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Colonocyte metabolism shapes the gut microbiota

Yael Litvak, Mariana X. Byndloss, and Andreas J. Bäumler*

Department of Medical Microbiology and Immunology, School of Medicine, University of 
California, Davis, One Shields Avenue, Davis, CA 95616, USA.

Abstract

An imbalance in the colonic microbiota might underlie m any hum an diseases, but the 

mechanisms maintaining homeostasis remain elusive. Recent insights suggest that colonocyte 

metabolism functions as a control switch, mediating a shift between homeostatic and dysbiotic 

communities. During homeostasis, colonocyte metabolism is directed towards oxidative 

phosphorylation, resulting in high epithelial oxygen consumption. The consequent epithelial 

hypoxia helps maintain a microbial com m unity dominated by obligate anaerobic bacteria, which 

provide benefit by converting fiber into fermentation products absorbed by the host. Conditions 

that alter the m etabolism of the colonic epithelium increase epithelial oxygenation, thereby 

driving an expansion of facultative anaerobic bacteria, a hallmark of dysbiosis in the colon. Enteric 

pathogens subvert colonocyte metabolism to escape niche protection conferred by the gut 

microbiota. The reverse strategy, a m etabolic reprogramming to restore colonocyte hypoxia, 

represents a promising new therapeutic approach for rebalancing the colonic microbiota in a broad 

spectrum of hum an diseases.

Single sentence summary:

The energy metabolism of colonic epithelial cells functions as a control switch of the gut 

microbiota, mediating shifts between homeostatic and dysbiotic communities.

One major task of our immune system is to defend against microbial pathogens, such as 

bacteria, viruses, parasites or fungi, by recognizing these intruders and removing them from 

the body. The emerging field of microbiota research has raised awareness that our immune 

system might also act to balance microbial communities inhabiting our skin and mucosal 

surfaces (the microbiota). Compared to our detailed understanding of the immune functions 

that control microbial pathogens, we know little about the host cell types and mechanisms 

involved in balancing our microbial self. Understanding how our immune system maintains 

homeostasis is of particular significance in the colon, because this organ harbors the largest 

microbial community in our body and recent advances in high-throughput sequencing link 

an imbalance in this microbial community (dysbiosis) to many chronic human illnesses, 

including colorectal cancer, obesity, diabetes, arthritis, asthma, cardiovascular disease and 

neurological disorders (reviewed in (1)). Yet, it is a daunting task to define what is a 

balanced microbial community in the colon, because the resident microbiota is highly 

diverse (2), differs between individuals (3) and shifts with changes in the diet (4). In turn, 
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not knowing what features characterize a balanced colonic microbiota has hampered 

progress in specifying immune functions or cell types required for maintaining homeostasis 

in the colon.

Homeostasis: pulling diffuse concepts into focus

Clues about immune functions important for balancing the microbiota have emerged by 

viewing coevolution of microbial communities with their hosts from an ecological 

perspective, which suggests that the immune system maintains homeostasis by shaping the 

microbiota to be beneficial (5). Applying this concept to the colonic microbiota puts the 

spotlight on the benefit provided by this microbial community, which is to aid in the 

digestion of nutrients that cannot be processed by host enzymes. Specifically, complex 

dietary carbohydrates (fiber) are broken down by the colonic microbiota into fermentation 

products that are absorbed by the host (6) and contribute to host nutrition (7), immune 

development (8–11) and niche protection against enteric pathogens (12). Bacterial diversity 

in the colon is beneficial, because it increases the probability of including species that can 

break down any complex carbohydrate into fermentation products (13). The community of 

obligate anaerobic bacteria in the adult colon, which is dominated by members of the classes 

Clostridia (phylum Firmicutes) and Bacteroidia (phylum Bacteroidetes), provides benefit 

because they encode a broad spectrum of enzymes for hydrolyzing different complex 

carbohydrates (14). In contrast, facultative anaerobic bacteria, such as members of the 

phylum Proteobacteria, do not specialize in consuming fiber and might even interfere with 

host nutrition by metabolizing fermentation products to carbon dioxide when oxygen is 

present (15, 16). Thus, viewing host control over microbes from an ecological perspective 

predicts that our immune system maintains homeostasis by shaping the colonic microbiota 

to be diverse and dominated by obligate anaerobic bacteria, thereby ensuring this microbial 

community provides benefit by generating fermentation products from fiber (17).

Studies on host control mechanisms that shape the colonic microbiota to be beneficial 

suggest that colonic epithelial cells (colonocytes) play a central role in this process (12), 

which is somewhat surprising because immune functions are typically associated with cells 

of the hematopoietic lineage. The colonic epithelium is continually renewed by colonic stem 

cells located at the base of intestinal glands, termed the crypts of Lieberkühn. Asymmetric 

cell division of colonic stem cells generates transit-amplifying cells, an early intermediate 

cell type involved in tissue regeneration that divides a finite number of times until terminally 

differentiating into various epithelial cell types, including colonocytes, enteroendocrine cells 

and goblet cells (18). The dividing cells located at the base of crypts obtain energy through 

anaerobic glycolysis, which is characterized by conversion of glucose into lactate even in the 

presence of oxygen (19), a process known as the Warburg metabolism (20). Epithelial 

differentiation requires PPARγ (peroxisome proliferator-activated receptor gamma) (21), a 

nuclear receptor primarily synthesized in differentiated cells of the colonic epithelium of 

rodents and humans (22). PPARγ activates fatty acid metabolism, resulting in mitochondrial 

β-oxidation of long-chain and short-chain fatty acids and oxygen consumption through 

oxidative phosphorylation (23–25). This energy metabolism of mature colonocytes is 

characterized by high oxygen consumption, resulting in an oxygen partial pressure [pO2] of 

less than 7.6 mmHg (< 1% oxygen), a condition known as epithelial hypoxia (26). Since 
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oxygen freely diffuses across biological membranes, epithelial hypoxia limits the amount of 

oxygen emanating from the mucosal surface, which helps maintain anaerobiosis in the 

intestinal lumen (Fig. 1A) (27). In turn, anaerobiosis ensures the colonic microbiota is 

dominated by obligate anaerobic bacteria, which provide benefit to the host by converting 

fiber into fermentation products (17). Through this mechanism, the colonic epithelium 

shapes the microbiota to be beneficial, thereby maintaining gut homeostasis.

Colonocyte metabolism drives gut dysbiosis

Above considerations suggest that the colonic epithelium might contribute to immune 

functions that maintain homeostasis by shaping the microbiota to be beneficial (5). 

Therefore an imbalance in the microbial community could be caused by an underlying 

defect in epithelial immune functions that maintain homeostasis in the colon (17). Dysbiosis 

in the colon is commonly associated with an increased abundance of facultative anaerobic 

bacteria (28, 29), which is observed in individuals undergoing antibiotic therapy (30), 

consuming a high-fat Western-style diet (31, 32), or suffering from inflammatory bowel 

disease (33), colorectal cancer (34), irritable bowel syndrome (35, 36), or necrotizing 

enterocolitis (37). Since only facultative anaerobic bacteria can respire oxygen, it has been 

proposed that a shift in the microbial community from obligate to facultative anaerobic 

bacteria might be associated with a disruption in anaerobiosis, a concept known as the 

“oxygen hypothesis” (38). We now know that the population of facultative anaerobic 

bacteria expands in the colon during dysbiosis because a disruption of epithelial hypoxia 

increases the amount of oxygen emanating from the colonic epithelium (39). Thus, the shift 

in the colonic microbiota composition from obligate to facultative anaerobic bacteria, 

associated with many chronic human illnesses, might have a common underpinning in 

colonocyte dysfunction (27).

First insights into mechanisms that disrupt gut homeostasis were obtained by studying the 

effect of antibiotic treatment (40), which alters epithelial metabolism by depleting microbes 

producing fermentation products, including the short-chain fatty acids butyrate, propionate 

and acetate (12). Short-chain fatty acids are absorbed in the colon, where they bind to G-

protein coupled receptors to maintain the regulatory T-cell pool in the murine mucosa, 

thereby inhibiting intestinal inflammation (8–11). Importantly, butyrate activates PPARγ 
signaling in human epithelial cells (41) to drive the metabolism of surface colonocytes 

towards mitochondrial β-oxidation of fatty acids (23–25), which is important for 

maintaining epithelial hypoxia (12). Thus, antibiotic-mediated depletion of short-chain fatty 

acids silences epithelial PPARγ signaling (12) and lowers the number of regulatory T-cells 

in mouse models (8, 11). As a result, antibiotic treatment increases the inflammatory tone of 

colonic mucosa (42). The concomitant elevation of inflammatory signals shifts the 

metabolism of terminally differentiated surface colonocytes towards anaerobic glycolysis, a 

metabolism characterized by low oxygen consumption, high glucose consumption and high 

lactate release (12, 43). This metabolic reprogramming results in a loss of epithelial hypoxia 

(40). In turn, increased epithelial oxygenation elevates the amount of oxygen emanating 

from the mucosal surface, thereby driving an expansion of facultative anaerobic bacteria by 

aerobic respiration (Fig. 1B) (12, 44).
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Metabolic polarization of colonocytes

The picture emerging from these studies is that in a healthy gut, butyrate-activated PPARγ 
signaling increases oxygen consumption in terminally differentiated colonocytes by 

polarizing their intracellular metabolism towards mitochondrial β-oxidation of fatty acids. 

However, pro-inflammatory signals can change the colonocyte phenotype by reorienting 

their metabolism towards anaerobic glycolysis, thereby lowering oxygen consumption, 

which ultimately leads to a shift in the microbial community from obligate to facultative 

anaerobic bacteria (17). These two opposing colonocyte phenotypes are strikingly similar to 

alternatively activated (M2) and classically activated (M1) polarization states of 

macrophages, which also require a reversible metabolic reprogramming. Although the M1–

M2 dichotomy is an oversimplification, macrophages in vivo regularly mimic M1 or M2 

polarization stages, which continues to make this nomenclature useful (45). During M2 

polarization, interleukin (IL)-4 and IL-13 induce STAT6 signaling to activate PPARγ, which 

drives the energy metabolism of macrophages towards mitochondrial β-oxidation of fatty 

acids and oxidative phosphorylation (Fig. 2A) (46). In contrast, classically activated (M1) 

macrophages emerge when pro-inflammatory signals, such as gamma interferon (IFN-γ) or 

lipopolysaccharide (LPS), polarize the macrophage metabolism towards anaerobic 

glycolysis, thereby increasing glucose consumption and lactate release (Fig. 2B) (45). One 

metabolic signature of M1 macrophages is the conversion of L-arginine and oxygen into 

nitric oxide and L-citrulline by inducible nitric oxide synthase (iNOS). Similarly, metabolic 

polarization of colonocytes towards anaerobic glycolysis is accompanied by elevated iNOS 

synthesis and increased nitric oxide production (12). In the intestinal lumen, nitric oxide is 

converted into nitrate, which can be used by many facultative anaerobic bacteria as an 

electron acceptor for anaerobic respiration (47). In turn, colonocyte-derived nitrate 

contributes to a dysbiotic expansion of facultative anaerobic Proteobacteria, such as 

Escherichia coli, in the colon of antibiotic-treated mice (12, 42, 44). In conclusion, the 

different metabolic states colonocytes adopt during gut homeostasis or dysbiosis closely 

resemble the metabolic programming of M2 or M1 macrophages.

To better conceptualize how the host shapes its colonic microbiota, it seems useful to expand 

the concept that metabolic features of even non-hematopoietic host cells are deeply 

associated with immune functions. By analogy with macrophage polarization, microbiota-

derived signals, such as short-chain fatty acids, induce a homeostatic (C2) activation state in 

colonocytes to maintain anaerobiosis (Fig. 2C), which in turn ensures that obligate anaerobic 

bacteria dominate the microbial community, thereby completing the circuit and guaranteeing 

microbial conversion of fiber into fermentation products (Fig. 1A). Conversely, dysbiosis 

ensues when the colonic epithelium loses its homeostatic C2 state. For example, a metabolic 

reprogramming of terminally differentiated colonocytes towards an inflammation-associated 

(C1) activation state (Fig. 2D) (12, 43) elevates the luminal availability of host-derived 

respiratory electron acceptors, thereby fueling a dysbiotic expansion of facultative anaerobic 

Enterobacteriaceae, a family within the phylum Proteobacteria (12). Thus, maintenance of a 

microbiota composition characteristic of a healthy gut is intimately linked to a homeostatic 

C2-skewed metabolism of differentiated surface colonocytes in the colon.
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Colonocyte metabolism in ulcerative colitis

A homeostatic C2-skewed colonic epithelial surface can also be lost during excessive 

epithelial repair, which is observed during ulcerative colitis, an inflammatory bowel disease 

affecting the colon. To repair epithelial injury, pericryptal myofibroblasts secrete the 

mitogen R-spondin 2, which triggers division of colonic stem cells and undifferentiated 

transit-amplifying cells near the base of the crypts (48). Excessive epithelial repair promotes 

crypt elongation due to an accumulation of dividing transit-amplifying cells, which is known 

as colonic crypt hyperplasia (48), a common feature of ulcerative colitis. This hyperplasia 

gives rise to a reduction in the number of terminally differentiated epithelial cells, such as 

goblet cells, and a concomitant thinning of the mucus layer in patients with ulcerative colitis 

(49, 50). Since PPARγ is primarily synthesized in terminally differentiated epithelial cells 

(22), the accumulation of undifferentiated transit-amplifying cells is expected to lower 

epithelial PPARγ synthesis during colonic crypt hyperplasia, thereby reducing 

mitochondrial β-oxidation of fatty acids in the colonic epithelium. Consistent with this 

prediction, colonic epithelial cells from ulcerative colitis patients exhibit lower epithelial 

PPARγ synthesis (51) and reduced mitochondrial β-oxidation of butyrate to carbon dioxide 

(52). Low epithelial PPARγ synthesis resulting from the accumulation of transit-amplifying 

cells might also contribute to the development of a “leaky gut”, as diminished epithelial 

PPARγ signaling increases colonic permeability in a rat colitis model (53), presumably 

because PPARγ upregulates tight junction molecules in epithelial cells (Fig. 2C) (54). 

Importantly, as the metabolism of transit-amplifying cells is characterized by low oxygen 

consumption (19), an accumulation of these cells increases epithelial oxygenation (55). 

Another by-product of colitis is the generation of nitrate in the gut lumen (56), which 

depends on synthesis of the host enzyme iNOS (47). The increased luminal availability of 

oxygen and nitrate allow populations of facultative anaerobic Enterobactericeae, such as E. 
coli, to expand in mouse models of ulcerative colitis (Fig. 1C) (47, 57). Thus, the hypothesis 

that dysanaerobiosis is a driver of dysbiosis during ulcerative colitis (38, 58) can be 

explained mechanistically in animal models by the loss of a C2-skewed epithelial surface 

during colonic crypt hyperplasia.

The observation that ulcerative colitis can respond to antibiotic treatment suggests that 

dysbiosis exacerbates intestinal inflammation (59), although the underlying mechanism is 

not fully resolved. However, disruption of the gut microbiota with broad-spectrum 

antibiotics is itself associated with dysbiosis (60), indicating that a rational manipulation of 

the gut microbiota by targeting only potentially harmful microbes could provide greater 

benefit. Consistent with this idea, intestinal inflammation can be moderated by selectively 

inhibiting an expansion of facultative anaerobic Enterobactericeae through precision editing 

of the gut microbiota in mouse models of ulcerative colitis (61). This approach is based on 

selective inhibition of molybdenum-cofactor-dependent microbial respiratory pathways that 

are operational only during episodes of inflammation (61), thus providing a proof of concept 

that rational chemical modulation of specific enzymatic activities in complex microbial 

communities could be developed as an intervention strategy (62).

Since the host maintains homeostasis using a C2-skewed colonocyte metabolism, harnessing 

this epithelial control mechanism for therapeutic purposes could be an alternative strategy 
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for rebalancing the microbiota. Specifically, a PPARγ-mediated differentiation of transit-

amplifying cells into colonocytes would be expected to restore a C2-type epithelial surface, 

thereby remediating dysbiosis and reducing inflammation. Consistent with this idea, 

treatment with PPARγ agonists reduces crypt hyperplasia by inhibiting excessive division of 

transit-amplifying cells (63). Furthermore, topical treatment of the epithelial surface with the 

PPARγ agonist 5-aminosalicylic acid (5-ASA) is a first-line therapy for bringing mild to 

moderate cases of ulcerative colitis into remission (64–67) and is associated with lowering 

the abundance of Proteobacteria in the colonic microbiota (68). These data support the 

hypothesis that rebalancing the gut microbiota by reinstating a homeostatic C2 state of the 

colonic surface (12) represents a feasible therapeutic approach for restoring homeostasis 

(68).

Pathogens manipulate colonocyte metabolism for growth

Some intracellular bacterial pathogens can alter macrophage polarization to obtain nutrients 

from host cells to support microbial growth and long-term persistence in host tissue (69). 

One example is Brucella abortus, a pathogen that persists in M2-polarized macrophages of 

the murine liver and spleen. PPARγ-activated β-oxidation of fatty acids leads to a high 

availability of glucose (Fig. 2A), a carbon source that fuels pathogen growth within 

alternatively activated macrophages (70). Similar to an exploitation of macrophage 

polarization, recent findings suggest that bacterial pathogens can also manipulate colonocyte 

metabolism to favor their luminal growth during competition with the gut microbiota.

An important function of a C2-skewed colonic surface is to limit the luminal availability of 

host-derived respiratory electron acceptors, which confers niche protection against 

facultative anaerobic enteric pathogens (60). The enteric pathogen Salmonella enterica 
(family Enterobacteriaceae) overcomes such niche protection by using its virulence factors 

to trigger severe acute intestinal inflammation (71). Neutrophils migrating into the intestinal 

lumen during gut inflammation deplete Clostridia spp. (72, 73). This has the effect of 

decreasing the concentration of short-chain fatty acids, which steers the metabolism of 

terminally differentiated colonocytes towards an inflammation-associated C1 activation state 

and increased epithelial oxygenation (43, 74). The respiratory burst of phagocytes migrating 

into the intestinal lumen during S. enterica-induced colitis generates additional electron 

acceptors for anaerobic respiration, including nitrate (75, 76) and tetrathionate (77) (Fig. 

3A). S. enterica expands in the lumen of the inflamed gut using a combination of aerobic 

and anaerobic respiration (74). Respiration provides S. enterica a growth advantage over 

obligate anaerobic bacteria, because it enables the pathogen to consume microbiota-derived 

fermentation products, such as succinate (16), butyrate (15), ethanolamine (78) or 1,2-

propanediol (79). Interestingly, the high lactate release characteristic of a C1-skewed 

epithelial surface (Fig. 1B) also provides S. enterica with a host-derived carbon source to 

support its respiratory growth (43) (Fig. 3A). Thus, S. enterica uses its virulence factors to 

direct the epithelial surface towards a C1 activation state, which provides the pathogen with 

both a host-derived electron acceptor (i.e., oxygen) and a host-derived carbon source (i.e., 

lactate) and thus allows it to outcompete obligate anaerobic bacteria in the gut lumen (43, 

74).
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Citrobacter rodentium (family Enterobacteriaceae) is an enteric pathogen of mice that uses 

virulence mechanisms similar to those employed by human attaching-and-effacing 

pathogens, such as enteropathogenic E. coli (EPEC) or enterohaemorrhagic E. coli (EHEC) 

(80). C. rodentium uses its virulence factors to intimately attach to the colonic surface, 

which enables the pathogen to compete with the gut microbiota (81, 82). Epithelial injury 

caused by C. rodentium virulence factors triggers excessive epithelial repair, leading to 

colonic crypt hyperplasia and accumulation of undifferentiated transit-amplifying cells at the 

mucosal surface (Fig. 1C) (80). The resulting loss of a C2-skewed epithelium increases the 

amount of oxygen emanating from the mucosal surface and drives growth of C. rodentium 
through aerobic respiration (55) (Fig. 3B). Respiration supports growth of C. rodentium on 

microbiota-derived fermentation products, such as formate, which enables the pathogen to 

compete with the gut microbiota (55).

In conclusion, both S. enterica and C. rodentium use their virulence factors to ablate a 

homeostatic C2-skewed colonic surface, albeit through different mechanisms. However, in 

each case the pathogen alters colonocyte metabolism to obtain critical resources from host 

cells to allow it to compete against the resident gut microbiota. Thus, subversion of 

colonocyte cell metabolism by enteric pathogens is emerging as a novel strategy to 

overcome niche protection conferred by the gut microbiota.

Future directions

The finding that colonocytes play a central role in sculpting the gut microbiota points to 

changes in colonocyte metabolism as a common driver of dysbiosis in the large bowel (17). 

Here, we make the case that metabolic polarization of colonocytes functions as a control 

switch for the gut microbiota, mediating the shift between balanced and dysbiotic 

communities. There is compelling evidence that loss of C2-colonocytes contributes to 

dysbiosis in antibiotic-treated mice (12), chemically-induced colitis (47, 57) or infection 

with enteric pathogens (43, 55, 74). Interestingly, decreased colonic PPARγ synthesis is 

observed in chronically simian immunodeficiency virus (SIV)-infected rhesus macaques 

(83), suggesting that a change in colonocyte metabolism might also underpin the expansion 

of Proteobacteria observed in human immunodeficiency virus (HIV) infected subjects (84). 

However, additional work is needed to investigate whether changes in the microbial 

community from obligate to facultative anaerobic bacteria observed in patients with 

colorectal cancer (34), irritable bowel syndrome (35, 36) or individuals consuming a high-fat 

Western-style diet (31, 32) is caused by an underlying loss of C2-colonocytes. The view that 

our immune system balances the colonic microbiota by maintaining a C2-skewed epithelial 

surface suggests that harnessing this host control mechanism for therapeutic means could 

provide an alternative to targeting the microbes themselves for remediating dysbiosis and 

could provide new therapeutic strategies for rebalancing the colonic microbiota in a broad 

spectrum of human diseases.
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Figure 1: Epithelial metabolism shapes the colonic microbiota.
(A) During gut homeostasis, obligate anaerobic bacteria convert fiber into fermentation 

products, such as butyrate, to maintain differentiated colonocytes in a C2-skwed metabolic 

state. The metabolism of C2-colonocytes is characterized by high oxygen consumption, 

which maintains epithelial hypoxia (<1 % oxygen) to limit the amount of oxygen diffusing 

into the gut lumen. The color scale on the bottom indicates oxygen (O2) levels, which are 

between 3 % and 10 % in normoxic tissue (85). (B) Disruption of the gut microbiota by 

antibiotic treatment depletes microbe-derived fermentation products, causing a metabolic 

reorientation of terminally differentiated colonocytes towards a C1-skewed metabolism, 

which is characterized by high lactate release, low oxygen consumption and elevated 

synthesis of iNOS, an enzyme that generates nitric oxide (NO). Conversion of nitric oxide 

into nitrate (NO3
−) in the gut lumen together with oxygen (O2) emanating from C1-

colonocytes provide electron acceptors that drive an expansion of facultative anaerobic 

bacteria. (C) Epithelial injury activates epithelial repair responses, including a release of R-

spondin-2 to stimulate cell division of undifferentiated transit-amplifying cells. Excessive 

cell division of undifferentiated transit-amplifying cells leads to colonic crypt hyperplasia 

and an increased epithelial oxygenation. Nitrate and oxygen emanating from the mucosal 
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surface during colonic crypt hyperplasia drive an expansion of facultative anaerobic bacteria. 

PM, pericryptal myofibroblast; SC, stem cell, TA, undifferentiated transit-amplifying cell; 

C2, terminally differentiated C2-colonocyte; C1, terminally differentiated C1-colonocyte; 

GC, goblet cell.
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Figure 2: Extending the M1/M2 paradigm to colonocytes.
(A and B) Cytokine signaling can polarize macrophage metabolism and function, a process 

that is reversible. (A) Interleukin (IL)-4 and IL-13 stimulate polarization into alternatively-

activated M2 macrophages by inducing STAT6 signaling to drive a PPARγ-dependent 

activation of mitochondrial β-oxidation and concomitant repression of the Nos2 gene. (B) 

Pro-inflammatory signals, such as gamma interferon (IFN-γ), stimulate polarization into 

classically-activated M1 macrophages by shifting the host cell metabolism towards 

anaerobic glycolysis. (C) The microbiota converts fiber into fermentation products, such as 

butyrate, which stimulates a metabolic polarization into homeostatically-activated C2 

colonocytes by inducing a PPARγ-dependent activation of mitochondrial β-oxidation, 

thereby lowering epithelial oxygenation. (D) Pro-inflammatory signals stimulate a metabolic 

polarization into C1 colonocytes by shifting the host cell metabolism towards anaerobic 

glycolysis, thereby increasing epithelial oxygenation, which results in oxygen (O2) 

emanating from the epithelial surface. Lactate produced during anaerobic glycolysis is 

released into the gut lumen, whereas nitric oxide (NO) produced by iNOS is converted to 

nitrate (NO3
−). CO2, carbon dioxide.
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Figure 3: Enteric pathogens overcome niche protection by manipulating colonocyte metabolism.
(A) S. enterica (Salmonella) uses its virulence factors to trigger neutrophil transepithelial 

migration, which leads to a depletion of Clostridia, thereby lowering the luminal 

concentration of short-chain fatty acids, such as butyrate. The consequent metabolic 

reprogramming of the epithelium increases the luminal bioavailability of oxygen (O2) and 

lactate. The inflammatory response generates additional electron acceptors, including 

tetrathionate (S4O6
2-) and nitrate (NO3

−). These host-derived resources drive an expansion 

of the facultative anaerobic pathogen. (B) Virulence factors of C. rodentium (Citrobacter) 
cause epithelial injury, thereby triggering epithelial repair responses leading to colonic crypt 

hyperplasia. The resulting increase in epithelial oxygenation drives a C. rodentium 
expansion by aerobic respiration. APC, antigen presenting cell; PMN, neutrophil; SC, stem 

cell, TA, undifferentiated transit-amplifying cell; C2, terminally differentiated C2-

colonocyte; C1, terminally differentiated C1-colonocyte; GC, goblet cell.
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