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Purpose of review: Cardiac imaging and sequencing have greatly improved over the recent 

years. The goal of this review is to summarize these recent advances in cardiac imaging and 

sequencing, their application in heart-transplantation, and provide our perspective in how 

artificial intelligence provides a new paradigm for big data driven analysis in heart-transplant 

research. 

Recent findings: Cardiac imaging, particularly parametric mapping by cardiac MRI and global 

longitudinal strain by echocardiography, has improved our understanding of cardiac allograft 

rejection and prediction of adverse clinical outcomes. Independently, gene expression profiling 

and measurement of donor-derived cell free DNA have greatly improved risk stratification for 

acute rejection. More recently, data-driven phenotypic clustering using novel machine learning 

algorithms has been used to identify a distinct macrophage subset, associated with acute 

rejection. 

Summary: Developments in imaging and sequencing techniques in the application of heart-

transplant research are improving rapidly and in parallel with improvements in analysis of these 

large datasets. The approach to heart-transplant research is in the transition of significant change 

as big data driven analysis identifies new mechanistic patterns that can be combined with 

traditional hypothesis testing. 
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INTRODUCTION 

The morbidity and mortality of patients with heart-failure have improved considerably over recent 

years [1–3]. However, there remain patients who continue to progress in their heart-failure and 

ultimately require heart-transplantation for increased survival and improved quality of life [4, 5]. 

Remarkably, heart-transplant volumes have continued to grow in the past decade despite the 

apparent limited supply of donor hearts [5]. 

Heart-transplant care has gradually improved with an increase in median cardiac allograft 

longevity from 11 to 12.5 years over the last two decades [5]. Immune-mediated rejection however 

limits longer allograft survival and is defined as either acute or chronic rejection [6]. Acute rejection 

is currently diagnosed by endomyocardial biopsy, classified as either acute cellular rejection 

(ACR) or antibody mediated rejection (AMR), and typically occurs during the first year post-

transplant. Chronic rejection refers to cardiac allograft vasculopathy (CAV), currently diagnosed 

by invasive angiography, and the median time to diagnosis is typically 10 years post-transplant. 

Overall, the trend has been towards less immunosuppression on the backbone of calcineurin-

inhibitor based therapy with the goal of early steroid weaning within the first 6 months. The “less 

is more” strategy of immunosuppression is due to the recognition of the harm of too much 

immunosuppression, leading to deaths from fatal infections as well as malignancies [7]. 

The fields of cardiovascular imaging and sequencing have independently grown and novel 

techniques and applications are introduced in rapid succession each year [8, 9]. Their growth as 

well as our need for less invasive allograft surveillance has spurred the application of 

cardiovascular imaging and sequencing in post-transplant care. Thus, the purpose of this review 

is to introduce the reader to the current practice of post heart-transplant care, recent 

developments in cardiovascular imaging and sequencing in heart-transplantation, and future 
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perspectives of how artificial intelligence provides a new paradigm for big data driven analysis in 

transplant immunology. 

CARDIAC IMAGING IN HEART-TRANSPLANTATION 

 

Noninvasive imaging modalities such as echocardiography, nuclear imaging, coronary computed 

tomography angiography (CCTA), and cardiovascular magnetic resonance imaging (CMR) are 

available to assess the cardiac allograft (Table 1). Transthoracic echocardiography is used for 

initial assessment of the cardiac allograft structure and function, pericardial effusion and any 

valvular disease. Other imaging techniques also can be used depending on the specific heart-

transplant related indication. As the first step, the heart-transplant cardiologist will determine 

whether the indication is for acute versus chronic rejection. 

Acute Rejection 

 

Heart-transplant patients presenting with a clinical concern for acute rejection have a limited time 

window for accurate diagnosis. The presence of hemodynamic compromise with acute rejection 

will limit the first-line test to an echocardiogram, often looking for a significant drop in left 

ventricular ejection fraction (LVEF), increase in myocardial wall thickness or diastolic indices that 

would raise the concern for acute rejection [10]. The current practice is to then confirm the 

diagnosis by histopathology obtained from an urgently performed endomyocardial biopsy [6]. 

Parametric mapping in CMR for diagnosis of acute rejection 

More commonly, the heart-transplant cardiologist attempts to diagnose acute rejection episodes 

early prior to the onset of cardiac allograft dysfunction [11]. The current standard is repeated 

surveillance endomyocardial biopsies, typically monthly during the first year, for early 

histopathologic diagnosis. CMR shows the most promise to diagnose and/or predict acute 
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rejection because of its superior myocardial characterization compared to other noninvasive 

imaging modalities. CMR parameters include native T1 relaxation time (myocardial injury), T2 

relaxation time (myocardial edema), myocardial strain, extracellular volume (ECV), late 

gadolinium enhancement (LGE) and also intracellular lifetime of water (cardiomyocyte 

hypertrophy) in addition to biventricular volumes, mass, and ejection fraction [12, 13]. T2 

relaxation time and ECV appear to be the most consistent independent predictors of acute 

rejection [14–16]. Butler and co-authors show that T2 relaxation time greater than 59 milliseconds 

and increased right ventricular end-diastolic volume index (mean 89 ml/m2 in patients with acute 

rejection) independently predicted treated acute rejection and when used together, showed a high 

negative predictive value of 98%. Interestingly, the authors observed a relatively high rate of 

biopsy-negative rejection of 42%. Though not the focus of this particular study, this finding in 

conjunction with observations from additional literature [11, 17–19] highlight the need for better 

understanding of these biopsy-negative rejection episodes that often lead to nonspecific cardiac 

allograft dysfunction. 

LGE for the diagnosis of acute rejection 

Though LGE is essential for other cardiovascular diseases [20], its utility in heart-transplantation 

has been limited because it is relatively prevalent in heart-transplant patients and is reported to 

range from 18 to 61% when quantified as a percentage of LV mass [14, 21–28]. The pattern of 

LGE are either infarct-typical, infarct-atypical, or often both patterns, and do not consistently 

correlate with the type of rejection [25, 26]. Thus, given the relatively high prevalence and 

nonspecificity of LGE in heart-transplant patients, LGE has not been convincingly shown to be 

diagnostic for either acute rejection or CAV. 

Other noninvasive imaging modalities for detection of acute rejection 
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Other noninvasive imaging modalities have not demonstrated as much development or success 

as CMR for the diagnosis of acute rejection. Echocardiography has further improved with the use 

of strain and three-dimensional imaging but thus far has not been able to be consistently 

reproduced as strain imaging and analysis continues to evolve [10, 29, 30]. Molecular imaging 

with nuclear imaging and CMR shows promise in mechanistic evaluation of acute rejection, 

typically targeting and tracking lymphocytes and macrophages [31]. However, molecular imaging 

has not been able to transition into the clinical setting because of a lack of a clear-cut front runner 

for a molecular target as well as identification of the best molecular imaging modality [32]. 

Chronic Rejection 

 

Chronic rejection in heart-transplantation classically refers to CAV [8]. CAV is commonly cited as 

the limiting factor in long-term cardiac allograft longevity with a median cardiac allograft survival 

of 12.5 years in the current era [5]. Thus, there continues to be a strong need for understanding 

the underlying mechanisms for CAV to improve cardiac allograft longevity [33]. Recognition and 

surveillance for CAV have improved since the standard nomenclature of CAV was first defined 10 

years ago by the ISHLT [34]. The trend in the years that followed has been to identify and develop 

a noninvasive imaging modality that demonstrates similar sensitivity and accuracy compared to 

the current gold standard of invasive coronary angiography, often in conjunction with intravascular 

ultrasound (IVUS). 

Echocardiography for the diagnosis of CAV 

Echocardiography has also been evaluated by numerous investigators to diagnose CAV [10, 35, 

36]. Decreased global longitudinal strain (GLS) by speckle-tracking echocardiography of greater 

than -16.5% independently correlated with severity of CAV [37]. The authors speculate that 

repetitive ischemia leads to impaired longitudinal myocardial function that can be quantified by 

speckle-tracking echocardiography, even at rest. However, just as in acute rejection, myocardial 
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deformation imaging by echocardiography is not yet established for routine surveillance for CAV. 

Currently, dobutamine stress echocardiography (DSE) is one of the noninvasive imaging 

modalities commonly used for CAV surveillance, particularly in patients greater than 3-5 years 

from their heart-transplantation with low suspicion for clinically significant CAV [6, 38]. DSE is 

favored over exercise stress echocardiography because of the advantage of being less affected 

by heart-rate limitations often seen in denervated cardiac allografts. Though initially thought to 

show good diagnostic performance for clinically significant CAV and correlate meaningfully with 

myocardial infarction and death, recent studies have cast doubt on the accuracy and prognostic 

value of a negative DSE [39, 40]. In general, our center’s experience is consistent with pooled 

sensitivity of 60% and specificity of 86% for an area under the curve (AUC) of 0.73. 

CCTA for the diagnosis of CAV 

CCTA has shown reasonable accuracy for the detection of CAV in heart-transplant patients [8, 

41]. CCTA is particularly attractive because of its high spatial resolution and decreasing radiation 

exposure to patients, with the advent of 256- and 320-detector-row CT scanners and improved 

dose reduction techniques [42]. On patient-based analysis using 50% stenosis by invasive 

coronary angiography as the gold standard, the weighted mean sensitivity and specificity were 

94% and 92%, respectively, and weighted mean positive and negative predictive values were 

67% and 99%, respectively [43]. However, CCTA demonstrated a far lower negative predictive 

value of 50% for the diagnosis of CAV when compared with IVUS. High heart-rates were also a 

noted limitation, with a mean heart-rate of 85 beats/min despite beta-blockade. Despite this, 

occurrence of motion artifacts limiting interpretation was low and happened less than 1% of the 

time [44]. On the rare occasions that motion artifacts had limited interpretation, typically the right 

and left circumflex coronary arteries were affected whereas CAV detected was predominantly in 

the left anterior descending artery [41]. Thus, the current evidence suggests that CCTA is suitable 

for the diagnosis of clinically significant CAV while invasive coronary angiography with IVUS 
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should be used if the goal is early detection of CAV. The selection between these differing goals 

will depend on how the diagnosis of CAV would change the management of the heart-transplant 

patient [45]. 

Nuclear imaging and CMR for the diagnosis of CAV 

Single photon emission computed tomography (SPECT) is one of the earliest noninvasive 

imaging modalities studied for the diagnosis of CAV [46]. The choice of the pharmacologic stress 

agent is institution dependent and the performance of dobutamine, dipyridamole and 

regadenoson has been shown to be similar and equally safe to administer [47, 48]. The diagnostic 

accuracy of SPECT however is not improved when compared to DSE and has the additional risk 

of radiation exposure [49]. 

Thus, positron emission tomography (PET) is suggested as the superior nuclear imaging modality 

because of its improved spatial resolution, accuracy and lower radiation dose [50]. Cardiac PET 

imaging provides additional quantitative parameters that can be particularly useful for evaluating 

a diffuse vasculopathic process in CAV, including rest/stress myocardial blood flow and 

myocardial flow reserve [51–53]. Chih and colleagues showed the utility in using myocardial flow 

reserve, stress myocardial blood flow and coronary vascular resistance determined by PET in 

risk-stratifying patients for CAV diagnosed invasively by IVUS with a sensitivity of 93% and 

specificity of 65% for 1 abnormal parameter. However, the calculated PET parameters showed 

modest correlation at best with corresponding invasive coronary physiologic parameters, 

including index of microcirculatory resistance. While PET imaging shows promise for noninvasive 

detection of CAV, it is less widespread and more expensive when compared to other noninvasive 

imaging modalities, limiting its universal applicability [54]. 

CMR has been evaluated by several groups for the diagnosis of CAV. Early studies evaluated 

LGE as a sign of myocardial injury mediated by CAV [26, 55]. However, high prevalence of LGE 
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in heart-transplant patients, as previously described, limits its specificity for CAV diagnosis. 

Though the prevalence of infarct-typical LGE does increase with severity of CAV, both infarct-

typical and infarct-atypical patterns are seen in all grades of CAV and thus no consistent LGE 

pattern correlates specifically with CAV [56].  

Stress perfusion imaging by CMR has gained increasing interest with recent studies showing 

better diagnostic accuracy for CAV compared to other noninvasive imaging modalities. Miller and 

colleagues demonstrated the accuracy of diagnosing both macrovascular and microvascular CAV 

using stress perfusion CMR and showed an impressive AUC of 0.89 for detection of moderate 

macrovascular CAV or microvascular disease [24]. Chih and co-authors also showed that 

myocardial perfusion accurately diagnosed macrovascular CAV when compared to IVUS using a 

myocardial perfusion reserve cut-off of 1.68, with a positive and negative predictive value of 86% 

and 100%, respectively [57]. Stress CMR has also consistently shown to be a robust predictor of 

microvascular CAV, a field within heart-transplantation that needs further study and has been 

limited by lack of accurate diagnostic tools [58–60]. At our institution, we have adapted the use of 

an artificial intelligence based approach for quantitative myocardial perfusion to further improve 

the quantification of myocardial blood flow and perfusion reserve, allowing for better diagnostic 

accuracy while improving workflow by reducing time spent for analysis [61, 62]. 

Noninvasive imaging for prediction of clinical outcomes 

 

Noninvasive imaging has also shown the ability to identify heart-transplant patients at high risk 

for major adverse cardiovascular events. This is in part due to diagnosis of more severe forms of 

immune-mediated rejection such as high-risk CAV disease [35, 49, 63–65]. In contrast, a normal 

CCTA exam portends a favorable prognosis with 93% free of significant CAV for a minimum of 3 

years [66]. Additionally, vascular remodeling that can be readily visualized by CCTA may serve 

further insight into the pathogenesis of CAV and provide prognostic value [67]. Reduced GLS by 
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echocardiography (greater than -14%) also has shown to be predictive of all-cause mortality [68–

70]. More recently, myocardial characterization by CMR has shown incremental prognostic value 

[22, 23, 27]. Although presence of LGE is often not specific to the type of rejection, the burden of 

LGE appears to increase the risk for major adverse cardiovascular events with a cut-off of 7.9% 

of myocardial mass [22, 27]. Additionally, elevation of T2 relaxation time (greater than 50.2 

milliseconds) and ECV (greater than 29%) also predicted major adverse cardiovascular events 

beyond what could be attributed to acute rejection [23]. Further studies have shown elevated ECV 

correlates with prior repeated acute rejection episodes, suggesting that elevated ECV reflects 

accumulated damage and fibrosis over time [13, 71]. Reduced GLS, diastolic strain rate and 

myocardial perfusion reserve also predicted major adverse cardiovascular events [59, 72, 73]. In 

summary, CMR provides better prognostication compared to other noninvasive imaging 

modalities because of its superior myocardial characterization with T2 mapping, ECV, LGE, GLS 

and myocardial perfusion reserve. 

SEQUENCING IN HEART-TRANSPLANTATION 

Immune monitoring in transplantation 

Evidence of immune-mediated rejection by histopathology, demonstrated by invasion and 

destruction of cardiomyocytes by lymphocytes, is a late finding. At the time of diagnosis, the 

rejection episode often has been ongoing for an undetermined time period, causing myocardial 

damage and fibrosis [13, 71]. The ImmuKnow assay was created to noninvasively monitor 

immune activity to detect a pattern of increased immune activation prior to an acute rejection 

episode (Table 2) [74, 75]. Specifically, the assay determines CD4+ T cell immune activity by 

measuring adenosine triphosphate production after stimulation with phytohemagglutinin. 

However, several studies have subsequently shown that ImmuKnow has not been predictive for 

rejection in the post-transplant period [76–79]. The limitations may be due to the nonspecific 
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phytohemagglutinin immune stimulus or perhaps the need for selection of a more specific T cell 

subset [80, 81]. 

Gene expression profiling of peripheral blood mononuclear cells (PBMC) is currently the only 

assay approved for immune surveillance in heart-transplant patients and has paved the way for 

reduction of surveillance endomyocardial biopsies and reduced immunosuppression [11]. This 

paradigm change to noninvasive surveillance for ACR, typically at 6 months post-transplant, is 

one of the most significant developments in heart-transplant management in the past 10 years. 

AlloMap is based on the analysis of PBMC RNA that uses a 20-gene expression signature to 

predict ACR in stable, low risk heart-transplant patients and obtained FDA approval for this use 

in 2008 [74]. The CARGO II and IMAGE trials showed that AlloMap testing can be successfully 

used as part of a noninvasive surveillance strategy as a rule-out test for ACR as early as 55 days 

post-transplant [11, 82]. These studies also confirmed the low incidence rate of ACR in the current 

era which contributes to the high NPV and limited PPV of the AlloMap test [82]. However, despite 

AlloMap’s success, there are noted limitations with the assay. First, AlloMap has not been shown 

to detect nor predict AMR [74]. Second, the assay is limited to low risk heart-transplant patients 

who are asymptomatic with normal allograft function, on reduced corticosteroids (less than 20 

mg/d), have not had a recent acute rejection episode, have not recently received hematopoietic 

growth factors or blood transfusions, and cannot be pregnant [83]. Third, AlloMap does not 

discriminate against immune activation due to ACR versus cytomegalovirus infection [84]. Thus, 

while AlloMap has significantly changed the landscape of heart-transplant care to more 

noninvasive monitoring, its limitations highlight the need for a more refined understanding of the 

immune response in acute rejection. In addition to AlloMap, we would be remiss if we did not also 

mention the importance of detecting donor specific antibodies for both diagnosis of AMR and its 

prognostic value, with its improved and more specific detection by the single antigen bead assay 

[85, 86]. 
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Noninvasive surveillance of allograft injury 

Further advancing noninvasive monitoring in heart-transplant patients, donor-derived cell free 

DNA (dd-cfDNA) has been more recently developed as a highly sensitive allograft injury marker 

[87–89]. Acute rejection causes cell death in the allograft and this leads to increased levels of dd-

cfDNA that can be measured in the patient’s peripheral blood. AlloSure is currently the most 

widely used commercial assay and uses 266 single-nucleotide polymorphisms to accurately 

quantify dd-cfDNA without the need for genotyping the recipient or donor [88]. In the DART study, 

AlloSure correlated with both T cell-mediated rejection or antibody-mediated rejection in 102 

kidney-transplant recipients with an AUC of 0.74. Using a 1% dd-cfDNA cut-off, the authors 

showed positive and negative predictive values of 61% and 84%, respectively. In contrast to dd-

cfDNA, serum creatinine did not identify acute rejection with an AUC of 0.5. Khush and colleagues 

similarly demonstrated good diagnostic performance for AlloSure in heart-transplant patients and 

at a 0.2% dd-cfDNA cut-off, the authors showed 44% sensitivity and 80% specificity and a positive 

and negative predictive value of 8.9% and 97.1%, respectively [87]. It is important to note the 

different cut-offs in heart- versus kidney-transplant patients, the reasons for which are not 

completely explained. Thus, dd-cfDNA further improves upon noninvasive surveillance of the 

allograft for acute rejection from gene expression profiling and is no longer limited to ACR and 

low-risk transplant patients. 

Going beyond histopathology 

Microarray technology provides high throughput measurement of thousands of RNA transcripts 

for bulk RNA gene-expression patterns and as a result, provides much more information than the 

20-gene AlloMap panel [90]. Thus, microarray technology is particularly attractive to transplant 

physicians because of its potential to improve accuracy for diagnosis of acute rejection, reduce 

interobserver variability in the interpretation of histopathology and most importantly, to provide 

further insight into mechanisms responsible for rejection [91, 92]. Reeve and co-authors were one 
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of the earliest groups to demonstrate the possibility of creating a T cell-mediated rejection score 

in kidney-transplant patients using machine-learning with array-based data [93]. Subsequently, 

the MMDx-Kidney study group performed archetypal analysis using array-based data and 

generated six archetypes, with molecular archetype scores showing better prediction of allograft 

survival than histologic diagnoses with the worst prognosis in the fully developed and late-stage 

antibody-mediated rejection archetypes [94]. This study showed the potential of microarray 

technology to find additional phenotypes beyond what is currently diagnosed by histopathology. 

The MMDx molecular diagnostic system was also applied to endomyocardial biopsies and the 

INTERHEART study (clinicaltrials.gov, NCT 02670408) will soon provide a prospective 

assessment of the MMDx system [95]. However, these studies are still limited because they 

continue to compare the molecular scores and phenotypes to histopathology, a flawed gold 

standard [96]. Alluding to the near future, Reeve and co-authors suggest the possibility of going 

beyond histopathology for a better classification by molecular diagnostics to improve 

understanding of acute rejection pathology. 

Data-driven immune phenotype clustering from array-based data provides additional biological 

information beyond standard histopathology. CIBERSORT is a significant step forward in 

bioinformatics that uses a leukocyte signature matrix to deconvolve immune cell subsets from 

array-based data [97]. In essence, the authors provide a powerful solution for performing digital 

cytometry from bulk tissue analysis [98]. Buscher and colleagues have further modified the 

leukocyte signature matrix, which was originally created to evaluate cancer tissue, and included 

additional leukocyte subtypes as well as cells that comprise the kidney compartment (under 

review). This allowed for cell type deconvolution from kidney-transplant biopsy analysis. 

Furthermore, predictive stochastic neighbor embedding tool for omics (PRESTO) was used for 

unsupervised machine learning to identify co-regulated networks [99]. CIBERSORT and PRESTO 

were subsequently used together for biopsy phenotype clustering (Fig 1). This bioinformatically 
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driven approach identified a unique M2 macrophage subtype which was confirmed to be involved 

in active rejection by immunostains that ultimately resulted in fibrosis. Thus, there is now a 

successful paradigm for a superior, big data driven molecular diagnostic approach that goes 

beyond histopathology to identify potential immune-mediated mechanisms. 

Additionally, single cell RNA sequencing (RNA-Seq) shows promise to further uncover the 

complex interactions of different immune and parenchymal cells at a much higher depth than bulk 

transcriptional profiling [100]. Single cell RNA-Seq has greater potential to dissect complex tissue 

into multiple cellular subpopulations and can also identify rare cell types not possible with 

microarrays nor bulk RNA-Seq. This is a nascent field that has already shown the ability to 

uncover distinct immune cell subsets in atherosclerosis and in transplantation [9, 101–103]. Thus, 

we, as well as other labs, are currently utilizing single cell RNA-Seq with data-driven analysis to 

provide potential hypotheses for immune-mediated rejection mechanisms that can be taken back 

and tested in animal models. 

ARTIFICIAL INTELLIGENCE IN HEART-TRANSPLANTATION 

 

Artificial intelligence (AI) is a rapidly expanding branch of computer science that utilizes systems 

and algorithms to perform tasks that previously required human intelligence [104, 105]. Machine 

learning is a subset of AI in which algorithms are trained to perform tasks by learning patterns 

from data, instead of prespecified rules, and can be either supervised or unsupervised by 

researchers. In contrast to traditional data analysis methods, machine learning relies on a trial 

and error approach to optimize data predictive analysis [106, 107]. Applications of machine and 

deep learning, a subfield of machine learning that utilizes artificial neural networks, in medicine 

have grown at a dazzling pace and already are influencing and driving the fields of cardiovascular 

imaging, histopathology and analysis of sequencing data [108, 109]. 
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Deep learning has great potential to help shape the future of cardiovascular imaging and has 

already shown the ability to be used for object classification [105], improving image acquisition 

and workflow [110], automating analysis [109], enhancing image quality [111, 112], and risk 

prediction [108]. However, in our opinion, the greatest application of machine and deep learning 

will be the determination of new pathophysiologic findings, not evident to the imaging expert, that 

can be taken back to benchside research to better understand the mechanisms of disease. This 

is already being applied in CMR for detection of microvascular dysfunction in various 

cardiovascular diseases that was previously not identifiable by the usual qualitative review [61, 

62, 113]. Thus, deep learning will continue to grow to inform us of new insights that can be further 

tested by hypothesis-driven research [114, 115]. 

Machine learning has also already begun to shape the fields of histopathologic interpretation and 

analysis of sequencing data to provide consistent and more accurate histopathologic 

interpretation [116–118] and identify gene expression patterns that would not be recognized with 

classic analysis [119, 120]. Buscher and colleagues have employed the use of two novel machine 

learning techniques, CIBERSORT and PRESTO, to identify a M2 macrophage subtype from a 

unique immune cell signature that is involved in active forms of acute rejection. This data-driven 

immune phenotype clustering is especially powerful because it demonstrates a successful 

paradigm for the use of machine learning in transplant immunology to identify mechanistic 

hypotheses that can be tested in animal models. Furthermore, this approach will be even more 

important in the analysis of large datasets derived from single cell RNA-seq. 

Additionally, use of AI for development of accurate risk prediction models in solid organ 

transplantation is particularly important because of the limited allograft longevity and need to 

identify transplant patients at high-risk for allograft failure. This has been successfully used for 

prediction of kidney allograft failure with the creation of the iBox score from independent 

determinants that include time from transplant, current kidney functioning based on standard 
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laboratory measurement, donor specific antibodies and histopathologic findings [121]. More 

recently, in heart-transplantation, Loupy and colleagues created four CAV trajectory profiles using 

unsupervised latent class mixed models that accurately predicted the development of CAV and 

all-cause mortality using six donor and recipient (within the first year) characteristics [122]. This 

model already has the potential to reduce early and repeated invasive coronary angiography to 

heart-transplant patients at highest risk, specifically those in trajectories 3 and 4. As data 

collection and our understanding of allograft rejection improves, this will also continue to improve 

risk prediction models which will accurately guide transplant physicians in their care for their 

patients. 

Despite the variety of successes in AI and machine learning, there remain limitations in their 

applications including need for larger and more accurate datasets, demonstration of 

reproducibility, ability to understand the derived models and trust the results, working towards 

uniformity and agreement on evaluation metrics, and most importantly, guidance of these models 

by clinicians to assure meaningful clinical impact [104, 123, 124]. Some of these limitations will 

be addressed by AI. For instance, as it creates improved and more consistent analysis of cardiac 

imaging, histopathology and sequencing, AI will then provide itself with more accurate datasets 

to improve its predictive models. Most importantly, collaboration between clinicians and AI 

specialists will be essential in the application of AI in medicine. 

CONCLUSION 

 

With limitations in animal models of allograft rejection that either did not accurately model rejection 

in humans or did not produce findings that translated clinically [125], our understanding of cardiac 

allograft rejection has not been able to progress significantly. However, as cardiovascular imaging 

and sequencing have made tremendous gains in recent years, identifying potential mechanisms 

for allograft rejection is now a reality that was long overdue. Furthermore, the large datasets 
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created by both imaging and sequencing can be leveraged by AI to recognize novel patterns that 

we have not been able to identify with traditional methods (Fig. 1). Thus, the field of transplantation 

is on the brink of a true paradigm shift that combines big data driven analysis with traditional 

hypothesis testing to overcome our previous limitations in understanding allograft rejection. 

Though we still have far to go, there is a clearer path towards better understanding of transplant 

immunology and ultimately increasing cardiac allograft survival for our patients.  
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FIGURE LEGEND 

Figure 1. This figure conceptualizes the future direction of heart-transplant research, 

combining data from imaging and sequencing and leveraged by artificial intelligence to 

identify new mechanisms that can be tested in animal models. (a) An example of cardiac 

MRI imaging (3 chamber view) with 3D cine acquisition. (b) RNA microarray data from 

biopsy tissue of kidney allografts with cell type deconvolution by CIBERSORT (courtesy 

of Dr. Buscher, manuscript under review). (c) An example of object classification using 

convolutional neural networks to accurately identify different abdominal organs and their 

laterality. (d) Gene network 4 (courtesy of Dr. Buscher) derived from PRESTO analysis 

of array-based data from biopsy tissue of kidney allografts. Network 4 is involved in acute 

rejection and shows co-regulated networks of extracellular matrix and fibrosis-related 

pathways. When used with CIBERSORT, Buscher and colleagues identified fibroblasts 

and a distinct M2 macrophage subset that appear to be involved in early transplant 

fibrosis.  
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Table 1. Noninvasive cardiac imaging modalities for evaluating heart-transplant patients 

  Advantages Disadvantages 

Acute Rejection 

Echocardiography 
Key References: # [30] 
 

⦁  Readily accessible 

⦁  Test of choice in the 

setting of hemodynamic 
compromise 

⦁  First-line imaging modality 

to assess allograft function 

⦁  Insensitive in detecting 

acute rejection 

⦁  Often unable to 

differentiate allograft 
dysfunction from acute 
rejection and CAV 

CMR 
Key References: # [14–16] 

⦁  Contrast enhancement 

with gadolinium allows 
tissue characterization to 
detect myocardial injury, 
scarring and edema 

⦁  T2 relaxation time and 

ECV most consistent 
independent predictors of 
acute rejection 

⦁  LGE is a nonspecific 

finding in heart-transplant 
patients 

⦁  Contrast use limited with 

poor renal function 

⦁  Cannot perform on 

hemodynamically unstable 
patients 

⦁  Irregular rhythms such as 

atrial fibrillation significantly 
limit image quality 

Cardiac Allograft Vasculopathy (CAV) 

Echocardiography 
Key References: # [35, 39] 

⦁  DSE is widely available 

and commonly used 

⦁  Negative studies thought 

to have good prognostic 
value from older literature  

⦁  Can be combined with 

GLS to improve sensitivity 

⦁  Recent literature casts 

doubt on accuracy of DSE 
with sensitivity as low as 
28% to detect clinically 
significant CAV 
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CMR 
Key References: # [24, 26, 
57, 59] 

⦁  Superior myocardial 
characterization compared to 
other imaging modalities 
⦁  Addition of stress 
myocardial perfusion imaging 
allows for sensitive detection 
of macrovascular and 
microvascular CAV 

⦁  LGE is a nonspecific finding in 
heart-transplant patients  
⦁  Contrast use limited in 
severe renal dysfunction 

CCTA 
Key References: # [41, 43] 

⦁  High spatial resolution 
allows for sensitive diagnosis 
of CAV and a high negative 
predictive value 

⦁  Decreasing radiation 
exposure, equal to or less 
than invasive coronary 
angiography, with newer 
hardware and software 
improvements 
  

⦁  High heart rates often seen 
in heart-transplant patients 
can introduce motion artifacts 
⦁  Spatial resolution still limited 
in detection of microvascular 
CAV 

⦁  Relatively contraindicated in 
patients with renal dysfunction 

Nuclear Imaging 
Key References: # [51–53] 

⦁  Pharmacologic SPECT 
imaging is widely available 
and commonly used 

⦁  PET provides quantitative 
myocardial perfusion 
parameters for sensitive 
detection of microvascular 
CAV 

⦁  Renal dysfunction is not a 
limitation for nuclear imaging 

⦁  SPECT has limited accuracy in 
detection of CAV 

⦁  PET is expensive and has 
limited availability 

⦁  Radiation exposure is highest 
with SPECT compared to other 
imaging modalities while 
exposure with PET is similar to 
invasive coronary angiography 

  

Prediction of Clinical Outcomes 

Echocardiography 
Key References: # [8, 10, 
68, 69] 

⦁  LVEF is a strong predictor for 
outcomes 
⦁  GLS can be predictive of all-
cause mortality 

⦁  Decreased LVEF is a late 
finding 

⦁  Standardization of 
deformation imaging is load 
dependent and continues to 
evolve. Precise normal values 
are not established in heart-
transplant patients 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://paperpile.com/c/tZhWOc/UB4V+9KeO+GJet+X7ar
https://paperpile.com/c/tZhWOc/UB4V+9KeO+GJet+X7ar
https://paperpile.com/c/tZhWOc/EIxf+FylH
https://paperpile.com/c/tZhWOc/wNmc+xjDD+KC0s
https://paperpile.com/c/tZhWOc/5AE9+WY48+SltX+hKrQ
https://paperpile.com/c/tZhWOc/5AE9+WY48+SltX+hKrQ


CMR 
Key References: # [21–23, 
27, 73] 

⦁  LGE burden, increased T2 
relaxation time and ECV 
predict major adverse 
cardiovascular events beyond 
what could be attributed to 
acute rejection 

⦁  Other MRI parameters 
including GLS, diastolic strain 
rate and myocardial perfusion 
reserve also are predictive of 
major adverse cardiovascular 
events 

⦁  Abnormal CMR parameters 
often do not convey 
mechanistic process causing 
allograft dysfunction 

⦁  Contrast use limited in 
severe renal dysfunction 

  

CCTA 
Key References: # [66, 67] 
  

⦁  Normal CCTA exam 
demonstrates decreased 
likelihood of developing CAV 
in 3 years 
⦁  Vascular remodeling can be 
evaluated and quantified 

  

⦁  High heart rates often seen 
in heart-transplant patients 
can introduce motion artifacts 
⦁  Relatively contraindicated in 
patients with renal dysfunction 

Nuclear Imaging 
Key References: # [63–65] 

⦁  Myocardial flow reserve and 
blood flow quantified by PET 
can predict major adverse 
cardiovascular events 
⦁  Not limited by renal 
dysfunction 

⦁  Optimal parameters cut-offs 
for PET perfusion not 
standardly defined and 
validated 

⦁  Cost of PET and limited 
availability prevent further 
widespread use 

CAV, cardiac allograft vasculopathy; CMR, cardiovascular magnetic resonance imaging; CCTA, 

coronary computed tomography angiogram; DSE, dobutamine stress echocardiography; ECV, 

extracellular volume; GLS, global longitudinal strain; LGE, late gadolinium enhancement; LVEF, 

left ventricular ejection fraction; PET, positron emission tomography; SPECT, single photon 

emission tomography 
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Table 2. Types of sequencing for detection of acute rejection in heart-transplant patients 

  Advantages Disadvantages 

Immune Monitoring 

Immuknow 
Key References: # [77, 78] 

⦁  Noninvasive 

⦁  Can identify patients at higher 
risk for infection 

⦁  Limited ability to predict acute 
rejection 

Gene expression profiling 
Key References: # [11, 74, 
82] 

⦁  Noninvasive 

⦁  FDA approved for surveillance 
of ACR in heart-transplant 
patients 
⦁  High negative predictive value 
for ACR 

⦁  Limited to low risk patients 
⦁  Not sensitive for detecting 
AMR 

⦁  Low positive predictive value 
for ACR 

⦁  CMV viremia also can produce 
a positive result 

Donor specific antibody 
Key References: # [85, 86, 
126] 

⦁  Noninvasive 

⦁  Recommended to check 1, 3, 
6, and 12 month and then 
annually by ISHLT 

⦁  Presence of anti-HLA antibody 
associated with rejection, CAV 
and poor allograft survival 

⦁  Non-HLA antibodies also 
implicated in AMR 

⦁  Mean fluorescence intensity 
cut-offs differ between 
institutions 

Allograft Injury Detection 

Donor-derived cell free DNA 
Key References: # [87, 88] 

⦁  Noninvasive 

⦁  Highly sensitive for ACR and 
AMR 

⦁  Complementary to gene 
expression profiling 

⦁  Different cut-offs depending 
on type of allograft 
⦁  Not established for multi-
organ transplant patients 
⦁  Cannot differentiate between 
AMR and ACR 

Molecular Diagnostic Techniques 
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Microarray technology 
Key References: # [91, 92, 
94] 

⦁  Potential to reduce wide 
interobserver variability seen 
with histopathology 

⦁  Additional archetypes beyond 
current histopathologic 
definitions can be found 

⦁  Has not identified new 
mechanisms that may cause 
acute rejection 

⦁  Still compared to the gold 
standard of histopathology 

⦁  Quality control, discrepancy in 
array studies, and difficulty in 
detecting small changes from 
rare cell populations remain 
limitations 

Machine-learning methods 
with array-based and bulk 
RNA sequencing data 
Key references: # [97–99] 

⦁  Big data driven molecular 
diagnostic approach can identify 
new immune-mediated 
mechanisms not identified 
previously with traditional 
methods 

⦁  Nascent field, not widely 
established, and has not 
demonstrated reproducibility 

⦁  Derivation of accurate 
algorithms limited by need for 
large input data with adequate 
variety of pathology 

Single cell RNA sequencing 
Key references: # [100, 102, 
103] 

⦁  New and powerful 

technology with exponential 
use in recent years 
⦁  Dissects complex tissue 

with ability to detect rare cell 
populations 

⦁  Currently cost-prohibitive 

⦁  Not a high throughput method 

⦁  Variances in techniques across 
different institutions 

ACR, acute cellular rejection; AMR, antibody mediated rejection; CAV, cardiac allograft 
vasculopathy; FDA, Food and Drug Administration; RNA, ribonucleic acid 
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Figure 1. 
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