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Abstract

Mild Cognitive Impairment (MCI) is the stage between the declining of normal
brain function and the more serious decline of dementia. Alzheimer’s disease
(AD) is one of the leading forms of dementia. Despite the fact that MCI does
not always lead to AD, an early diagnosis of MCI may be helpful in finding
those with early signs of AD. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) has utilized magnetic resonance imaging (MRI) for the diagnosis of
MCI and AD. MCI can be separated into two types: Early MCI (EMCI) and
Late MCI (LMCI). Furthermore, MRI results can be separated into three views
of axial, coronal and sagittal planes. In this work, we perform binary classifica-
tions between healthy people and the two types of MCI based on limited MRI
images using a deep learning approach. Furthermore, we implement and com-
pare two various convolutional neural network (CNN) architectures. The MRIs
of 516 patients were used in this study: 172 control normal (CN), 172 EMCI
patients and 172 LMCI patients. For this data set, 50% of the images were used
for training, 20% for validation, and the remaining 30% for testing. The results
showed that the best classification for one model was between CN and LMCI for
the coronal view with an accuracy of 79.67%. In addition, we achieved 67.85%
accuracy for the second proposed model for the same classification group.

x



Chapter 1

Introduction

Mild cognitive impairment (MCI) is a condition where individuals experience a
decline in their mental and cognitive abilities. It is the intermediate stage before the
development of Alzheimer’s disease (AD) and other types of dementia. Although MCI
does not always transition into AD, an early diagnosis of MCI could benefit those
individuals, their families and governments on a social and financial level. A study
found that if all AD patients were diagnosed in the early stages, it would save a total
of $7 trillion to $7.9 trillion [3]. Also, once an individual is properly diagnosed with
MCI, they and their family have a better timeline for social, financial and medical
decisions.

MCI is divided into early and late MCI (EMCI and LMCI). Due to the similarities
between healthy and MCI brain images, the classification between EMCI and normal
aging brains remains a challenging and critically important problem. Brain imaging
methods, such as magnetic resonance imaging (MRI) have become a significant tool
in the diagnosis of MCI and AD. The Alzheimer’s Disease Neuroimaging Initiative
(ADNI) is the database used to acquire the MRI images for this study. In addition,
the statistical parameter mapping (SPM) software allows us to observe the variance
in brain structure and function by studying the biomarkers in brain images based on
the gray matter (GM) extracted from MRI images. Then, we will use and compare
two different convolutional neural networks (CNNs) to classify between individuals
into healthy, EMCI or LMCI.

The work presented in this thesis aids in the prevention of AD by properly and
accurately classifying between normal brains and those with EMCI and LMCI under
data limitations using a deep learning approach. In Chapter 2, we will provide the
necessary background to understand the project. Chapter 3 focuses on the prepro-
cessing used on the acquired MRI images. Chapter 4 describes the proposed model
architectures, the performance measurements used to compare the models and pro-
vides the results and discussion of our findings. Finally, Chapter 5 draws conclusions
of the work and future work.
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Chapter 2

Literature Overview

2.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is a type of brain disease and is the most common cause
of dementia. The characteristic symptoms of dementia are difficulties with memory,
language, problem-solving and other cognitive abilities that affect an individual’s
everyday activities. Unfortunately, AD is also a degenerative disease. It is the sixth
leading cause of death in the United States and the fifth leading cause of death for
Americans 65 years and older [1]. An estimated 5.8 million Americans are living with
AD. By 2025, an estimated number of 7.1 million people age 65 and older with have
Alzheimer’s dementia. Furthermore, by 2050, the projection of those individuals age
65 and older is estimated to reach 13.8 million [4].

Unfortunately, individuals do not start noticing symptoms until years after the dis-
ease has begun. Minor symptoms include memory loss and language problems, while
others develop more severe symptoms such as losing mobility in the body and ulti-
mately succumb to the disease. This progression of AD is known as the Alzheimer’s
disease continuum. There are three phases to this continuum: preclinical AD, mild
cognitive impairment (MCI) due to AD and dementia due to AD [5–8] (Figure 2.1).
The Alzheimer’s dementia phase is separated into sections that reflect the level of
symptoms that interfere with an individual’s daily activities. While these are the
three general stages, the time that each individual spends in each part varies due to
age, genetics, gender, and other factors [9].

Figure 2.1: Alzheimer’s disease (AD) continuum - (see [1] for details).
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Preclinical Alzheimer’s Disease

During the preclinical AD phase, individuals do not show noticeable symptoms al-
though, they have measurable brain changes that indicate early signs of AD biomark-
ers. These changes include abnormal levels of beta-amyloid as shown on positron
emission tomography (PET) scans and in analysis of cerebrospinal fluid (CSF), de-
creased metabolism of glucose. However, the brain is able to compensate for the early
changes and allow the individual to function normally [5].

2.1.1 Mild Cognitive Impairment (MCI)

Mild Cognitive Impairment (MCI) is the phase between pre-clinical AD and the
more serious decline of dementia due to AD. A person with MCI will have symp-
toms evidence of Alzheimer’s brain changes, such as subtle problems with mental and
cognitive abilities. Other typical symptoms of those with MCI are memory loss or
speech difficulties. For some, these symptoms may not interfere with everyday activ-
ities, while for others that do develop memory and cognitive issues, the brain can no
longer compensate for the damage cause by AD [6].

Considering those with MCI, one study found that after two years’ follow-up,
15% of individuals older than 65 have developed dementia [10]. Another study found
that 32% of individuals with MCI developed Alzheimer’s dementia within five years’
follow-up [11]. Lastly, a third study found that individuals who were tracked for
five years or more, 38% developed dementia [12]. However, there are cases where
individuals with MCI revert back to normal cognition or remain stable. Current
research goals focus on properly identifying individuals with MCI since they are more
likely to develop AD.

Dementia

Individuals with dementia due to Alzheimer’s disease show a noticeable decline in
memory, cognitive and behavioral function that affect a person’s ability to perform
everyday activities. Multiple symptoms progress over the course of several years;
however, the pace at which the symptoms advance varies from person to person.
The symptoms reflect the degree of damage to nerve cells in different parts of the
brain. Additionally, dementia can be broken down to three stages: mild, moderate
and severe Alzheimer’s dementia [7]. Overall, individuals with MCI are more likely
to develop dementia due to Alzheimer’s disease, which is why it is crucial to identify
those with MCI before it reaches this final phase.
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2.2 Alzheimer’s Disease Neuroimaging Initiative

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) allows researchers to
work toward the prevention of Alzheimer’s disease. Created in 2004 it has since con-
tinued its innovation for early detection and to identify ways to track the diseases’
progression with biomarkers. It is funded by the National Institutes of Health with
the purpose to support advances in AD research. Under ADNI, there are numerous
research data sets available, such as diagnostic tests, MRI scans, PET scans, mea-
surements of proteins in blood and cerebral spinal fluid, neuropsychological test data,
genetics information and clinical evaluations. All ADNI data are shared through the
LONI Image and Data Archive (IDA). Scientists and researchers may request access
online. The data accessed for this project was acquired from the ADNI database, pub-
licly available (http://www.loni.ucla.edu/ADNI/). ADNI utilizes various biomarkers
to help the prevention and treatment of AD. A biomarker is a substance, measure-
ment or indicator of a biological state. There are five key biomarkers that change
from normal to abnormal during the progression of AD: b-amyloid (Aβ), tau protein,
brain structure, memory and clinical function (see Figure 2.2) [2].

Figure 2.2: Progression of biomarkers from cognitive normal to dementia - (see [2]
for details).

Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (ADNI GO/ ADNI
3), MCI patients have been classified into two groups: early mild cognitive impair-
ment (EMCI) and late mild cognitive impairment (LMCI). Levels of MCI are deter-
mined using the Wechsler Memory Scale (WMS) Logical Memory II; a subtest used
to measure different memory functions in an individual. Thus, the two groups are
distinguished between each other based on the degree of memory impairment. For
the EMCI patients, the decline in memory is approximately between 1.0-1.5 standard
deviation (SD) below the normative mean, while for LMCI patients the decline is at
least approximately 1.5 SD below the normative mean [13].
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2.3 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technology that pro-
duces three-dimensional detail anatomical images using magnetic and electric fields.
When capturing an MRI, a patient is placed in a strong magnetic field, the protons
inside the cells move out of equilibrium and align with that field. Then, when the
magnetic field is removed, the MRI sensors detect the radio frequency signals released
by the protons as they realign back to the equilibrium. These measurements are used
to create a three-dimensional greyscale MRI. It has often been used in disease de-
tection, diagnosis and during the prognosis of treatment [14]. One type of MRI is
functional Magnetic Resonance Imaging (fMRI). It captures the brain activity by
measuring the blood flow during cognitive activities. When neurons in the brain are
active there is an increase in blood flow in those areas. Therefore, fMRI images are
used to observe the effects of AD on the brain structure.

There are features in brain images that can be used to distinguish between AD,
MCI and healthy brains. The features we consider are grey matter (GM), white
matter (WM) and cerebrospinal fluid (CSF). Research shows that GM measurements
can be detected in brain alterations that are associated with cognitive impairment [15].
Current research on the classification of CN, LMCI and EMCI using GM extracted
from fMRI images aids in the early diagnosis of Alzheimer’s disease.

2.4 Statistical Parametric Mapping

The statistical parametric mapping (SPM) uses statistical techniques to examine
brain activity in fMRI and PET Scans [16]. SPM are images or fields with values
that are distributed according to a known probability density function. They can
be considered as an “X-ray” of the significance of the regional effects. The process
includes analyzing each voxel using a standard (univariate) statistical test based on
the general linear model (GLM) of the data, given by

Y = Xβ + ε (2.1)

where Y is the acquired fMRI data, X is the design matrix, β is the calculated weight
factors and ε is the estimated error (see [17] for details). GLM is an extension of linear
regression, a method used to calculate the line of best fit for a set of data. We refer
the reader to [18] for a more detailed explanation of GLM and the relationship with
fMRI. SPM can also be referred to the software used for the preprocessing applied
to our dataset. This software expands the field of research for measuring the spatial
distribution of atrophy in brain aging research [19,20].
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2.5 Deep Learning

The field of machine learning utilizes the power of computers to learn from data
[21]. Machine learning covers a wide scope of subjects, including statistical modeling,
regression algorithms and random forests algorithm [22]. In this section, we will
study the subsection of machine learning known as deep learning. We will define
deep learning, as well as establish the building blocks needed to create deep learning
algorithms. Most of the explanations in this section come from [23].

2.5.1 Feedforward Neural Networks

The basic deep learning algorithm is the feedforward neural network, also known
as multilayer perceptron (MLP). The goal of the MLP is to approximate an unknown
function f based on a set of data points (x1,y1), (x2,y2), . . . , (xm,ym), where the
xi’s are the inputs and the yi’s are the outputs. Mathematically, it is defined as a
mapping y = f̂(x,W ), where W is a set of learned parameters, between x and y. A
feedforward neural network is composed of chaining together different functions. The
most basic example contains three functions described to form the equation

f̂(x) = f̂ (3)(f̂ (2)(f̂ (1)(x))). (2.2)

In this example, f̂ (1) is called the first layer, while the final layer f̂ (3) is called the
output layer. The first layer is also known as the input layer since it starts the forward
process of the network. Since the output of f̂ (2) is not shown as an output as seen
in Figure 2.3, it is known as a hidden layer. These hidden layers transform a single
layer perceptron into an MLP. The term “deep learning” comes from the notion of
depth created in the network through multiple hidden layers. We can build upon this
general framework and explain the building blocks of a network’s architecture.

2.5.2 Fully Connected Layers

In this section, we describe the most basic block of the MLP, namely the fully
connected layer. The first layer contains the input xi. The out of each layer k is
defined by the transformation hk = g(Wkhk−1 + bk), where Wk is a weight matrix
of trainable parameters corresponding to the number of neurons in that layer, bk is
a bias term, g is an activation function adding non-linearity to the output of the
layer and hk−1 is the input layer. Consider the network in Figure 2.3, which can be
expressed by the following equations:

h1 = g(W1xi + b1) (2.3)

h2 = g(W2h1 + b2)

ŷI = f(Woh2 + bo).

Note that g is the activation function for the hidden layers and f represents the
activation function in the output layer.

6



Figure 2.3: Mulit-layer fully connected network

Activation Functions

When an activation function is applied to the output of a linear transformation, it
yields a nonlinear transformation to the output of that layer. It is important to note
that the same activation function is used for multiple layers. Typically, the same one
is used for all of the hidden layers and the output layer activation function is different
than that of the hidden layers. The most commonly used activation function is the
rectified linear unit (ReLU) defined by the activation function g(z) = max{0, z}
shown in Figure 2.4. However, this function is not the only one used to build neural
networks. Before using ReLU, most neural networks use the logistic sigmoid activation
function (figure 2.5(a)) or the hyperbolic tangent activation function (Figure 2.5(b))
(see [23]).

Figure 2.4: Behavior of recitifed linear unit (ReLU) in neural networks.
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(a) Sigmoid (b) Hyperbolic tangent

Figure 2.5: Behavior of activation functions used in neural networks.

2.5.3 Convolutional Layers

Convolutional layers are considered as an alternative to fully connected layers.
Networks that have at least one convolutional layer as known as convolutional neural
networks (CNNs). The input I of each convolutional layer is processed by a convolu-
tion. A convolution is a linear operation that involves the multiplication of a set of
weights called a filter or a kernel K. The output of the convolution is a feature map
S. Once we create the feature map, an element-wise activation function is applied
for the outputs of the fully connected layer. Sometimes a filter does not perfectly fit
the input image and must using padding, which incorporates additional pixels to the
boundary of the images according to the desired kernel size. Note that stride is the
number of pixels shifts over the input matrix and is used with the filter to create the
feature map.

Figure 2.6: Illustration of an example of a neural network with multiple convolutional
layers and fully connected layers. Each input image pass through convolutional layers
with filters, pooling, fully connected layers and an activation function to classify an
object to a certain class.
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One major advantage of CNNs over fully connected layers are the decrease in the
number of trainable parameters. It is important to note that CNNs typically still
include fully connected layers into their architecture. This is a necessary component
when using CNNs for classification in that the feature map of the last convolutional
layer is vectorized and processed through fully connected layers and an activation
function to be able to arrive at the probability that the input belongs to a certain
class (see Figure 2.6 [24]).

Max Pooling

Convolutional layers and fully connected layers are two examples of mappings
that provide a transformation from the input layer to the output layer. One major
difference is that convolutional layer incorporates a pooling layer to the resultant
feature map. The pooling layer reduces the number of parameters when the images
are too large. For example, max pooling takes the largest element within a certain
window from the rectified feature map (see Figure 2.7). This can also be viewed as
a form of downsampling since it reduces the dimensionality of each map, but retains
important information. The reason for this layer is for the output to be invariant or
less sensitive to small translations in the same type of data [23].

Figure 2.7: Max pooling layer applied to the output of the convolutional layer. The
filter is a 2× 2 filter with a stride of 2.

2.5.4 Cost Functions

When training a neural network, we use an objective function to update the
parameters of the network. In a minimization problem, the objective function is also
known as the cost function or loss function. The cost function is part of a feedback
loop that reports how well the model is performing during the learning process in
order for us to minimize the error. Since we are studying a classification problem, we
will choose the binary cross entropy function as the cost function.

9



Cross Entropy Loss Function

Consider a binary classification problem where given information is distinguished
between classes. Then, the cost function over m instances, known as the binary cross
entropy function is

J(θ) = − 1

m

m∑
i=1

yilog(p(xi)) + (1− yi) · log(1− p(xi)), (2.4)

where θ is the trainable parameters and p(xi) is the probability of yi for the positive
class (y = 1) given the input xi and θ [21].

Now, let us consider problems with multiple classes. For each case, the model
computes the score x for each class k. Then, we estimate the probability p̂k that the
instance belongs to class k by running the score through the softmax function

p̂k =
exp(xk)∑K
j=1 exp(xj)

(2.5)

The function J(θ) in (2.4) computes the exponential of every score and then normal-
izes them. This allows the probabilities p̂ to add up to one. Thus, we get the cross
entropy cost function as

J(θ) = − 1

m

m∑
i=1

K∑
k=1

(yi)klog((p̂i)k), (2.6)

where (yi)k is the k-th component of the i-th instance and the target probability
(either equal to 1 or 0 if it belongs to the class k) [21]. The goal is to minimize
the cost function in (2.4) and (2.6) over the parameters of the network to improve
classification.

Gradient-Based Learning

The purpose of gradient-based learning algorithms is to update the parameters
of the neural network based on the gradient of the cost function J(θ). Gradient
descent computes the gradient of the cost function with respect to the parameters
θ = {Wk, bk}mk=1, where we recall that Wk is a weight matrix and bk is the bias term,
for the entire training set using the following update

θ = θ − ε∇θJ(θ) (2.7)

where ε is the learning rate that defines the step size. Gradient descent terminates
when every element of the gradient is sufficiently close to zero or when the loss function
no longer changes.

In deep learning, the most typical optimization algorithm used is stochastic gradi-
ent descent (SGD). It is a version of gradient descent that allows for a faster gradient
update by randomly selecting training set minibatches and updating the parameters
based on the gradient computed in those minibatches.

10



2.5.5 Optimizer

We introduced the parameter known as the learning rate. Defining the learning
rate appropriately is an important tool in the neural network. For instance, if the
learning rate is too small, then the model is notably slow to learn, while a learning
rate that is too large can lead the model to learn less information. Since the learning
rate significantly affects the model performance, we will briefly review one of the
stochastic gradient descent optimization algorithms.

2.5.5.1 Adam Optimization Algorithm

Adaptive moment estimation, also known as Adam, is an algorithm that computes
the adaptive learning rates for each parameter [25]. The algorithm is seen as an update
to the RMSProp [26]. Adam computes the decaying averages of past gradients mt

and past squared gradients vt as

mt = β1mt−1 + (1− β1)gt (2.8)

vt = β2vt−1 + (1− β2)g2t ,

where β1 and β2 are the decay rates and mt and vt are estimates of the first moment
(the mean) and the second moment (the uncentered variance) of the gradients gt,
respectively. Adam then includes bias corrected first and second moment estimates
to account for their initialization at the origin as

m̂t =
mt

1− βt1
(2.9)

v̂t =
vt

1− βt2

Just like with RMSProp, (2.7) and (2.8) are used to update the parameters and yield
the Adam update rule. Some advantages of Adam, include it does not require a
stationary objective, it works with sparse gradients and the magnitudes of parameter
updates are invariant to rescaling of the gradient.

2.5.6 Regularization

Ideally, we want neural networks to perform well on the training data as well
as unseen data. However, in some situations overfitting can occur. The strategies
for reducing the test error, even at the risk of increasing the training error, are
collectively known as regularization. We will discuss one regularization technique
known as dropout.

Dropout

When training large neural networks, all the weights learn together and over many
iterations some of the weaker connections are ignored against the stronger ones. This
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concept is known as co-adaption. Dropout [27] is a computationally inexpensive
technique used to address the issue of overfitting by preventing co-adaptions from
occurring on the training data. While using dropout, a number of random units and
their connections are dropped from the neural network during training as seen in
Figure 2.8. Thus, this method reduces overfitting by training a number of “thinned”
models and averaging their outputs. During backpropagation, only the units that are
not dropped are updated. It is important to note one drawback of dropout is the
increased amount of training time needed compared to a standard neural network of
the same architecture.

Figure 2.8: Thinned neural network with cross units dropped during training
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Chapter 3

MRI Data

In the following chapter, we describe the preprocessing applied to the MRI images
downloaded from the ADNI database. We also discuss the additional steps and patient
information to complete the training dataset.

3.1 Preprocessing

The format of the downloaded MRI images from the ADNI database are the Neu-
roimaging Informatics Technology Initiative (NIfTI) files. It is important to note that
the data image types downloaded are semi-processed, meaning that the images are
aligned and centered and not the original raw MRI data. This is important because
the additional preprocessing in this study will not be possible on the original data
since they are not properly aligned. The MRI can be viewed as two dimensional
orthogonal projections of the brain (i.e. coronal, sagittal and axial (Figure 3.1)).
A software known as Statistical Parametric Mapping (SPM) was used for the pre-
processing of the neuroimages. For this part of the preprocessing, the most current
version of SPM12 in unison with MATLAB(2019b) was used. The three main steps
of the preprocessing are segmentation, normalization and finally smoothing. The
explanations described in this section can be found in [28].

(a) Axial plane (b) Coronal plane (c) Sagittal plane

Figure 3.1: Two dimensional orthogonal projection of MRI images before preprocesed.
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3.1.1 Segmentation

The first part of the preprocessing is known as segmentation. The 3D MRI images
can be classified into different tissues types. The tissue types are defined based on
the tissue probability maps (TPM) provided by SPM12. This can be found in SPM -
tpm/TPM.nii, which is a multivolume NIfTI file (one volume for each of the 6 tissues
classes).The TPM reflect the probability of a voxel, which represents a value on a
regular grid in three dimensional space, belonging to each tissue class based on the
segmentation of a large number of young adult brains that have been normalized to
standard space. The order of the tissue is the following: grey matter (GM), white
matter (WM), cerebral spinal fluid (CSF), bone, soft tissues and air/background
(Figure 3.2). For this study we will focus on gray matter (GM). After segmentation,
a native-space image is produced that reflect the voxel’s probability of belonging to
the gray matter tissue class (Figure 3.3(a)).

In order to complete segmentation through SPM12, the bias regularization is set
on the light regularization (0.001), the bias full width at half maximum (FWHM) is
set on the 60 mm cutoff and the affine regularization on the International Consortium
of Brain Mapping (ICBM) space template. Lastly, for the spatial normalization of
the data to the Montreal Neurological Institute (MNI) spaces, the deformation field
was set in the forwarding mode.

(a) Gray matter (b) White matter (c) Cerebral Spinal Fluid

(d) Bone (e) Soft Tissue (f) Air/Background

Figure 3.2: Tissue probability maps (TPM) - Source: SPM12.
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3.1.2 Normalization

After segmentation, the GM images were further analyzed with the next step,
normalization as seen in Figure 3.3(b). Before SPM12, spatial normalization was
based on minimizing the mean squared difference between a template and a warped
version of the image. Now, spatial normalization involves warping all the segmented
images to the same space, which is achieved by matching to a common template.
The TPM defines the space that the segmented images will be warped to. This
process produces a deformation field image file (y *.nii), which records the non-linear
transformation between spaces. During the non-linear transformation, it is calculated
how the image should move and shrink or expand to fit the template. Thus, the
deformation field contains three image volumes encoding the x, y, and z coordinates
(in mm) of where each voxel maps to in the standard space. In order to normalize
the GM images to MNI space, we set the written normalized images voxel size on (2
2 2) mm and the interpolation to the 4th Degree B-Spline.

(a) Segmentation (b) Normalization (c) Smoothing

Figure 3.3: Pre-processing phases

3.1.3 Smoothing

The final preprocessing steps is smoothing (Figure 3.3(c)), which is completed in
order to increase signal to noise ratio (SNR) and the ability of statistical techniques
to detect true and task related changes in the signal. All normalized GM images were
set with the Gaussian smoothing kernel set to (2 2 2) mm.

The original size of the data was 176 x 240 x 256. After segmentation the dimen-
sions of the image remain the same. Then, after the normalization process, all the
GM images were reduced to the size of 79 x 95 x 79.

15



3.2 2D MRI Data

Now, the preprocessed 3D MRI NIfTI images are sliced into 2D portable network
graphics (PNG) images for the model using MATLAB (2019b). We sliced the 3D
MRI images into 2D MRI images along the three planes: axial, coronal and sagittal
planes (see Figure 4.1)). Then, we resize them to 64 × 64 pixels to be used for the
convolutional neural network (CNN).

(a) Axial plane (b) Coronal plane (c) Sagittal plane

Figure 3.4: Two dimensional orthogonal projection of MRI images after preprocesed.

Depending on the anatomical plane, we consider what we believe is the appropriate
range of slices of the brain for the model. For example, in the axial plane, the
top and bottom portion of the brain will not show a significant difference between
healthy brains and those with MCI. Also, in the coronal plane and sagittal plane,
the same consideration is applied for the front/back and left/right sides of the brain,
respectively. Since we want to study the classification of MCI under data limitations,
we choose a small range of images per plane. Therefore, we selected 20 images of
each plane; a total of 60 images were considered per subject. The respective slices for
each plane are shown in Figure 4.2 through the various anatomical planes. We make
the assumption that this range of images will allow us to appropriately differentiate
between CN, EMCI and LMCI.

(a) Axial slices -
Sagittal plane

(b) Coronal slices -
Sagittal plane

(c) Sagittal slices
- Coronal plane

Figure 3.5: MRI images with slices.
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3.3 Patient Data

For this study, we obtained a total of 516 subjects: 172 EMCI, 172 LMCI and
172 control normal (CN) subjects. The demographic information of all the subjects
of the three groups are shown in Table 4.1, where N represents the total number of
subjects and F and M are the number of females and males, respectively.

Table 3.1: Demographic charateristic of the subjects.

CN ( N = 172) EMCI (N=172) LMCI (N=172)
90 F/ 82 M 76 F/ 96 M 77 F/ 95 M

Mean SD Mean SD Mean SD
Age 76.1 6.9 71.3 7.7 72.3 7.5

Then, 10,320 images were used from each of the three planes: axial, coronal and
sagittal from each group (Control normal, Early MCI and Late MCI) for a total of
36,000 images used in the study. Additionally, the images were separated as 50%
images used for training, 30% images used for testing and 20% images used for the
validation set.
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Chapter 4

Numerical Experiments

For this project, we performed a binary classification between Control Normal
(CN), Early MCI (EMCI) and Late MCI (LMCI) within each of the axial, coronal
and sagittal planes. We used two different models described in the following sections.
We will also discuss the performance measurements used to analyze the results and
compare the models.

4.1 Model I: Simple CNN

The first model we will be considering is a variation of the model found in [29]. It
is composed of three convolutional layers with max pooling between each layer (see
Figure 5.1a). For the first convolutional network, the 32 filters with a kernel size of 3
x 3 and a max-pooling kernel size set on 2× 2 were considered. The second and third
layer consists of 128 and 512 filters respectively, followed by the same max-pooling
kernel size from the first layer. Throughout all the convolutional layers, ReLU was
used as the activation function. Then, a fully connected network with 128 input
neurons and a ReLU activation function was used. Finally, a sigmoid activation
function was used to conduct the binary classification. The model is compiled with
the Adam optimizer with a learning rate of 1×10−4. A binary cross entropy function
was used to measure the performance of the model. The batch size was set to 128
images and used 100 epochs for the CNN.

4.2 Model II: VoxCNN 2D

For the second model, we consider the VoxCNN in 2D, which is similar to the
model found in [30]. This model is composed of four volumetric convolutional blocks
of 8, 16, 32 and 64 filters respectively, followed by the same max pooling in between,
along with ReLU used as an activation function (see Figure 5.1b). After, a fully
connected network with 128 input neurons and a ReLU activation function were
used. Then, a batch normalization followed by a drop out with a probability of
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0.7 were used. Finally, a fully connected layer with 64 input neurons followed by a
softmax activation function. In addition, we define a kernel initializer as the glorot
uniform and a bias initializer of zeros for initializing the layer’s weights throughout
the network. This model was also compiled with the Adam optimizer using a learning
rate of 2.7 × 10−6 and a binary cross entropy function to measure the performance.
The batch size for this model is set to 5 for 50 epochs.

(a) Simple CNN

(b) VoxCNN 2D

Figure 4.1: Simple CNN and VoxCNN architectures
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4.3 Experiments

In this section, we define the experiments that were conducted using the models
described in the previous sections. Experiment I: the classification of Control Normal
(CN) and Early MCI (EMCI) along the three different MRI planes: axial, coronal
and sagittal. This first experiment classifies between the first two stages leading to
dementia. A high performance for this experiment would be crucial for early detec-
tion of Alzheimer’s disease (AD). Experiment II: the classification of Control Normal
(CN) and Late MCI (LMCI) along the three different MRI planes. For this second
experiment, there should be a bigger difference between the first stage of the healthy
brains and the third stage of LMCI. Therefore, we should expect a noticeable different
in the classification for this second experiment. Finally, Experiment III: the classifi-
cation of Early MCI (EMCI) and Late MCI (LMCI) along the three different MRI
planes. In this third experiment, we study the distinction between the characteristics
of EMCI and LMCI.

4.4 Performance Measurements

The performance of each model will be evaluated using the following five metrics:
accuracy, specificity, recall, precision and F-score. The parameters definitions are as
followed:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100

Specificity =
TN

TN + FP
× 100

Recall (R) =
TP

TP + FN
× 100

Precision (P) =
TP

TP + FP
× 100

F-score = 2× P× R

P + R
× 100

Experiment I is the binary classification of CN and EMCI, while Experiment II is
the binary classification of CN and LMCI. Thus, for Experiment I and II, we define
true positive (TP) as the number of EMCI or LMCI subjects who were correctly clas-
sified. Then, we define true negative (TN) as the number of healthy brains correctly
classified as CN. The false positive (FP) is defined as the number of EMCI or LMCI
classified as CN. Finally, the false negative (FN) is defined as the number of healthy
brains classified as either EMCI or LMCI.

For Experiment III, we define true positive (TP) as the number of EMCI correctly
classified as itself. Furthermore, true negative (TN) is defined as the number of LMCI
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correctly classified. Then, false positive is the number of EMCI classified as LMCI
and false negative is defined as the number of LMCI classified as EMCI.

Based on the described definitions above, accuracy represents the model’s ability
to correctly classify between all groups: CN, EMCI or LMCI for each experiment,
respectively. The specificity measures the proportion of all negatives are correctly
identified. Thus, for Experiment I and II, it reflects how many CN cases were classified
correctly. Then, for Experiment III, it reflects the number of LMCI cases correctly
identified. Furthermore, recall, also known as sensitivity, measures the proportion of
all positives correctly identified. In Experiment I and II, it reflects how many EMCI
or LMCI subjects were identified correctly, respectively. In Experiment III, it reflects
how many EMCI subjects were correctly classified. The precision is the proportion
of true positive results that were actually correct. Lastly, F-score is a measure of the
test’s accuracy and uses the average of precision and recall to accomplish this.

4.5 Results

For this project, we studied the classification of healthy brains and brains di-
agnosed with mild cognitive impairment (MCI) under a limited range of data. We
performed binary classifications between the control normal (CN), Early MCI (EMCI)
and Late MCI (LMCI). In this section, we evaluate the results of the performed ex-
periments for the two proposed models.

Experiment I: Control Normal/Early MCI Classification

Table 4.1: Performance measure results for Control Normal/Early MCI classification
using Simple CNN (Model I) and VoxCNN 2D (Model II) along three different MRI
planes.

MRI Accuracy Specificity Recall Precision F-Score
Views (%) (%) (%) (%) (%)

Model I
Axial 76.57 75.27 77.87 75.96 76.86

Coronal 78.90 79.30 78.49 79.39 78.77
Sagittal 77.07 79.05 75.10 78.30 76.58

Model II
Axial 65.85 66.72 64.98 66.47 65.45

Coronal 66.69 66.30 67.07 66.61 66.74
Sagittal 66.21 75.15 57.27 70.36 62.58

Experiment I classifies between CN and EMCI for all three planes: axial, coronal
and sagittal. From Table 4.1, we can see that Model I outperforms Model II in all
metrics along the three anatomical planes. Furthermore, in Model I, the coronal
plane provides higher range for all five performance measures, while in Model II,
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the coronal plane presents a higher range in only three out of the five metrics. The
highest accuracy of 78.90% for Model I and 66.69% for Model II was achieved along
the coronal plane.

We can further evaluate the proposed models considering the performance mea-
sures described in the previous section. The metrics amongst Model I are all fairly
similar. Along the coronal plane, we have a highest specificity of 79.30%. The speci-
ficity reflects how many Control Normal cases were classified correctly. Therefore,
the higher the specificity, the fewer normal subjects were classified as EMCI. We also
have a high recall of 78.49% and a high precision of 79.39% for the coronal plane,
which means our first model is good at detecting and discriminating the differences
between healthy brains and EMCI.

For Model II, the performance measures are not as consistent as Model I. As stated
above, only three out of the five metrics rank high for the coronal plane. Conversely,
we have a higher precision of 70.36% for sagittal plane. Therefore, we obtained a
high number of the false negatives, which means a greater number of healthy brains
were incorrectly classified as EMCI. Likewise, we have a high specificity of 75.15% for
the sagittal plane. Thus, a higher number of Control Normal brains were classified
correctly. Although, the results indicate a high recall and F-Score for the coronal
plane. Since we are classifying between the first two stages leading up to dementia,
there is a noticeable distinction that the models learned in order to properly classify.

Experiment II: Control Normal/Late MCI Classification

Table 4.2: Performance measure results for Control Normal/Late MCI classification
using Simple CNN (Model I) and VoxCNN 2D (Model II) along three different MRI
planes.

MRI Accuracy Specificity Recall Precision F-Score
Views (%) (%) (%) (%) (%)

Model I
Axial 77.17 80.04 74.30 78.84 76.48

Coronal 79.67 82.44 76.90 81.50 79.06
Sagittal 77.45 79.09 75.81 78.48 77.04

Model II
Axial 67.02 65.58 68.45 66.96 67.16

Coronal 67.85 66.24 69.47 67.81 68.12
Sagittal 67.41 72.71 62.11 69.76 65.38

Experiment II classifies between Control Norman (CN) and Late MCI (LMCI)
along the three anatomical planes: axial, coronal and sagittal. Model I exceeds
Model II for the second experiment as seen in Table 4.2. For Model I, the coronal
plane shows a higher range in all five metrics. On the other hand, Model II has a
higher range in the coronal plane for three out of five metrics, which is the same result
as Experiment I. Additionally, the coronal plane also has higher accuracy compared to
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the other anatomical planes. The classification of CN and LMCI for the coronal plane
results in a high accuracy of 79.67% for Model I compared to the highest accuracy of
67.85% obtained for Model II.

Overall, the performance measures from Model I are similar. However, there
are some metrics that are more distinct than others. The results indicate a higher
specificity of 82.44% for the coronal plane. In this experiment, a higher specificity
indicates that fewer healthy brains were misclassified as LMCI. On the other hand,
a higher precision, for instance, in the coronal plane with 81.50%, shows that we
were able to classify a greater amount of those labeled as positive. The increase in
specificity and precision is attributed to a greater anatomical difference between the
first stage of healthy brains to the third stage of Late MCI (LMCI).

We see an inconsistency in the performance measures for Model II compared to
Model I. The classification of CN and LMCI for the sagittal plane shows a high
specificity of 72.71%. In addition, we have a high precision of 69.76% for the sagittal
plane. Compared to Experiment I, Model II shows similar results regarding a high
specificity and precision for the sagittal plane.

Experiment III: Early MCI/Late MCI Classification

Table 4.3: Performance measure results for Early MCI/Late MCI classification using
Simple CNN (Model I) and VoxCNN 2D (Model II) along three different MRI planes.

MRI Accuracy Specificity Recall Precision F-Score
Views (%) (%) (%) (%) (%)

Model I
Axial 74.36 74.07 74.65 74.27 74.43

Coronal 77.02 76.47 77.56 76.86 77.10
Sagittal 76.82 75.87 77.77 76.49 76.99

Model II
Axial 62.41 61.69 63.14 62.30 62.53

Coronal 64.76 63.41 66.10 64.64 64.99
Sagittal 63.35 62.31 64.40 63.31 63.51

Lastly, Experiment III classifies between EMCI and LMCI along the three anatom-
ical planes: axial, coronal and sagittal. Just like Experiment I and II, Model I sur-
passes Model II for all metrics for all three planes as seen in Table 4.3. However,
unlike the previous experiments, Model I has a higher range in the coronal plane for
four out of five metrics, while Model II has a higher range in the coronal plane for
all five metrics. Note that the coronal planes has a higher accuracy compared to the
axial and sagittal planes for both models. The classification of EMCI and LMCI for
the coronal plane shows a high accuracy of 77.02% and 64.76% for Model I and Model
II, respectively.

For Model I, the performance measures are alike to each other. Yet, there are some
metrics that more apparent than others. For instance, the classification of EMCI and

23



LMCI for the sagittal plane has a recall of 77.77%. A higher recall means fewer
cases of LMCI were incorrectly classified compared to the EMCI cases. Contrarily,
we have a high specificity, precision and F-score for the coronal plane. On the other
hand, the results are more consistent for Model II. The classification of EMCI and
LMCI for the coronal plane has a high recall of 66.1% for the coronal plane, where
we were able to classify more LMCI cases versus the EMCI cases. We also have a
high specificity, precision and F-score for the coronal plane. The EMCI and LMCI
patients share similar characteristics, which is why the results for this experiment are
more consistent between both models.

4.6 Discussion

In this chapter, we presented and analyzed the results of the experiments for
two different models. Our work concentrates on the classification of Control Normal
(CN), Early MCI and Late MCI with limited data range. Using the performance
metrics above, we evaluated the proposed models. For our project, the results show
that Simple CNN (Model I) model outperforms VoxCNN 2D (Model II) for each
experiment.

Tables 4.1 and 4.2 show a noticeable difference within the accuracies between
individuals with healthy brains and those diagnosed with MCI. Additionally, the
accuracies for the classification of EMCI and LMCI for all three anatomical planes
show considerably lower performance measures.

The coronal plane has the highest accuracy between the axial and sagittal planes
in all three experiments for both Model I and Model II, while the axial plane had the
lowest percentages for the performance measurements out of the three anatomical
planes. This tells us that there was less information for the classification of each
brain present in the axial slices compared to the coronal and sagittal planes in these
experiments.

Recall, that Model I has three convolutional layer and two fully connected layers,
while Model II has four convolutional blocks and three fully connected layers. A CNN
is used to increase the performance of a model by extracting discriminative features
through images. Given the promising results obtained from the Simple CNN, we had
hoped that the VoxCNN would have a better performance through consecutive convo-
lutional layers. However, the results showed us that was not the outcome possibly due
to the limited data range. Overall, we obtain lower percentages for the performance
measurements of Model II compared to the results of Model I.
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Chapter 5

Conclusion

The study of mild cognitive impairment (MCI) is critical for the early diagnosis of
Alzheimer’s disease (AD). Therefore, an accurate and reliable diagnosis of MCI will
aid in identifying those individuals at an increased risk of the progression to dementia.
In recent years, deep learning has contributed to solving such complex problems.
Thus, a convolutional neural network (CNN) can provide important information to
classify between CN, EMCI and LMCI patients.

In this thesis, we applied two different classification methods to investigate the
performance of 2D MRI images under data quantity limitations. Additionally, we
studied the binary classifications of CN, EMCI and LMCI with regard to the three
anatomical planes: axial, coronal and sagittal. We performed a thorough analysis
to gain insight into what the proposed models had learned. The best results were
achieved for the classification of CN and LMCI for the coronal plane with a 79.67%
accuracy. Overall the results indicate that the simpler CNN architecture outperforms
a more sophisticated CNN under a limited dataset.

We performed the experiments with the assumptions that the dataset acquired
characterized a noticeable difference between the baseline of healthy brains and brains
diagnosed with mild cognitive impairment (MCI). We would have like to perform
additional experiments, such as a classification of each group (CN, EMCI and LMCI)
containing all three anatomical planes. Further experimentation could include an
increase of the slices taken within each image. Unfortunately, due to computational
limitations, we were unable to complete these experiments.

This work contributes to the study of two deep learning frameworks that explores
the possibility of gray matter extracted from MRI images of the axial, coronal and
sagittal planes for MCI diagnosis. Then, we evaluated our work with a relatively
small dataset and achieve promising results. Furthermore, we exhibit the effective
increase in classification performance with the simple CNN architecture consisting of
three convolutional layers. In future work, it would useful to study different ranges of
images selected for each anatomical plane. Finally, we aim to continue this study with
a classification of CN, EMCI and LMCI with the combination of all three anatomical
planes.
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