
UC Irvine
UC Irvine Previously Published Works

Title
The chemokine receptor CXCR2 and coronavirus-induced neurologic disease

Permalink
https://escholarship.org/uc/item/17k8h29r

Journal
Virology, 435(1)

ISSN
0042-6822

Authors
Weinger, Jason G
Marro, Brett S
Hosking, Martin P
et al.

Publication Date
2013

DOI
10.1016/j.virol.2012.08.049
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/17k8h29r
https://escholarship.org/uc/item/17k8h29r#author
https://escholarship.org
http://www.cdlib.org/


 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Virology 435 (2013) 110–117
Contents lists available at SciVerse ScienceDirect
Virology
0042-68

http://d

n Corr

Irvine, C

E-m
1 Cu

Researc
2 J.G
journal homepage: www.elsevier.com/locate/yviro
Review
The chemokine receptor CXCR2 and coronavirus-induced neurologic disease
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Inoculation with the neurotropic JHM strain of mouse hepatitis virus (MHV) into the central nervous

system (CNS) of susceptible strains of mice results in an acute encephalomyelitis in which virus

preferentially replicates within glial cells while excluding neurons. Control of viral replication during

acute disease is mediated by infiltrating virus-specific T cells via cytokine secretion and cytolytic

activity, however sterile immunity is not achieved and virus persists resulting in chronic neuroin-

flammation associated with demyelination. CXCR2 is a chemokine receptor that upon binding to

specific ligands promotes host defense through recruitment of myeloid cells to the CNS as well as

protecting oligodendroglia from cytokine-mediated death in response to MHV infection. These findings

highlight growing evidence of the diverse and important role of CXCR2 in regulating neuroinflamma-

tory diseases.

& 2012 Elsevier Inc. All rights reserved.
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Mouse hepatitis virus (MHV)

MHV is a member of the Coronaviridae family, which represents a
ubiquitous group of positive-strand RNA viral pathogens of humans
and animals associated with a wide-spectrum of respiratory, gastro-
intestinal, and neurological diseases (Holmes and Lai, 1996; McIntosh,
1996; Perlman et al., 1999; Weiss and Navas-Martin, 2005). All
coronaviruses are enveloped with, to date, the largest known RNA
genome identified (27–31 kb). Human coronavirus (HCoV) infections
cause acute enteritis and a significant percentage (up to 34%) of all
common colds; and it is important to note that a new strain of HCoV
ll rights reserved.

r Biology & Biochemistry; UC
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icle.
also had dramatic impact on human disease as the etiological agent of
severe acute respiratory syndrome (SARS) (Holmes, 2003; Masters,
2006; Weiss and Navas-Martin, 2005). In addition, previously unclas-
sified human coronaviruses associated with respiratory disease have
been identified (van der Hoek et al., 2006, 2004; Woo et al., 2005). As
a natural pathogen of mice, MHV primarily infects the liver and CNS
resulting in a range of acute and chronic diseases, including hepatitis,
encephalitis and encephalomyelitis associated with demyelination
(Holmes and Lai, 1996; McIntosh, 1996; Perlman et al., 1999). Viral
tropism and disease depend on a variety of factors, such as the strain
of the virus, genetic background and age of mouse, as well as the
route of infection (Perlman et al., 1999).
Acute MHV-induced encephalomyelitis

Following intracranial infection, MHV replicates first within
the ependymal cells of the lateral ventricles before spreading
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throughout the parenchyma primarily targeting astrocytes and
oligodendrocytes (Wang et al., 1992). Neurons are spared within
immunocompetent mice inoculated with neuroattenuated strains
of MHV (Buchmeier et al., 1984; Fleming et al., 1983; Ireland
et al., 2008). MHV infection of the CNS results in rapid upregula-
tion of inflammatory cytokines, chemokines, and matrix-metallo-
proteinases, all of which serve to initiate, attract, and support a
robust host anti-viral response (Glass et al., 2002; Lane et al.,
1998; Parra et al., 1997; Pearce et al., 1994; Rempel et al., 2004,
2005; Sun et al., 1995; Zhou et al., 2005b, 2002).

Type I interferons (IFN-a and IFN-b), IL-1a, IL-1b, IL-6, IL-12,
and TNFa are secreted following MHV infection (Parra et al.,
1997; Pearce et al., 1994; Rempel et al., 2004, 2005; Sun et al.,
1995). Protective roles for the type I interferons during MHV
infection have been well described. Exogenous treatment of either
IFN-a or IFN-b limits MHV replication and dissemination within
the CNS (Minagawa et al., 1987; Smith et al., 1987), while mice
deficient in IFN-a/b-receptor quickly succumb to MHV infection
(Cervantes-Barragan et al., 2007). The mechanisms of type I IFN
in vivo protection are however complicated since MHV is resistant
to IFN-b treatment in vitro (Roth-Cross et al., 2007). Moreover,
evidence suggests that MHV can shield their viral RNA genome
from host pattern recognition receptors and therefore prevent
IFN-b induction (Versteeg et al., 2007; Zhou and Perlman, 2007).
Nevertheless, type I IFNs are clearly protective in vivo, and they
may help to regulate innate and adaptive immune responses by
enhancing MHC I expression (Akwa et al., 1998; Ireland et al.,
2008).

Innate immune cells recruited into the CNS following MHV
infection include neutrophils and macrophages (Templeton et al.,
2008; Zuo et al., 2006). Neutrophils contribute to degradation of
the blood brain barrier (BBB) by secreting matrix metalloprotei-
nase (MMPs) that facilitate extracellular matrix and basement
lamina degradation (Yong et al., 2001). Although neutrophils
secrete MMP-9 (Zhou et al., 2002, 2003), they are not the sole
source of matrix metalloproteinases within the CNS, as MMP-3
and MMP-12, derived from resident glia, may also have contri-
bute to BBB breakdown (Savarin et al., 2010; Zhou et al., 2003).
Nevertheless, neutrophils are important for enhanced anti-viral
responses following MHV infection, as their depletion mutes
leukocyte entry into the CNS, thus limiting effective control of
viral replication and allowing viral spread (Zhou et al., 2003).
Monocyte/macrophage infiltration is dependent upon numerous
chemokine signaling pathways including CCR2/CCL2 (Chen et al.,
2001; Held et al., 2004; Savarin et al., 2010), CCL3 (Trifilo et al.,
2003), and CCL5/CCR5 (Glass et al., 2004, 2001; Lane et al., 2000).
Macrophages do not appear to perform any direct anti-viral
activity within the CNS, as depletion of macrophages or neutra-
lization of CCL5 during acute MHV infection does not enhance
viral burden (Lane et al., 2000; Xue et al., 1999). Both myeloid
(CD11bþ CD11cþ) and lymphoid (CD11b� CD11cþ) derived
dendritic cells (DC) are detectable within the CNS by day 2 p.i.
(Trifilo and Lane, 2004), though the chemotactic signals control-
ling their infiltration has not been fully explored. Migration of
myeloid DCs to the draining lymph nodes is dependent, in part, on
CCL3 expression (Trifilo and Lane, 2004). Moreover, CCL3 defi-
ciency reduces lymph node DC activation and skews TH1 anti-
MHV responses (Trifilo and Lane, 2004).

Virus-specific T cells are detectable within the local lymph
nodes and spleen and subsequently migrate into the CNS early
following CNS infection with MHV (Marten et al., 2003). Protec-
tive immunity and anti-viral responses conform to a TH1 pheno-
type, broadly characterized by vigorous IFN-g secretion and
cytolytic activity (Bergmann et al., 2003; Lin et al., 1997; Parra
et al., 1999). Virus-specific T cell generation is not strictly
dependent on IL-12 and/or IL-23, as viral clearance is unaffected
following antibody neutralization of IL-23 and IL-12/23 (Held
et al., 2008) or genetic deletion of IL-12 (Kapil et al., 2009). T cells
isolated from the CNS of MHV infected mice are CXCR3-reactive
(Stiles et al., 2006) and their migration into the CNS is mediated
by expression of the CXCR3 ligands CXCL9 and CXCL10 (Glass
et al., 2001; Liu et al., 2000; Stiles et al., 2006; Walsh et al., 2007).
Furthermore, CCL5 has been shown to differentially regulate T cell
migration into the CNS. Neutralization of CCL5 during infection
abrogates CD4þ and CD8þ T cell infiltration (Lane et al., 2000),
however, CCR5 deficient CD8þ T cells adoptively transferred into
MHV infected RAG1� /� recipients have no problem trafficking
into the CNS (Glass and Lane, 2003a), while transferred CCR5
deficient CD4þ T cells do not efficiently enter the CNS (Glass and
Lane, 2003b). Virus specific CD8þ T cells are the main cytolytic
effector cell within the CNS and begin to accumulate by five days
p.i. (Marten et al., 2000; Marten et al., 2003). CD8þ T cells are
essential to controlling MHV replication (Bergmann et al., 2003);
their accumulation within the CNS is concurrent with viral
clearance from resident glia (Bergmann et al., 1999, 2006,
2003). CD8þ T cells isolated from the CNS are cytolytic ex vivo

(Bergmann et al., 1999; Walsh et al., 2008), secreting IFN-g and
lytic molecules, including granzyme B and perforin (Ramakrishna
et al., 2004). In vivo, perforin-mediated cytolysis eliminates MHV
from astrocytes (Lin et al., 1997) and IFN-g controls MHV
replication within oligodendroglia (Gonzalez et al., 2006; Parra
et al., 1999). Evidence has also demonstrated that NKG2D signal-
ing within the CNS enhances anti-viral CD8þ cytotoxic activity
(Walsh et al., 2008).

Virus specific CD4þ T cells function in a supporting role for
CD8þ T cells, and they are also critical in controlling MHV
replication (Phares et al., 2012). In vivo CD4þ T cells enhance
immune cell activity within the CNS (Bergmann et al., 2003, 2004)
by secreting IFN-g, which facilitates viral clearance from oligo-
dendroglia (Gonzalez et al., 2006; Parra et al., 1999), and upre-
gulates MHC class II expression on microglia (Bergmann et al.,
2003) and MHC class I expression on oligodendroglia (Malone
et al., 2008). CD8þ cytotoxicity and survival within the CNS relies
on the presence of CD4þ T cells (Phares et al., 2012; Stohlman
et al., 1998; Zhou et al., 2005a). How CD4þ T cells support and
enhance CD8þ T cell activity is unknown, however it is assumed
to be a secreted factor, since CD4þ T cells are spatially restricted
near the vasculature, instead of migrating throughout the par-
enchyma like CD8þ T cells, possibly as a result of CD4þ T cell
TIMP-1 expression (Zhou et al., 2005b).
MHV-induced demyelination

Mice that survive acute MHV infection develop a chronic
immune-mediated demyelinating disease. Infected mice first
demonstrate signs of ascending demyelination during acute
infection that range from partial to complete hind limb paralysis.
Analysis of the spinal cords of chronically-infected mice confirms
that the loss of myelin integrity is associated with the continued
presence of both viral antigen and inflammatory immune cells
(Stohlman and Hinton, 2001) and not the apoptotic or necrotic
death of myelinating oligodendrocytes (Wu and Perlman, 1999).
No role for endogenous complement or antibody-mediated
demyelination has been documented (Matthews et al., 2002a),
although exogenous autoantibodies can exacerbate demyelina-
tion independent of complement during chronic infection (Burrer
et al., 2007). Nevertheless, the immunopathology observed during
chronic MHV infection resembles what is observed in the major-
ity of active multiple sclerosis (MS) lesions (Houtman and
Fleming, 1996; Matthews et al., 2002b), making chronic MHV
infection an excellent surrogate model to study mechanisms
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associated with the immunopathogenesis of MS and to develop
novel treatments.

Concomitant with the absence of detectable infectious virus,
neuroinflammation wanes yet virus-specific T cells and macro-
phages remain within the CNS for up to three months after
infection (Castro et al., 1994; Liu et al., 2001; Marten et al.,
2000; Ramakrishna et al., 2004). Unlike in other models of CNS
demyelination (Katz-Levy et al., 2000; McMahon et al., 2005;
Miller et al., 1997) and in MS (Goebels et al., 2000; Tuohy et al.,
1997, 1999), autoreactive T cells specific to defined myelin
epitopes are not considered important in contributing to disease,
indicating that chronic demyelination is mainly driven by anti-
viral responses and not epitope spreading. While both CD4þ and
CD8þ T cells remain CXCR3þ during chronic infection (Stiles
et al., 2006), only CD4þ T cells appear to rely upon CXCL10 for
antiviral trafficking into the CNS; CD8þ T cell infiltration remains
relatively unaffected during CXCL10 neutralization (Liu et al.,
2001). Notably, CCL5 neutralization abrogates both CD4þ and
CD8þ T cell accumulation during chronic infection (Glass et al.,
2004), indicating differential chemokine usage between the T cell
subsets (Stiles et al., 2009). More recently, Bergmann and collea-
gues have provided compelling evidence that CXCR3 ligands
CXCL9 and CXCL10 are crucial for allowing plasmablast migration
into the CNS of MHV-infected mice via signaling through CXCR3
expressed on these cells (Marques et al., 2011; Phares et al., 2011;
Tschen et al., 2006). These findings highlight a previously unap-
preciated role for these chemokines in host defense by attracting
activated antibody secreting cells into the CNS of mice persis-
tently infected with a neurotropic virus. Neutralizing antibody
from B cells prevents viral recrudescence during chronic MHV
infection (Lin et al., 1999; Ramakrishna et al., 2003, 2002).

The main effectors of demyelination during chronic MHV
infection are T cells and macrophages. Both CD4þ and CD8þ T
cells are important to the pathogenesis of chronic demyelination,
although to differing degrees. Mice deficient in adaptive immune
systems (Lane et al., 2000; Wu et al., 2000; Wu and Perlman,
1999) or CD4þ T cells (Lane et al., 2000) do not readily
demyelinate, regardless of their ability to clear virus. Moreover,
adoptive transfer of CD4þ T cells into MHV-infected RAG1� /�

hosts is sufficient to initiate demyelination (Lane et al., 2000).
CD4þ T cells also enhance demyelination, by attracting macro-
phages through CCL5 secretion (Lane et al., 2000). Although it was
reported that CD8� /� mice exhibit muted demyelination during
chronic MHV infection (Lane et al., 2000), IFN-g dependent
demyelination was observed following the transfer of CD8þ T
cells into RAG1� /� mice (Pewe et al., 2002; Pewe and Perlman,
2002; Wu et al., 2000), providing evidence that CD8þ T cells are
capable of initiating and amplifying demyelination.

As with other demyelinating diseases (Epstein et al., 1983;
Field and Raine, 1966), ultrastructural analysis of MHV-induced
demyelinating lesions reveal myelin laden macrophages stripping
and engulfing myelin (Fleury et al., 1980). During chronic infec-
tion, macrophages are spatially associated within demyelinating
white matter lesions of the spinal cord and are critical to
demyelination. Neutralization of the potent macrophage chemo-
kine CCL5 during chronic infection diminishes macrophage infil-
tration into the CNS and is associated with reduced demyelination
(Glass et al., 2004; Lane et al., 2000). Moreover genetic silencing
of CCR5, the chemokine receptor for CCL5, also prevents wide-
spread demyelination, even in the absence of viral clearance
(Glass et al., 2001). Adoptive transfer of MHV-immunized sple-
nocytes into infected RAG1� /� recipients resulted in the rapid
demyelination, and this was associated with the widespread
recruitment of activated macrophages to regions of pathology
(Wu and Perlman, 1999). These observations are consistent with
other models of demyelination, including, EAE (Bauer et al., 1995;
Tran et al., 1998) and cuprizone-induced demyelination
(Hiremath et al., 1998); likewise, reactive macrophages have also
been described within demyelinating MS plaques (Boyle and
McGeer, 1990).

Although the main effectors of demyelination are certainly T
cells and macrophages, this does not preclude the possibility that
MHV may directly participate in damage, especially since oligo-
dendrocytes are the main reservoir of MHV during chronic
infection (Gonzalez et al., 2005, 2006). In some MS lesions,
oligodendrocyte apoptosis has also been observed (Barnett and
Prineas, 2004; Matute and Perez-Cerda, 2005), however the exact
role of apoptosis in MS pathogenesis and pathology is unresolved
(Frohman et al., 2006). In vitro, cultured murine oligodendrocytes
are susceptible to MHV-induced apoptosis through FAS-spike
glycoprotein interactions (Liu et al., 2003, 2006; Liu and Zhang,
2005, 2007). Moreover, the HIV protein Tat (Hauser et al., 2009)
and the JC virus protein agnoprotein (Merabova et al., 2008) also
enhance oligodendrocyte apoptosis in vitro. However, in vivo

oligodendrocyte apoptosis during chronic MHV infection is not
readily observed, and the presence of viral antigen does not
appear to predispose an oligodendrocyte to apoptosis (Wu and
Perlman, 1999). Therefore, it is likely that protective mechanisms
exist during chronic infection that protect oligodendrocytes from
MHV, IFN-g, and other apoptotic inducers.
Neurobiology of CXCR2

CXCR2, a receptor for the ELR-positive CXC chemokines CXCL1
and CXCL2, which are defined by a glutamic acid-leucine-arginine
(ELR) amino acid sequence preceding a group of conserved
cysteine residues (CXC) at their amino termini is expressed by
resident cells of the CNS including neurons, astrocytes, microglia,
myelinating oligodendrocytes and oligodendrocyte progenitor
cells (OPCs)(Cho and Miller, 2002; Coughlan et al., 2000; Danik
et al., 2003; Filipovic et al., 2003; Flynn et al., 2003; Horuk et al.,
1997; Nguyen and Stangel, 2001). In addition, CXCR2 has been
shown to have a role in OPC differentiation and efficient myelina-
tion of axons by oligodendrocytes (Kerstetter et al., 2009). During
CNS development, CXCR2 is necessary to obtain sufficient num-
bers of OPCs to ensure structural integrity and is also essential for
positional migration of OPCs within the white matter of the
mouse spinal cord (Robinson et al., 1998; Tsai et al., 2002). Acting
in concert with the oligodendrocyte receptor ligand PDGF, signal-
ing through the CXCR2-CXCL1 axis has also been shown to
enhance OPC proliferation in the developing mouse spinal cord
(Robinson et al., 1998).

Transgenic mice devoid of CXCR2 have insufficient numbers
and misalignments of OPCs that persist into adulthood and result
in reduced myelin and spinal cord white matter, and changes in
expression of myelin-specific proteins such as PLP and MBP
(Padovani-Claudio et al., 2006). In addition, OPCs derived from
these CXCR2� /� mice have decreased numbers of mature oligo-
dendrocytes when differentiated in culture, which demonstrates
an important role for CXCR2 in OPC maturation (Padovani-
Claudio et al., 2006). Studies of CXCR2 under pathologic condi-
tions have yielded conflicting roles for the chemokine receptor in
the CNS. There are numerous reports that CXCR2 is necessary for
induction of EAE due to its ability to promote polymorphonuclear
leukocyte (PMN) chemotaxis to the CNS yet the functional role of
CXCR2 on resident cells of the CNS was not examined (Carlson
et al., 2008; Glabinski et al., 2000; Kroenke et al., 2010). Omari
et al. (2009) demonstrated that overexpression of CXCL1 from
genetically-engineered mice exerted a protective effect within the
CNS associated with a reduced severity in clinical disease and
diminished neuropathology. More recently, a study by Liu et al.
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(2010) used bone marrow chimeric mice to separate the con-
tribution of CXCR2 expression on hematopoietic cells and CNS
cells. Upon transfer of CXCR2-positive cells derived from the bone
marrow of WT mice into CXCR2� /� mice, OPCs divided more
rapidly and there was greater oligodendrocyte differentiation
following demyelination in both EAE and cuprizone models of
demyelination (Liu et al., 2010). This study suggests that CXCR2
expression on cells of the CNS is inhibitory for myelin repair
following demyelination and therefore contributes to chronic
disease. Other studies using CXCR2 antagonists in EAE and spinal
cord injury showed that blocking CXCR2 induced oligodendrocyte
differentiation and promoted recovery, further suggesting a
pathologic role for CXCR2 under defined experimental conditions
(Kerstetter et al., 2009; Marsh and Flemming, 2011). However, it
should be noted that these CXCR2 antagonist treatments resulted
in global reduction of CXCR2 and at least part of the benefits were
due to decreased inflammatory cell infiltration into the CNS.
Nevertheless, while CXCR2 is necessary for OPC proliferation
during development it appears to be deleterious under some
pathologic conditions. There may also be other factors involved in
CXCR2 signaling on OPC proliferation and differentiation through
CXCR2 expression on other cells of the CNS since the studies done
in cuprizone and EAE did not specifically eliminate CXCR2
on OPCs.

Conversely, a pathologic condition in which CXCR2 expression
has been suggested to be beneficial to oligodendroglia is follow-
ing exposure to the cytokine IFN-g, which is often highly
expressed by CNS infiltrating activated T lymphocytes and NK
cells under inflammatory conditions (Juedes et al., 2000; Traugott
and Lebon, 1988a, b; Woodroofe and Cuzner, 1993). In vitro,

IFN-g-mediated death of mouse OPCs can be mitigated by
expression and signaling through CXCR2 (Tirotta et al., 2011).
OPCs, which are highly sensitive to IFN-g-mediated apoptosis,
constitutively express CXCR2 and treatment with CXCL1 facil-
itates protection from IFN-g-mediated apoptosis (Tirotta et al.,
2011). OPCs generated from CXCR2� /� mice are not protected
from IFN-g-induced apoptosis in the presence of CXCL1 (Tirotta
et al., 2011). Mechanisms associated with CXCR2-mediated pro-
tection of OPC cell death are increased expression of anti-
apoptotic Bcl2 and inhibition of pro-apoptotic caspase 3 activation
(Tirotta et al., 2011). CXCR2 also guards OPCs from cell death
mediated by the pro-inflammatory cytokine CXCL10, whose
expression is induced by IFN-g (Tirotta et al., 2011). These
findings suggest that IFN-g-induced expression of CXCL10 is one
mechanism by which IFN-g can induce OPC death. Follow up
studies recently demonstrated that human OPCs generated from
embryonic stem cells are also susceptible to IFN-g-mediated
apoptosis and CXCR2 signaling exerts a protective effect by
inhibiting cleavage of caspase 3 (Tirotta et al., 2012). These data
provides some mechanistic clarity on previous findings that
CXCL10 is involved in cell death within the CNS during immuno-
deficiency virus-induced encephalitis, West Nile virus-induced
encephalitis, and spinal cord injury (Glaser et al., 2006; Klein
et al., 2005; Sui et al., 2004; Zhang et al., 2008, 2010).

Beyond blocking IFN-g and CXCL10 mediated apoptosis of
OPCs, CXCR2 can prevent b-amyloid accumulation-mediated
neuronal death through CXCL1 and its other ligands CXCL8 and
macrophage inflammatory protein 2 (MIP2) by signaling through
the MEK1-ERK1/2 and PI3K-Akt signaling pathways (Raman et al.,
2011; Watson and Fan, 2005). However, other groups’ data show
contrasting results; CXCR2 signaling results in enhanced g-secre-
tase activity and increased b-amyloid accumulation and specifi-
cally CXCR2 signaling through the ERK1/2 and Akt pathways
results in more severe Alzheimer’s pathology as a result of Tau
hyperphosphorylation (Bakshi et al., 2008; Xia and Hyman, 2002).
While the origin of neurons was different (hippocampal versus
cortical, respectively), the reason for the discrepancy in the role of
CXCR2 in neuron pathology is unclear and further studies are
needed. Potential mechanisms to prevent neuronal death are of
particular interest in Alzheimer’s disease. Overall, CXCR2 is
important for CNS development and has a role during CNS
disease. Elucidation of the exact mechanisms behind the dichot-
omy of CXCR2 in its ability to protect oligodendrocytes and
contribute to CNS damage is necessary to be able to use CXCR2
as a therapeutic target.
CXCR2 and MHV-induced neurologic disease

Chemokines are rapidly secreted within the CNS in response to
MHV infection and contribute to host defense (Glass et al., 2001;
Lane et al., 1998, 2000; Liu et al., 2000) and disease progression
(Glass et al., 2004, 2001; Liu et al., 2001; Stiles et al., 2006).
The chemokines CXCL1 and CXCL2 are up-regulated within the
brains of MHV-infected mice (Lane et al., 1998; Scott et al., 2008;
Zhou et al., 2002) and are potent chemoattractants for PMNs via
binding and signaling through their receptor CXCR2 (Moser et al.,
1990; Schumacher et al., 1992; Wolpe et al., 1989). Moreover,
PMNs have been shown to enhance CNS inflammation by dis-
rupting blood brain barrier (BBB) integrity in animal models of
neuroinflammation (Carlson et al., 2008; Gorio et al., 2007; Tonai
et al., 2001) as well as MHV-induced encephalomyelitis (Zhou
et al., 2003). In addition, blocking or silencing of CXCR2 signaling
mutes inflammation and tissue damage in mouse models in
which PMN infiltration is critical to disease initiation (Belperio
et al., 2005; Carlson et al., 2008; Gorio et al., 2007; Kielian et al.,
2001; Londhe et al., 2005a,b; Strieter et al., 2005; Wareing et al.,
2007). With regards to MHV infection, depletion of PMNs
increases mortality due to abrogated BBB permeabilization and
subsequent diminished T cell infiltration into the CNS (Zhou et al.,
2003). We have shown that early following MHV infection,
CXCR2-positive neutrophils are mobilized into the bloodstream
and migrate to the CNS in response to elevated expression of the
ELRþ chemokines CXCL1, CXCL2, and CXCL5 (Hosking et al.,
2009). Neutrophil entry into the blood was not completely
inhibited following CXCR2 neutralization, indicating that there
may be additional signaling components that aid neutrophil
release such as CXCL12 downregulation or G-CSF induction
(Martin et al., 2003; Wengner et al., 2008). In addition, CXCR2
neutralization also reduces circulating levels of neutrophils
within uninfected mice suggesting that CXCR2 ligands contribute
to both normal neutrophil homeostasis and emergency release
following infection with a neurotropic virus. These findings high-
light a previously unappreciated functional role for ELRþ che-
mokines in host defense during viral-induced encephalomyelitis,
rapidly recruiting PMNs into the blood with subsequent infiltra-
tion into the CNS. Administration of a blocking antibody specific
for CXCR2 to MHV-infected mice reduced PMN migration to the
CNS by 495%, and this corresponded with increased mortality
and uncontrolled viral replication. We determined that anti-
CXCR2 treatment prevented PMN-mediated BBB permeabiliza-
tion, associated with muted MMP-9 activity, and ultimately
resulted in the impaired accumulation of virus-specific T cells
within the CNS. These findings support and extend other studies
highlighting the functional role of neutrophils in promoting
vascular permeability in response to infection or injury to the
CNS (Carlson et al., 2008; Kim et al., 2009; Zhou et al., 2003).
Therefore, therapies targeting myeloid cell trafficking to the CNS
during acute viral infection may offer a powerful approach to
dampen neuroinflammation and decrease fatalities associated
with viral encephalopathies.
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How chemokine receptor signaling contributes to chronic
neurologic diseases has largely been considered within the con-
text of targeted leukocyte recruitment into the CNS (Hosking
et al., 2009). Yet numerous resident cell types of the CNS express
chemokine receptors under non-inflammatory and inflammatory
conditions (Bajetto et al., 2001; Ubogu et al., 2006), indicating
that these cells are capable of responding to specific chemokine
ligands. As indicated above, CXCR2 is detected both in vitro and
in vivo upon resident cells of the CNS, including OPCs (Dorf et al.,
2000; Horuk et al., 1997; Omari et al., 2006, 2005; Popivanova
et al., 2003; Tsai et al., 2002).

In mice persistently infected with MHV, T cells and macro-
phages contribute to oligodendrocyte damage and demyelination
that is associated with physical disability (Cheever et al., 1949;
Perlman et al., 1999). Following MHV-induced immune-mediated
apoptosis of oligodendrocytes, there is an increase of OPC pro-
liferation and oligodendrocyte maturation followed by partial
remyelination (Carbajal et al., 2011; Liu et al., 2006; Liu and
Zhang, 2007; Wu and Perlman, 1999). Given the fact that viral
RNA is found within spinal cord white matter tracts long past the
acute encephalitis phase of disease there are likely intrinsic
mechanisms in oligodendrocytes that help protect them from
apoptosis and allow for differentiation and remyelination
(Hosking et al., 2010; Marten et al., 2000). CXCL1 has been shown
to protect against IFN-g induced OPC death via signaling through
CXCR2 (Tirotta et al., 2011), so CXCR2 is a likely mechanism to
protect against viral specific activated T cell secretion of IFN-g
(Marten et al., 2001). Indeed, CXCL1 and CXCR2 are upregulated
following MHV infection and remain elevated even after viral load
has decreased, suggesting that this signaling pathways aids in
continued survival and maturation of OPCs as well as remyelina-
tion (Hosking et al., 2010). In fact, CXCR2 was shown protect
oligodendrocytes against apoptosis during the chronic phase of
MHV infection as antibody mediated blockade of CXCR2 with
neutralizing antiserum at the beginning of the chronic phase
resulted in increased white matter demyelination and a more
severe clinical course that was not associated with changes in
infiltrating immune cells or viral titers (Hosking et al., 2010).

Within the CNS, astrocytes and microglia are reported sources
of CXCL1 (Lu et al., 2005). Activation of astrocytes under pro-
inflammatory conditions results in increased secretion of CXCL1
via signaling through the sphingosine kinase 1(SphK1)/sphingo-
sine1-phosphate (S1P) receptor signaling pathway (Fischer et al.,
2011). CXCL1 can induce cultured mouse and human OPC pro-
liferation and promote their differentiation and myelination
(Filipovic and Zecevic, 2008; Robinson et al., 1998; Turbic et al.,
2011). A study using transgenic mice with inducible overexpres-
sion of CXCL1 at disease onset in EAE showed astrocyte-secreted
CXCL1 led to an increased number of proliferating OPCs and
increased remyelination (Omari et al. 2009). In addition to
protective effects of CXCL1 signaling, CXCR2 signaling via CXCL8
on cultured astrocytes inhibits Fas-mediated apoptosis allowing
for continual CXCL1 secretion, indicating another mechanism
by which CXCR2 signaling aids in CNS recovery following
MHV-mediated demyelination (Saas et al., 2002). In microglia,
on the other hand, the switch from a pro-inflammatory to anti-
inflammatory response includes suppression of CXCL1 and upre-
gulation of the anti-inflammatory cytokine IFN-b through the
interferon regulatory factor 3 (IRF3)/PI3K/Akt signaling pathway
(Tarassishin et al., 2011). Following MHV infection, IFN-b is
upregulated specifically on microglia and infiltrating macro-
phages and is necessary for viral control (Mazaleuskaya et al.,
2012; Roth-Cross et al., 2008). These data suggest that the source
of elevated CXCL1 during the chronic phase of MHV infection is
astrocytes, which promote remyelination through CXCR2. In
combination with the induction of anti-inflammatory-mediating
microglia these mechanisms help protect the CNS from further
demyelination and promote remyelination.
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