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Abstract

In this paper, we highlight the shortfall of conventionally de-
scribed heuristics in multi-attribute decision theory, and pro-
pose recasting these heuristics within a novel probabilistic
framework. This framework is based on defining a psycho-
logical feature space, with rule-based heuristics represented as
prototypical representations within this space. We provide var-
ious examples of meaningful heuristics that can be constructed
under this representation, including recasting probabilistic ver-
sions of popular heuristics such as take-the-best. Next, we
propose an evaluation framework to measure the effectiveness
of a consideration set of heuristics. This framework measures
whether the set of heuristics are sufficient to describe, predict
and infer strategy selection and learning behavior. We propose
that this is a step towards a robust framework within which
models of strategy selection and learning should be evaluated.
The framework aspires to develop a consideration set of heuris-
tics that can be represented as a mathematically well-posed in-
ference problem. We show that the heuristics redefined under
our probabilistic framework generally perform better than con-
ventional heuristics under this evaluation. We conclude with a
discussion on the possible applications of this framework.

Introduction
Gigerenzer and Gaissmaier (2011) defined heuristics as “a
strategy that ignores part of the information, with the goal
of making decisions more quickly, frugally, and/or accurately
than more complex methods.”. They highlighted three key
building blocks towards a theoretical framework for how
heuristics are constructed:

1. Search rules: How do people explore the search space?

2. Stopping rules: When do people stop searching?

3. Decision rules: How do people make a final decision?

They also proposed that people learn to adaptively select ap-
propriate heuristics depending on the environment. There
have been various proposals to formalize this adaptive learn-
ing and strategy selection, such as reinforcement-learning of
strategies (Rieskamp & Otto, 2006; Rieskamp, 2008; Erev
& Barron, 2005) or rational metareasoning (Lieder & Grif-
fiths, 2015). In such approaches, the learning model is imple-
mented by making inferences about how people update their
belief about the effectiveness of one or more heuristics. This
effectiveness can be based on some measure of accuracy, cost,
time, effort, constraint satisfaction, or a combination of such
measures. When feedback is available, some measure of ac-
curacy is an especially important factor.

Within the domain of multi-attribute decision making, to be
able to predict how people will make decisions, react to feed-
back, change their decision strategies, or react to changes in
the choice architecture, an important step is to infer the gener-
ating process that leads to sequential learning and selection of

strategies. Most quantitative approaches to strategy selection
and learning rely on the assumption that people use and test
certain heuristics, and then update their belief about the ef-
fectiveness of these heuristics. For a researcher interested in
modeling this behavior, one needs to infer (a) which heuristic
was used on each decision, and (b) how belief about the effec-
tiveness of this heuristic was updated by the decision maker.
The first is an inference problem, where the cause or generat-
ing process, h (or to be accurate, an approximation to the true
cognitive process) needs to be inferred from observed mea-
surements, x, on each trial of an experiment. A brief survey of
methods used to infer this in models of learning and strategy
selection reveal the following commonly used approaches:

1. By simply checking if the final choices are compatible with
the heuristics (Rieskamp, 2008).

2. Based on whether the choices are compatible, and whether
all the necessary cues proposed by the heuristic have been
searched, but allowing for the search of any extra cues
(Rieskamp & Otto, 2006).

3. Based on whether the choices are compatible, and whether
the observed cue search pattern exactly matches the search
proposed by the heuristic.

4. By analyzing aspects such as response time or process trac-
ing (Bergert & Nosofsky, 2007).

In fact, the first method is often the most common approach
used, and essentially ignores the information search patterns,
which are a key component of how the heuristics are de-
fined. The approach used may indicate either that none of the
heuristics in the consideration set were applied, may provide
weak evidence for multiple heuristics, or strong evidence for
a single heuristic. The learning mechanisms in such models
then assume that belief about the heuristic inferred to have
been used is updated, based on its effectiveness. This infer-
ence about belief updating is only robust if on each trial there
is strong evidence for a single heuristic being used. If there
is no evidence for any of the heuristics, or weak evidence for
multiple heuristics, the model effectively fails to gain any in-
formation about the learning on that particular trial. Since the
learning process is cumulative over trials, having a large pro-
portion of trials with ineffective learning inferences is likely
to significantly hurt a model of learning. It follows that the
effectiveness of inferences depends significantly on what set
of heuristics a researcher decides to include in their model,
and the method used to infer use of heuristics on any par-
ticular trial. We show a brief meta-analysis of 7 published
experiments involving multi-attribute decision making, in ta-
ble 1. For each experiment, using we take a consideration
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Table 1: Meta-analysis showing the proportion of trials on which inference about TTB and WADD yielded either no match,
a match for both heuristics, and a unique match. The analysis is conducted using two of the popular inference methods using
minimum cues acquired, and only based on choice compatibility.

Minimum cues acquired + choice Compatible choice only
Experiment %cues No match Multiple match Unique match No match Multiple match Unique match
Broder et. al. 1 42% 63% 2% 35% 11% 79% 10%
Broder et. al. 2 42% 52% 3% 45% 9% 84% 7%
Mistry et. al. 1 48% 77% 7% 16% 11% 79% 10%
Mistry et. al. 2 31% 90% 0% 10% 10% 80% 10%
Rieskamp et. al. 98% 2% 48% 50% 10% 45% 45%
Lee et. al. 1 84% 9% 37% 54% 2% 74% 24%
Lee et. al. 2 65% 19% 10% 71% 2% 76% 22%

set of two heuristics, take-the-best (TTB) and weighted aver-
age (WADD). We use two of the most commonly employed
inference methods, (1) infer if a heuristic was used based
on the minimum cues required for the heuristic being used,
plus having a compatible choice selection, and (2) just hav-
ing a compatible choice selection based on the cues selected,
without checking if the cue search satisfied the heuristic re-
quirement. We report the percentage of trials on which in-
ferences could not match either heuristic (no match), those
on which both heuristics were deemed compatible (multiple
match), and where only one of the two heuristics was inferred
to be used (unique match). From a learning model perspec-
tive, only the trials with unique match are able to provide any
meaningful inference about the strategy learning process. In
a set of simulations not included in this paper, we found that
inferences about learning process were almost impossible to
make when less than 50% of the trials yielded a unique match.
Across these 7 experiments, unique matches were found only
on about 40% of the trials using the first method (range from
10% to 70%), and on only 16% using the second method
(range from 10% to 45%).

In the rest of this paper, we suggest that traditional rule-
based heuristics need to be redefined in a probabilistic sense
to provide a more meaningful analysis of the cognitive pro-
cess involved in multi-attribute decision making. We suggest
a generalized framework, provide examples, and also provide
an evaluation framework for how any consideration set of
heuristics should be measured, to ensure it provides a reason-
able descriptive and predictive exposition of multi-attribute
decisions.

Notation and assumptions
For the purpose of this paper, the task set is restricted to
multi-attribute decision making, where an individual selects
one of multiple choice options based on some criteria, which
depends on a set of multiple attributes associated with each
option. For a particular decision, we define nA as the number
of attributes available, nO as the number of choice options.
Thus, there are nAnO cues in the choice task. The key ob-
servable measures for the mth decision include which cues
are searched (sm), and which choice option is selected (ym).

Note that this is not a comprehensive list, but the framework
can be expanded to include other observed measures, for in-
stance, the time taken for each choice. Observed behavior
xm is defined as xm = sm ∩ ym. Since each cue can either be
searched or not, there are Ns = 2nAnO unique cue search pat-
terns possible. Thus, sm ∈ {s j : j ∈ [1 : Ns]}. Similarly, we
have ym ∈{yk : k∈ [1 : nO]}. Finally, the use of a latent heuris-
tic is denoted as hm, where hm ∈ {hi : i∈ [1 : Nh]}, where Nh is
the number of distinct heuristics in the consideration set. The
probability of observed behavior (xm = xk j = s j ∩ yk) on the
mth decision, conditional on the use of a particular heuristic
hi is defined as:

p(xk j|hi) = p(yk ∩ s j|hi) = p(yk|s j,hi)p(s j|hi) (1)

Note that p(yk∩ s j|hi) is just a probabilistic representation of
the decision rule of the heuristic hi, and p(s j|hi) is a prob-
abilistic representation of the search and stop rules of the
heuristic. It is possible that some observed behavioral pat-
terns are not compatible with any of the heuristics in the
considerations set, that is, ∃(yk,s j) : p(yk ∩ s j|hi) = 0 ∀ i.
In such cases, observations of such behavioral patterns have
been designated either to erroneous application of heuristics,
or to a guessing strategy. We define an indicator Ik j = 1 if
the observed pattern (yk,s j) is not compatible with any of the
heuristics. In the realm of traditionally defined heuristics, we
introduce an application error εi, which is the probability of
making an error conditional on using the heuristic hi. An er-
ror results in selecting a particular cue search and decision
pattern that is not compatible with any of the heuristics. If an
error is made, the probability of any incompatible behavior is
uniformly distributed over all possible incompatible behav-
iors. Hence we adapt equation 1 to:

p(xk j|hi) = (1− εiIk j)p(yk|s j,hi)p(s j|hi) +
εi Ik j

Σk′Σ j′ Ik′ j′
(2)

An alternate way to accommodate incompatible behavioral
patterns using traditional heuristics is a guessing strategy (G),
which can be defined as having uniform probability over all
patterns instead of just over incompatible behavioral patterns:

p(xk j|G) =
1

Ns nO
(3)
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We denote p(G) = g and assume equal prior probability
of each heuristic, p(hi) =

1−g
Nh

, and equal application error
(εi = ε). Note that these assumptions are not necessary, but
enable more compact and intuitive expressions of the prop-
erties, and we will continue to use these assumptions in the
formal specification. The overall probability of observing a
particular behavioral pattern xk j is given by:

p(xk j) =

[
(1− εIk j)(1−g)

Nh
Σi

{
p(yk|s j,hi)p(s j|hi)

}]
+

[
ε(1−g)Ik j

Σk′Σ j′ Ik′ j′
+

g
Ns nO

]
(4)

In equation 4, the terms in the first square brackets give the
probability of observed behavior based on error-free heuris-
tics, whereas the terms in the second brackets give the proba-
bility on account of errors or guessing. For ease of reference,
we group the first p(x′k j), and second p(x′′k j) set of terms:

p(xk j) = p(x′k j)+ p(x′′k j) (5)

Redefining heuristics
A prototypical rule-based heuristic such as take-the-best may
be a reasonable approximation to an underlying cognitive
process, however, most implementations assume that any de-
viation from the rule arises randomly, or based on a uni-
form distribution of error. Instead, we recast such rule-based
heuristics probabilistically, in a new n-dimensional psycho-
logical feature space. Each individual search pattern can be
represented as a point in this n-dimensional space. We pro-
pose that the features defining this space should reflect the
cognitive primitives that are represented in any such heuris-
tic. These features could be statistical properties (e.g. pro-
portion of cues searched, sensitivity to validity, variability in
cues searched across attributes, search density within selected
attributes, etc.), process measures (e.g. time spent, search or-
ders, type 1 versus type 2 search transitions between attribute
and option wise search), or other psychological constructs
that define search behavior (e.g. confidence, effort, contextual
features). In any possible problem, we may consider using a
subset of these (or other) features. Behavior arising from the
heuristic rule is represented as a prototype point in this feature
space. Any other behavioral patterns can be defined in terms
of the distance of such a pattern from the prototype within
this space. We can then apply kernel based solutions to clas-
sify behavior depending on relative proximity to the heuristic
prototypes. For this paper, we focus primarily on defining the
space for information or cue search behavior, that is, to define
p(s j|hi), with the final aim of inferring p(hi|s j).

Once we select any subset of n features, our next objective
is then to define the prototype for each heuristic within this
space. If we apply a rule-based heuristic, such as take-the-
best, or tallying, we simply calculate the features based on
the search behavior proposed by exactly following the heuris-

tic rule. This is straight forward for defining statistical prop-
erties, but may require some subjective estimates for aspects
such as process measures or psychological constructs. We
denote the vector of n features as f , where f : {F1, ...Fn},
and the prototype for a particular heuristic hi is defined by
f̄i : {F1(si), ...Fn(si)}, where si is the search pattern obtained
by strict application of the heuristic rule. For any behavioral
pattern s j, we define a Gaussian kernel K

K(s j,hi) = exp
(
−|| f j− f̄i||2

2σ2
i

)
(6)

This kernel defines a similarity measure in the range [0,1],
with a maximum value of 1 when f j = f̄i. The parameter σi
defines how rapidly the similarity measure drops off as the
search point moves away from the prototype for heuristic hi
in the feature space. Depending on the purpose, this param-
eter can be designed a priori or post hoc after looking at the
data. In the first case, we can select σ by selecting the values
that optimize the performance measures P1 to P4 (introduced
in the subsequent section). In the latter case, σ can be treated
as a free parameter to be inferred from the data. This latter
treatment is similar to the treatment of kernel based machine
learning methods where σ is treated as a free parameter, in-
ferred to minimize the loss function. We then define a proba-
bility distribution for observing search patterns in this feature
space, conditional on this prototype being used, as in equation
7. Note that this distribution depends on the parameter σi. Se-
lecting an infinitesimally small value for sigmai reduces this
representation to the rule-based heuristic, since in this case,
p(s j|hi) = 1 if s j is the exact search pattern under the heuris-
tic rule, and 0 otherwise. As we increase the value of σi, this
defines a radial error distribution in the feature space.

p(s j|hi) =
K(s j,hi)

ΣlK(sl ,hi)
(7)

The next step is to define p(hi|s j), or the probability of in-
ferring a heuristic hi was used based on observing a search
behavior s j. Using Bayes rule, we obtain equation 8, where
the subscript k indicates all the different heuristics within the
consideration set.

p(hi|s j) =
1

1+Σk(k 6=i)

{
K(s j,hk)

K(s j,hi)

ΣlK(sl ,hi)

ΣlK(sl ,hk)

p(hk)

p(hi)

}
(8)

Note that equation 8 presents a straightforward avenue for
Bayesian regularization if we apply this recursively for each
sequential decision. That is, the ratios p(hk)/p(hi) define the
ratio of prior probabilities of expecting the use of heuristic hk
versus hi. On every trial t, we recursively update a prior prob-
ability p(hi,t) based on observations from trials 1 to (t− 1).
However, note that p(hi,t) 6= p(hi, t−1|s j, t−1), unless no learn-
ing is assumed. Under a learning and adaptive strategy selec-
tion model M, we assume that the prior probability on any
trial t will be based on some updating of the effectiveness of
the heuristic on the previous trial: p(hi,t)∼M(x1 : xt−1,θM).
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Measurement Framework
A systematic approach to researcher decisions on what con-
sideration set of heuristics and inference rules to use, we pro-
pose a measurement framework that formalizes the idea of
well-posedness of inference problems of strategy selection
learning based on mathematical theory. We specify the op-
erator A (the approximate cognitive process) that maps the
space of cognitive heuristics H to the space of observed be-
haviors X . It is desirable that the operator A−1 is strictly a
well-posed inverse operator, although it is always going to
be an uncertain inference problem. problem faced by a re-
searcher. Kabanikhin (2008) defines an inverse problem as
ill-posed, if any one of the conditions below are not met:

1. Existence of a solution: ∃ (h ∈H) ∀ (x ∈ X). This requires
any possible observable behavior (x) should be compatible
and explained by at least one of the heuristics (h ∈ H).

2. Uniqueness of the solution: ∃ A−1 : X → H. This requires
that each observable behavior (x) should be compatible
with only one heuristic (h) within the set H.

3. Stability of the solution: O(δh)≈O(δx) “Arbitrarily small
errors in the measurement data”, δx should not “lead to
indefinitely large errors in the solutions” δh. This requires
that small changes in observed behavior (δx) should not
result in significant changes to the inferred heuristic (h).

This is a hard set of constraints, and would impossible,
for any set of cognitive heuristics to satisfy, and A−1 is
never expected to be a strict well-posed inverse operation.
Instead, we treat these as properties that a consideration set
of cognitive heuristics should try to maximize. We specify a
formal but relaxed interpretation of these criteria for how a
set of heuristics should be evaluated:

1. Existence property (P1): We propose a measure of the av-
erage probability of observing a behavioral pattern based on
error-free application of heuristics, compared to the overall
probability of observing it, including on account of errors or
guessing, integrated over all possible behaviors and over all
possible heuristics in the consideration set. This measure will
vary from 0 to 1 with higher values desirable, and a value of
1 implying strict compliance with the existence property:

P1 =
1

Ns nO
ΣkΣ j

[ p(x′k j)

p(x′k j)+ p(x′′k j)

]
(9)

2. Uniqueness property (P2): We propose using the general-
ized Jensen-Shannon divergence (Lin, 1991) for multiple dis-
tributions to measure uniqueness of a set of heuristics (equa-
tion 10). This divergence is bounded by [0, log(1+Nh)], so
we adapt this to the range [0,1]. In equation 10, Hn(pn) =
−Σn

[
pn log(pn)

]
, refers to the Shannon entropy.

P2 =
1

log(1+Nh)

{
Hk j

(
Σi

[
p(hi)p(xk j|hi)+

g
Ns nO

])
−Σi

[
p(hi)Hk j

(
p(xk j|hi)

)]
−gHk j

(
1

Ns nO

)}
(10)

The advantage over commonly used measures of diver-
gence such as the KullbackLeibler divergence, is that P2 is
smoothed, symmetrical, and can be simultaneously applied
over multiple distributions. Further, it also linked directly to
both the lower and upper bound on the Bayes probability of
error (BPE, the lowest possible error rate of a classifier). In
our context, this provides the lower and upper bounds for the
lowest possible irreducible error in inferring the correct cog-
nitive heuristic.

(Hp−P2 log(1+Nh))
2

4 Nh
≤ BPE ≤

Hp−P2 log(1+Nh)

2
(11)

Hp =−
[
(1−g) log

(
1−g
Nh

)
+g log(g)

]
(12)

3. Stability property (P3):
We define a distance metric dk j1 j2 between any pairs
(xk j1 ,xk j2) of observed behavioral patterns, as the Euclidean
distance based on a value of 1 if a cue is searched and 0 if a
cue is not searched, measured over all (nAnO) cues. We iden-
tify all pairs ¯̄xk j1k j2 that have the lowest possible distance.

¯̄xk j1k j2 = argmin(xk j1 ,xk j2 )
dk j1,k j2 (13)

Stability is defined in terms of the mean absolute change in in-
ferring probability of use of a heuristic, given a change in the
behavioral pattern, integrated over all heuristics in the con-
sideration set, and measured over all pairs of behavioral pat-
terns that belong to the set ¯̄xk j1k j2 , where n( ¯̄xk j1k j2) refers to
the cardinality of this set. Stability is in the range [0,1], with
higher values indicating higher stability of inferences made
about latent heuristics.

P3 = 1−
Σ ¯̄xk j1k j2

Σi
∣∣p(hi|xk j1)− p(hi|xk j2)

∣∣
Nh n( ¯̄xk j1k j2)

(14)

4. Predictiveness property (P4):
In addition to be well-posed, the heuristics should have a
high degree of predictive capability, in that, once it is in-
ferred which heuristics is being used, it should be capable
of making strong inferences about what search patterns and
choice options will be selected. To illustrate, the guessing
strategy above has no predictive capability, since it accords
equal probabilities to all observed behaviors. To measure pre-
dictiveness, we base it on the within-heuristic entropy across
all possible search and decision patterns, integrated across all
heuristics. This also yields a value in the range [0,1]. Note
that this measure has to be read in tandem with P1 and P2.

P4 =
(1−g)

Nh
Σi

[
1+

ΣkΣ j

(
p(xk j|hi) log(p(xk j|hi))

)
log(Ns nO))

]
(15)
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Examples of probabilistically redefined
heuristics

Example 1: Single dimensional feature space
We start with the simplest example, using only one feature
of cue search patterns. We base this on the experimental
paradigm used in Lee, Newell, and Vandekerckhove (2014).
Here, participants on each trial have access to 9 different
cue attributes for two choice options. The cue validities are
known to participants and attributes can only be selected in
order of their validity, and selecting an attribute reveals the
value for both choice options. Thus, there are only 9 dif-
ferent possible cue search patterns, from selecting 1 attribute
to 9 attributes. Traditional TTB search patterns would imply
selecting the minimum numbers of attributes required to dis-
criminate between the two choices, and WADD would imply
selecting all the attributes. The original paper represents the
proportion of extra cues (PEC) searched incremental to the
first discriminating cue (FDC).

PEC =
Ncues−FDC
Ntotal−FDC

(16)

We define the 1-dimensional psychological space in terms
of this PEC feature, which varies discretely in the range [0,1].
A value of 0 is representative of TTB, and 1, of WADD.
Hence, for a particular search pattern s j, we can write:

K(s j,httb) = exp
(
−||PEC j||2

2σ2
ttb

)
(17)

K(s j,hwadd) = exp
(
−||PEC j−1||2

2σ2
wadd

)
(18)

Example 2: Multidimensional feature space
We define a 3-dimensional psychological feature space, f j :
[F1(s j),F2(s j),F3(s j)], so that any search pattern s j can be ex-
pressed in terms of these features and represented as f j.
F1 : Proportion of cues searched
F2 : Sensitivity to cue validity
F3 : Variability in cues selected across attributes
We use the experimental structure of (Bröder & Schiffer,
2003), and take the cue search pattern suggested by an origi-
nal heuristic, for instance, TTB, sttb), and calculate the feature
vector corresponding to that search pattern, denoting this as
fttb. The squared Euclidean distance || f j− fttb||2 is calculated
as Σn=1:3

(
Fn(s j)−Fn(sttb)

)2.

K(s j,httb) = exp
(−Σn=1:3

(
Fn(s j)−Fn(sttb)

)2

2σ2
ttb

)
(19)

For example, for a cue space involving 4 attributes and 3
choice options, we get fttb = [0.25,1.00,0.50] and fwdd =
[1.00,0.25,0.00]. In table 2 we show the evaluation metrics
for a pair of heuristics defined in the sense of TTB and WDD.
The first half of the table shows the metrics for convention-
ally defined heuristics, with different values of ε and g. The

second half shows the kernel based probabilistic heuristics
sets, with different values of σ. Conventional heuristics find
it hard to find a balance between existence P1 and unique-
ness P2. Probabilistic heuristics as defined here show a better
balance, and overall improvement in scores.

Note that the kernel specification essentially assumes equal
weights on the three features. However, it is entirely feasi-
ble that individuals pay differential attention to these features.
We can accommodate such individual differences by defining
a mixture of kernels. Here the subscript p refers to the pth in-
dividual, and wnp refers to the weight placed on the nth feature
by the pth individual. These can be treated as free parameters
during the inference process. This shows how this framework
can be used to infer individual differences in attention to dif-
ferent aspects of the search space. Effectively, this skews the
n-dimensional space by scaling each feature dimension by its
corresponding weight, allowing for different scaling by indi-
viduals.

K(s j,hpi) = Σn=1:3

[
wnp exp

(−(Fn(s j)−Fn(si)
)2

2σ2
i

)]
(20)

Table 2: Evaluation metric for traditional and probabilis-
tic pairs of (TTB,WADD) heuristics. Exact, minimum, and
choice refer to the method of inference about heuristics ex-
plained in the introduction. The ε and gparameters used here
are highly optimistic, and post hoc error rates are likely to be
higher, leading to a further worsening of evaluation metrics.

P1 P2 P3 P4 ΣnPn/4
Conventionally defined TTB - WADD heuristics

exact ε = 0.01 0.0 0.61 0.99 0.98 0.65
min ε = 0.01 0.02 0.55 0.99 0.74 0.58
choice ε = 0.01 0.40 0.06 1.0 0.12 0.40
exact g = 0.01 0.0 0.67 0.99 0.98 0.66
min g = 0.01 0.02 0.60 0.99 0.75 0.59
choice g = 0.01 0.40 0.09 1.0 0.12 0.40

Based on the proposed kernel density framework
prob σ = 0.01 0.03 0.63 1.0 1.0 0.67
prob σ = 0.02 0.86 0.63 0.82 1.0 0.83
prob σ = 0.05 0.99 0.63 0.80 0.99 0.86
prob σ = 0.20 0.99 0.59 0.80 0.35 0.69

Example 3: Context specific feature space
These example were based on traditional heuristics and sta-
tistical properties of the cue search patterns. However, since
we generalize heuristics in terms of a psychological feature
space, we can define heuristics in a context-specific manner.
For instance in (Mistry & Trueblood, 2015), two of the at-
tributes were financial metrics, while the remaining two were
advisory recommendations. It is perfectly reasonable that
people search the attribute space based on their own level of
expertise and prior perceptions of advisory versus financial
cue attributes. We can define feature in terms of proportion
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of advisory cues searched compared to total cues searched. A
full advisory heuristics will be represented by a feature value
of 1, and a full financial heuristic by a feature value of 0. The
kernel and probability calculations can then proceed as in the
previous examples. Results of evaluation metrics for context
specific heuristics are provided in table 3.

Table 3: Evaluation metric for traditional and probabilistic
pairs of context defined (Financial,Advisory) heuristics.

P1 P2 P3 P4 ΣnPn/4
Conventionally defined context - heuristics

exact ε = 001 0.0 0.13 0.99 0.97 0.52
min ε = 0.01 0.0 0.13 0.99 0.97 0.52
choice ε = 0.01 0.52 0.11 1.0 0.19 0.45
exact g = 0.01 0.0 0.18 0.99 0.97 0.54
min g = 0.01 0.02 0.18 0.99 0.97 0.54
choice g = 0.01 0.52 0.13 1.0 0.19 0.46

Based on the proposed kernel density framework
prob σ = 0.01 0.43 0.63 1.0 0.65 0.68
prob σ = 0.02 0.82 0.63 0.81 0.65 0.73
prob σ = 0.05 0.82 0.63 0.81 0.58 0.71
prob σ = 0.20 0.82 0.53 0.82 0.23 0.60

Conclusions
The evaluation framework should be seen as a first step to-
wards a unified and systematic approach to defining strategy
selection and learning models. The probabilistic framework
is generalized enough to be applicable to a variety of exper-
imental and empirical designs and heuristics. It can easily
be incorporated with existing approaches to learning, such
as rational meta-reasoning, reinforcement-learning, and cost-
benefit based or cognitive effort based frameworks. Impor-
tantly, it has the potential to unify rule-based and exemplar
based heuristic models. The heuristics described under our
framework generally perform better than conventional heuris-
tics under the proposed evaluation measures. This framework
raises a lot of possibilities in terms of future work, including
experimental design based on maximizing information gain,
and generating a new class of heuristics based on context spe-
cific, process driven, or exemplar measures. The evaluation
framework allows us to calculate the a priori performance
measures of a set of kernel based heuristics, for each par-
ticular configuration of cues. This evaluation method can be
used to for experimental design to select cue configurations
that allow for the strongest possible inference given a partic-
ular set of heuristics to be tested, that is, by selecting config-
urations that maximize measures P1 to P4 for the heuristics
to be tested. Note that P1 and P2 often competethe first two
conditions often compete. Since these are all measured on
the same scale [0,1], we can use an objective function that
optimizes a weighted average of the four measures. The ex-
amples here rely on defining heuristic based on a prototypical
feature set that is derived from the rule-based heuristics. It has
been proposed that people may also approach multi-attribute

decisions using exemplars (Juslin, Olsson, & Olsson, 2003).
The feature space lends itself naturally to defining multiple
exemplars, with the kernel specification defining the typical-
ity of a cue search pattern from a particular exemplar. Since
our heuristics are defined in terms of kernel densities, we can
simply used kernel-based clustering mechanisms popular in
machine learning literature to identify clusters within a fea-
ture space (Girolami, 2002), with each cluster corresponding
to an exemplar. In future work, this method can be used to
identify common search exemplars used by people without a
priori definition of heuristics.
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