following Theorems outline the degradation in

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 25,2020 at 17:36:47 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2020.3038842, IEEE
Transactions on Control of Network Systems

4

performance attainable through admissible adversarial policies
belonging to Π and ΠD – static and dynamic uninformed
adversaries, respectively.

Theorem 2.1. Consider the class of network coordination
games where (i)2 α ∈ [0, 1), and (ii) an admissible adver-
sarial policy can influence at most a fraction γ ∈ [0, 1] of
agents in the network. Recall Π(G, γ) is the set of admissible
static adversarial policies that are agnostic about the network
structure. Then,

lim
n→∞

inf
π∈Π(G,γ)

G∈Gkn

η(G,α, π) =

{
1, if γ < kα
(1−(k−1)α)−αγ

(1+α)(1−kα) , if γ ≥ kα .

(8)

Theorem 2.2. Consider ΠD(G, γ), the set of admissible dy-
namic adversarial policies that are agnostic about the network
structure on any graph G ∈ Gkn. Then for α ∈ [0, 1) and
γ ∈ [0, 1],

inf
π∈ΠD(G,γ)

η(G,α, π) ≥
{

1
1+α , if α < 1

k , γ 6= 0

1, if α ≥ 1
k or γ = 0

. (9)

Furthermore, the limit of efficiency as the size of G grows
(n→∞) equals the lower bound.

There are several interesting things to note from Theorems
2.1 and 2.2. If α ≥ 1/k, neither classes of adversarial policies
ΠD(G, γ) nor Π(G, γ) can inflict any damage on the system
regardless of the budget γ. Second, the achievable efficiency
of a dynamic uninformed adversary, i.e., restriction to ΠD(γ),
is constant for γ ∈ (0, 1]. Third, the induced efficiency from
a static uninformed adversary, i.e., restriction to Π(G, γ), is
decreasing in γ. Lastly, by tightness we know that for any
k ≥ 1 and γ ∈ (0, 1] we have

inf
G1∈G1,π∈Π

η(G1, α, π) ≤ inf
Gk∈Gk,π∈Π

η(Gk, α, π),

and an identical relation holds for policies in ΠD. Here, we
omit highlighting the dependence on Π(·) for brevity. Hence,
ring graphs (k = 1) are the graphs that are most susceptible
to adversarial interference.

III. THE IMPACT OF INFORMATION ON RING GRAPHS

The previous section demonstrated that ring graphs are the
most susceptible to adversarial influence. In this section we
explicitly characterize the impact informational awareness has
on the potential degradation by admissible adversarial policies.
We focus this analysis exclusively on ring graphs.

A. Static Informed Adversarial Policies

This section focuses on the potential degradation of the
adversarial policies in the set ΠI. By knowing the graph’s
structure, the adversary can explicitly target specific agents
Sx, Sy ⊆ N in the network. An adversarial policy π ∈ ΠI
defines the process by which these agents are selected. The

2Values of α ≥ 1 are not considered here. If this is the case, no y agents
can be induced in the stochastically stable state under any adversarial policy
on ring graphs, and no damage can be inflicted.

resulting policies is static is the sense that for all times t ≥ 1,
Sx(t), Sy(t) = Sx, Sy . The following Theorem characterizes
the potential degradation caused by such adversarial policies.

Theorem 3.1. Consider the class of network coordination
games where (i) α ∈ [0, 1) and (ii) G ∈ G1

n. Given a fractional
adversarial budget consider ΠI(G, γ), the set of admissible
adversarial policies that are static, but can depend on the
network structure. Then for γ ∈ (0, 1],

inf
π∈ΠI(G,γ)

η(G,α, π) ≥

inf
`x1 ,`x2 ,`y1 ,`y2∈Z≥0

1

1 + α

(
1+

(2 + α)( s1s2−1) + α(`x1− s1
s2
`x2)

`x1 +`y1− s1
s2

(`x2 +`y2)

)
,

subject to: for j = 1, 2,

`xj ≥ 2, `yj ≥
⌈

2 + α

1− α

⌉
sj=γ(`xj+`yj )−

⌈
α(`yj+1)

⌉
−2−

⌈[
2− α(`xj − 1)

]
+

1 + α

⌉
s1 = 0 with `x2

, `y2 = 0, or s1 > 0 and s2 < 0

.

(SI-OPT)
For γ = 0, the efficiency for any graph is 1. Here, we denote
[z]+ = max{z, 0} for any z ∈ R. Furthermore, the limit of
efficiency as the size of G grows (n → ∞) equals the lower
bound (SI-OPT).

There are several interesting things to note from Theo-
rem 3.1, which characterizes the greatest damage that an
adversary can inflict upon the system when relying on static
policies that can depend on the graph structure. This theorem
informs the structure of the worst-case attack, which involves
the adversary attempting to stabilize alternating x, y sequences
of four distinct lengths. While the structure of this adversarial
attack is not necessarily fundamental, the interesting part of the
theorem centers on tightness. That is, the adversary can never
inflict more damage than the bounds given in Theorem 3.1,
and the best adversarial strategy approaches this bound as the
size of the ring graph in consideration gets larger.

B. Dynamic Informed Adversarial Policies

This section focuses on the potential degradation of the
adversarial policies in the set ΠDI . Here, the adversary can
target specific agents Sx(a(t)), Sy(a(t)) ⊆ N using knowl-
edge of the graph structure G and the sequence of action
profiles {a(t)}t∈Z≥0

. An adversarial policy π ∈ ΠDI defines
the process by which these agents are selected. The following
Theorem characterizes the maximum potential degradation
caused by such adversarial policies.

Theorem 3.2. Consider ΠDI(G, γ), the set of admissible
adversarial policies that are dynamic and can depend on
network structure, and α ∈ [0, 1). Then the fundamental lower
bound for infπ∈ΠDI(G,γ) η(G,α, π) is given by the RHS of
(SI-OPT), where the sj variables are instead

sj =

{
γ(`xj + `yj )− 4 if α < 1

2 and `xj ≤ 1 +
⌊

1−α
α

⌋
γ(`xj + `yj )− 2 else

(10)
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for j = 1, 2. Furthermore, the limit of efficiency as the size of
G grows (n→∞) equals the lower bound.

Similar to (SI-OPT), the lower bound of Theorem 3.2 takes
the form of an integer programming problem. While the struc-
ture of this adversarial attack is not necessarily fundamental,
the interesting part of the theorem centers on tightness. That is,
the adversary can never inflict more damage than the bound
described in Theorem 3.2 and the best adversarial strategy
approaches this bound as the size of the ring graph gets larger.

C. Comparison Between Information and Sophistication

Here, we emphasize the qualitative differences between
information and sophistication. The Theorem below asserts
that sophistication, i.e. the ability to implement a dynamic
policy, is a more desirable attribute for the adversary if its
budget is relatively low, while information is more valuable if
its budget is high.

Theorem 3.3. Suppose α ∈ [0, 1). For budgets γ ∈ (0, α)
(empty interval if α = 0), we have

lim
n→∞

inf
G∈G1

n

π∈ΠD(G,γ)

η(G,α, π) < lim
n→∞

inf
G∈G1

n

π∈ΠI(G,γ)

η(G,α, π).

(11)
For budgets γ ∈ (α, 1], the opposite (strict) inequality holds.
They are equal if γ = α.

Hence, in the low budget regime γ < α, the adversary
prefers to be uninformed and dynamic over being informed
but static. The opposite conclusion holds in the high budget
regime γ > α. This characterization allows us to explicitly
identify the importance of information and sophistication in
adversarial policies as highlighted in Figure 13.

The next result provides a comparison between static and
dynamic informed adversaries. It states that given a sufficiently
large adversarial budget, an optimal static informed policy can
do just as much damage as an optimal dynamic informed
policy.

Theorem 3.4. The fundamental lower bound on performance
for static informed policies is(

1

1 + α

)
`∗ + α

`∗ + 2
(12)

if and only if it has a budget γ ≥ γSI
sat :=

`∗+d 2−α
1+α e

`∗+2 , where

`∗ :=
⌈

2+α
1−α

⌉
. Furthermore, the fundamental lower bound

on performance for dynamic informed policies coincides with

(12) for budgets γ ≥ γDI
sat :=

2+2·1(α< 1
2 )

`∗+2 , where 1(·) is the
indicator function.

In other words, there are saturation levels on budget for
both types of adversaries (DI and SI), where influencing more
than γDI

sat (γSI
sat) fraction of agents does not offer any additional

3Figure 1 plots the bounds that the four main results, Theorems 2.1, 2.2, 3.1,
and 3.2, characterize. While the bounds are analytically derived for Theorems
2.1, 2.2 (uninformed adversaries), the plots for informed adversaries resemble
a closely approximated value by solving their respective integer optimization
problems with a finite upper bound of 100 on the decision variables.

performance gains. However, a static adversary will not exhibit
saturation if α < 1

2 . That is, the static adversary achieves
performance level (12) if and only if it has a full budget
γ = 1. It is interesting to note from the above Theorem that
the dynamic informed adversary can maintain the performance
level (12) for a wider range of budgets γ ∈ [γDI

sat, 1] ⊇ [γSI
sat, 1]

than the static informed adversary can. Here, the range is
the same (no saturation exhibited for either) if and only if
α = 0. Essentially, dynamic policies can inflict the same level
of damage with fewer adversaries than a static policy.

IV. PROOFS: PERFORMANCE OF STATIC POLICIES

In this section, we provide proofs for the minimum effi-
ciency a static adversary can induce. We will first prove The-
orem 3.1, the case of a static informed adversary. As discussed,
we limit our attention here to ring graphs G ∈ G1. We then
give a proof of Theorem 2.1, the case of a static uninformed
adversary. This result relies on extending an intermediate step
from the proof of Theorem 3.1 to k-connected ring graphs.

The adversary’s objective is to steer the system to a stochas-
tically stable state of minimal efficiency. We will refer to
action profiles that can be stabilized through some static policy
as the set of target profiles a static uninformed and static
informed adversary can induce, respectively. Indeed, we would
like to characterize the target profile of minimal efficiency an
adversary can achieve over any ring graph, i.e.

inf
G∈G1,π∈ΠI(G,γ)

η(G,α, π). (13)

Our approach is to view any action profile a (and hence any
target profile) as composed of alternating x and y segments.
A y segment Ly is any subset {j, j+1, . . . , j+ |Ly|−1} ⊆ N
such that ai = y ∀i ∈ Ly and aj−1 = aj+|Ly| = x (modulo
n arithmetic). Similarly, Lx describes any such segment of x
agents.

A. Proof of Theorem 3.1

To begin, we start with a general outline of the forthcoming
proof, which we break up into three steps. Following the
outline, we give proofs for each of the individual steps.
Step 1: Necessary and sufficient budget conditions to
stabilize target profiles

We derive the minimum number of adversarial nodes that
is necessary and sufficient to stabilize a given action profile a.
Indeed, suppose S is an allocation of adversarial nodes. Then
a is stochastically stable if and only if for every y segment
Ly and x segment Lx contained in a,

|Sy ∩ Ly| ≥ dα(|Ly|+ 1)e+ 2, (14)

|Sx ∩ Lx| ≥
⌈

[2− α(|Lx| − 1)]+
1 + α

⌉
, (15)

and the spacing from two sequential y adversarial nodes within
Ly is no more than

⌈
1
α

⌉
. We observe that segment lengths must

satisfy |Ly| ≥
⌈

2+α
1−α

⌉
and |Lx| ≥ 2.

Step 2: Characterizing minimal efficiency target profiles
Having established the number of adversarial nodes needed

to stabilize target profiles, we identify structural properties of
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minimal efficiency target profiles that are stabilizable within
the budget γ ∈ (0, 1]. In particular, we show that

(2A) Among adversarial policies that induce maximal damage,
there is at least one that utilizes its full budget. Specif-
ically, if the policy πS ∈ ΠI(G, γ) with |S| < bγ · nc
stabilizes profile a, then one can always use a policy πS′
with |S| = bγ · nc that also stabilizes a.

(2B) The target profile of minimal efficiency contains at most
two unique x y segment patterns.

Step 3: Optimization over worst-case target profiles
We formulate an integer optimization problem whose

solution gives (13). The decision variables are the lengths
of the two unique x y segment patterns, subject to necessity
constraints derived from (14) and (15), as well as constraints
given by the structural properties (2A) and (2B) of minimal
efficiency target profiles. This formulation yields (SI-OPT),
and thus the proof of Theorem 3.1.

Before getting into the proofs of the claims given in
the outline, we first present preliminary analytical tools for
characterizing the emergent behavior when an adversarial
policy πS ∈ ΠI interferes with the agents’ log-linear learning
dynamics. Specifically, we seek to compute the stochastically
stable states LLL(G,α, πS). To do this, we can rely on the
fact the graphical coordination game with static adversarial
influence has a potential game structure [30]. In potential
games, the stochastically stable states associated with log-
linear learning are the action profiles that maximize the poten-
tial function [31], [32]. One can show that φ(a;S) := W (a)

2 +∑
i∈Sx V (ai, x) +

∑
i∈Sy V (ai, y). is a potential function for

this game. Here, φ simply measures the number of coordinat-
ing links, including those induced from adversaries, weighted
by their payoffs (i.e. x or y links). Hence, for any graph G and
static policy πS , we have LLL(G,α, πS) = arg max

a∈A
φ(a;S).

Proof of Step 1
We present the proof only for y segments, as the arguments

for x segments are analogous. Suppose a is stochastically sta-
ble, and contains a y segment Ly = {j, j+1, . . . , j+|Ly|−1}.
That is, ai = y for i ∈ Ly , and aj−1 = aj+|Ly| = x. Consider
any deviation a′ from a that differs only within the segment
Ly . Then it holds that φ(a′;S) ≤ φ(a;S). In particular, if
a′ is the profile where all agents in Ly deviate to x, then
(1+α)(|Ly|+1) ≤ |Ly|−1+|Sy∩Ly| must hold. Rearranging,
we obtain |Sy∩Ly| ≥ α(|Ly|+1)+2. Since |Sy∩Ly| is a non-
negative integer, it must hold that |Sy∩Ly| ≥ 2+dα(|Ly|+1)e.

To prove sufficiency, we need to construct an allocation
Sy ∩ Ly of dα(|Ly| + 1)e + 2 y adversarial nodes such that
φ(a;S) ≥ φ(a′;S), where ai = y ∀i ∈ Ly and for any a′

deviating from a in agents only in Ly . We first assume that
|Ly| ≥ dα(|Ly|+1)e+2, i.e. the length of the segment itself is
greater or equal to the necessary number of adversaries needed.
Indeed, let us define the sets W1 and W2 as follows:

W1 = {i ∈ Ly : bα(i− j + 1)c − bα(i− j)c > 0}, (16)
W2 = {j, w, j + |Ly| − 1}, (17)

where w = max{i : i ∈ Ly \ (W1 ∪ {j + |Ly| − 1})}, i.e.
the largest index that is neither in W1 nor is the endpoint

y y y y y y y y y xx

y y y y y

i w
· · · · · ·

Fig. 2: An illustration of the constructed influence set given by (16),
(17) to stabilize an isolated y segment. The y adversaries belonging
to Sy are depicted as the smaller circles attaching to agents (larger
circles) in the network. In this example, α = 1

4
and |Ly| = 9.

The necessary and sufficient number of adversaries to stabilize the
segment is 5.

j + |Lk| − 1. Then, set Sy ∩ Ly = W1 ∪W2. An illustration
of this influence set is depicted in Figure 2. Such a placement
“spreads out” adversaries along Ly at a spacing of

⌈
1
α

⌉
nodes, and additionally places adversaries at the endpoints.
This placement ensures the sufficiency condition. Proof of this
claim can be found in the online version. �
Proof of property (2A)

Suppose the minimum efficiency profile a∗ on the graph
G ∈ G1 is stabilized by the policy πS ∈ ΠI(G, γ), where
all adversaries are not utilized: |S| < bγ · nc. The conditions
(14) and (15) are met for all x and y segments, respectively.
One can always add in remaining available x adversaries (y)
to the existing x (y) segments while retaining stability of a∗.
Therefore, there exists a policy πS with |S| = bγ ·nc that also
stabilizes a∗. �
Proof of property (2B)

Before proving this property explicitly, we first define some
relevant notations. We can describe a profile a as a sequence of
alternating segments L1

xL
1
yL

2
xL

2
y · · · . For each unique segment

pair pattern that appears in a, i.e. |Lx| x agents followed by
|Ly| y agents, let us define the (column) vector `x(a) whose
elements are the lengths |Lx| among the unique patterns. We
define `y(a) similarly for the corresponding lengths |Ly|. Let
us also define the vector r(a) whose elements are the number
of times each unique pattern appears in a. We will drop the
dependencies on a when the context is clear. We refer to r as
the repetition vector. The efficiency of a can be rewritten in
the following suggestive form:

η(a) =
r> ((1 + α)`x + `y)− (2 + α)||r||1

(1 + α)r>(`y + `x)
. (18)

We note that the denominator of (18) is simply the number of
links in the ring, n, multiplied by 1 + α. This indicates the
optimal welfare 1

2W (aopt). The numerator of (18) counts (and
weights with associated payoff) the number of coordinating
x and y links given the description vectors `x, `y , and r.
For a profile a and its associated description vectors `x and
`y , let us define the vector s(a) of identical length, whose
components are given by sj(a) := γ(`x,j + `y,j)− dα(`y,j +

1)e − 2−
⌈
(1 + α)−1 [2− α(`x,j − 1)]+

⌉
. The number sj is

the difference between the adversaries available to a particular
segment pattern (given budget γ) whose length is given by
`x,j and `y,j , and the minimum number of adversaries needed
to ensure its stability (given by (14), (15)). We refer to s as
the surplus vector. The quantity r>s is the excess budget after
using the minimum required number of adversaries to stabilize
a. Property (2A) asserts that a target profile of minimum
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efficiency satisfies r>s = 0.
Now, consider an action profile a1 with `1

x =
(`x,1, `x,2, `x,3), `1

y = (`y,1, `y,2, `y,3) and s = (s1, s2, s3)
with s1 > 0 and s2, s3 < 0. Hence, we can find r1 such
that (r1)>s1 = 0. Thus, a1 is a candidate for a minimum
efficiency stable state. Furthermore, consider the profiles a2

and a3 (possibly defined on different ring graphs), where a2

is associated with `2
x = (`x,1, `x,2) and `2

y = (`y,1, `y,2), and
a3 is associated with `3

x = (`x,1, `x,3) and `3
y = (`y,1, `y,3).

One can find repetition vectors r2, r3 that satisfy (r2)>s = 0
and (r3)>s = 0.

Define gi = `y,i + (1 + α)`x,i − (2 + α) and `i =
`x,i + `y,i for each i = 1, 2, 3. We can express efficiency

of a1 as η(a1) =
r12(g2− s2s1 g1)+r13(g3− s3s1 g1)

(1+α)(r12(`2− s2s1 `1)+r13(`3− s3s1 `1))
. One can

write the efficiencies of a2, a3 as η(a2) =
g2− s2s1 g1

(1+α)(`2− s2s1 `1)
and

η(a3) =
g3− s3s1 g1

(1+α)(`3− s3s1 `1)
. Observe that η(a1) is a mediant sum

of weighted values η(a2) and η(a3). Hence, either η(a2) or
η(a3) is less than or equal to η(a1). This result can be extended
in a similar way to show that for any profile consisting of
multiple segment patterns, one can construct another profile
of lower efficiency using up to two unique segment patterns
from the original action profile. �
Proof of Step 3 (Theorem 3.1)

Using the collection of results we have obtained in Steps
1-3, we can now prove Theorem 3.1. From property (2B),
the search for a minimal efficiency stable state, i.e., one that
gives the efficiency (13), reduces to finding four lengths: `x =
(`x,1, `x,2) and `y = (`y,1, `y,2). The form of the objective
function in the integer program of (SI-OPT) thus coincides
with the expression for η(a2) in property (2B). Each `z,i, z ∈
x, y and i ∈ {1, 2}, must satisfy the length criterion `y,i ≥⌈

2+α
1−α

⌉
and `x,i ≥ 2 (3 if α = 0). These length conditions are

consequences of the stabilizability conditions (14) and (15).
Lastly, one can find a repetition vector r that satisfies r>s =
0, as long as s1 > 0 and s2 < 0, or s1 = 0 with `x,1, `x,2 = 0.
�

B. Proof of Theorem 2.1

Here, we provide a proof of Theorem 2.1, which character-
izes the minimal efficiency a static uninformed adversary can
induce on a k-connected ring graph. The arguments rely on an
extension of intermediate step 1 from the proof of Theorem
3.1 to k-connected ring graphs.

In particular, the necessary and sufficient condition to sta-
bilize a y segment in a k-connected ring graph is

|Sy ∩ Ly| ≥
⌈
α

(
k|Ly|+

k(k + 1)

2

)⌉
+ k(k + 1), (19)

and the spacing between two sequential y adversaries within
Ly is no more than

⌈
1
kα

⌉
. Note that according to this

condition, the segment length must also satisfy |Ly| ≥
max

{
1, dk(k+1)(1+α/2)

1−kα e
}

. A derivation of the condition is

as follows. There are
∑k
j=1(|Ly| − j) links between agents

in Ly . Assuming |Ly| satisfies the length requirement, there

are 2
∑k
j=1 j links from Ly to outside Ly . The potential

of yLy (all agents in Ly play y) exceeds that of xLy
(all play x) if |Sy ∩ Ly| +

∑k
j=1(|Ly| − j) ≥ (1 +

α)
[∑k

j=1(|Ly| − j) + 2
∑k
j=1 j

]
, which reduces to (19). One

can prove sufficiency in a similar manner as step 1 from
the previous section – by allocating the y adversaries with
a spacing of

⌈
1
kα

⌉
apart, the potential of yLy exceeds that of

any other aLy 6= {yLy , xLy}.
We are now ready to prove Theorem 2.1. A static and

uninformed policy cannot strategically place adversarial nodes
in the network. It can only specify the numbers of x and y
adversaries. Its baseline performance is given by the minimal
damage that can be inflicted over all possible allocations
of these adversaries. Hence to characterize (8), we seek the
allocation of adversaries that ensures the best-case efficiency
for the network.

First, we consider the case γ < kα. The adversarial nodes
can be allocated sparsely enough across the entire network
such that the condition (19) is violated. Consequently, the all
x profile is the unique stochastically stable state. Therefore,
no damage can be inflicted on the system in this regime. Note
that if kα > 1, no damage is possible regardless of the budget.

Now, consider γ > kα. If kα < 1 and G ∈ Gk is
sufficiently large, an allocation of y adversaries according to
(19) would ensure conversion of the entire network to y, giving
an efficiency of 1

1+α . However, let us consider a re-allocation
of these adversaries that maximally mitigates such damage.
The idea is to only allow a minimal fraction f of the network
to be converted to y, while the rest of the network plays x.

Suppose y adversaries are allocated to every agent in a
contiguous segment, whose length is a fraction f of the entire
network. Suppose this segment is sufficiently long such that
(19) is satisfied. Now, the remaining γ− f adversaries should
be allocated to the rest of the network such that the remaining
fraction 1 − f of the network (another contiguous segment)
is still stable to x. Indeed, an adversarial agent density of
up to kα in the remaining network fails to induce any y
agents. The smallest f that satisfies these conditions is given
by f = γ−kα

1−kα . This establishes (8). Note in this analysis,
the adversary exclusively chooses to implement y adversaries.
Based on the above arguments, an optimal static uninformed
policy never chooses to use x adversaries.

V. PROOFS: PERFORMANCE OF DYNAMIC POLICIES

In this section, we give proofs for the minimum efficiency
dynamic adversaries can induce. Similar to Section IV, we
will first prove Theorem 3.2, the case of a dynamic informed
adversary. We then give the proof of Theorem 2.2.

Due to the time-dependent nature of dynamic policies,
we cannot rely on potential game arguments to compute
stochastically stable states as we did in Section IV. One must
instead leverage the theory of regularly perturbed Markov
processes and resistance trees. Before delving into the proof
of Theorem 3.2, we provide a brief overview of this theory
below. More detailed treatments can be found in [21], [33].
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A. Preliminary: Regularly perturbed Markov processes and
resistance trees

Definition 2. A Markov process with transition matrix P ε de-
fined over state space A and parameterized by a perturbation
ε ∈ (0, ε̄] for some ε̄ > 0 is a regular perturbation of the
process P 0 if it satisfies:

1) P ε is aperiodic and irreducible for all ε ∈ (0, ε̄].
2) limε→0+ P ε(a, a′)→ P 0(a, a′) for all a, a′ ∈ A.
3) If P ε(a, a′) > 0 for some ε ∈ (0, ε̄] then there exists

r(a, a′) ≥ 0 such that 0 < limε→0+
P ε(a,a′)

εr(a,a′)
< ∞. We

call r(a, a′) the resistance of transition a→ a′.

The log-linear learning process is a regularly perturbed
process with error parameter ε = e−β . The transition graph of
P ε is a directed graph whose nodes are the action profiles A
and the edge (a, a′) exists if and only if P ε(a, a′) > 0. The
weights of such edges are given by the resistances r(a, a′). The
resistance of a path of length m, ζ = (z1 → z2 → · · · → zm),
is the sum of resistances along the state transitions: r(ζ) :=∑m−1
k=1 r(zk, zk+1). Let us denote the recurrent classes of the

unperturbed process P 0 as E1, E2, . . . , EN with N ≥ 1 where
each class Ek ⊂ A. A recurrent class satisfies the following.

1) For all a ∈ A, there is a zero resistance path from a to
Ek for some k ∈ {1, . . . , N}.

2) For all k ∈ {1, . . . , N}, and all a, a′ ∈ Ek, there exists
a zero resistance path from a to a′ and from a′ to a.

3) For all a, a′ with a ∈ Ek for some k ∈ {1, . . . , N} and
a′ /∈ Ek, r(a, a′) > 0.

One can also consider another directed transition graph whose
nodes are the N recurrent classes. In this graph, all edges
exist. Edge (Ei, Ej) is weighted by ρij , defined as the
minimum resistance among paths in the action profile tran-
sition graph starting from Ei and ending in Ej : ρij :=
mina∈Ei,a′∈Ej minζ∈P(a→a′) r(ζ). where P(a→ a′) denotes
the set of all paths starting at a and ending at a′. Let Tk be
the set of all spanning trees rooted in the class Ek. That is,
an element of T ∈ Tk is a directed graph with N − 1 edges
such that there is a unique path from Ej to Ek, for every
j 6= k. The resistance R(T ) of the rooted tree T is the sum
of resistances ρij on the N − 1 edges that compose it. Now,
define ψk := minT∈Tk R(T ) as the stochastic potential of
recurrent class Ek. We will use the following result to identify
stochastically stable states.

Lemma 5.1 (from [33]). The state a ∈ A is stochastically
stable if and only if a ∈ Ek, where k ∈ arg min

j∈{1,...,N}
ψj . That

is, it belongs to a recurrent class with minimum stochastic
potential. It is the unique stochastically stable state if and
only if Ek = {a} and ψk < ψj , ∀j 6= k.

B. Proof of Theorem 3.2

The logic of the proof follows the same three-step structure
as the proof of Theorem 3.1. The only component that differs
are the necessary and sufficient budget conditions to stabilize
x and y segments. Indeed, we expect a dynamic informed
adversary to need fewer adversaries than its static counterpart.

An outline of the proof is as follows. We show a particularly
defined dynamic policy, which we term an aggressive policy, is
sufficient to stabilize a given target profile. This entails proving
that a is the recurrent class of minimum stochastic potential
(see Lemma 5.1). To do so, we demonstrate that minimum
resistance paths leaving each class leads to another that is more
“similar” to the target profile a. We then prove necessity – any
other dynamic policy utilizing strictly fewer adversarial nodes
than the aggressive policy cannot stabilize a. We can then
formulate an integer optimization problem similar to Theorem
3.1, but with different constraints on the number of adversaries
needed for each x and y segment. To begin, we formally define
the aggressive policy based on profile a ∈ A.

Definition 3. (Aggressive policy targeting a). An aggressive
policy targeting a ∈ A is a state-dependent policy with
adversarial placements {Sx(a(t)), Sy(a(t))}t≥0 satisfying the
following properties.
1) (Defensive y strategy) For each y-segment Ly contained in
a, suppose [p, q] = {p, p+ 1, . . . , q} ⊆ Ly , with p 6= q, is the
longest segment of agents within Ly playing y in a(t). Then,

Sy(a(t)) ∩ [p, q] =


{p, q} if ap−1(t) = aq+1(t) = x

p if ap−1(t) = x, aq+1(t) = y

q if ap−1(t) = y, aq+1(t) = x
(20)

If the length of [p, q] is one (p = q), then p /∈ Sy(a(t)).
2) (Defensive x strategy) For each x-segment Lx contained
in a, suppose [p, q], p 6= q, is the longest segment of agents
within Lx playing x in a(t).
(a) If α < 1

2 and |Lx| ≤ 1 +
⌊

1−α
α

⌋
, then

Sx(t) ∩ [p, q] =

{
{p, q} if q − p = 1

∅ otherwise
(21)

If |Lx| ≥ 2 +
⌊

1−α
α

⌋
, then Sx(t) ∩ Lx = ∅.

(b) Suppose α ≥ 1
2 . Then Sx(t) ∩ Lx = ∅.

3) (Offensive strategies) Consider the segment of lowest index
that is not aligned, i.e. ai(t) 6= y for at least one i ∈ Ly =
[u, v], for a y-segment. Then the following properties hold for
Sy(t). A similar implementation holds if it is an x-segment.
(a) Denote [p, q] ⊂ Ly as the longest segment of agents

within Ly playing y in a(t). Then Sy(t) ∩ Ly contains
either p− 1 or q + 1, but not both.

(b) If ai(t) = x for all i ∈ Ly , then Sy(t) ∩ Ly contains
• u or v (but not both), when au−1(t) = av+1(t).
• u, when au−1(t) = y and av+1(t) = x.
• v, when au−1(t) = x and av+1(t) = y.

Properties 1 and 2 describe “defensive y (resp. x)” strategies
to maintain y (x) segments over time. A defensive y strategy
is implemented on all y-segments at any given time. In
property 2, defensive x strategies are applied only if α < 1

2 ,
and to segments that are shorter than a threshold length.
Furthermore, the strategy does not “activate” until there are
at most two consecutive agents playing x in the segment.
Property 3 describes “offensive” strategies that are intended
to convert segments back to their original type x or y. Note
that the aggressive policy applies an offensive strategy to only

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 25,2020 at 17:36:47 UTC from IEEE Xplore.  Restrictions apply. 



2325-5870 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2020.3038842, IEEE
Transactions on Control of Network Systems

9

y y y x x x y y y x x x

y y y y
a(t)

a(t + 1)
y y y y x x y y y x x x

y x x y y

y y x x x x x y y y

y y y y y

y y y x x x x y y y

y y y y y

Fig. 3: We illustrate here both defensive and offensive strategies in an aggressive policy. (Left) Defensive y strategies are applied the first
and third segments from the left. The fourth agent from the left transitioning from x to y at time t+ 1 activates a defensive x strategy in the
second. No adversaries are deployed to x segments until only two neighboring agents playing x remain. (Right) A defensive and offensive
y strategy are applied simultaneously to the first segment. The offensive strategy attaches a y adversary to the x agent that has a y neighbor.

a single segment at any time t, if needed. Figure 3 depicts
an illustration of allocations of adversarial nodes to segments
according to an aggressive policy.

Let ny be the number of y segments and nx the number of
x segments of length at most 1+

⌊
1−α
α

⌋
in profile a. Then, the

minimum number of adversarial nodes needed to implement
an aggressive policy targeting a is{

2(ny + nx) + 1, if α < 1
2

2ny + 1, if α ≥ 1
2

(22)

Here, the additional +1 adversary is needed to imple-
ment an offensive strategy. Under log-linear learning, states
transition via unilateral agent deviations. If two profiles a1

and a2 differ only by agent i’s deviation, the resistance is
r(a1 → a2) =

[
Ũi(a

1
i , a

1
−i;S(a1))− Ũi(a2

i , a
1
−i;S(a1))

]
+

,

where recall Ũi is agent i’s perceived utility (6). The following
result characterizes the minimum required lengths for x and
y segments in a target profile.

Lemma 5.2. If a ∈ A is stochastically stable under the
aggressive policy targeting a, then
• all x segments of a are of length 2 or greater.
• all y segments of a are of length d 2+α

1−αe or greater.

Proof. Suppose (ai−1, ai, ai+1) = (y, x, y) for some agent i.
Regardless of what adversarial policy is applied, there is a zero
resistance path out of a. Specifically, r(a → a′) = 0 where
ai = y and a′−i = a−i. The least resistant path from a′ to a
is 1 − α > 0, possible if and only if i ∈ Sx(a′). Hence, a is
not a recurrent class and therefore is not stochastically stable.

Suppose a has a y segment Ly and |Ly| ≤
⌈

1+2α
1−α

⌉
.

Let a′ be the similar profile with a′Ly = xLy . Note that
a′ is a recurrent class. When the aggressive policy applies
an offensive strategy on Ly , the minimum resistance path
starting from a′ and ending in a is given by a border agent’s
x → y transition (having resistance 1 + 2α), followed by
each subsequent neighbor’s x → y transition (each having
resistance 0). The resistance of this path is ρa′,a = 1 + 2α.

The minimum resistance path starting from a and ending in
a′ consists of |Ly| − 1 transitions of resistance 1− α. Hence,
ρa,a′ = (1 − α)(|Ly| − 1) < (1 − α) 1+2α

1−α = 1 + 2α. Let
T be the minimum resistance tree rooted in a, and note that
the edge (a′, a) is necessarily part of T . Consider the tree T ′

rooted in a′ by replacing the edge (a′, a) from T with (a, a′).
T ′ has lower stochastic potential than T and therefore a is not
stochastically stable. �

Henceforth, we only consider target profiles a with prop-
erties given by Lemma 5.2. Note that these minimum length
requirements coincide with those in the static informed case. In
the forthcoming analysis, we characterize the set of recurrent
classes induced by the aggressive policy. We first define
terminology to describe any profile a′ relative to a ∈ A. Let Ly
be a y-segment of a. We say the segment Ly is homogeneous
in a′ if a′i = a′j for all i, j ∈ Ly . We say Ly is heterogeneous
if it is not homogeneous. Similar terminology applies for x-
segments of a. We say the profile a′ is homogeneous if every x
and y-segment is homogeneous in a′, and it is heterogeneous
if it is not homogeneous. We will denote particular portions
of a homogeneous action profile a′ with brackets |x and |y
that separate the segments based on the target profile a. For
instance, |X|xX|y refers to the actions of agents in an action
profile for two consecutive segments with all agents playing x
in the first as well as the second. The subscripts convey that
agents play x in the target profile a in the first segment and
y in the second segment.

The following result characterizes the set of all recurrent
classes induced by the aggressive policy. In particular, each
recurrent class consists of a single homogeneous action profile.

Lemma 5.3. The recurrent classes associated with the aggres-
sive policy targeting a are the homogeneous action profiles
that do not contain an instance of |X|yY |x.

Let us denote AR ⊂ A the set of recurrent classes. We
can thus focus our attention to homogeneous action profiles
described in Lemma 5.3 as candidates for stochastically stable
states, which includes the target profile a itself.

Every a′ ∈ AR can be assigned a level of “disagreement”
d(a′) := |{Lz|a′Lz 6= aLz , z ∈ {x, y}}|, corresponding to the
number of homogeneous segments that differ relative to their
counterparts in target profile a. The next result demonstrates
that disagreement decreases along minimum resistance paths
between recurrent classes.

Lemma 5.4. Consider the directed graph Σ = (AR, E) in
which the edges E are formed by connecting recurrent classes
through the minimum resistance edge leaving each class. Then
Σ is composed of a collection of disconnected subgraphs Σu =
(Au, Eu), each one corresponding to a particular recurrent
class u. Each subgraph Σu has the following properties.

• The class u belongs to Σu, and for every node v ∈ Au,
v 6= u, there is a unique path from v to u.

• There exists a class v ∈ Au s.t. (u, v), (v, u) ∈ Eu.
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Fig. 4: (Left) The graph formed by connecting recurrent classes
through the minimum resistance edge leaving each class, is composed
of disconnected subgraphs Σu with the structure illustrated above
(Lemma 5.4). Disagreement decreases along any path. (Right) The
resistance tree rooted at a of minimum stochastic potential.

• u = arg min
v∈Au

d(v).

We refer to the class u as the head of the subgraph Σu.

An illustration of a subgraph Σu is shown in Figure 4 (left).
Note that the rooted tree on a subgraph Σu with minimal
stochastic potential is given by Σu without the edge (u, v).
The next result asserts that the minimal resistance edge that
leaves a subgraph leads to another subgraph whose head node
has lower disagreement.

Lemma 5.5. Consider the subgraph Σu = (Au, Eu) where
u 6= a. Then there is an edge (u, v) starting at the head
u leading to a class v of another subgraph Σu′ satisfying
(u, v) ∈ arg min

a1∈Au,a2 /∈Au
ρa1,a2 . Furthermore. d(u′) < d(u).

These results give us enough structure about the resistance
trees to deduce that a is the unique stochastically stable state.

Proposition 5.1. The profile a is the unique stochastically
stable state under an aggressive policy targeting a.

The structure of the minimum potential rooted tree T is
illustrated in Figure 4 (right). Proposition 5.1 is a sufficiency
result – the aggressive policy is a dynamic policy that stabilizes
the profile a. Our next result asserts necessity – the number
of adversarial nodes employed by the aggressive policy is the
minimum required budget to stabilize a.

Proposition 5.2. A policy using fewer adversarial nodes than
the aggressive policy targeting a ∈ A cannot stabilize a.

Proof of Theorem 3.2. We have just established that an ag-
gressive policy targeting a is the dynamic policy that stabilizes
a with the fewest number of adversaries. By Lemma 5.2, a
target profile must have x segments of length 2 or greater
and y segments of length

⌈
2+α
1−α

⌉
or greater. To implement the

aggressive policy, there needs to be two adversaries for each y
segment of any length, and two adversaries for each x segment
of length no greater than 1+

⌊
1−α
α

⌋
when α < 1

2 . When α ≥ 1
2 ,

no adversaries are needed on any x segment. Propositions 5.1
and 5.2 assert this amount of adversarial nodes are necessary
and sufficient to stabilize the target profile. By Step (2B) from
Theorem 3.1, the minimum efficiency target profile has at most
two segment patterns. We thus obtain an integer optimization

problem similar to (SI-OPT), except with the above constraints
taken into account instead. �

C. Proof of Theorem 2.2: Dynamic uninformed adversary

In this subsection, we derive the minimum efficiency a
dynamic uninformed adversary can induce on k-connected
ring graphs. Similar to the static uninformed case (Theorem
2.1), the dynamic uninformed adversary effectively can only
select how many x and y adversaries to allocate at each time
step, and cannot place them in a strategic manner. The major
difference here is it can also randomize among influence sets
by selecting different distributions at each time step. The idea
of the proof is by being able to probabilistically attach an
adversary to each agent in the network, the all y profile can
be stabilized independently of the budget γ.

Let us define Π∗ ⊂ ΠD as a set of dynamic uninformed
policies that have the following properties. Suppose π ∈ Π∗.
Then
(a) |Sx(t)| = 0 for all t = 0, 1, 2, . . ..
(b) for any i ∈ N and t = 0, 1, 2, . . ., there exists a 0 ≤ τ <
∞ such that Pr(i ∈ Sy(t+ τ)) > 0.

(c) there exists a subset T ⊂ N of agents satisfying |T |n =
γ′ < γ for all n, such that Pr(i ∈ Sy(t)) = 1 for all
i ∈ T , t = 0, 1, 2, . . ..

Property (a) asserts x adversaries are never utilized. Property
(b) ensures any given agent is influenced by a y adversary
infinitely often. Property (c) says the adversary determistically
influences a fixed fraction of agents in the network. In a sense,
policies belonging to Π∗ are “partially static”.

Lemma 5.6. Under a policy π ∈ Π∗, the all-y and all-x
profiles are the only two recurrent classes.

To determine whether ~x or ~y is stochastically stable, we now
calculate the minimum resistance path between ~x and ~y (ρ~x~y).
Suppose we are in ~x. Consider a path in which k consecutive
agents switch to y, and each agent that unilaterally switches
is influenced by a y-adversary. This occurs with a non-zero
probability due to property (b). Each unilateral switch in this
sequence has a non-zero resistance. However after this se-
quence of k switches, every subsequent switch of neighboring
agents has zero resistance. The total resistance (as long as
α < 1

k ) is therefore ρ~x~y =
∑k
i=1 [(1 + α)(2k − (i− 1))− i].

We can similarly calculate the minimum resistance path
between ~y and ~x (ρ~y~x). Starting from ~y, we consider a path
in which k consecutive agents switch to x, and none of the
agents are influenced by a y-adversary (this occurs with non-
zero probability). After this sequence of k switches, every
subsequent switch of neighboring agents has zero resistance.
Once this growing x segment neighbors a member of T , the
node belonging to T will also switch with zero resistance
as long as α < 1

k . The total resistance is therefore ρ~y~x =∑k
i=1 [(2k − (i− 1))− (i− 1)(1 + α)]+.
For ~y to be stochastically stable, the condition ρ~x~y < ρ~y~x

must hold. This yields α < |T |
k(|T |+k) . As the number of

nodes tends to infinity, so does |T |, and we are left with the
condition α < 1

k . This yields an efficiency 1
1+α regardless of

the fractional budget γ. It remains to show any π ∈ ΠDU \Π∗
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cannot induce an efficiency less than 1
1+α . This part of the

proof can be found in the online version.

VI. SIMULATIONS

In this section, we provide numerical simulations of log-
linear learning dynamics for two of the four adversarial
models: static and dynamic informed (SI and DI). Simulation
results for the other two models are provided in the online
version. We verify the tightness of the lower bounds given
in Theorems 3.1 and 3.2. We simulate the dynamics on finite
ring graphs, and compute the average efficiency the network
experiences when the adversary implements an optimal policy.
Our results are given in Table I. We observe that the average
efficiency approaches the fundamental lower bounds as the
size of the graphs are increased.

For SI, we first compute the minimum efficiency SSS given
α, budget bγ · nc, and network size n. We then determine an
adversarial set Sxy that is necessary and sufficient to stabilize
the SSS (according to the proof of Theorem 3.1). We then
run the LLL dynamics initialized at the SSS and with the
static Sxy . We perform a similar experiment for DI, where we
implement the aggressive policy (Definition 3).

SI adversary DI adversary
n/α 0.3 0.5 0.7 0.3 0.5 0.7
10 0.685 0.667 1 0.638 0.566 0.588
20 0.673 0.650 0.653 0.573 0.566 0.550
30 0.669 0.644 0.659 0.595 0.566 0.537

Fundamental lower bound
0.662 0.640 0.647 0.569 0.542 0.525

TABLE I: Simulation results of log-linear learning for two adver-
sarial models. Each entry represents the averaged efficiency over 30
repetitions, where each repetition consists of 106 time steps. We fix
the budget as γ = 0.6 and the learning parameter β = 25.

VII. CONCLUSION

This paper investigated the susceptibility of distributed
game-theoretic learning algorithms to adversarial influences.
We considered a scenario of an adversary intent on maximally
degrading a network system’s performance guarantees associ-
ated with distributed learning algorithms. We asked 1) How
susceptible are these algorithms to adversarial interference? In
particular, this paper focused on one such algorithm, log-linear
learning, that possesses nice properties in non-adversarial set-
tings. 2) How does an adversary’s sophistication and system-
level knowledge impact the degradation that the adversary can
do to the system? We studied both of these questions in the
context of graphical coordination games.

In particular, we considered two levels of adversarial so-
phistication – static and dynamic policies – and two levels of
information, informed and agnostic about network structure.
In a static policy, the adversary cannot change its influence
over time. The dynamic policies we considered are stationary,
in which the adversary can respond to the current system state
as it evolves. While both types of policies induce asymptotic
outcomes characterized by stochastically stable states, it is of
interest in future work to consider non-stationary adversarial

policies. That is, how can adversaries exploit dynamic policies
that may not induce a stable asymptotic outcome?

An important insight gleaned from our analysis is that an
adversary with a low resource budget – described by the
fraction of agents in the network it can influence – does not
benefit as much from system-level information as it would
from the ability to employ dynamic strategies. On the other
hand, when the adversary’s budget is high, the opposite con-
clusion holds. While the results in this paper are adversarial-
centric, these findings provide insight as to what actions a
system operator could take to best protect system behavior.
For instance, our analysis can inform decisions of whether to
obfuscate system-level information from potential adversarial
actors, or to disable capabilities of a highly sophisticated
attacker.
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