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N E U R O S C I E N C E

Superhuman cell death detection with 
biomarker-optimized neural networks
Jeremy W. Linsley1†, Drew A. Linsley2,3†, Josh Lamstein1, Gennadi Ryan1, Kevan Shah1‡, 
Nicholas A. Castello1, Viral Oza1, Jaslin Kalra1, Shijie Wang1, Zachary Tokuno1, 
Ashkan Javaherian1, Thomas Serre2,3, Steven Finkbeiner1,4,5,6,7*

Cellular events underlying neurodegenerative disease may be captured by longitudinal live microscopy of neurons. 
While the advent of robot-assisted microscopy has helped scale such efforts to high-throughput regimes with 
the statistical power to detect transient events, time-intensive human annotation is required. We addressed this 
fundamental limitation with biomarker-optimized convolutional neural networks (BO-CNNs): interpretable com-
puter vision models trained directly on biosensor activity. We demonstrate the ability of BO-CNNs to detect cell 
death, which is typically measured by trained annotators. BO-CNNs detected cell death with superhuman accura-
cy and speed by learning to identify subcellular morphology associated with cell vitality, despite receiving no 
explicit supervision to rely on these features. These models also revealed an intranuclear morphology signal 
that is difficult to spot by eye and had not previously been linked to cell death, but that reliably indicates 
death. BO-CNNs are broadly useful for analyzing live microscopy and essential for interpreting high-throughput 
experiments.

INTRODUCTION
Observing dynamic biological processes over time with live fluores-
cence microscopy has played an essential role in understanding 
fundamental cell biology. Automating such longitudinal live micros-
copy experiments with robotics has been especially useful to achieve 
the throughput necessary for performing massive screens of neuro-
nal physiology and detecting rare or transient changes in cells (1–8). 
Nevertheless, image analysis is often a rate-limiting step for scientific 
discovery in live microscopy, and this issue is magnified in high-
throughput regimes (9–11). In some cases, such as for the detection 
of death in longitudinal fluorescence imaging, the standard approach 
for image analysis is to rely on manual curation, which is often slow 
and labor intensive, and potentially introduces experimental bias. 
The impact of automated imaging on scientific discovery will be lim-
ited without new approaches that can replace manual image analysis.

A popular alternative to manual curation is semiautomated 
image analysis, available through open-source platforms such as 
ImageJ/National Institutes of Health (NIH) (12) and CellProfiler (13). 
This approach relies on feedback loops between manual curation 
and basic statistical models to incrementally build better computer 
vision models for rapidly phenotyping samples (14). However, the 
resulting models rely on visual features that are highly tuned to the 
specific experimental conditions they were trained on, meaning 
that new models must be built for every new experiment. These 

approaches are also ultimately limited by the precision and accura-
cy with which human curators can score and annotate images. Vari-
ability in curator precision, combined with ambiguities present in 
biological imaging due to technical artifacts, often leads to a noisy 
ground truth, limiting the success of attempts toward automation.

The recent explosion of computer vision models leveraging deep 
learning has led to more accurate, versatile, and efficient algorithms 
for cellular image analysis (15). Convolutional neural networks 
(CNNs), in particular, have been responsible for massive improve-
ments over classic computer vision for reconstructing cellular mor-
phology captured by light microscopy (16), automated phenotypic 
biomarker analysis in live-cell microfluidics (17), subcellular pro-
tein localization (18), and fluorescent image segmentation (19). For 
example, CNNs have been found to be able to classify hematoxylin- 
and eosin-stained histopathology slides with superhuman accuracy 
(20) and can sometimes generalize between datasets with minimal 
or no additional labeled data (21). Remarkably, CNNs have shown 
promise in detecting visual features within images that humans could 
not, suggesting that they can be harnessed to drive scientific discovery 
(22). Nevertheless, a major hurdle in achieving such goals with CNNs 
is their dependency on large labeled datasets, which require massive 
amounts of human curation and/or annotation (23). Thus, it is critical 
to develop methods that generate datasets that are sufficiently large 
to train CNNs but need minimal human curation.

Cell death is a ubiquitous phenomenon during live imaging that 
requires substantial attention in image analysis. In some cases, cell 
death is noise that must be filtered from the signal of live cells, while 
in other cases cell death is the targeted biological phenotype, for 
instance, in studies of development (24), cancer (25), aging (26), 
and disease (27).

In cellular models of neurodegenerative disease, neuronal death 
is frequently used as a disease-relevant phenotype (28, 29) and its 
analysis as a tool for the discovery of covariates of neurodegenera-
tion (3, 30, 31). Nevertheless, detection of neuronal death can be 
challenging, especially in live-imaging studies, due to the dearth of 
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acute biosensors capable of detecting death. A plethora of cell death 
indicators, dyes, and stains have been developed and described, yet 
these reagents can introduce artificial toxicity into an experiment, 
they are often difficult to quantify and display substantial batch-to-
batch variability, and they have poor control over false-negative 
detections as they only report very late stages of death after notable 
decay has already occurred (29). More recently, we established a 
novel family of genetically encoded death indicators (GEDIs) that 
acutely mark a stage at which neurons are irreversibly committed to 
die (32). Our approach uses a robust signal that standardizes the 
measurement across experiments and is amenable to high-through-
put analysis. However, this approach cannot be applied to cells that 
do not express the GEDI reporter. Moreover, the GEDI construct 
emits in two fluorescent channels, which restricts its use in cells co-
expressing fluorescent biosensors in overlapping emission spectra.

Here, we addressed the extant issues in detecting neuronal death 
in microscopy by developing a novel quantitative robotic microsco-
py pipeline that automatically generates GEDI-curated data to train 
a CNN without human input. The resulting GEDI-CNN is capable 
of detecting neuronal death from images of morphology alone, 
alleviating the need for any additional use of GEDI in subsequent 
experiments. The GEDI-CNN achieves superhuman accuracy and 
speed in identifying neuronal cell death in high-throughput live-
imaging datasets. Through systematic analysis of a trained GEDI-
CNN, we find that it learns to detect death in neurons by locating 
morphology that has classically been linked to death, despite receiv-
ing no explicit supervision toward these features. We also show that 
this model generalizes to images captured with different parameters 
or displays of neurons and cell types from different species without 
additional training, including to studies of neuronal death in cells 
derived from patients with neurodegenerative disease. These data 
demonstrate that CNNs, directly optimized with a biomarker signal, 
are powerful tools for analysis and discovery of biology imaged with 
robotic live microscopy.

RESULTS
An automated pipeline for optimizing a GEDI-based 
classifier for neuronal death
In prior work, we found that the GEDI biosensor can detect irre-
versibly elevated intracellular Ca2+ levels to quantitatively and de-
finitively classify neurons as live or dead (Fig. 1, A  to C) (32). In 
contrast to other live/dead indicators, GEDI is constitutively ex-
pressed in cells to quantitatively and irreversibly report death only 
when a cell has reached a level of calcium not found in live cells. 
Before the GEDI biosensor, human curation of neuronal morphology 
was often deployed for detection of death in longitudinal imaging 
datasets and was considered the state of the art (29, 33). It has been 
long recognized that the transition from life to death closely tracks 
with changes in a neuron’s morphology that occur as it degenerates 
(34). However, human curation based on morphology relies on 
subjective and ill-defined interpretation of features in an image and 
thus can be both inaccurate and imprecise (29, 32). Furthermore, in 
cases where human curation is incorrect, it remains unknown whether 
images of cell morphology convey enough information to indicate 
an irreversible commitment to death or whether curators incorrectly 
identify and weigh features within the dying cells. Because the GEDI 
biosensor gives a readout of a specific physiological marker of a 
cell’s live/dead state, it provides superior fidelity in differentiating 

between live and dead cells (32). We hypothesized that the GEDI 
biosensor signal could be leveraged to recognize consistent mor-
phological features of live and dying cells and help improve classifi-
cation in datasets that do not include GEDI labeling. In addition, 
we sought to further understand how closely morphology features 
track with death and whether early morphological features of dying 
cells could be precisely identified and defined. To this end, we opti-
mized CNNs with the GEDI biosensor signal to detect death using 
the morphology signal alone.

Neurons transfected with a GEDI construct coexpress the red 
fluorescent protein (RGEDI) and enhanced green fluorescent pro-
tein (EGFP) (morphology label) in a one-to-one ratio due to their 
fusion by a porcine teschovirus-1 2a (P2a) “self-cleaving” peptide 
(Fig. 1, A and B) (32). RGEDI fluorescence increases when the Ca2+ 
level within a neuron reaches a level indicative of an irreversible 
commitment to death. We normalize for cell-to-cell variations in 
the amount of the plasmid transfected by dividing the RGEDI fluo-
rescence by the fluorescence of EGFP, which is constitutively ex-
pressed from the same plasmid, to give the GEDI ratio (Fig. 1C and 
fig. S1). Starting from our previously described time series of 
GEDI-labeled primary cortical neurons from rats (30), we segmented 
the EGFP-labeled soma of each neuron with an intensity threshold 
and minimum and maximum size filter, as previously described 
(35). Using the intensity weighted centroid from each segmentation 
mask, images of each neuron were automatically cropped and sorted 
on the basis of their GEDI ratio as live or dead (Fig. 1, D and E). 
Plots of the GEDI ratio from the first time point of the imaging 
dataset showed that the values from most neurons clustered into 
two groups corresponding to either live or dead cells (Fig. 1F). A 
minority of “outlier” neurons had GEDI ratios outside the main dis-
tribution of live and dead GEDI signals, typically due to segmenta-
tion errors (Fig. 1G), and these were discarded from the training set. 
Cropped images from a total of 53,638 live and 22,533 dead neurons 
from the first time point of an imaging series, both with and without 
background subtracted, were sorted to generate a dataset for train-
ing computer vision models. We selected a widely used CNN called 
VGG16, which was initialized with weights from training on the 
large-scale ImageNet dataset of natural images (36). We refer to this 
model as GEDI-CNN (Fig. 1H and fig. S1). In validation on held-
out data from the first time point of the imaging series, the GEDI-
CNN classified dead cells from the EGFP channel images with 
96.8% accuracy [0.96 area under the receiver operating characteristic 
curve (AUC) in fig. S1D]. The GEDI-CNN was also effective at clas-
sifying the aforementioned outlier neurons, indicating its robust-
ness for detecting cell death even in the face of experimental noise 
(fig. S1E). These data indicate that direct utilization of a biomarker 
signal without human curation can generate a highly accurate 
biomarker-optimized CNN (BO-CNN) capable of automated clas-
sification of microscopy images.

Applying GEDI-CNN to longitudinal imaging 
of individual neurons
Live-cell imaging over multiple time points exacerbates the prob-
lems with classification of dead cells by human curators because 
each time point multiplies the number of images that must be clas-
sified. Therefore, GEDI-CNN curation could be especially advanta-
geous for cell-imaging time series. As the GEDI-CNN model was 
trained only with the initial time point of our imaging series, we 
next tested its ability to classify individual neurons at later time 
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points. Across 478,987 neurons tested (fig. S1), the GEDI-CNN was 
96.4% accurate (0.92 AUC) in detecting dead neurons, with little 
deviation across 20 different imaging plate batches (range, 88.4 to 
97.4%) and across 46 different days of imaging (range, 87.8 to 98.1%) 
(Fig. 2A). The GEDI-CNN was slightly better at correctly classifying 
live neurons than dead neurons but was still able to successfully 
classify datasets with imbalanced numbers of live versus dead cells 
(Fig. 2, B and C). GEDI-CNN models trained with different CNN 

architectures such as VGG19 and ResNet performed with similar 
accuracy to the VGG16 model (fig. S2). The focal quality of the im-
age (37) did not correlate with the GEDI-CNN accuracy, suggesting 
that the GEDI-CNN is capable of making quality predictions on 
out-of-focus images (fig. S3).

We next tested whether a GEDI-CNN could detect cell death in 
longitudinally imaged rat primary cortical neuron models of neuro-
degenerative disease. Imaging with the GEDI biosensor previously 
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Fig. 1. GEDI signal as a ground truth for training a live/dead classifier CNN from morphology. (A) GEDI biosensor expression plasmid contains a neuron-specific 
promoter driving expression of a red fluorescent RGEDI protein, a P2a “cleavable peptide,” and an EGFP protein. Normalizing the RGEDI signal to the EGFP signal (GEDI 
ratio) at a single-cell level provides a ratiometric measure of a “death” signal that is largely independent of cell-to-cell variation in transfection efficiency and plasmid ex-
pression. (B) Schematic overlay of green and red channels illustrating the GEDI sensor’s color change in live neurons (top) and dead neurons (bottom). Live neurons typ-
ically contain basal RGEDI signal in the nucleus and in the perinuclear region near intracellular organelles with high Ca2+ (32). (C) Representative red and green channel 
overlay of neurons expressing GEDI, showing one dead (x) and three live (0) neurons. (D) Segmentation of image in (C) for objects above a specific size and intensity 
identifies the soma of each neuron (segmentation masks), which is given a unique identifier label (1 to 4). (E) Ratio of RGEDI to EGFP fluorescence (GEDI ratio) in neurons 
from (D). A ratio above the GEDI threshold (dotted line) indicates an irreversible increase in GEDI signal associated with neuronal death. Cropped EGFP images are plotted 
at the level of their associated GEDI ratio. (F and G) Generation of GEDI-CNN training datasets from images of individual cells. GEDI ratios from images of each cell (G) were 
used to create training examples of live and dead cells. Cells with intermediate or extremely high GEDI ratios were discarded to eliminate ambiguity during the training 
process. Automated cell segmentation boundaries are overlaid in white. (H) Architecture of GEDI-CNN model based off of VGG16 architecture. conv1 to conv5, convolu-
tional layers; FC6 to FC8, fully connected layers (numbers describe the dimensionality of each layer). Scale bar, 20 m.
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showed that protein overexpression models of Huntington’s dis-
ease (HD) (pGW1:HttEx1-Q97) (33), Parkinson’s disease (PD) 
(pCAGGs:-synuclein) (38), and amyotrophic lateral sclerosis (ALS) 
or frontotemporal dementia (FTD) (pGW1:TDP43) (1) have high 
rates of neuronal death (32). We therefore compared the cumula-
tive rate of death per well (dead neurons/total neurons) as estimated 

by the GEDI biosensor versus the GEDI-CNN. We began by quan-
tifying cumulative rate of death per well, which does not require 
tracking each neuron in the sample, simplifying the comparison 
between the GEDI biosensor and the GEDI-CNN predictions. 
From the cumulative rate of death, we derived a hazard ratio comparing 
each disease model with its control using a linear mixed-effects 
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model (Fig. 2, D and E). For each disease model, the GEDI biosensor 
and the GEDI-CNN detected similar increases in neuronal death in 
the overexpression lines compared to the control lines, confirming 
that the GEDI-CNN can be used to automatically and quickly assess 
the amount of neuronal death in live-imaging data (Fig. 2, D and E). 
Furthermore, the high accuracy of the GEDI-CNN indicates that 
there is enough information in the morphological changes of a 
neuron alone to accurately predict reduced survival within a neuro-
nal disease model with nearly equivalent performance as the GEDI 
biosensor.

Evaluation of the amount of death in a cross section of cells per 
well over time can be an effective tool for tracking toxicity within a 
biological sample, but it cannot resolve dynamic changes within the 
sample because of changes in the total cell number or heterogeneity 
within the culture. Changes in cell number are treated as technical 
variation, which reduces the overall sensitivity of the system and 
can mask transient changes within the culture. In contrast, single-
cell longitudinal analysis has proven advantages over conventional 
imaging approaches because the live/dead state of each cell and rare 
or transient changes in cells can be quantitatively linked to their fate 
and the biological significance of those observations understood 
(11). In combination with a suite of statistical tools commonly used 
for clinical trials called survival analysis (39) and Cox proportional 
hazard (CPH) analysis (40), the analysis of time of death in single 
cells can provide 100 to 1000 times more sensitivity than the analysis 
of single snapshots in time (11). In addition, single-cell approaches 
can facilitate covariate analyses of the factors that predict neuronal 
death (3, 5, 6, 11, 30). Yet, each of these analyses is limited by an 
inability to acutely differentiate live and dead cells (29, 32).

We performed automated single-neuron tracking on HD, PD, 
and ALS/FTD model datasets while quantifying the timing and 
amount of death detected with GEDI biosensor or GEDI-CNN 
(Fig. 2F). With accurate single-cell tracking and live/dead classifica-
tion in place, we applied CPH analysis to calculate the relative risk 
of death for each model, which closely recapitulated previously re-
ported hazard ratios (Fig. 2, G to J) (32), and mirrored the cumula-
tive rate of death analysis. These data indicate that the GEDI-CNN, 
trained with GEDI biosensor data from the first time point of live 
imaging, can accurately predict death in later time points using the 
morphology signal alone and can therefore be used to identify neu-
rodegenerative phenotypes in longitudinal culture models.

GEDI-CNN outperforms human curation
The high accuracy with which the GEDI-CNN classifies dead cells 
in imaging time series suggested that it could also be an improve-
ment over standard human curation. To test this hypothesis, we man-
ually curated 3000 images containing GEDI biosensor that were not 
included in model training. Four trained human curators classified 
the same set of neurons as live or dead using the EGFP morphology 
signature by interacting with a custom-written ImageJ script that 
displayed each image and kept track of each input and the time each 
curator took to accomplish the task. The GEDI-CNN was 90.3% 
correct in detecting death across six balanced batches of 500 images 
each, significantly higher than each human curator individually 
(curator range, 79 to 86%) Fig. 3A). In addition to accurately detect-
ing cell death, the GEDI-CNN was two orders of magnitude faster 
than human curators at rendering its decisions on our hardware; 
the rate of data analysis was faster than the rate of data acquisition 
(Fig. 3B). Images correctly classified live by the GEDI-CNN passed 

classical curation standards such as the presence of clear neurites in 
live neurons (Fig. 3C). Neurons classified as dead showed patterns 
of apoptosis such as pyknotic rounding-up of the cell, retraction of 
neurites, and plasma membrane blebbing (Fig. 3D) (41). These data 
suggest that the GEDI-CNN learns to detect death using features in 
neuronal morphology that have been previously recognized to track 
with cell death.

Images for which the consensus of the human curators differed 
from that of the GEDI-CNN are of interest in finding examples of 
morphology related to death that are imperceptible to humans, and 
instances where the GEDI-CNN but not humans systematically 
misclassified death. For example, neurites were typically present in 
images where no human curator detected death, but the GEDI-CNN 
did (Fig. 3E). This suggests that human curators may be overly reli-
ant on the presence of contiguous neurites to make live/dead classi-
fications. In cases where humans incorrectly labeled a neuron as 
dead while the GEDI-CNN correctly indicated a live neuron, imag-
es were often slightly out of focus, lacked distinguishable neurites, 
or contained nearby debris and ambiguous morphological features 
such as a rounded soma that are sometimes, though not always, 
indicative of death (Fig. 3F). Similarly, in cases where the GEDI-
CNN but not humans incorrectly classified dead neurons as alive, 
the neurons typically lacked distinguished neurites, contained am-
biguous morphological features, and were surrounded by debris 
whose provenance was not clear (Fig. 3G). We recorded no instances 
of live neurons that were correctly classified by humans but incor-
rectly classified by the GEDI-CNN. These data suggest that the GEDI-
CNN correctly classifies neurons with superhuman accuracy, in 
part, because it is robust to many imaging nuisances that limit 
human performance, which would explain how the accuracy of 
GEDI-CNN exceeded accuracy of curators, taken either individually 
or as an ensemble of curators (Fig. 3H).

The curator consensus and the GEDI-CNN were still both incor-
rect in more than 9% of the curated images, suggesting that there 
are some images in which the live or dead state cannot be deter-
mined by EGFP morphology alone. This could be, in part, because 
the level of Ca2+ within the neuron detected by GEDI is a better 
indicator of death than EGFP morphology. Close examination of 
images in which curation and GEDI-CNN were incorrect showed 
ambiguity in common features used to classify death, such as the 
combination of intact neurites and debris (Fig. 3I), or lack of neu-
rites and rounded soma (Fig. 3J), suggesting that the morphology 
of the image was not fully indicative of its viability. These data sug-
gest that GEDI-CNN can exceed accuracy of human curation, 
but it is also limited by the information present in the EGFP mor-
phology image.

CNNs often fail to translate across different imaging contexts, so 
we next examined whether GEDI-CNN accurately classifies within 
datasets collected with different imaging parameters and biology. 
To probe how well GEDI-CNN translates to neurons from other 
species, we prepared plates of mouse cortical primary neurons ex-
pressing the GEDI biosensor and imaged them with parameters 
similar though not identical to those used on the rat primary corti-
cal neurons used for initial training and testing. The GEDI-CNN 
showed human-level accuracy across each mouse primary neuron 
dataset (Fig. 4A and fig. S4). While the GEDI-CNN significantly 
outperformed some human curators in some datasets, it did not 
have a consistent edge in accuracy over all human curators, suggest-
ing that some classification accuracy is lost when translating 
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predictions to new biology or imaging conditions. To probe how far 
GEDI-CNN could translate, we next transfected immortalized 
human embryonic kidney (HEK) 293 cells, a cancer cell line, with 
RGEDI-P2a-EGFP, and exposed the cells to a cocktail of sodium 
azide and Triton X-100 to induce death in the culture. HEK293 
cells lack neurites, and their morphology differs notably from the 
morphology of primary neurons, yet the GEDI-CNN classification 
accuracy was still significant—83.3%—in these cells (Fig. 4B and fig. 
S4). Overall, these data demonstrate that the GEDI-CNN equals or 
exceeds human-level accuracy across a diverse range of imaging, 
biological and technical conditions, but with superhuman speed.

GEDI-CNN uses membrane and nuclear signal as cues for its 
superhuman classifications
Our findings indicate that the GEDI-CNN joins a growing number 
of other examples that use CNNs to achieve superhuman speed and 
accuracy in biomedical image analysis (20, 42). Nevertheless, a key 
limitation of these models is the difficulty in interpreting the visual 
features they rely on for their decisions. One popular technique for 

identifying the visual features that contribute to CNN decisions is 
guided gradient-weighted class activation mapping (GradCAM) (43). 
GradCAM produces a map of the importance of visual features for 
a given image by deriving a gradient of the CNN’s evidence for a 
selected class (i.e., dead) that is masked and transformed for im-
proved interpretability (fig. S5A). GradCAM has been found to 
identify visual features used by leading CNNs trained on object 
classification that closely align with those used by human observers 
to classify the same images (43).

We generated GradCAM feature importance maps for both live 
and dead decisions for every image (fig. S5, B to D). We found that 
feature importance maps corresponding to the GEDI-CNN’s ulti-
mate decision placed emphasis on cell body contours and neurites 
(Fig. 5, A and B). GradCAM importance maps highlighted the cen-
tral segmented soma rather than peripheral fluorescence signal that 
might have come from other neurons within the cropped field of 
view. These importance maps also did not indicate that regions 
without fluorescence were important for visual decisions (fig. 5, E to 
H). Thus, the GEDI-CNN learned to base its classification on the 
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neuron in the center of the image rather than background nuisances 
or other neurons not centered in the image. The backbone architec-
ture of the GEDI-CNN—a VGG16—is uniquely suited for learning 
this center bias due to its multilayer, fully connected readout, which 
has distinct synapses for every spatial location and feature in the fi-
nal convolutional layer of the model. While this bias is often not 
helpful in natural image classification, where it is important to build 
invariance to object poses and positions, the same bias is particular-
ly well suited for our imaging pipeline, where neurons always ap-
pear in the same position.

We next looked to identify neuronal morphology that GEDI-
CNNs deemed important for detecting dead neurons. The two con-
sensus criteria under which a solitary cell can be regarded as dead 
according to current expert opinion are either the loss of integrity of 
the plasma membrane or the disintegration of the nucleus (44). We 
tested whether the GEDI-CNN had learned to follow the same criteria 
by performing subcellular colocalization of the GradCAM feature 
maps. Neurons were cotransfected with free mApple to mark neu-
ronal morphology and either nuclear-targeted blue fluorescent pro-
tein (nls-BFP) or membrane-targeted EGFP (Caax-EGFP). Pearson 
correlation between biomarker-labeled images and GradCAM feature 
maps was used to measure the overlap between the two (Fig. 5, C to E) 
(45). GradCAM signal significantly colocalized with Caax-EGFP 
and, to a lesser extent, nls-BFP fluorescence. To further validate the 
importance of nuclear and membrane regions for live/dead classifi-
cation, we devised a heuristic segmentation strategy that further 
subdivides the neuronal morphology. We subdivided each masked 
soma into inner and outer regions (fig. S6). Signal outside of the 
soma was also separated into neuronal periphery (neurites and other 
neurons within the image crop) signal versus regions with no fluo-
rescent signal. We found that signal within the inner soma was 
enriched for nls-BFP, whereas signals within the outer soma and 
neuronal periphery were enriched for membrane-bound EGFP 
(Caax-EGFP). The importance of the inner soma region to the ulti-
mate decision classification was increased in neurons classified as 
dead versus those classified as alive, according to GradCAM feature 

importance analysis. In contrast, GradCAM feature importance de-
creased in the outer soma and neuronal periphery in live-classified 
neurons compared to dead-classified neurons (Fig. 5F). These colo-
calizations indicate that the GEDI-CNN uses opposing weights for 
features near the nucleus versus the neurites and membrane in gen-
erating live/dead classification.

GradCAM signal correlations suggested the nuclear/inner soma 
region and membrane/outer soma/peripheral neurite regions are 
important for live/dead classification, but they did not establish 
causality in the relationship of those features to the final classification. 
To validate the relationships, we measured GEDI-CNN classification 
performance as we systematically ablated pixels it deemed important 
for detecting death. We used heuristic subcellular segmentations to 
generate a panel of ablation images in which signal within each region 
of interest (ROI) was replaced with noise, and we used these images 
to probe the decision making of the GEDI-CNN (Fig. 6, A and B). 
Ablations of the neurites and outer soma had the greatest effect in 
changing classifications of live neurons to dead, while ablations of 
the inner soma had the least effect (Fig. 6C, bottom). In contrast, 
ablation of the soma, particularly the inner soma, caused the GEDI-
CNN to change classifications from “dead” to “live” substantially 
more often than ablations of no-signal, neurites, and outer soma 
(Fig. 6C, top). Although the inner soma and outer soma regions 
were the most sensitive ablations for switching classification to dead or 
live, respectively, they represented the smallest areas of ablated pixels, 
suggesting that the correct classification is based on a very specific 
subcellular morphological change (fig. S7). These data confirm that 
regions enriched in membrane signal and in nuclear signal are critical 
for GEDI-CNN live-dead classification, though in opposite ways.

We next investigated if the source of the superhuman ability of 
the GEDI-CNN to classify neurons as live or dead was a result of the 
CNN’s ability to see patterns in images that humans do not easily 
see within these identified regions. To this end, we analyzed the im-
pact of regional ablations in images that the GEDI-CNN classified 
correctly but that more than a single curator misclassified (Fig. 6D). 
Notably, almost all dead neurons that GEDI-CNN correctly 
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classified but human curators incorrectly classified required the 
inner soma signal, suggesting that the inner soma signal underlies 
GEDI-CNN’s superhuman classification ability. GradCAM signal 
showed a shift from within the inner soma to the membrane and 
neurites after ablation (Fig. 6, E to G). These data show that the 
GEDI-CNN used the nuclear/inner soma and neurite/membrane 
morphology to gain superhuman accuracy at live or dead classifica-
tion of neurons.

Zero-shot generalization of GEDI-CNN on human iPSC-
derived motor neurons
We next asked whether GEDI-CNN could detect death in a neuro-
nal model of ALS derived from human induced pluripotent stem 
cells (iPSCs). Neurons derived from iPSCs (i-neurons) maintain the 
genetic information of the patients from whom they are derived, 
facilitating modeling of neurodegenerative (46), neurological (47), 
and neurodevelopmental diseases (48) in which cell death can play 
a critical role. iPSC motor neurons (iMNs) generated from the fi-
broblasts of a single patient carrying the SOD1 D90A mutation 

have been previously shown to model key ALS-associated patholo-
gies and display a defect in survival compared to neurons derived 
from control fibroblasts (32, 49, 50). However, iPSC lines derived 
from patient fibroblasts with less common SOD1 mutations associ-
ated with ALS, I113T (51–53) and H44R (54), have not been previ-
ously characterized for survival deficits, so whether reduced survival 
in culture is a common characteristic of all iMNs with SOD1 mutation 
remains unknown. To test whether the GEDI-CNN could detect 
reduced survival in human iPSC-derived neurons, we differentiated 
iPSCs from SOD1I113T and SOD1H44R ALS patients and healthy 
volunteers into iMNs, transfected neurons with RGEDI-P2a-EGFP, 
and imaged them longitudinally (Fig. 7, A to C). Overall classifica-
tion accuracy based on morphology alone of i-neurons was 86.1% 
(0.68 AUC), with a markedly higher accuracy for live neurons 
(91.2%) than dead ones (41.4%) (Fig. 7D). Across balanced ran-
domized batches of data, GEDI-CNN averaged only 70% accuracy 
and was not significantly different from human curation accuracy, 
indicating that death is difficult to discern from the EGFP morphol-
ogy alone in this dataset (Fig. 7E). A potential explanation for this 
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difficulty is that iMNs often underwent a prolonged period of de-
generation characterized by neurite retraction before a positive GEDI 
signal was observed (Fig. 7C), a phenomenon not observed in mouse 
primary cortical neurons.

GradCAM signal from correctly classified live and dead neurons 
defined the contours of iMNs (Fig. 7F) and showed similar signal 
changes in response to neuronal death as observed in mouse cortical 
neurons (compare Fig. 7, G and H, to Fig. 4). Single-cell Kaplan-Meier 
(KM) and Cox proportional hazard (CPH) analysis of SOD1I113T and 
SOD1H44R neurons yielded similar results with the GEDI-CNN classifi-
cation and the GEDI biosensor classification. In both cases, SOD1I113T 
neurons showed reduced survival compared to control neurons, where-
as SOD1H44R neurons showed significantly increased survival (Fig.  7, 
I and J). Human curation using neuronal morphology showed the same 
trends (fig. S8). The hazard curves and hazard ratio (HR) obtained with 
GEDI-CNN for SOD1D90A was also similar to previously reported 
GEDI biosensor data (fig. S9) (32). These data demonstrate that a re-
duced survival phenotype of iMNs generated from patients with ALS is 
consistently detected in some cell lines [SOD1D90A, here; (32, 49, 50)] 
but not detected in others (SOD1H44R), suggesting that higher-powered 
studies are necessary to overcome inherent study variability and attri-
bute phenotypes found in iMNs to underlying genetic factors. Never-
theless, our data show that the GEDI-CNN can be deployed to make 
human-level zero-shot predictions of GEDI ground truth on an entirely 
different cell type than the one on which it was trained.

DISCUSSION
Robotic microscopy is frequently hindered by the rate and accuracy 
of image analysis. Here, we developed a novel strategy that leverages 
physiological biomarkers to train computer vision models for 
image analysis, which can efficiently scale to the high-throughput 
imaging regimes enabled by robotics. Using signal from GEDI, a 
sensitive detector of Ca2+ levels presaging cell death (32), we trained 
a CNN that detects cell death with superhuman accuracy and 
performs across a variety of tissues and imaging configurations. We 
demonstrate that the GEDI-CNN learned to detect cell death by 
locating fundamental morphological features known to be related 
to cell death, despite receiving no explicit supervision to focus on 
those features. In addition, we demonstrate that, in combination 
with automated microscopy, the GEDI-CNN can accelerate the 
analysis of large datasets to rates faster than the rate of image acqui-
sition, enabling highly sensitive single-cell analyses at large scale. 
Using this strategy, we identified distinct survival phenotypes in 
iPSC-derived neurons from ALS patients with different mutations 
in SOD1. Our results demonstrate that the GEDI-CNN can im-
prove the precision of experimental assays designed to uncover the 
mechanisms of neurodegeneration, and that the BO-CNN strategy—
training CNNs to predict biomarker activity—can accelerate dis-
covery in the field of live-cell microscopy.

GEDI-CNN live/dead classification predictions were signifi-
cantly above chance across every cell type tested (fig. S4). Given the 
diversity of cell types tested, this indicates that GEDI-CNN learned 
to locate morphology features that are fundamental to death across 
biology. Using a combination of GradCAM and pixel ablation sim-
ulations, we show that the predictions of live and dead are sourced 
from different subcellular compartments such as the plasma mem-
brane and the nucleus. Altered plasma membrane and retracted 
neurites are prominent features in images of neuronal morphology 

that are well known to correlate with vitality (55) and are likely easily 
appreciated by human curators. However, EGFP morphology sig-
nal in the region of the nucleus has not been previously appreciated 
as an indicator of vitality. While rupture of the nuclear envelope is 
well recognized as an indication of decreasing cell vitality (44), it is 
not clear how free EGFP signal, which is both inside and outside of the 
nuclear envelope, could indicate nuclear envelope rupture, or if another 
cell death–associated phenomenon is responsible for this signal. Either 
way, EGFP morphology signal in the nuclear region of cells represents 
a previously unrecognized feature that correlates with cell death and 
one that helps the GEDI-CNN achieve superhuman classification accu-
racy. The ability to harness the superhuman pattern recognition abili-
ties of BO-CNN models represents a powerful new direction for the 
discovery of previously undiscovered biological phenomena and un-
derscores the importance of understanding the visual basis of classifi-
cation models to interpret this previously unrecognized  biology.

Our demonstration that the GEDI-CNN can automate live-
imaging studies of cellular models of neurodegenerative disease has 
tremendous implications for accelerating research in this field. Neu-
ronal death is used as a phenotypic readout in nearly all studies of 
neurodegeneration (29). We demonstrate the use of the GEDI-CNN 
for large-scale studies of neurons using accurate cell death as a read-
out, and its potential for high-throughput screening purposes. Simi-
larly, in large-scale studies or high-throughput screens of neurons in 
which cell death is not the primary phenotype, the GEDI-CNN can 
accurately account for cell death or be used to filter out dead objects 
that could contaminate other analyses. Using the GEDI-CNN to 
make predictions and map GradCAM on morphology images of 
neurons is free, open source, and simple to execute and does not re-
quire specialized hardware. In addition to facilitating high-throughput 
screening, which can markedly improve statistical power and sensi-
tivity of analyses (11), generally accounting for cell death in micros-
copy experiments should help control experimental noise.

A rapid rate of analysis is particularly necessary where high rates 
of heterogeneity and biological diversity are present. Studies using 
human iPSC-derived neurons have begun grappling with the im-
portance of scale for identifying and studying biological phenome-
na in the incredibly diverse human population (56–58). This is well 
illustrated in our data applying GEDI and the GEDI-CNN to iMNs 
from patients with SOD1 mutations. Multiple studies of iMNs from 
patients with SOD1 mutations linked to ALS, such as A4V and D90A 
(32, 49), have shown reduced survival phenotypes, and we observed 
a similar phenotype in cells harboring the I113TE and D90A muta-
tions. However, the current study shows that the H44R mutation 
improves the survival of iPSC-derived neurons compared to con-
trol, indicating that a cell death phenotype in iMNs from ALS 
patients is not consistent under these conditions. There is high 
variability across different iPSC differentiation protocols, and it 
remains to be determined how much variability between iPSC lines 
contributes to previous underpowered reports of phenotypes asso-
ciated with different lines. Ultimately, the only way to overcome 
issues with iPSC line variability is to increase the number of cell 
lines tested and standardize methods of measurements and analysis 
compatible with higher-powered studies. As GEDI-CNN signifi-
cantly reduces the time and resources required to do high-power 
studies and eliminates human bias and intra-observer variability in 
live/dead classification, GEDI-CNN live/dead classifications should 
become a useful tool in future studies attempting to link iMN phe-
notypes to their genotypes.
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While GEDI-CNN model prediction accuracy was always above 
chance, the accuracy level was reduced in some datasets, suggesting 
differences in imaging parameters and/or biology that may limit its 
ability to generalize from one dataset to the next (fig. S4). To offset 
reduced accuracy, new GEDI-CNN models can be transferred or 
“primed” with small datasets that better represent the qualities of a 
particular experiment or microscope setup. These datasets can be 
generated by imaging the GEDI biosensor on a particular micro-
scope platform and training a model according to the BO-CNN 
pipeline we outline here. Nevertheless, on some datasets, we ob-
served that both human and GEDI-CNN classification accuracy 
and GEDI-CNN accuracy were reduced, suggesting that, in these cas-
es, morphology alone may be insufficient to accurately classify a cell 
as live or dead. Morphology of iMN datasets proved particularly diffi-
cult to interpret for both human curators and GEDI-CNN (Fig. 7C). 
While classification accuracy for live neurons was consistently high 
across different cell types, accuracy of classification for dead neurons 
often reduced overall accuracy (Figs. 2B and 6D), suggesting that 
death classification by morphology is especially difficult. Because of 
this variability in how different biological systems reflect death, the 
use of the GEDI biosensor as a ground truth to evaluate GEDI-CNN 
model predictions as well as for training new models will continue as 
the state of the art for detecting cell death based on morphology.

While GEDI-CNN represents the first proof of principle in using 
a live biosensor to train a BO-CNN, we believe that similar strate-
gies could be used to generate new BO-CNNs that could help parse 
mechanisms underlying other disease-related phenotypes in neuro-
degenerative disease models. Several features of the GEDI biosensor 
proved critical for success. First, the GEDI biosensor acts as a near-
ly binary demarcation of live or dead cell states (32). Other biosen-
sors with similar biological-state demarcation characteristics would 
make good candidates for this approach. However, other strategies 
for automatically extracting a classification label, such as using sam-
ple age or applied perturbations as the classification label, could also 
be used as a ground truth in place of the biomarker signal. Second, 
the GEDI signal is simple and robust enough to extract with cur-
rently available image analysis techniques. However, the fluorescent 
proteins within the GEDI we used here (RGEDI and EGFP) are not 
the brightest in their respective classes, and many available biosen-
sors could be used that have as much, if not more, signal. Third, the 
free EGFP morphology signal within GEDI is already well known to 
indicate live or dead state, as it had been previously used as the state 
of the art for longitudinal live-imaging studies of neurodegenera-
tion (29, 33). This gave us confidence that the patterned informa-
tion within the EGFP morphology images would be sufficient to 
inform the model of the biological state of the neuron. While that 
information may not be available in all situations, there are now 
many examples where deep learning has uncovered new unexpect-
ed patterns in biological imaging, and the BO-CNN strategy could 
also be used in a similar way to uncover unexpected relationships 
between images and known biological classifications. As each of 
these properties can be found in other biosensors and biological 
problems, we are confident that other effective BO-CNNs can be 
developed using the same strategy we used to generate the GEDI-
CNN. As the rate of microscopy imaging and scale has continued to 
accelerate in recent years from the commercialization of automated 
screening microscopes, we expect the importance of BO-CNN anal-
yses to continue to increase, leading to new discoveries and thera-
peutic approaches to combat neurodegenerative disease.

MATERIALS AND METHODS
Animals, culturing, and automated time-lapse imaging
All animal experiments complied with University of California, San 
Francisco (UCSF) regulations. Primary mouse cortical neurons were 
prepared at embryonic days 20 to 21 as previously described (22). 
Neurons were plated in a 96-well plate at 0.1 × 106 cells per well and cul-
tured in neurobasal growth medium with 100× GlutaMAX, penicillin/
streptomycin, and B27 supplement (neurobasal medium). Automated 
time-lapse imaging was performed with long time intervals (12 to 
24 hours) to minimize phototoxicity while imaging, reduce dataset 
size, and provide a protracted time window to monitor neurodegener-
ative processes. Imaging speed was assessed as the average time to image 
a 4 × 4 montage of EGFP-expressing neurons per well in a 96-well 
plate (6 s) divided by the average number of neurons transfected per 
well (49). HEK cells [Research Resource Identifier (RRID): CVCL_0045] 
were plated in a 96-well plate at 0.01 × 106 cells per well 24 hours 
before transfection. Sodium azide (0.4%) and Triton X-100 (0.02%) 
(final concentration) were added to induce cell death. Images were 
captured 20 min after sodium azide and Triton X-100 application.

Automated imaging and image processing pipeline
Quantification of GEDI ratios was performed as previously de-
scribed (32). In short, RGEDI and EGFP channel fluorescence 
images obtained by automated imaging were processed using cus-
tom scripts running within a custom-built image processing Galaxy 
bioinformatics cluster (54, 59). The Galaxy cluster links together 
workflows of modules including background subtraction of median 
intensity of each image, montaging of imaging panels, fine-tuned 
alignment across time points of imaging, segmentation of individual 
neurons, and cropping image patches where the centroid of indi-
vidual neurons is positioned at the center. Segmentation was per-
formed by identifying a lower bound intensity threshold and 
minimum and maximum size filter so that neuronal somas, the 
brightest part of the image, are separated from debris and other 
background signal. Each individual object segmented is converted 
to a segmentation mask by binarizing the image so that each object 
has a pixel intensity value equal to 1 and the background has a value 
equal to 0. The resulting black and white image is further processed 
so that each cell is identified as an independent object with its own 
numerical identifier. Single-cell tracking was performed using a 
custom Voronoi tracking algorithm that monitors the movements 
of regionalized binary objects through space (55). Survival analysis 
was performed by defining the last time point alive as the time point 
before the GEDI ratio of a longitudinally imaged neuron exceeds 
the empirically calculated GEDI threshold for death, the last time 
point a human curator tracking cells finds a neuron alive, or the 
time point before the GEDI-CNN classifies a neuron as dead. KM 
survival curves and CPH were calculated using custom scripts writ-
ten in R, and survival functions were fit to these curves to derive 
cumulative survival and risk-of-death curves that describe the in-
stantaneous risk of death for individual neurons as previously de-
scribed (56). Cumulative risk of death analysis was performed by 
quantification of cumulative mean of dead cells/total cells per well 
across time points. Because fluorescent neuronal debris can remain 
in culture for up to 48 hours past the time point of death (32), time 
points other than at 48-hour intervals were removed from the anal-
ysis to avoid double counting dead cells within the culture. A linear 
mixed-effects model implemented in R (57) was fit to the cumula-
tive rate of death, using “well” as a random effect and interaction 
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between condition and elapsed hours as a fixed effect to derive haz-
ard ratios. Corrections for multiple comparisons were made using 
Holm-Bonferroni method.

Training GEDI-CNN
We began with a standard VGG16 (36), implemented in Tensor-
Flow 1.4. The 96,171 images of rodent primary cortical neurons 
were separated into training and validation folds (79%/21%), nor-
malized to [0, 1] using the maximum intensity observed in our mi-
croscopy pipeline, and converted to single precision. We adopted a 
transfer-learning procedure in which we initialized early layers of 
the network (i.e., close to the image input) with pretrained weights 
from natural image categorization (ImageNet) (36) and later layers 
of the network (i.e., close to the category readout) with Xavier 
Normal random initializations (58). We empirically selected which 
layers to put at the end of the network (i.e., from moving from the 
readout toward the input) by training models with different 
amounts of these layers randomly initialized and recording their 
performance on the validation set. Models were trained on Nvidia 
Titan X GPUs for 20 epochs using the Adam optimizer to minimize 
class-weighted cross entropy between live/dead prediction and 
GEDI-derived labels. We ultimately chose to initialize the first three 
blocks of VGG16 convolutional layers with ImageNet weights and 
the remaining layers with random weights. Layers initialized with 
ImageNet weights were trained with a learning rate of 1 × 10−8, and 
the rest were trained with a learning rate of 3 × 10−4. To improve 
model robustness, neuron images were augmented with random up/
down/left right flips, cropping from 256 × 256 to 224 × 224 pixels 
using randomly placed bounding boxes, and random rotations of 
0°, 90°, 180°, or 270°. These images, which were natively one-channel 
intensity images, were replicated into three-channel images to 
match the number of channels expected by the VGG16. We selected 
the best-performing weights according to validation loss for the 
experiments reported here. To compare, we trained ResNet50 and 
VGG19 initialized with ImageNet weights on the same data. For 
VGG19, we froze the first four convolutional blocks. Both were 
trained with the Adam optimizer with a learning rate of 3 × 10−4. 
Experiment code can be found at https://github.com/finkbeiner-lab/
GEDI-ORDER.

Testing the GEDI-CNN
To test the trained GEDI-CNN model, microscopy images are 
passed through the Galaxy image processing pipeline that includes 
background subtraction of median intensity of each image, mon-
taging of imaging panels, fine-tuned alignment across time points 
of imaging, segmentation of individual neurons, and cropping im-
age patches where the centroid of individual neurons is posi-
tioned at the center, in the same way the training dataset was 
generated. Cropped images are passed into the GEDI-CNN to 
generate a classification.

GEDI-CNN GradCAM
Feature importance maps were derived using guided GradCAM—a 
method for identifying image pixels that contribute to model deci-
sions. Guided GradCAM is designed to control for visual noise that 
emerges from computing such feature attributions for visual deci-
sions through very deep neural network models. After extracting 
these feature importance maps from our networks, which were the 
same height/width/number of channels as the input images, we 

visualized them by rescaling pixel values into unsigned eight-bit im-
ages, converting to grayscale intensity maps, and then concatenating 
with a grayscale version of the input image to highlight morphology 
selected by the trained models to make their decisions.

Image ablations and curation tools
Curation was performed using a custom Fiji script that runs a 
graphical interface with a curator, displaying a blinded batch of 
cropped EGFP morphology images one at a time while prompting 
the curator to indicate whether the displayed neuron is live or dead 
with a keystroke (ImageCurator.ijm). Automated subcellular seg-
mentations were generated and saved as ROIs and measured within 
a custom Fiji script (measurecell8.ijm). ROIs were used to generate 
a panel of ablations for each image using another custom Fiji script 
(cellAblations16bit.ijm). Pearson colocalization was measured using 
JACoP with Costes background randomization (45) within a cus-
tom Fiji script (PearsonColocalization.ijm).

iPSC differentiation to MNs
NeuroLINCS iPSC lines derived from fibroblast tissues from a 
healthy control individual or ALS patients with SOD1 H44R 
(CS04iALS-SOD1H44Rnxx) or I114T mutations (SOD1I114Tnxx) 
were obtained from the Cedars Sinai iPSC Core Repository. Healthy 
and SOD1 mutant iPSCs were found to be karyotypically normal 
and were differentiated into MNs using a modified dual-SMAD in-
hibition protocol (http://neurolincs.org/pdf/diMN-protocol.pdf) (59). 
iPSC-derived MNs were dissociated using trypsin (Thermo Fisher 
Scientific), embedded in diluted Matrigel (Corning) to limit cell 
motility, and plated onto Matrigel-coated 96-well plates. From days 20 
to 35, the neurons underwent a medium change every 2 to 3 days. 
At day 32 of differentiation, neurons were transfected using Lipo-
fectamine and imaged starting on day 33.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abf8142

View/request a protocol for this paper from Bio-protocol.
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