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Abstract

An Exploration of Quantum Materials: From Topological Semimetals to Antiferromagnetic
Memory

by

Nityan L. Nair

Doctor of Philosophy in Physics

University of California, Berkeley

Professor James G. Analytis, Chair

This dissertation presents the results of several research projects on condensed matter
systems that fall within the broad scope of quantum materials. These are compounds which
possess emergent phenomena that would not be expected from conventional solid state the-
ory. These include the topological semimetals Cd3As2, TaAs, and ZrTe5, as well as the
frustrated antiferromagnet Fe1/3NbS2. In Cd3As2, a Dirac semimetal, focused ion beam
microstructured devices were found to exhibit a new type of coherent electron orbit. This
“Weyl orbit” involves the Fermi arc surface states. Although these states are a necessary
consequence of the topological nature of Cd3As2, they had not previously been observed in
electronic transport. In the Weyl semimetal TaAs, the same focused ion beam microstruc-
turing techniques were found to induce superconductivity on the device surface due to the
differential sputtering of tantalum and arsenic. Instead, mechanical polishing techniques
were used to thin devices in order to observe signatures of surface-driven transport, likely
stemming from Fermi arc states as well.

In ZrTe5, magnetization and magnetic torque measurements found a paramagnetic to dia-
magnetic crossover at the quantum limit magnetic field. This is the result of charge carriers
entering a chiral, zeroth Landau level pinned at zero energy. This is a direct consequence of
a topological band crossing, and therefore points to ZrTe5 as a Dirac semimetal. A possible
transition out of this topological phase was also observed as a function of temperature.

Finally, at sufficiently low temperatures and high current densities, Fe1/3NbS2 was found
to be a switchable antiferromagnet. A spin transfer torque produced by an applied current
was found to rotate the antiferromagnetic order. The rotation of these moments is reflected
in the anisotropic magnetoresistance, changing the resistance of the device. In this manner,
microstructured devices of Fe1/3NbS2 form an antiferromagnetic memory bit with electronic
write-in and read-out. The low current densities involved and tunability of the device re-
sponse point to Fe1/3NbS2 as a promising platform for antiferromagnetic spintronics.
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1.1 Landau level quantization. In the presence of a magnetic field, an otherwise
spherical Fermi surface becomes quantized into Landau tubes parallel to the field
direction. As the field is increased these tubes are pushed out of the Fermi surface,
leading to quantum oscillations. The Landau level indices are labelled. . . . . . 6

1.2 The thermal reduction factor. The oscillatory amplitude is reduced by in-
creasing temperature as shown for three different values of the effective mass.
Fitting the temperature dependence of measured oscillations can be used to ex-
perimentally extract the effective mass. . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The Dingle reduction factor. (a) The field dependence of SdH oscillations
with a frequency of 15T, effective mass of 0.1me, temperature of 1.8K, and scat-
tering time of 5ps. Both the thermal and Dingle reduction factors have been
included, and the envelope of the oscillations has been highlighted in red. (b)
When plotted in a Dingle plot, the oscillatory envelope becomes a line and the
Dingle temperature can be extracted from its slope, assuming the effective mass
has already been determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 The spin reduction factor. The presence of electron spin reduces the oscilla-
tory amplitude of each harmonic of the SdH oscillations. When summed over all
harmonics, a splitting of the peaks is observed. The summation over all harmon-
ics is also responsible for the asymmetric nature of the oscillations at high field.
The frequency, effective mass, temperature and scattering time are the same as
in Figure 1.3. The g-factor has been set to 5. . . . . . . . . . . . . . . . . . . . . 12

2.1 The evolution of topological materials. As the spin orbit coupling strength
is tuned, in the presence of inversion and time reversal symmetries, the band
gap in a conventional insulator can be inverted. In a high symmetry lattice, the
valence and conduction band crossing points will be protected, forming a pair of
Dirac nodes. Breaking inversion symmetry will split each Dirac node into a pair
of Weyl nodes. If a crystal symmetry is not present to protect the Dirac nodes,
they will hybridize to open a gap and form a topological insulator state. . . . . 16
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2.2 Fermi arc surface states in Weyl semimetals. (a) Two Weyl nodes of oppo-
site chirality are separated in momentum space. A Berry flux flows from one to
the other. A 2D slice of momentum space between the two nodes, therefore, has a
net Berry flux flowing through it and an associated Chern number of 1. The same
slices outside the two nodes have no Berry flux. (b) The 2D slices between the
Weyl nodes are effectively quantum Hall insulator states, and therefore have an
edge state associated with them. This edge state, in 3D, becomes a topologically
protected Fermi arc which terminates at the projections of the Weyl nodes on the
surface of the crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The FIB instrument. An image of an SEM/FIB dual-beam system manufac-
tured by FEI and used to fabricate transport devices. Important components
are labeled. The sample is loaded into the central vacuum chamber. An SEM
(top, behind cover) can be used for non-destructive imaging of the sample and
elemental analysis. The FIB column (leftmost) can be used to mill material to
produce lamellas and define device patterns. The gas injection system (GIS, mid-
dle left) can be used in conjunction with the FIB to deposit platinum for contacts
or contact repair. An x-ray detector (not shown, behind chamber) can be used
in conjunction with the SEM to perform energy dispersive x-ray spectroscopy for
elemental analysis. The entire system sits on a vibration dampening stage. . . 22

3.2 FIB fabrication. (a) The FIB is used to cut and undercut an approximately
rectangular lamella (green) from a bulk crystal. (b) A micromanipulator or other
probe (yellow) is used to remove the lamella from the crystal, breaking the con-
necting bridge in the process. (c) The lamella is then transferred to a drop of
epoxy (blue) on a substrate (purple). The lamella is embedded in the epoxy such
that the top surface remains exposed. (d) Gold (yellow) is deposited over the
entire sample. This step is not necessary if in-situ platinum deposition is used to
make electrical contacts instead. (e) The lamella is milled into the desired device
geometry using the FIB. (f) The gold is milled into individually addressable pads
that can be contacted using either silver epoxy or wire bonding. This step is
not necessary if using platinum deposition. Note: For sufficiently thin crystals,
milling of a lamella is not necessary and the crystal itself can be directly mounted
as shown in step (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Ion damage. (a) The simulated damage cascades caused by 60keV Ga2+ ions
impacting the surface of a TaAs crystal at normal incidence. (b) The displacement
of atoms in the TaAs lattice due to collisions with the Ga2+ ions. (c) The final
depth of the Ga2+ ions that remain embedded in the material. Both (b) and (c)
peak at around 20nm, quantifying the depth of the surface damage layer. These
calculations were performed for TaAs using the SRIM software package [43, 44]. 26
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4.1 Cd3As2 crystal and electronic structure. (a) The crystal structure of Cd3As2

is tetragonal and centrosymmetric with the space group I41/acd (No. 142). (b)
A schematic highlighting the two Dirac crossings about the Γ point and the asso-
ciated Dirac cones. Adapted from Ref. [52]. (c) The Weyl orbit connects Fermi
arc states on opposite crystal surfaces through the bulk Dirac nodes, forming a
coherent, closed quantum orbit. Adapted from Ref. [3]. . . . . . . . . . . . . . . 28

4.2 Cd3As2 flux growth. (a) An image of a crystal of Cd3As2 grown using the flux
technique. A 1:5 melt of Cd3As2:Cd was heated to 825°C and slowly cooled to
425°C where it was centrifuged. Crystals in excess of 2mm were obtained. (b)
Powder x-ray diffraction measurements on the resulting crystals show a good fit
to the I41/acd (No. 142) space group. Adapted from Ref. [3]. . . . . . . . . . . 30

4.3 Surface oscillations. (a) An SEM image of FIB fabricated Hall bars of varying
thicknesses. Contacts are colored gold and the active Cd3As2 crystal is purple.
(b) SdH oscillations can be observed in the resistivity upon application of a mag-
netic field. (c) A Fourier transform reveals two oscillatory frequencies. A 36.5T
frequency is observable at all field angles, while a 61.5T frequency is only apparent
when the field is normal to the Cd3As2 surface. Adapted from Ref. [3]. . . . . . 31

4.4 Effective mass and angle dependence. (a) The temperature dependence of
the SdH oscillations at 0°, normal to the device surface. The two frequencies
are fit to the Lifshitz-Kosevich thermal damping dependence to extract their
effective masses (see Section 1.4). The 36.5T frequency, labelled “Bulk”, has
a mass of 0.044me, in close agreement with previously reported results. The
61.5T frequency, labelled “Surface” has a mass of 0.050me. (b) A polar plot
shows the dispersion of the two SdH frequencies. The 36.5T frequency does not
disperse strongly with angle and is well explained by the approximately spherical
bulk Fermi surface of Cd3As2. The 61.5T frequency, however, disperses with the
1/ cos θ dependence characteristic of a surface origin. Adapted from Ref. [3]. . . 32

4.5 Thickness dependence and non-adiabatic correction. (a) The thickness
dependence shows an exponential suppression of the surface oscillations with a
characteristic sample width of 675nm, close to half the transport mean free path
(500nm). Note, the surface amplitude has been normalized by the bulk amplitude
to account for sample variation. (b) The position of the nth oscillation (red)
deviates from perfect periodicity (black dashed). This deviation is well described
by a non-adiabatic correction that would only be expected from a Weyl orbit
(purple) [24]. Adapted from Ref. [3]. . . . . . . . . . . . . . . . . . . . . . . . . 33
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4.6 Triangular device. (a) An SEM image showing two Cd3As2 transport devices:
a triangular device in red and a rectangular device in blue. (b) The cross-sections
of the two devices. When a magnetic field is applied, Weyl orbits in the triangular
device will have different lengths in the bulk whereas orbits in the rectangular
device will all have the same length. (c) The varying device width of the triangular
device (red) leads to destructive interference of the Weyl orbit oscillations. A
Fourier transform shows only the bulk frequency. The rectangular device (blue),
on the other hand, shows both surface and bulk frequencies. Adapted from Ref.
[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 The chemical vapor transport reaction. The solid precursor powder (black)
on the left (source) end of the quartz ampule reacts with iodine (purple), the
transport agent to form TaI5 and AsI3, both gaseous species (green). The prod-
ucts diffuse to the right (sink) end of the tube where the reaction runs in reverse,
depositing the TaAs into crystals (black). The iodine gas then diffuses back to
the source to continue the reaction. The ampule was held in this temperature
gradient for 14 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 TaAs bulk crystal, FIB device, and superconductivity. (a) A typical TaAs
crystal grown via the described chemical vapor transport method. (b) A FIB fab-
ricated resistivity bar device. (c) Resistance as a function of temperature for FIB
fabricated devices of TaAs and related compounds. All exhibit superconductivity
at low temperature (inset), likely due to an excess of tantalum or niobium on the
device surface. Adapted from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Surface conduction and high field magnetoresistance. (a) A 300nm NbAs
FIB device shows a rollover in the magnetoresistance, a deviation from the
quadratic behavior observed in bulk samples. The resistance can be well fit with
a parallel conduction model assuming a field-independent surface conductance.
Adapted from Ref. [5]. (b) High field measurements on a 270nm TaAs device
show no indication of surface oscillations stemming from Fermi arcs at any angle.
The oscillations observable at intermediate fields can be well explained by the
bulk Fermi surface. At high fields, the bulk is nearly completely short circuited
by the conducting surface and even the bulk quantum oscillations are suppressed. 42

5.4 Critical current scaling with device width. The critical current does not
directly scale with the surface area of the device, as would be expected for a
supercurrent carried exclusively by the surface. Instead, there is an “excess”
critical current which may indicate that some of the supercurrent is carried in
the bulk. If so, this would be an example of proximity induced superconductivity
in a Weyl semimetal and may provide a route to the realization of Majorana
fermions. Adapted from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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5.5 A new oscillation in TaAs. (a) The longitudinal (upper) and Hall (lower)
resistivities of a polished 33 µm Hall bar device at 2K (blue) and 10K (red, dotted)
with field applied along the [001] direction, normal to the plane of the device. (b)
The 2K resistivities from panel (a) with the 10K curves subtracted. An additional
oscillation can be observed, onsetting around 8T with a frequency of 285T. (c)
The resistivity shows metallic behavior down to 1.8K with a residual resistivity
ratio of 56. No superconductivity is observed. The crystal structure of TaAs is
shown in the inset, with tantalum atoms in red and arsenic in blue. Adapted
from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Angle dependence. (a) The derivative of the Hall resistivity is plotted against
inverse magnetic field at various angles. As the field is rotated into the plane of
the device, the oscillations increase in frequency and move to higher field. (b) The
angle dependence of the oscillatory frequency shows the characteristic 1/ cos(θ)
dependence associated with a two-dimensional cyclotron orbit. Inset: The angle
dependence of the low frequency SdH oscillations is in good agreement with what
has been measured in bulk samples of TaAs [57]. Adapted from Ref. [4]. . . . . 46

5.7 Temperature dependence and effective mass. (a) The temperature de-
pendence of the SdH oscillations with field along the [001] axis and a 10K back-
ground subtraction. (b) The oscillatory amplitude can be well-fit by the standard
Lifshitz-Kosevich thermal reduction factor and yields an effective mass of 0.066me

for the low-frequency bulk oscillations and 0.5me for the high-frequency surface
oscillations. (c) A Dingle analysis of the bulk SdH oscillations gives a Dingle
temperature of 3.8K corresponding to a quantum lifetime of 0.32ps. Adapted
from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 Additional samples and rotation axes. Additional Hall bar devices fabri-
cated from different TaAs samples. The 285T frequency oscillation is consistently
observed with field along the [001] axis and disperses as 1/ cos(θ) along all field
rotation directions. Adapted from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . 48

5.9 Integrated Laue diffraction pattern. A Laue diffraction pattern taken by
scanning a 1 µm x-ray spot across a device and summing the 2500 resulting indi-
vidual patterns. All peaks can be fit by TaAs with no impurity phases observed. 50

5.10 Thickness dependence. Longitudinal (a) and Hall (b) resistivities show a non-
trivial thickness dependence. Resistivities were calculated using bulk geometrical
factors. For a purely bulk conductivity, this would cause the curves to collapse.
In addition, the SdH oscillations in the transverse magnetoresistivity appear to
show a phase inversion between the 14µm/43µm devices and the 130µm/272µm
devices. Insets: The thickness dependence can be well-modeled with a parallel
channel conductance model incorporating both surface and bulk contributions
to device resistance. This model captures the overall shape and ordering of the
resistivity curves and the phase inversion of the SdH oscillations. Adapted from
Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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5.11 High field transport. (a) Above approximately 14T additional structure can
be observed in the high frequency SdH oscillations. (b) A Fourier transform shows
two frequencies, 274T and 287T, emerging at high field. Adapted from Ref. [4]. 52

5.12 Theoretical expectations from quantum interference orbits involving
Fermi arcs. A DFT band structure calculation showing trivial and Fermi arc
surface states on the [001] surface of TaAs. The interference orbit between two
adjacent Fermi arcs is highlighted in orange. The area enclosed agrees closely
with the SdH oscillation frequency observed in transport. The orbit near X is
7% larger than the equivalent orbit near Y, in remarkable agreement with the
frequency splitting observed at high fields (Figure 5.11). Adapted from Ref. [4]. 53

6.1 Magnetic torque. (a) A microscope image of a piezoresistive cantilever with
sample and dummy cantilevers. (b) The sample (blue) generates a torque when
the magnetization is not aligned with the applied magnetic field. This flexes the
cantilever (black) and leads to a measurable change in its resistance. . . . . . . 59

6.2 Magnetization, torque, and resistivity. (a) The magnetization of ZrTe5

with field applied along the crystallographic b-axis shows a clear paramagnetic
response at low field and a transition to a diamagnetic response at high field.
Inset: The crystal structure of ZrTe5 with Zr atoms in purple and Te atoms in
orange. (b) The magnetic torque measured on the same sample as (a) is in close
agreement with the magnetization and exhibits the same transition from para-
to dia-magnetism. Inset: An image of the ZrTe5 sample mounted on a torque
cantilever with the long direction along the a-axis. (c) The magnetoresistance
of ZrTe5 shows pronounced SdH oscillations and the onset of the quantum limit
in the vicinity of the sign change observed in (a) and (b). Inset: The low-
field oscillations show no evidence of beating, implying that only one spin-split
frequency is being observed. All measurements were performed at 1.8K. Adapted
from Ref. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Angle dependence. (a) Torque measured at different magnetic field orienta-
tions in the b-c plane. The paramagnetic response and cross-over field grows
with field angle. Two kinks can be extracted from the data. The more prominent
low-field kink (filled circles) can be tracked for all angles. The less prominent
high-field kink (empty circles) is only observable for intermediate angles. (b) The
magnetoresistance measured at different field orientations in the b-c plane shows
that the quantum limit grows monotonically with increasing field angle. (c) The
kinks in the magnetic torque from (a) (red circles) compared to the SdH oscilla-
tion frequency extracted from the magnetoresistance data in (b) (black circles).
The quantum limit, which occurs at the SdH frequency, tracks well with the high-
field kink over the observable range. All measurements were performed at 1.8K.
Adapted from Ref. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



ix

6.4 Bandstructure calculations. (a) Upper: Simulated magnetization of a single
Dirac band at constant density, with (red) and without (blue) a linear diamag-
netic background. The vertical dashed line at 3T indicates where the Dirac band
enters its quantum limit. Lower: Dirac band-structure at magnetic field 3T with
chemical potential µ indicated by the grey dashed line. (b) Simulated magneti-
zation for two Dirac bands with (red) and without (blue) a linear diamagnetic
background. The response from the high velocity Dirac pocket enhances the para-
magnetic response at low field; with background diamagnetism, the n = 2 peak
may become dominant. Adapted from Ref. [6]. . . . . . . . . . . . . . . . . . . 63

6.5 DFT calculations. Calculated electronic band structure for ZrTe5 with (dashed
line) and without (solid line) spin-orbit coupling. Lattice parameters were fixed
to experimental values. The Fermi level is set to 0 eV and marked by the dashed
line. Adapted from Ref. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.6 Temperature dependence. (a) Temperature dependence of the magnetization
with magnetic field oriented along the crystallographic b-axis. The low-field para-
magnetic response is rapidly suppressed with increasing temperature, becoming
completely diamagnetic by 5K. Above 30K, the magnetization approaches the
constant, temperature-independent diamagnetic response typically found in or-
dinary metals. (b) The resistivity shows a peak around 30K, which has been
attributed to a Lifshitz transition in ZrTe5 and matches the temperature scale at
which the paramagnetism disappears. (c) The field, B0, at which the magneti-
zation changes sign evolves in a manner suggestive of an order parameter. The
dashed line is a guide with functional form B0 ∝ (1 − T/Tc)2/3. Adapted from
Ref. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1 Spin transfer torque switching in FMs and AFMs. (a) The antidamping
torque in a FM rotates the local moments by 180° resulting in a reversal of the
magnetization. Adapted from Ref. [115]. (b) In AFMs, the antidamping term
results in a 90° rotation of the moments and associated Néel vector. Adapted
from Ref. [114]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Magnetization measurements. (a,b) C-axis and in-plane magnetization mea-
surements show a peak at the AFM transition temperature of 42K in both 0.1T
field cooled (FC) and zero field cooled (ZFC) measurements. The FC and ZFC
curves deviate below approximately 25K. (c,d) C-axis and in-plane magnetization
measurements at 2K and 30K. Hysteresis is present with an out-of-plane field at
2K. This hysteresis vanishes by 30K and is not present for an in-plane field at
any temperature. Adapted from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . 70
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7.3 Basic switching results. (a) A false-color SEM image of a Fe1/3NbS2 switching
device. The transverse resistivity (R⊥) is measured using the yellow contacts. A
100µA (5.4×102 A/cm2) AC probe current is applied along one yellow bar, while
the voltage drop is measured along the orthogonal bar using standard lock-in
techniques. Simultaneously, DC current pulses can be applied along the red and
blue contacts in the [100] and [12̄0] directions. (b) When orthogonal current pulses
are applied, the transverse resistivity switches between two states. Applying
5.4 × 104 A/cm2 for 10ms along the blue contacts switches the device into a
low transverse resistivity state. Applying the same pulse along the red contacts
switches the device into a high state. The time between pulses is 30 seconds
and the switching has been repeated 10 times to show the robustness of this
behavior. The measurement was performed at 2K. (c) The crystal structure of
Fe1/3NbS2 is that of 2H-NbS2 with iron atoms intercalated between layers. At
this stoichiometry, the iron intercalants form an ordered lattice with space group
P6322 (no. 182). Adapted from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Multiple pulses. The switching response of the device with the same contact
geometry shown in Figure 7.3a. Five pulses are applied in each orthogonal direc-
tion (blue and red). After the first pulse switches the resistance state, the four
subsequent pulses have no effect, indicating that the response has saturated after
the application of the first pulse. Adapted from Ref. [7]. . . . . . . . . . . . . . 72

7.5 Temperature and field dependence. (a) The switching behavior is suppressed
by temperature. By 40K, the switching amplitude is completely suppressed, as
shown in the inset. The temperature-dependent background of R⊥ has been
subtracted from all curves to highlight only the switching component. (b) The
switching behavior at 2K is suppressed by an out-of-plane magnetic field, although
it shows surprising robustness and can be observed at fields as high at 12T.
The field-dependent background of R⊥ has been subtracted to highlight only the
switching component. The extracted switching amplitude is shown in the inset.
(c,d) Application of an in-plane field has little effect on the switching behavior,
which can still be observed as high as 14T. Measurements were performed at
2K and for two orthogonal field directions: [100] (c) and [12̄0] (d). Note, these
measurements were performed on a different device from the previous two panels.
Adapted from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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7.6 Memory persistence. Field sweeps performed after applying DC current pulses
to a FIB device show the robustness of the switching memory. Applying a DC
current pulse along the A (B) bar of the device at 0T switches the device into a
low (high) transverse resistance state. A magnetic field along the c-axis is then
swept from 0T to +14T to -14T and back to 0T. Although the sample returns to a
different absolute resistance value, due to the hysteretic spin glass background, the
difference in resistance between the A and B pulses remains unchanged, indicating
that the AFM phase remembers which state it was initially switched to and the
magnetic field does not erase this information. This measurement was performed
at 2K. Adapted from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.7 Geometry dependence and AMR. (a) The switching behavior is dependent
on device geometry. As the angle between the AC probe current and the DC
write pulses is rotated (top row), the switching signal moves between the trans-
verse (red, middle row) and longitudinal (blue, bottom row) resistance channels,
picking up a sign change between 90° and 135°. Black arrows denote the fixed
directions of the DC pulses, with the horizontal bar pulsed first followed by the
vertical bar, repeated five times. Red denotes the transverse resistivity. Blue de-
notes the longitudinal resistivity and the direction of the AC probe current. The
measurement configuration at 45° is equivalent to that in Figure 7.3. (b) The zero
field AMR shows a very similar angle dependence. Every 45° rotation shifts the
signal from one resistance channel to the other. Moreover, the sign of the AMR
switches in the same angular range as the sign change in the switching. As shown
in the inset, the AMR vanishes at approximately 40K, the same temperature at
which the switching behavior disappears. A constant offset has been subtracted
from both curves. Adapted from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . 77

7.8 Field dependence of the AMR. (a) The field dependence of the zero field AMR
measured on a bulk crystal and fit to the characteristic sinusoidal dependence.
(b) The zero field AMR amplitude grows with field without saturating up to 14T.
This may indicate that magnetic domains are present and are being successively
polarized with increasing magnetic field. This is in contrast to the electrical
current dependence, where saturation appears to be reached after a single pulse.
Adapted from Ref. [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.9 Pulse current density and duration dependence. (a) The switching ampli-
tude saturates at large current densities but shows non-monotonicity and a local
maximum at small currents. Switching can be observed at current densities as
low as 2.7 × 104 A/cm2. The extracted switching amplitude is plotted in the
inset. Measurements were performed at 2K in the absence of an external field
with a 20ms pulse duration. (b) The pulse duration shows a very similar behav-
ior to the current dependence, with a local maximum followed by saturation of
the switching amplitude. Switching is observed as low as 10µs, the limit of the
experimental apparatus. Measurements were performed at 2K in the absence of
an external field with a 5.4× 104 A/cm2 current density. Adapted from Ref. [7]. 79
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7.10 Second switching device. (a) An SEM image of an additional switching device.
The narrow bars are used for resistivity measurements and the wide bars for
current pulses. The A bar is pulsed first followed by the B bar. (b) The current
dependence at 2K shows the non-monotonic behavior observed in first device.
The switching response saturates around 5.6 × 104 A/cm2. (c) The switching
response is suppressed by temperature, disappearing by 35K. (d) The switching
is also suppressed by magnetic field, disappearing around 12T. Measurements
were performed at 2K. Temperature and field-dependent backgrounds have been
subtracted from (c) and (d). Adapted from Ref. [7]. . . . . . . . . . . . . . . . . 81

7.11 Iron concentration: switching. Devices of FexNbS2 were fabricated and mea-
sured for five different iron stoichiometries, x. The normalized traverse resistivity
is shown at various temperatures. Applying the same A/B pulse sequence to
each device results in changes to the high/low switching order depending on iron
concentration. Moreover, at intermediate concentrations the switching amplitude
is non-monotonic as a function of temperature and shows a sign reversal. . . . . 83

7.12 Iron concentration: AMR. The zero field AMR measured on crystals of var-
ious iron stoichiometries, x. The AMR shows a sign change as a function of
temperature at low temperatures for the intermediate intercalants (x = 0.33 and
x = 0.34). Interestingly, the AMR shows the same sign at opposite ends of the
intercalation spectrum, in contrast to the switching, which shows opposite sign. 85
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Chapter 1

Introduction

The term quantum materials encompasses many different condensed matter systems in which
quantum mechanical effects give rise to new emergent phenomena that would not be expected
from the conventional theory of solids. This includes materials in which topological order is
present, magnetic systems with strong correlations and frustrations, and strongly correlated
materials which cannot be described using a single particle bandstructure. This dissertation
will deal primarily with the first two: topological materials in which topological order pa-
rameters lead to phase transitions outside of the standard paradigm of broken symmetries,
leading to phenomena such as protected surface states and chiral Landau levels, and frus-
trated antiferromagnetic materials in which complex interactions with conduction electrons
allow for the manipulation of the antiferromagnetic order and subsequent storage of infor-
mation. These two branches of condensed matter physics are unified by the experimental
techniques used to probe them. Their emergent physics, in this work, has been pursued
using similar electronic transport measurements and device microfabrication techniques.

Micro- and nanofabrication have proven to be incredibly useful, not just in producing
devices for integrated circuits, but in pursuing new phenomena in condensed matter physics.
In 1972 Philip W. Anderson published a paper titled “More Is Different”, in which he
discussed the role of emergent phenomena [1]. In short, understanding the behavior of a single
particle, atom, or individual, is not equivalent to understanding the behavior of a macroscopic
collective. Although both obey the same fundamental laws, the collective may show new
emergent phenomena that are difficult, if not impossible, to predict. Superconductivity is
one such famous example.

More than a decade earlier, Richard P. Feynman gave a talk titled “There’s plenty of room
at the bottom” in which he advocated for the miniaturization of devices and machines [2]. He
envisioned new techniques that would enable scientists to directly manipulate atoms. This
would allow for the creation of new materials and devices on scales previously not thought
possible, and miniaturization of everything from computers to information to motors.

The devices fabricated and measured in this dissertation fall between these two limits.
They are large enough that they maintain the emergent phenomena associated with their
large numbers of atoms, such as topological surface states and antiferromagnetism. By fabri-
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cating them down to the small length scales, however, those properties can be observed and
manipulated in ways not possible at the macroscopic level. These observations are performed
through standard electronic transport measurements. Applying electrical currents and de-
tecting voltages on a sample can measure properties such as electrical resistance, providing
an understanding of how charge carriers move through the material as a function of mag-
netic field, temperature, device geometry, etc. Although a very simple and straightforward
measurement, it is amazing how much information can be extracted. Carrier densities and
types, Fermi surface shapes, magnetic orders, and so on can be understood. Extracting these
values from device resistivities is discussed in Chapter 1. The microscopic device fabrication
was primarily done using focused ion beam fabrication techniques and is discussed in detail
in Chapter 3.

In topological materials, introduced in Chapter 2, these techniques were used to observe
the presence of surface states in Cd3As2 and TaAs, a Dirac and Weyl semimetal, respectively
[3, 4]. Thinning the materials to the micrometer scale significantly enhances the surface-to-
bulk ratio. This allows surface states to carry a larger proportion of the current, increasing
their contribution to the overall transport, making their experimental signatures more easily
resolvable. Moreover, it allows for interactions between states on opposite surfaces of a
device. In Cd3As2, this led to the discovery of a new quantum orbit and associated resistivity
oscillations involving the topological Fermi arc surface states, as discussed in Chapter 4 [3].

In TaAs, the same microfabrication techniques caused the surface of the device to become
superconducting due to an excess of tantalum [5]. Modifying the fabrication process to
make use of mechanical polishing techniques overcame this difficulty, and, in sufficiently thin
samples, two dimensional quantum oscillations and an anomalous thickness dependence were
observed. These indicate the presence of Fermi arc surface states and is discussed in Chapter
5 [4].

ZrTe5 is a material that has been alternately shown to be topological and trivial, leading
to some ambiguity. Bulk magnetization and magnetic torque measurements making use
of the unique Landau level quantization spectrum of topological Dirac semimetals found a
transition between paramagnetic behavior below the quantum limit to diamagnetic behavior
above. In general, this would not be expected from conduction electrons in a non-magnetic
system. The origins of this can be traced to the chiral Landau level in Dirac semimetals
pinned at zero energy. The magnetization and magnetic torque measurements therefore point
to ZrTe5 as being a topological Dirac semimetal, albeit with a complicated bandstructure
and possible topological phase transition. ZrTe5 is discussed in Chapter 6 [6].

In the frustrated antiferromagnet Fe1/3NbS2, microfabrication was used to create multi-
contact devices and increase current densities by decreasing device cross-sections. At these
large current densities, the conduction electrons exert a spin transfer torque on the local iron
moments, reorienting the antiferromagnetic order at low temperature. The ordering direc-
tion of the Néel vector can be read out via the device resistance. In this manner, Fe1/3NbS2

forms a fully electronically-accessible magnetic memory bit. Electronically-accessible mag-
netic memory storage, especially in antiferromagnets, has significant application in commer-
cial devices, making Fe1/3NbS2 a very promising platform. Antiferromagnets are predicted
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to have faster switching times, reduced crosstalk, and increased resilience to magnetic per-
turbations compared to ferromagnets, in addition to being non-volatile. The details of this
switching behavior are discussed in Chapter 7 [7].

Quantum materials represent the forefront of research in condensed matter and modern
microfabrication techniques allow their properties to be rapidly explored. New emergent
phenomena such as topological surface states and antiferromagnetic switching are not only
interesting from a basic science perspective, but promise device applications in areas such as
quantum computing and memory storage. Harnessing the capabilities of quantum materials
will allow researchers to answer fundamental physical questions and make devices for the
21st century.

1.1 Semiclassical motion of electrons in magnetic

fields

Measuring the response of electrons to electric and magnetic fields can be extremely useful to
understanding their behavior and interactions at the microscopic level. This class of measure-
ments is called electronic transport and has proven to be extremely useful in exploring new
materials. Among other things, transport measurements can be used to determine charge
carrier densities and types, measure Fermi surface structure, observe many-body quantum
mechanical states, and ascertain topological character.

When an electric field is applied to charge carriers in a metal, they will be accelerated
along the field direction. Scattering events, however, will cause momentum to be dissipated
into the lattice. Averaging over scattering events, gives the charge carriers an overall drift
velocity defined by ~v = µ~E, where µ is the carrier mobility. This makes the current density,
~j, directly proportional to the applied electric field, ~j =

↔
σ ~E, where

↔
σ is the conductivity

tensor. This is Ohm’s law and can be alternatively written in terms of the resistivity tensor,
↔
ρ , the inverse of the conductivity tensor.

In a time reversal symmetric system,
↔
σ will be a symmetric tensor. The breaking of

time reversal symmetry, such as by the application of a magnetic field, will introduce anti-
symmetric off-diagonal components to the conductivity tensor. This is the Hall effect and
is given by ρxy = ±B/ne in a single-band system, where B is the magnetic field, n is the
carrier density, e is the electron charge, and ± is for holes and electrons, respectively.

As can be seen, magnetic fields can be useful in determining the carrier density and type
in a metal via the Hall effect. At large magnetic fields, however, quantum mechanical effects
become apparent and transport measurements can be used to extract information about the
shape of the Fermi surface and nature of quasiparticle excitations.

Charge carriers in a crystal lattice under the influence of electric and magnetic fields are
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governed by the following equations of motion:

~
∂~k

∂t
= e

[
~E + ~v × ~B

]
(1.1)

∂~x

∂t
= ~v =

1

~
~∇kε(~k) (1.2)

where ~k is the wavevector associated with the crystal momentum, ~E and ~B are applied
electric and magnetic fields, and ~v is the band velocity. In the presence of a constant
magnetic field, Eq. 1.1 shows that charge carriers will move in a trajectory perpendicular
to the applied field and band velocity. Given that the band velocity is proportional to the
gradient of the band energy, particles will travel on trajectories that map out constant-energy
contours of the electronic Fermi surface in a plane normal to the magnetic field.

In free space, this describes a circular cyclotron orbit. In a crystal lattice, this will take
on the more complex cross-sectional shape of the Fermi surface. In either case, the total
amount of time, T , to complete an orbit is found by integrating Eq. 1.1

T =

∮
dk

∂k/∂t
=

∮
~

ev⊥B
dk (1.3)

where v⊥ is the component of the band velocity perpendicular to the magnetic field. Inserting
Eq. 1.2 allows the integral to be performed and yields an expression for the period of a
cyclotron orbit, which can then be inverted to find the cyclotron frequency, ωc.

ωc =
2π

T
=

2πeB

~2
/

(
∂Ak
∂ε

)
(1.4)

where Ak is the area of the cyclotron orbit in k-space. Given that the cyclotron frequency
is ωc = eB/m in free space, Eq. 1.4 provides an expression for an effective mass

m∗ =
~2

2π

∂Ak
∂ε

(1.5)

Particles in a lattice will behave as their free space counterparts with a modified effective
mass, m∗. Note, this is the cyclotron effective mass and may differ from the band effective
mass defined as m∗ = ~2(∂2ε/∂k2)−1.

In any real crystal lattice, impurities and phonons are present that will act to scatter
charge carriers and relax momentum to the lattice. Assuming that the scattering events
are isotropic and act to relax the charge carrier’s crystal momentum back to its field-free,
thermal value, the scattering can be parameterized by a characteristic time scale τ . Eq. 1.1
can then be modified to incorporate τ as

~(
∂

∂t
+

1

τ
)~k = e

[
~E + ~v × ~B

]
(1.6)
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In steady-state, with the application of a constant electric and a magnetic field along the
ẑ-direction, this equation can be solved for the conductivity tensor

↔
σ =

ne2τ

m∗
1

1 + (ωcτ)2

 1 ωcτ 0
ωcτ 1 0
0 0 1 + (ωcτ)2

 (1.7)

The conductivity tensor can be inverted to find the resistivity tensor. Note, however, that
in this simple treatment, there will be no magnetoresistance in ρxx due to the perfect com-
pensation of the off-diagonal elements. A more rigorous derivation involving more realistic
anisotropic scattering would yield the quadratic magnetoresistance, ρxx ∝ B2, typically ob-
served in metallic systems [8, 9].

1.2 Landau levels

In the presence of strong magnetic fields, electrons can no longer be treated semiclassically,
and must instead be treated as quantum mechanical objects. The periodic circular motion
of electrons in the plane normal to the magnetic field imposes a requirement that the orbit
accumulate a phase which is an integer multiple of 2π, otherwise the electron wavefunctions
will destructively interfere. This requirement leads to the quantization of allowed energy
states into Landau levels. A more complete derivation can be found in [10].

For a parabolic band, the exact energy spacing of the Landau levels is given by

εn = ~ωc(n+ 1/2) +
~2k2

‖

2m∗
(1.8)

where ωc = eB/m∗ is the cyclotron frequency, k‖ is the component of the wavenumber
parallel to the applied field, m∗ is the effective mass, and εn is measured from the band
bottom. Figure 1.1 shows the transformation of this spherical Fermi surface into a series of
Landau tubes in the presence of a magnetic field. These energy levels will have a degeneracy
per unit area of D = eB/2π~.

In two dimensions, k‖ = 0 and Landau quantization leads to the quantum Hall effect [11].
In three dimensions, Landau quantization transforms an otherwise spherical Fermi surface
into a series of cylinders parallel to the direction of the applied magnetic field. As these
cylinders are pushed through the Fermi level, sharp changes in the density of states cause
oscillations periodic in inverse magnetic field in many material parameters. When observed
in magnetization this is the de Haas-van Alphen (dHvA) effect. When observed in resistivity,
this is the Shubnikov-de Haas (SdH) effect.

To see that these oscillations are periodic in inverse field, consider the nth Landau level
as it passes the Fermi energy, εF . Its passage through the Fermi energy will lead to a drop
in the density of states, which manifests in magnetization and transport measurements as
an oscillation. The passage of the (n− 1)th Landau level will similarly lead to an oscillation.



CHAPTER 1. INTRODUCTION 6

Figure 1.1: Landau level quantization. In the presence of a magnetic field, an otherwise
spherical Fermi surface becomes quantized into Landau tubes parallel to the field direction.
As the field is increased these tubes are pushed out of the Fermi surface, leading to quantum
oscillations. The Landau level indices are labelled.

The period of these oscillations is given by the difference in the fields at which they pass
through the Fermi level.

εn =
~e
m∗

Bn(n+ 1/2) = εF , εn−1 =
~e
m∗

Bn−1(n− 1/2) = εF (1.9)

where εF = ~2k2
F/(2m

∗) = ~2Ak/(2πm
∗) for a parabolic dispersion, and Ak is the extremal

cross-sectional area of the Fermi surface normal to the field direction. Solving the above
system of equations yields the familiar Onsager relation for quantum oscillations periodic in
inverse magnetic field,

∆

(
1

B

)
=

1

Bn−1

− 1

Bn

=
2πe

~Ak
(1.10)

F =
~Ak
2πe

(1.11)

The oscillatory period, ∆
(

1
B

)
, is inversely proportional to the extremal cross-sectional

area of the Fermi surface. Conversely, the oscillatory frequency, F , will be proportional to
the cross-sectional area of the Fermi surface. Note, only the extremal Fermi surface areas
contribute to the overall response due to the destructive interference of all other orbits.
Quantum oscillations have proven extraordinarily useful in determining the Fermi surface
structure of complex materials.
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1.3 Landau levels in topological semimetals

The previous section assumes a parabolic energy dispersion of the charge carriers. In a topo-
logical semimetal, however, the electrons have a linear dispersion given by the Hamiltonian
H = ~vF~σ · ~k, where ~σ are the Pauli matrices (see Chapter 2). Solving for the eigenvalues
of this Hamiltonian in the presence of a magnetic field gives the energy dispersion relation

εn = ±vF
√

2~eBn+ ~2k2
‖ (1.12)

There are two important things to note in this modified Landau level dispersion. First,
the Onsager relation (Eq. 1.11) will remain unchanged. This can be shown by once again
comparing the fields at which the εn and εn−1 pass through the Fermi level. As a result,
Fermi surfaces corresponding to linear bands will also be expected to produce quantum
oscillations in material parameters proportional to their extremal areas, given sufficiently
low temperatures and scattering rates.

The second feature is that the n = 0 Landau level behaves very differently. The energy of
this level is ε0 = ±vF~k‖, where ± comes from the sign of the Hamiltonian and is associated
with the chirality of the underlying band crossing. This Landau level does not disperse with
magnetic field and will instead remain pinned at the energy of the band crossing. Moreover,
it has a fixed band velocity either parallel or antiparallel to the magnetic field. Charge
carriers in this Landau level will travel along the magnetic field direction seemingly forever.
This is resolved either by large angle scattering events that scatter carriers from one band
crossing to another, or by the surface of the crystal. At the surface, the chiral n = 0 states
are terminated by Fermi arc surface states, which connect Landau levels of opposite chirality.
In this manner, an orbit can be formed as carriers move between chiral Landau levels via the
Fermi arcs. This orbit is a key transport signature of Fermi arcs and is discussed in detail
in Chapter 4.

1.4 The Lifshitz-Kosevich formula

Although the treatment of Sections 1.2 and 1.3 motivates why periodic quantum oscillations
should be expected in strong magnetic fields, the form of the oscillations themselves is quite
complicated and must take into account experimental considerations such as non-spherical
Fermi surfaces, finite temperature, finite scattering times, and the presence of spin. The first
derivation of the Lifshitz-Kosevich functional form of quantum oscillations was done in 1954
by I. M. Lifshitz and A. M. Kosevich [12].

dHvA and SdH oscillations can be derived from calculating the thermodynamic grand
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potential, Ω. Ω is obtained from summing over all the available energy states of the system

Ω = −kBT
∑
ε

ln

(
1 + exp

(
µ− ε
kBT

))
(1.13)

= −kBT
∫ ∞
−∞

dk‖

(
eBV

~2π2

)∑
n

ln

(
1 + exp

(
µ− εn
kBT

))
(1.14)

where εn are the energy levels of the Landau levels and the Landau level degeneracy has
been inserted. At zero temperature and without scattering, this integral can be solved as

outlined in [13]. Keeping only the oscillatory component,
∼
Ω, it becomes

∼
Ω =

e5/2V B5/2

23/2π7/2~1/2m∗

∣∣∣∣∣∂2Ak
∂k2
‖

∣∣∣∣∣
−1/2 ∞∑

p=1

1

p5/2
cos

[
2πp

(
F

B
− 1

2

)
± π

4

]
(1.15)

where V is the volume of the sample, F is the oscillatory frequency as defined in Eq. 1.11,
and the sum is taken over all harmonics, p. Orbits from various slices of the Fermi surface
will, in general, have different frequencies and add destructively. This is not the case at the
extremal points. At the local maximum (minimum) orbits of higher (lower) frequency are
not available to interfere. As a result, F is set by the maximal and minimal cross-sectional
areas of the Fermi surface normal to the magnetic field.

The oscillatory component of the magnetization parallel to the field direction is related to
the grand potential by M‖ = − ∂Ω

∂B
|µ=εF . Keeping only the leading order term, this becomes

∼
M‖ = − e5/2V B1/2F

21/2π5/2~1/2m∗

∣∣∣∣∣∂2Ak
∂k2
‖

∣∣∣∣∣
−1/2 ∞∑

p=1

1

p3/2
sin

[
2πp

(
F

B
− 1

2

)
± π

4

]
(1.16)

The magnetization (and associated measurements such as magnetic torque) will show oscil-
lations with a principal frequency set by the extremal area of the Fermi surface. These de
Haas-van Alphen (dHvA) oscillations were first observed in elemental bismuth in 1930 and
have since become an invaluable tool in exploring the Fermi surfaces of materials [14].

In addition to magnetization, quantum oscillations can be observed in conductivity (or
resistivity). This is the Shubnikov-de Haas (SdH) effect. Although not a thermodynamic
property itself, the conductivity is related to the density of states at the Fermi energy. The
probability of an electron scattering will be proportional to the number of states available
for the electron to scatter into. As a result, oscillations in the density of states should also
be present in the conductivity

∼
σ

σ0

∝
∼
D(εF )

D0(εF )
(1.17)

The exact constant of proportionality between the two will depend on the details of the
Fermi surface, the scattering mechanisms, and the number of carrier pockets in the sys-
tem. A detailed analysis, however, is not necessary if only the oscillatory component of the
conductivity,

∼
σ, is considered.
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The density of states is related to the magnetization by

∼
D(εF ) =

m∗2B2

e2~2F 2

∂
∼
M‖

∂B
(1.18)

Performing this derivative leads to an expression for the oscillatory component of the density
of states and therefore the conductivity.

∼
D(εF ) = −21/2e1/2V B1/2m∗

π3/2~5/2

∣∣∣∣∣∂2Ak
∂k2
‖

∣∣∣∣∣
−1/2 ∞∑

p=1

1

p1/2
cos

[
2πp

(
F

B
− 1

2

)
± π

4

]
(1.19)

Compared to the magnetization, oscillations in the density of states will be phase shifted by
90° where once again F is determined by the extremal cross-sections of the Fermi surface.

So far, the derivation of dHvA and SdH oscillations has been performed at zero temper-
ature, without scattering, and without spin. All three of these factors introduce additional
terms into the oscillations which act to reduce the overall amplitude.

The effect of finite temperature

At finite temperature, the probability of finding a particle in a state of energy ε is given by
the Fermi-Dirac distribution

f(ε) =
1

1 + e(ε−µ)/kBT
(1.20)

where kB is the Boltzmann constant, and µ is the chemical potential. The Fermi surface at
temperature T can be represented as a distribution of Fermi surfaces at zero temperature
whose Fermi energies are distributed around the original Fermi energy, εF , and each weighted
by the derivative of Eq. 1.20 [13]. Due to the spread in Fermi energies, each Fermi surface
will have a slightly different frequency leading to a smeared phase given by

φ =
2πpm∗

e~B
(εF − µ) (1.21)

Combining this with the aforementioned weighting and integrating over all values of µ gives
the reduction factor associated with finite temperature:

RT =
2π2pkBTm

∗/(e~B)

sinh(2π2pkBTm∗/(e~B))
(1.22)

All of the temperature dependence of the quantum oscillations is contained in Eq. 1.22.
Experimentally, this means that measuring the temperature dependence of dHvA or SdH
oscillations provides a means of determining the only material-specific parameter in Eq. 1.22,
the effective mass, m∗. Figure 1.2 shows RT plotted against temperature for three different
values of the effective mass.
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Figure 1.2: The thermal reduction factor. The oscillatory amplitude is reduced by
increasing temperature as shown for three different values of the effective mass. Fitting the
temperature dependence of measured oscillations can be used to experimentally extract the
effective mass.

The effect of finite relaxation time

In addition to temperature, a finite relaxation time, typically due to impurity scattering,
can reduce the amplitude of quantum oscillations. Relaxation acts to broaden the Landau
levels in accordance with the Heisenberg uncertainty principal, ∆ε ∝ ~/τ , where τ is the
characteristic relaxation time. This broadening gives the otherwise sharp energy levels a
Lorentzian density of states. In a similar manner to the thermal reduction, the broadened
Landau levels can be thought of as a series of sharp levels with a spread of frequencies with
a Lorentzian distribution. Integrating the phase smearing term (Eq. 1.21) with a Lorentzian
gives an expression for the Dingle reduction factor, RD, associated with the finite scattering
time.

RD = exp(−2π2pkBTDm
∗/(e~B)) (1.23)

where TD is the Dingle temperature, named after R. B. Dingle, who first derived it in 1952
[15]. It is defined as

TD =
~

2πkBτ
(1.24)

where τ is the scattering time. Note, τ here is the scattering time associated with the
dephasing of charge carriers undergoing cyclotron motion. It is different from the scattering
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Figure 1.3: The Dingle reduction factor. (a) The field dependence of SdH oscillations
with a frequency of 15T, effective mass of 0.1me, temperature of 1.8K, and scattering time
of 5ps. Both the thermal and Dingle reduction factors have been included, and the envelope
of the oscillations has been highlighted in red. (b) When plotted in a Dingle plot, the
oscillatory envelope becomes a line and the Dingle temperature can be extracted from its
slope, assuming the effective mass has already been determined.

time presented in Section 1.1, which is associated with large-angle scattering events that
relax momentum from the electronic system into the lattice. τ here is called the quantum
lifetime and is associated with scattering events that change a charge carrier’s quantum state.
The quantum lifetime, therefore, is always smaller than the transport lifetime.

The Dingle temperature can be extracted from an analysis of the amplitude of the oscil-
lations as a function of magnetic field. For the SdH oscillations shown in Figure 1.3, plotting

ln
[
A
√
B sinh(14.7(m∗/me)T/B)

(14.7(m∗/me)T )

]
, where A is the measured oscillatory amplitude, against inverse

magnetic field gives a line whose slope is −[2π2kBme/(~e)]m
∗

me
TD or −14.7m

∗

me
TD. Assuming

the effective mass is known from the temperature dependence, the Dingle temperature, and
therefore the quantum lifetime, can be extracted from this plot.

The effect of spin

So far, the role of electron spin has been ignored. Application of a magnetic field will cause
the otherwise degenerate spin-up and spin-down Landau levels to split according to the
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Figure 1.4: The spin reduction factor. The presence of electron spin reduces the
oscillatory amplitude of each harmonic of the SdH oscillations. When summed over all
harmonics, a splitting of the peaks is observed. The summation over all harmonics is also
responsible for the asymmetric nature of the oscillations at high field. The frequency, effective
mass, temperature and scattering time are the same as in Figure 1.3. The g-factor has been
set to 5.

Zeeman energy
∆ε = gµBB (1.25)

where g is the Landé g-factor and µB is the Bohr magneton. This splitting of each Landau
level will lead to a phase difference in the oscillations from spin-up and spin-down, reducing
the overall oscillatory amplitude. In free space g has a value of 2.0023. In materials, however,
it is renormalized by spin-orbit interactions and can take on values far from 2.

With the Zeeman energy splitting, the oscillatory component of the density of states
becomes

∼
D ∝

∑
p

1

p1/2

[
cos

(
Ψ +

1

2
∆ε

∂Ψ

∂ε

)
+ cos

(
Ψ− 1

2
∆ε

∂Ψ

∂ε

)]
(1.26)

where Ψ is defined as 2πp(F/B−1/2)±π/4 (from Eq. 1.19). ∂Ψ/∂ε can be evaluated using
Eqs. 1.5 and 1.11.

∂Ψ

∂ε
=
p~
eB

∂A

∂ε
=

2πp

eB~
m∗ (1.27)
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Using trigonometric identities and the relationship above to simplify Eq. 1.26 gives an
expression for the spin reduction factor, RS

RS = cos
(π

2
pgm∗/me

)
(1.28)

When summed over all harmonics, this spin reduction factor will lead to a splitting of the
oscillations and associated amplitude reduction. Assuming the effective mass is known, the
splitting can be used to experimentally extract the g-factor.

The three reduction factors are summed over all harmonics, p, in the Lifshitz-Kosevich
expression for the grand potential (Eq. 1.15). Doing so gives final expressions for the
oscillatory components of the magnetization and conductivity.

∼
M‖ = − e5/2V B1/2F

21/2π5/2~1/2m∗

∣∣∣∣∣∂2Ak
∂k2
‖

∣∣∣∣∣
−1/2 ∞∑

p=1

RTRDRS

p3/2
sin

[
2πp

(
F

B
− 1

2

)
± π

4

]
(1.29)

∼
σ = −21/2e1/2V B1/2m∗

π3/2~5/2

∣∣∣∣∣∂2Ak
∂k2
‖

∣∣∣∣∣
−1/2 ∞∑

p=1

RTRDRS

p1/2
cos

[
2πp

(
F

B
− 1

2

)
± π

4

]
(1.30)

Measuring either of these parameters in a large magnetic field, therefore, is a powerful tool to
determine the shape of the Fermi surface and the masses, scattering times, and anisotropies
of the charge carriers.
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Chapter 2

Topology in Condensed Matter

2.1 Introduction

Until recently, phases of matter were primarily defined by their symmetries. A crystal con-
sisting of a periodic array of atoms could be characterized by its translational symmetries,
rotational symmetries, mirror planes, and so on. Phase transitions occurred when these sym-
metries were broken. For example, when a ferromagnet is cooled below its Curie temperature,
the local magnetic moments align and point in the same direction, spontaneously breaking
the previous rotational symmetry. In 1972, however, it was predicted that new types of
phase transitions may exist identified not with symmetry breaking, but with changes in the
topology of the system. In 2016, David J. Thouless, Duncan M. Haldane, and J. Michael
Kosterlitz were awarded the Nobel prize in physics for their work pioneering this field [16,
17, 18, 19, 20].

To understand how phase transitions may occur in the absence of symmetry breaking,
consider a conventional band insulator. In this material, the conduction and valence bands
are separated by a band gap. This gap prevents electrons from being easily excited into the
conduction band, and it therefore does not conduct electrical current. If the atoms in this
crystal are gradually moved apart, the electron wavefunctions will become localized as the
orbital overlap decreases. This is an adiabatic deformation that does not change any of the
original crystal symmetries. As a result, although the electron wavefunctions have changed,
the same valence band states that were previously occupied remain occupied, and the same
conduction band states that were previously unoccupied remain unoccupied.

Contrast this to a topological insulator where strong spin-orbit coupling leads to a band
inversion between the valence and conduction bands. As the atoms are brought together, the
valence band will become higher in energy than the conduction band. This band inversion
means that the adiabatic deformation leads to a change in the occupied/unoccupied states
compared to the localized limit. There is a phase transition, even though no symmetries
of the lattice have been changed. Instead, the system has picked up a non-trivial topology.
The non-trivial topology of systems such as these leads to interesting new phenomena such
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as protected surface states, modified Landau level quantization, and the emergence of new
quasiparticle excitations such as Majorana fermions.

Topological phases were first identified in two-dimensional mercury telluride quantum
wells [21, 22]. In these systems, tuning the carrier density realizes a quantum spin Hall
state in which the bulk is insulating, but quantized conductance can be observed on the
device edges. The quantized conductance onsets as the bulk becomes insulating and is due to
protected edge states that are a direct consequence of the topology of the bulk bandstructure.
The presence of protected boundary states is a hallmark of topological materials and their
observation is critical in verifying new topological systems.

2.2 Dirac semimetals

Although topological insulators were the first predicted topological electronic phase, many
other topological phases have been discovered since, such as Weyl and Dirac semimetals.
Both are three dimensional systems that are closely related to topological insulators, but have
only been recently observed. Dirac semimetals can be thought of as topological insulators
where crystal symmetries prevent the inverted gap from fully opening, leading to discrete
crossing points in the bulk bandstructure.

As previously mentioned, topological insulator states are produced by the inversion of
the bulk bandstructure. Consider a system in which the spin-orbit coupling strength can
be continuously tuned in the presence of time reversal and inversion symmetries. For weak
spin-orbit interactions, the conduction and valence bands will not invert and a conventional
insulator state will be present. For strong spin-orbit interactions, however, the bands will
invert and hybridization between them will lead to the reformation of a gap, albeit inverted,
producing a topological insulator state. Between these two regimes is a critical point where
valence and conduction bands touch. At this crossing point, the bands can be approximated
as linear and the quasiparticle excitations will be massless Dirac fermions. This is known as
a Dirac semimetal.

Although a Dirac semimetal can be achieved by carefully tuning material parameters to
reach this critical point, it will be unstable. Any small deviation from the critical point will
result in the opening of a gap and the material will become either a topological insulator or a
trivial insulator. An alternative route to realizing a Dirac semimetal is to make use of crystal
symmetries. In general, the conduction and valence bands will hybridize after inversion to
open a gap. In the presence of additional crystal symmetries, however, this gap may be
prevented from opening along high-symmetry points in the Brillouin zone. At these crossing
points, the dispersion will once again be linear and the quasiparticle excitations about these
Dirac cones will be massless Dirac fermions [23].

Figure 2.1 shows this schematically. As a function of a tuning parameter, typically the
spin-orbit coupling strength, the gap in a conventional band insulator goes to zero and then
becomes inverted. In the presence of sufficient crystal symmetries, however, crossing points
between the valence and conduction bands will be protected, leading to a topological Dirac
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Figure 2.1: The evolution of topological materials. As the spin orbit coupling strength
is tuned, in the presence of inversion and time reversal symmetries, the band gap in a con-
ventional insulator can be inverted. In a high symmetry lattice, the valence and conduction
band crossing points will be protected, forming a pair of Dirac nodes. Breaking inversion
symmetry will split each Dirac node into a pair of Weyl nodes. If a crystal symmetry is not
present to protect the Dirac nodes, they will hybridize to open a gap and form a topological
insulator state.

semimetal. If those symmetries are broken, the bands will hybridize, opening a gap in the
bulk. A protected surface state, however, will remain.

The Hamiltonian associated with these doubly degenerate Dirac cones is given by

H =

[
~vF~σ · ~k m

m −~vF~σ · ~k

]
(2.1)

where vF is the Fermi velocity, ~σ are the Pauli matrices, ~k is the wavevector measured from
the Dirac node, and m is a mass term corresponding to the opening of a gap. The energy

of this system is given by E = ±
√

(~vFk)2 +m2. In the limit of m = 0, this is a linear

dispersion with a band crossing. This corresponds to the 3D Dirac semimetal state. If
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m > 0, then a gap is opened and the dispersion is no longer linear. This corresponds to a
topological insulator state.

Because the Dirac semimetal is a topological state, there will be protected surface states
associated with it. These states are known as Fermi arc surface states and connect the
projections of the Dirac nodes on the crystal surface. Since the Dirac nodes are doubly
degenerate, each pair of nodes will be connected by two Fermi arcs. Note, in the case where
crystal symmetries are relaxed and m 6= 0, the Fermi arcs will merge to form the topological
insulator surface state [23]. In a Dirac semimetal, however, the bulk is not fully gapped and
this allows mixing between surface and bulk states at the Dirac nodes, which can produce
novel quantum oscillatory phenomena [24].

As mentioned, m = 0 at the critical point between a topological and trivial insulator.
However, crystal symmetries may also require that m = 0 at specific points. From crystal
symmetry arguments, both Na3Bi and Cd3As2 were predicted to be Dirac semimetals pro-
tected by C3 and C4 crystalline rotation symmetries, respectively [25, 26]. Chapter 4 focuses
on Cd3As2 and the observation of Fermi arc surface states using microstructured electronic
devices.

2.3 Weyl semimetals

So far, time reversal and inversion symmetries have been assumed. Breaking either of these
symmetries, however, lifts the degeneracy of the bands, and can lead to a topological phase
known as a Weyl semimetal. Without degeneracy, the Hamiltonian in Eq. 2.1 is reduced to:

H = ±~vF~σ · ~k (2.2)

where ~k is again the wavevector measured from the position of the band crossing. There
is no longer a mass term, and therefore the dispersion will remain gapless. Moreover, in
three dimensions, all three Pauli matrices are incorporated into the Hamiltonian. Since any
perturbation can be written in terms of the Pauli matrices and the identity, the only effect
will be to shift the Weyl crossing points in k-space, not open a gap. As a result, Weyl nodes
are extremely stable. In fact, they can only be annihilated by bringing two nodes of opposite
sign together to form the doubly-degenerate Dirac Hamiltonian in Eq. 2.1.

The Weyl nodes described by Eq. 2.2 are topological objects. They act as sources or
sinks of Berry curvature, a quantity akin to a magnetic field in momentum space. Integrating
the Berry curvature over a surface containing a single Weyl node gives a value of ±2π
corresponding to a Chern number of ±1. The sign of the Chern number is determined by
the sign of the Hamiltonian in Eq. 2.2. As a result, each Weyl node has a chirality associated
with it. Since the total chirality (or Chern number) of free space is zero, Weyl nodes must
come in opposite-chirality pairs.

Because the Weyl nodes are topological objects, they too must have boundary states
associated with them. Like the Dirac semimetal, these are Fermi arc states connecting the
projections of opposite-chirality Weyl nodes on the crystal surface. Assuming the simplest
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Figure 2.2: Fermi arc surface states in Weyl semimetals. (a) Two Weyl nodes of
opposite chirality are separated in momentum space. A Berry flux flows from one to the
other. A 2D slice of momentum space between the two nodes, therefore, has a net Berry flux
flowing through it and an associated Chern number of 1. The same slices outside the two
nodes have no Berry flux. (b) The 2D slices between the Weyl nodes are effectively quantum
Hall insulator states, and therefore have an edge state associated with them. This edge state,
in 3D, becomes a topologically protected Fermi arc which terminates at the projections of
the Weyl nodes on the surface of the crystal.

case of two Weyl nodes of opposite chirality at ky = ±k, there is a Berry flux flowing from
one node to the other. Although the bandstructure is not fully gaped, the region between
the two Weyl nodes from ky = −k to ky = +k is. Thus each ky slice of the Brillouin
zone in this region is a two dimensional insulator with a 2π Berry flux flowing through it
corresponding to a Chern number of 1. These slices are equivalent to quantum Hall insulator
states and therefore have a single topologically protected edge state associated with them
[27, 28]. Because the Berry curvature originates at one Weyl node and terminates at the
other, the Chern number and associated edge state must do so as well. Putting all the slices
together yields a topologically protected state that connects the projection of one Weyl to
the other along the surface of the crystal in an arc. This is illustrated in Figure 2.2.

This explanation of Weyl nodes and Fermi arcs provides an elegant explanation of surface
states in Dirac semimetals and topological insulators. A Dirac semimetal can be though
of as two superimposed Weyl nodes of opposite chiralities. In general, these Weyl nodes
would interact and open a gap, corresponding to a non-zero effective mass in Eq. 2.1.
Crystal symmetries, however, can prevent the nodes from interacting, in which case the
crossing becomes a doubly degenerate Dirac node. The Fermi arc surface states, associated
with the Weyl nodes, however, remain. Therefore, there are two surface states associated
with the Dirac node. In the case where crystal symmetries do not prevent the Weyl nodes



CHAPTER 2. TOPOLOGY IN CONDENSED MATTER 19

from interacting, a gap will be opened and the Fermi arcs will merge to form a topological
insulator surface state [23]. The first Weyl semimetals to be discovered were the TaAs-class
of transition metal monopnictides: TaAs [29, 30, 31], TaP [32], NbAs [33], NbP [34].
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Chapter 3

Focused Ion Beam Fabrication

3.1 Motivation

Micro- and nanostructuring of solids has become an important tool to understand condensed
matter phenomena that are only observable at small length scales. Microstructuring has been
used to reveal effects such as ballistic electron transport in graphene [35, 36], hydrodynamic
flow in PrCoO2 [37], and magnetic focusing in GaAs [38], not to mention packing an ever
increasing number of transistors into integrated circuits forming the basis for modern digital
electronics [39]. Modern microstructuring techniques give the user precise control over device
geometries and length scales. They can be a valuable tool to measure resistivity anisotropies
in a crystal, or search for surface or interface phenomena. They also allow one to access
regimes otherwise unattainable in the laboratory such as extremely high current densities by
reducing a device’s cross-sectional area, or tuning the surface-to-bulk ratio by thinning the
device to enhance signatures of surface conductance.

There are many methods of device fabrication at the sub-micron level specific to different
materials, chemistries, and applications. The focus of this chapter will be on focused ion
beam (FIB) fabrication techniques. Although historically FIBs have been primarily used for
preparing lamellas for transmission electron microscopy and conducting material analysis,
they have become increasingly popular for fabricating devices for transport measurements
[40]. Typically, FIBs are part of dual-beam systems incorporating a scanning electron micro-
scope (SEM) such that both milling and non-destructive imaging can be performed. While
not able to achieve the few-nanometer length scales of other fabrication techniques, such
as electron beam lithography or extreme ultraviolet photolithography, FIB fabrication has
several advantages that make it particularly useful for condensed matter applications.

First and foremost, FIB fabrication is extremely versatile. Because it is a ballistic milling
technique, it is relatively insensitive to sample chemistry and the same basic recipe can be
used to mill a large variety of disparate compounds with only minor modifications to the
process. Second, the FIB does not require that samples be grown as thin films. Lamellas
can be cut in order to produce devices from as-grown bulk single crystals, allowing it to be
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used on compounds that are not easily exfoliated and do not have a well-established thin-film
growth recipe. Since bulk crystal growth is often easier and faster than developing a thin-film
recipe, FIB fabrication can be used to rapidly make devices and search for new physics in
novel materials. Lastly, patterning, milling, and contact deposition can all be done in-situ,
reducing the number of machines needed and therefore the fabrication time and equipment
requirements. FIB fabrication can produce transport devices from bulk crystals of length
scales below 100nm.

Although the FIB can be used to rapidly and efficiently mill devices, it has its limitations.
The length scales accessible by the FIB are larger than the lengths achievable from competing
techniques such as photo- or electron beam lithography. Moreover, because the FIB relies on
ballistic milling, it typically produces a surface layer of damaged, amorphous material. This
surface layer can conduct, or even superconduct, in certain instances [5, 41]. As a result,
clean interfaces can be difficult to achieve. Nevertheless, the FIB has become an important
fabrication tool, allowing devices to be produced quickly from a wide variety of quantum
materials.

3.2 The instrument

The basic principal of operation of the FIB is that ions are focused by electric fields into a
collimated beam, which is then directed onto a sample to mill patterns or perform imaging.
Historically, gallium ions (Ga2+) have been used in this process, although FIBs utilizing other
elements such as helium and neon have become commercially available in recent years. The
realization of the FIB was made possible by the development of the liquid metal ion source
(LMIS), an ion source with sufficient flux to allow collimation into a beam and subsequent
milling. The LMIS is produced by heating a metal into a liquid and applying a strong electric
field. The electric field shapes the liquid metal into a Taylor cone. Local field enhancement
at the sharp tip of the cone leads to ions being ejected from the source via field emission.
Although LMIS can be produced from almost any metal and many alloys, gallium is used in
the vast majority of sources due to its low melting point, low vapor pressure, and relatively
high atomic weight. This allows the ions to be ejected with a small energy spread so they can
be easily focused, while remaining heavy enough to mill at significant rates. Once ejected
from the LMIS, the gallium ions are passed through a series of apertures and electrostatic
lenses, which focus the beam and allow the user to direct it onto the sample for imaging or
milling.

In addition to milling, the FIB can be used to deposit material via ion-assisted chemical
vapor deposition [42]. A precursor gas of organic molecules containing the metal to be
deposited is flowed over the sample. Some portion of the gas adsorbs onto the sample
surface. Upon irradiation, the energetic ions of the FIB will break the chemical bonds in the
gas molecules, depositing the metal onto the sample surface, while the more volatile organic
components are pumped away. Because deposition is driven by the FIB, material can be
selectively deposited. This technique can be used to deposit platinum for electrical contacts
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Figure 3.1: The FIB instrument. An image of an SEM/FIB dual-beam system manu-
factured by FEI and used to fabricate transport devices. Important components are labeled.
The sample is loaded into the central vacuum chamber. An SEM (top, behind cover) can
be used for non-destructive imaging of the sample and elemental analysis. The FIB column
(leftmost) can be used to mill material to produce lamellas and define device patterns. The
gas injection system (GIS, middle left) can be used in conjunction with the FIB to deposit
platinum for contacts or contact repair. An x-ray detector (not shown, behind chamber) can
be used in conjunction with the SEM to perform energy dispersive x-ray spectroscopy for
elemental analysis. The entire system sits on a vibration dampening stage.

onto fabricated transport devices. Depositing contacts in this manner has the advantage that
it can be done in-situ for samples that may be too sensitive for other deposition techniques.
The downside, however, is that FIB-deposited metals often have a high organic impurity
(carbon) content, resulting in higher resistivities than their elemental counterparts.

Although primarily used for milling and deposition, the FIB can also be used for imaging.



CHAPTER 3. FOCUSED ION BEAM FABRICATION 23

The high energy Ga2+ ions impacting the sample scatter electrons from the material. These
secondary electrons can then be detected using an Everhart-Thornley detector to build an
image as the FIB is raster-scanned over the sample. This is the same principle of operation
as SEM imaging, although the FIB will be much more surface sensitive. While the FIB can
generate images, it is not typically used for this purpose as the Ga2+ ions mill the sample
as it is being imaged. Instead, most FIBs are coupled to an SEM which can be used to non-
destructively image the sample while the FIB is used for patterning. The full apparatus,
including FIB column, SEM column, gas injection system, vacuum chambers, and some
control electronics is shown in Figure 3.1.

3.3 Device fabrication

There are two main methods of fabricating FIB transport devices from grown crystals, one
being the abbreviated version of the other. For samples being fabricated from macroscopic
crystals, a lamella is first cut from the bulk crystal, then mounted onto a substrate, after
which the device is patterned using the FIB. For certain samples, the lamella cutting step
may be skipped and the as-grown crystal can be directly mounted onto a substrate and
patterned. Which method is more appropriate for a specific application depends on the
thickness of the bulk crystal and its crystallographic orientation.

Preparing a lamella is the more versatile option and allows a device to be made from an
arbitrarily-shaped crystal of almost any dimension. The basic technique is very similar to
transmission electron microscopy lamella preparation, but done at a much larger scale. It
is summarized in Figure 3.2. A rectangular cross-section (lamella) is cut from the crystal
using the FIB. Typical dimensions are 20µm × 10 µm × 3 µm, although these length scales
can be varied to meet application-specific needs. Undercutting the rectangle allows it to
be easily lifted out from the crystal. A small (<1 µm) bridge is left connecting the lamella
to the bulk of the crystal. This holds the lamella in-place until ready for lift-out, during
which it is easily broken. For electron microscopy lamellas, lift-out is typically done with a
micro-manipulator in-situ. At the larger length scales used for transport devices, it can be
done by hand using an optical microscope and great care.

Once removed from the bulk crystal, the lamella is mounted onto a substrate using
non-conducive two-part epoxy. Typically glass (SiO2) substrates are used. Fast-drying,
low-outgassing epoxies are desired. The lamella “floats” on the epoxy, leaving one surface
exposed, while the rest of it is embedded. Once fully cured, there are two options for creating
electrical contacts. Most often, gold is deposited over the entire lamella/epoxy area. Because
the top surface of the lamella is not covered by epoxy, the gold makes electrical contact to the
sample and the negative space is cut out with the FIB to create contacts. An alternative is to
use the aforementioned platinum deposition capabilities of the FIB to direct-write electrical
contacts onto the sample. This is typically used for samples that are too surface sensitive for
gold evaporation or to repair problems (such as cracks) in the gold deposition. FIB-deposited
platinum typically has a much lower conductivity than deposited gold, so gold is preferred
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where possible. If the bulk crystal is thin (under 10 µm) cutting a lamella is not necessary
and the crystal can be directly mounted into the epoxy and deposited with gold.

The next step is to return the sample to the FIB and mill the desired device geometry. If
a layer of gold has been deposited, the gold is first milled from the active area of the device
to prevent it from short-circuiting contacts. If platinum contacts are being deposited, they
should be deposited first so that the overspray can be milled away as part of the device
patterning. At this point the device pattern can be milled. Several parameters need to be
fine tuned in order to achieve the desired feature fidelity. The FIB beam current affects the
sputter rate and the spot size. Increasing the current can speed up the patterning process,
at the expense of feature resolution. Typically, different beam currents are used for coarse
and fine features. The acceleration voltage affects the stopping range of the Ga2+ ions in the
material, and therefore the surface damage induced by the beam. Finally, the milling rate
and therefore the patterning time is highly material dependent. Once the device has been
milled, the gold or platinum contacts are connected to wires using wire-bonding or silver
epoxy and the device is ready to measure.

The primary consideration when fabricating devices using the FIB is the surface damage
induced by the Ga2+ ions. At an acceleration voltage of 30kV (60keV kinetic energy), where
most FIBs operate, Ga2+ has a penetration depth of approximately 20nm, as shown in
Figure 3.3. This indicates that FIB devices will be surrounded by an approximately 20nm
thick layer of damaged material. This damage can take two different forms: amorphization
due to implanted defects, and a change in the chemical composition due to differential
sputtering yields. The first is a direct result of impacting a crystalline lattice with high
energy ions. The Ga2+ will knock atoms out of position, creating dislocation defects and
vacancies. In addition, some of the Ga2+ will become implanted in the crystal. This may
dope the material or otherwise modify the surface potential. Moreover, different chemical
elements in the crystal may be sputtered at different rates, causing the surface layer to have
a different stoichiometry than the bulk. How this surface layer affects transport behavior
is highly material dependent. In some cases, the damaged layer was found to have almost
no effect, with bulk quantum oscillations and intrinsic surface states remaining directly
observable [3]. In other cases, however, the damaged layer was found to superconduct at
low temperature, short-circuiting the bulk crystal and dominating the transport behavior [5,
41]. This is further discussed in Section 5.3.

The damage produced by the FIB can be modeling using the “Stopping and Range of
Ions in Matter (SRIM)” software package [43, 44]. Figure 3.3 shows the scattering cascade
cause by 60keV Ga2+ ions impacting the surface of a TaAs crystal. As can be seen, each
Ga2+ ion causes multiple scattering events. The depth of the damage layer is approximately
20nm and the As has been sputtered five times faster than the Ta due to its lower atomic
weight and increased volatility. As mentioned, the exact sputtering yields will be highly
material dependent and have to be compensated for with larger beam currents or longer
milling times.
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Figure 3.2: FIB fabrication. (a) The FIB is used to cut and undercut an approximately
rectangular lamella (green) from a bulk crystal. (b) A micromanipulator or other probe
(yellow) is used to remove the lamella from the crystal, breaking the connecting bridge in
the process. (c) The lamella is then transferred to a drop of epoxy (blue) on a substrate
(purple). The lamella is embedded in the epoxy such that the top surface remains exposed.
(d) Gold (yellow) is deposited over the entire sample. This step is not necessary if in-situ
platinum deposition is used to make electrical contacts instead. (e) The lamella is milled
into the desired device geometry using the FIB. (f) The gold is milled into individually
addressable pads that can be contacted using either silver epoxy or wire bonding. This step
is not necessary if using platinum deposition. Note: For sufficiently thin crystals, milling of
a lamella is not necessary and the crystal itself can be directly mounted as shown in step
(c).
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Figure 3.3: Ion damage. (a) The simulated damage cascades caused by 60keV Ga2+ ions
impacting the surface of a TaAs crystal at normal incidence. (b) The displacement of atoms
in the TaAs lattice due to collisions with the Ga2+ ions. (c) The final depth of the Ga2+ ions
that remain embedded in the material. Both (b) and (c) peak at around 20nm, quantifying
the depth of the surface damage layer. These calculations were performed for TaAs using
the SRIM software package [43, 44].
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Chapter 4

Fermi Arc States in Cadmium
Arsenide

4.1 Motivation and previous results

Although topological semimetals have been extensively predicted, transport signatures of
their topological properties have remained rare. Specifically, up until this work, Fermi arc
surface states had only been observed by local probes such as scanning tunneling microscopy
(STM) and angle resolved photoemission spectroscopy (ARPES). Direct transport obser-
vation and manipulation of Fermi arcs is necessary not just to understand the behavior of
these unique states, but to use them in device applications. The most straightforward way
to directly observe a Fermi arc is through a unique coherent cyclotron orbit known as a
Weyl orbit. These orbits combine surface and bulk states to produce measurable signatures
of charge carriers traversing the Fermi arcs. Because this orbit depends strongly on sample
thickness, FIB fabrication is a natural solution to achieve the sub-micron device geometries
required.

Cd3As2 has long been known to have high electron mobilities and long mean free paths,
making it appealing even for non-topological device applications [45]. More recently, however,
refinements to the crystal structure combined with ab initio calculations predicted it to be a
Dirac semimetal [26, 46]. The ordering of cadmium vacancies in the low temperature phase
of Cd3As2 leads to a large unit cell of 176 atoms in the tetragonal I41/acd (No. 142) space
group. Density function theory (DFT) calculations show two doubly degenerate Dirac nodes

located symmetrically about the Γ-point at (kx, ky, kz) = (0, 0,±0.032)�A−1
[26]. The band

structure about these nodes is illustrated in Figure 4.1b. Close to the nodes the dispersion
is linear and has been confirmed by ARPES and STM measurements [47, 48, 49, 50, 51]. As
described in Section 2.2, the C4 rotational symmetry of the crystal prevents the nodes from
interacting and opening a gap [26].

The projections of the Dirac nodes onto the crystal surface will be connected by two
Fermi arc surface states. Although surface states in general are quite difficult to detect, in
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Figure 4.1: Cd3As2 crystal and electronic structure. (a) The crystal structure of
Cd3As2 is tetragonal and centrosymmetric with the space group I41/acd (No. 142). (b) A
schematic highlighting the two Dirac crossings about the Γ point and the associated Dirac
cones. Adapted from Ref. [52]. (c) The Weyl orbit connects Fermi arc states on opposite
crystal surfaces through the bulk Dirac nodes, forming a coherent, closed quantum orbit.
Adapted from Ref. [3].

sufficiently thin materials and strong magnetic fields it has been proposed that Fermi arcs
can participate in a coherent cyclotron orbit giving rise to quantum oscillations [24]. The
application of a magnetic field normal to the surface drives charges along the Fermi arc by
the Lorentz force. When those charges reach the end of the Fermi arc, the only available
states are the Landau levels from the bulk Dirac Fermi surface. In a large magnetic field,
a significant fraction of charges will enter the zeroth Landau level. As a result of its chiral
nature, charge carriers in this level have a constant band velocity parallel to the field and
will move along it to the opposite surface. There, they enter the opposite Fermi arc and
the process repeats. This process, summarized in Figure 4.1c, forms a closed, coherent orbit
and therefore leads to quantum oscillations in high mobility samples. These oscillations are
analogous to the oscillations described by the Lifshitz-Kosevich formula in Chapter 1 and will
result in periodic SdH oscillations in the device resistance as a function of inverse magnetic
field.

The oscillatory frequency corresponding to this Weyl orbit can be derived by considering
the time that a particle spends in each leg of the orbit. The time spent in the Fermi arc
is given by τarc = ~k0/evFB, where k0 is the arc length of the arc and vF is the Fermi
velocity. The time spent traversing the bulk is τbulk = L/vF . Since both must be done twice
to complete the orbit, the total time is given by

τ = 2
~k0 + eLB

evFB
(4.1)
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The energy levels of the Weyl orbit can be related to the orbital time by the correspondence
principle, stating that εnτ = 2π~(n+ γ). This gives energy levels of

εn =
πvF~(n+ γ)

L+ ~k0/eB
(4.2)

These energy levels will cross the chemical potential, µ, at periodic intervals of the inverse
magnetic field. Solving for the spacing between subsequent crossings of energy levels n and
n+ 1 and inverting gives the expression for the frequency expected from these oscillations

FS =
k0µ

eπvF
(4.3)

where the chemical potential, µ, is measured from the Dirac point. A detailed derivation is
available in Ref. [24].

Eq. 4.3 states that particles undergoing the Weyl orbit will exhibit quantum oscillations
periodic in inverse magnetic field, similarly to conventional de Haas van Alphen or Shubnikov
de Haas oscillations. There are several key properties that make these oscillations unique,
however. First, charge carriers traversing the bulk will be in the chiral, zeroth Landau level
with a band velocity that is parallel to the applied magnetic field. As a result, these charge
carriers will undergo Lorentz force-free motion and therefore this leg of the orbit will not affect
the oscillatory frequency. Instead, the width of the sample only manifests as an overall phase.
Second, a non-adiabatic correction to the orbit will give deviations from perfect periodicity
at large enough magnetic fields. These two properties provide concrete, testable predictions
that differentiate Weyl orbit oscillations from conventional SdH oscillations.

4.2 Flux growth

Single crystals of Cd3As2 were grown using the flux growth technique. In this technique,
precursors are dissolved in a liquid flux from which the target compound precipitates. First,
the precursors and flux are heated to a temperature sufficient for the flux to melt and the
precursors to dissolve, forming a homogeneous solution. As the temperature is lowered,
the solubility of the reactants in the flux decreases and the solution becomes saturated.
This leads to precipitation of crystals of the target compound out of solution. The ampule
containing the reaction can be centrifuged at high temperature to separate the liquid flux
from the precipitated crystals. Chemical etching can be used to remove any excess flux from
the crystals.

The solubility of the precursors and the stoichiometry of the precipitant will depend
strongly on the ratio of the flux to the precursors. Binary or ternary phase diagrams are
typically consulted to ensure that only the target compound is produced without impurity
phases.

In the case of Cd3As2, cadmium was used as the flux, making this a self-flux growth.
A 5:1 ratio of Cd to Cd3As2 (4:1 Cd to As) was placed into an aluminum oxide crucible
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Figure 4.2: Cd3As2 flux growth. (a) An image of a crystal of Cd3As2 grown using the flux
technique. A 1:5 melt of Cd3As2:Cd was heated to 825°C and slowly cooled to 425°C where
it was centrifuged. Crystals in excess of 2mm were obtained. (b) Powder x-ray diffraction
measurements on the resulting crystals show a good fit to the I41/acd (No. 142) space group.
Adapted from Ref. [3].

and sealed into an evacuated quartz ampule. The ampule was heated to 825°C and held
for 48 hours to ensure a homogeneous solution. It was then cooled at 6°C/hour to 425°C,
precipitating Cd3As2 crystals out of solution, while remaining above the melting point of
Cd. The hot ampule was removed from the furnace and centrifuged to separate the crystals
from the Cd flux. Crystals of varying sizes exceeding 2mm were obtained and confirmed to
be in the I41/acd (No. 142) space group by both powder and single crystal x-ray diffraction.
Figure 4.2 shows a crystal grown using this method and the corresponding powder x-ray
diffraction analysis.

4.3 Fermi arcs in microstructured devices

Microstructured devices to search for Fermi arc surface states were fabricated using the FIB
fabrication method outlined in Chapter 3. Since the Dirac nodes in Cd3As2 are separated
in the [001] direction, their projections will be non-degenerate on all surfaces except [001],
with their separation maximized on the [100] and [010] surfaces. Therefore the ideal device
geometry would be one with large, polished faces normal to the [100] or [010] directions and
current flowing along the orthogonal axis. One such Hall bar device is shown in Figure 4.3.
This device was fabricated by cutting a lamella from the [010] face of a bulk Cd3As2 crystal.

Applying a magnetic field perpendicular to the current direction and out of the device
plane (crystallographic [100] direction, denoted 90°) shows a single set of Shubnikov de Haas
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Figure 4.3: Surface oscillations. (a) An SEM image of FIB fabricated Hall bars of varying
thicknesses. Contacts are colored gold and the active Cd3As2 crystal is purple. (b) SdH
oscillations can be observed in the resistivity upon application of a magnetic field. (c) A
Fourier transform reveals two oscillatory frequencies. A 36.5T frequency is observable at all
field angles, while a 61.5T frequency is only apparent when the field is normal to the Cd3As2

surface. Adapted from Ref. [3].

(SdH) oscillations in the magnetoresistance. A Fourier transform shows a single oscillatory
frequency in inverse magnetic field of 36.5T. These oscillations have been previously observed
in Cd3As2 crystals and agree with those expected from the bulk Fermi surface [26, 53]. The
oscillations onset around 1T at 2K, a result of the low charge carrier effective mass and long
scattering times that this material is known for [45].

Tilting the field into the plane of the device, (parallel to the crystallographic [010] di-
rection, denoted 0°), however, reveals a second set of oscillations. A Fourier transform in
inverse field shows two frequencies. A new frequency at 61.5T, and the 36.5T bulk frequency
previously observed. The presence of both frequencies indicates that one is not an evolution
of the other, but comes from an independent orbit. Namely, the 61.5T frequency does not
stem from an anisotropy of the bulk Fermi surface.

Fitting the Lifshitz-Kosevich thermal reduction factor to the temperature dependence
yields an effective mass of 0.044me for the 36.5T oscillations. The 61.5T oscillation is found
to have a mass 0.050me. Both are shown in Figure 4.4a. Until this study an oscillation with
this mass and frequency had not been previously observed in Cd3As2 [3].

An angle dependence provides additional evidence for the unique origin of the second
frequency. As the magnetic field angle is tilted towards the [100] direction, the 36.5T fre-
quency does not disperse significantly. This is consistent with the spherical nature of the
bulk Fermi surfaces. The 61.5T frequency, on the other hand, increases rapidly and is not
observable above approximately 50°. Its dispersion is well fit by a 1/ cos θ dependence, the
hallmark of a two-dimensional Fermi surface. A polar plot (Figure 4.4b) shows the surface
nature of the 61.5T frequency. Although this dependence would be expected for the Weyl
orbit, it would also be expected for trivial in-gap surface states. Additional measurements
are required to show that they are an example of a Weyl orbit and stem from the topological
nature of Cd3As2 and the Fermi arc states.
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Figure 4.4: Effective mass and angle dependence. (a) The temperature dependence of
the SdH oscillations at 0°, normal to the device surface. The two frequencies are fit to the
Lifshitz-Kosevich thermal damping dependence to extract their effective masses (see Section
1.4). The 36.5T frequency, labelled “Bulk”, has a mass of 0.044me, in close agreement with
previously reported results. The 61.5T frequency, labelled “Surface” has a mass of 0.050me.
(b) A polar plot shows the dispersion of the two SdH frequencies. The 36.5T frequency
does not disperse strongly with angle and is well explained by the approximately spherical
bulk Fermi surface of Cd3As2. The 61.5T frequency, however, disperses with the 1/ cos θ
dependence characteristic of a surface origin. Adapted from Ref. [3].

One such measurement is a thickness dependence. Because a Weyl orbit mixes surface
and bulk trajectories, it can be disrupted by bulk scattering. In fact, if the bulk mean
free path is smaller than the device thickness, one would expect scattering to lead to phase
decoherence and oscillations would not be observed. Since the Weyl orbits traverse the bulk
twice, this requirement is even more stringent and the device thickness must be less than
half the bulk mean free path.

The thickness of the devices can be accurately measured via the Knudsen effect, a finite-
size effect arising from ballistic transport in ultraclean materials. At low fields, a peak in the
magnetoresistance is observed, the result of ballistic charge carriers scattering at the surfaces
of the device. As the magnetic field is increased, however, the cyclotron orbit becomes smaller
than the device thickness, reducing interactions between conduction electrons and the device
surfaces. The total surface scattering is maximized when the diameter of the cyclotron orbit
is on the order of the device thickness. This corresponds to a resistance maximum at a
field of Bmax = 2~kF

eL
, where L is the sample thickness [54, 55, 56]. The Knudsen effect is

important for two reasons. First, it establishes that the device thicknesses are on the order
of the bulk mean free path, a prerequisite for observing the Weyl orbit. Second, it can be
used to confirm the measured device thickness.
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Figure 4.5: Thickness dependence and non-adiabatic correction. (a) The thickness
dependence shows an exponential suppression of the surface oscillations with a characteristic
sample width of 675nm, close to half the transport mean free path (500nm). Note, the surface
amplitude has been normalized by the bulk amplitude to account for sample variation. (b)
The position of the nth oscillation (red) deviates from perfect periodicity (black dashed).
This deviation is well described by a non-adiabatic correction that would only be expected
from a Weyl orbit (purple) [24]. Adapted from Ref. [3].

The thickness dependence of the surface oscillation amplitude is shown in Figure 4.5a.
As expected, the oscillatory amplitude monotonically decreases with increasing device thick-
ness up to 2µm, above which surface oscillations are no longer observable. Moreover, the
amplitude can be well-fit by a decaying exponential with a characteristic length of 675nm.
Note, the surface oscillation amplitude has been normalized by the amplitude of the bulk
oscillations to account for variations in overall carrier mobility and impurity concentration
between samples. This length scale is half the bulk scattering length associated with the
surface oscillations (since the Weyl orbit traverses the bulk twice) and should be compared
to the bulk mean free path of 1.0µm. This value has been estimated from transport mea-
surements as l = vF τ = vFm

∗/(ne2ρ0) = 1.0µm, where ρ0 = 55µΩ cm is the zero field
resistivity at base temperature, n = 2k2

F/(3π
2) = 2.5 × 1018cm−3 is the carrier density for

a spherical Fermi surface, τ is the scattering time, m∗ is the carrier effective mass, and
kF = m∗vF/~ = 3.3 × 108m−1 is the Fermi wavenumber obtained from the bulk SdH oscil-
lations. The agreement between the bulk mean free path (1.0µm) and the bulk scattering
length derived from the thickness dependence of the surface oscillations (1.35µm) provides
evidence that the carriers are indeed traversing the bulk, as would be expected from the
Weyl orbit associated with topological Fermi arcs.

Typically quantum oscillations are associated with the quantum scattering length of the
quasiparticles. Any scattering will lead to a loss of coherence and therefore a loss of quantum
oscillations. This differs from the transport lifetime, which is associated with momentum
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relaxation and large-angle scattering events. Interestingly, the Weyl orbit in Cd3As2 appears
to be limited by the transport, not the quantum, lifetime. Although this is unusual for
quantum oscillations, it may be understood as a consequence of the chiral zeroth Landau
level. This state is expected to exhibit an additional resilience to small-angle scattering
due to its chiral nature. The only available states for quasiparticles to scatter into are in
the zeroth Landau level of the opposite-chirality node. As a result, all scattering should
come from the same large-angle scattering that determines the transport lifetime. Since
quasiparticles in the Weyl orbit use the zeroth Landau level to traverse the bulk, it would
be expected that the decoherence length in this orbit would be the same as the transport
mean free path.

A second confirmation that the orbit being observed is indeed the Weyl orbit expected
from Fermi arcs comes from the phase of the oscillations at high fields. Specifically, the phase
is found to have a field dependence, which would not be expected from conventional quantum
oscillations. As shown in Figure 4.5b, the peak position Bn of the nth oscillation deviates
from perfect periodicity. The peaks move to higher fields, corresponding to a decrease in the
effective frequency. This decrease can be explained by a non-adiabatic correction to the orbit
caused by tunneling at the junctions between surface and bulk legs. In presence of a strong
magnetic field, charge carriers can tunnel from one state to the other. This process, known
as magnetic breakdown, has been observed extensively in bulk materials [13]. In the case
of Cd3As2, it leads to quasiparticles skipping some of the Weyl orbit, reducing the effective
length of the orbit. With this correction, the oscillatory frequency to first order is given by

FS(B) = FS(0)

[
1− 4α

k0

√
eB

~

]
(4.4)

where FS(0) is the frequency from the full Weyl orbit given in Eq. 4.3 and α is a material
parameter associated with the tunneling barrier between the bulk and surface [24]. Figure
4.5b shows calculated peak positions for α = 1.25, which appear to track the deviation of
the measured peak positions from periodicity well. Although magnetic breakdown can be
observed in bulk quantum oscillations, it typically occurs between two Fermi surfaces and
manifests itself as an additional set of high frequency oscillations. Here, the same mechanism
reduces the orbit length and gives a smooth evolution of a single oscillatory frequency.

Lastly, a third confirmation that the oscillations observed are a result of Fermi arcs is the
geometry dependence. Specifically, the Weyl orbit is expected to have oscillations at inverse
magnetic field values of

1

Bn

=
e

k0

(
nπvF
EF

− L
)

(4.5)

where L is the sample thickness [24]. The sample thickness contributes an overall phase to
the oscillations. For a sample with a constant thickness, such as for the rectangular cross-
section devices discussed so far, the phase of the oscillations at every sample location is
the same and they add constructively. For a non-uniform cross-section, however, one would
expect the phase to vary spatially with the device thickness and the oscillations to interfere
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Figure 4.6: Triangular device. (a) An SEM image showing two Cd3As2 transport devices:
a triangular device in red and a rectangular device in blue. (b) The cross-sections of the
two devices. When a magnetic field is applied, Weyl orbits in the triangular device will
have different lengths in the bulk whereas orbits in the rectangular device will all have the
same length. (c) The varying device width of the triangular device (red) leads to destructive
interference of the Weyl orbit oscillations. A Fourier transform shows only the bulk frequency.
The rectangular device (blue), on the other hand, shows both surface and bulk frequencies.
Adapted from Ref. [3].

destructively. As a result, the surface state oscillations would be expected to vanish, leaving
only the bulk oscillations. In order to test this, a device with a triangular cross-section was
fabricated. When magnetoresistance measurements were performed, the device showed only
oscillations at the bulk frequency. The surface frequency was not present, although it was
present in a rectangular control device fabricated in series from the same crystal (see Figure
4.6). Such a dependence of the oscillations on device geometry would not be expected for
conventional quantum oscillations and is a confirmation that the source of the oscillations is
indeed a Weyl orbit involving Fermi arc surface states.

4.4 Conclusion

The measurements outlined in this chapter represent the first transport signatures of Fermi
arc surface states. Although they are a necessary consequence of the topological nature of
Cd3As2, and indeed all topological semimetals, observing them has proven extraordinarily
challenging. Topological states such as these have been proposed as a possible route to
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scalable quantum computing. Realizing this, and other applications, however, first requires
that these states are well characterized and their dynamics are understood. The observation
of the Weyl orbit in Cd3As2 is the first step.
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Chapter 5

Surface States in the TaAs-class of
Weyl semimetals

5.1 Motivation and previous results

With the observation of Fermi arc surface states in Cd3As2 microstructures, a natural ex-
tension was to use the FIB to look for surface states in other classes of topological materials.
The first and most well-known example of Weyl semimetals is the TaAs-class of transition
metal monopnictides (TaAs, TaP, NbAs, NbP). Compared to Cd3As2, ab initio calculations
show these compounds to possess a much more complicated band structure with 12 pairs
of Weyl nodes in the bulk, in addition to non-topological bands [57]. The lack of inversion
symmetry in the I41md (No. 109) space group means that any band crossings must be Weyl
and not Dirac. These Weyl nodes were shown to come in two symmetry distinct types:
W1 with four Weyl pairs located towards the exterior of the Brillouin zone, and W2 with
eight Weyl pairs located towards the interior of the Brillouin zone. Because of the larger
number and more complex nature of the Weyl nodes in these compounds, Fermi arcs should
be present on every crystal surface. However, because the crystal lacks inversion symmetry,
the Fermi arc structure will depend heavily on the surface involved and was found to be
very different for the cation-terminated (Ta,Nb) and anion-terminated (As,P) [001] surfaces
[58]. In practice, the anion-terminated surface was found to be much more prevalent giving
the Fermi arcs a spoon-and-bowtie geometry [29, 30, 31]. In addition to Fermi arcs, trivial
surface states were also found to be present on the [001] surface, further complicating the
band structure.

The bulk bandstructure of TaAs consists of 16 small, Weyl, electron-like W2 Fermi pock-
ets, 8 larger, Weyl, electron-like W1 pockets, and 8 intermediate, non-topological, hole-like
pockets. The [001] surface is found to have two Fermi arcs connecting each of the doubly-
degenerate projections of the W2 nodes in a spoon-like shape, and a Fermi arc connecting
each of the non-degenerate projects of the W1 nodes in a bowtie-like shape [58]. Trivial
surface states are also present. All the bands are found to have large mobilities due to their
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low effective masses. As a result, quantum oscillations from all can be observed in moderate
magnetic fields. These pockets are highly anisotropic, resulting in oscillation frequencies
that are strongly angle-dependent. The lowest frequencies are observed with the field along
the crystallographic [001] direction.

Although TaAs was first theoretically predicted to be a Weyl semimetal, its topological
nature has been verified by STM and ARPES [59]. ARPES measurements found evidence
for linear dispersions at the W1 and W2 Weyl points as well as Fermi arcs connecting these
points [29, 31, 33]. STM experiments found evidence for the Fermi arc surface states through
quasiparticle interference measurements, which showed the dispersion of the surface states to
be closely in line with those calculated by DFT [60]. Because of the large electron mobilities
in the TaAs family of compounds, transport and magnetization measurements observe large
dHvA and SdH oscillations, allowing the bulk Fermi surfaces to be mapped out. However,
due to the multiband nature of the system, Landau level fan diagrams showing a non-trivial
Berry’s phase can not be reliably produced and direct transport signatures of Fermi arc
surface states are lacking. As a result, direct transport measurements showing Fermi arcs,
akin to those done in Cd3As2, are highly desirable.

5.2 Chemical vapor transport

Because of the high melting point of tantalum (and niobium), the flux growth method used
in Section 4.2 would require temperatures beyond those ready achievable in the laboratory.
Instead, the chemical vapor transport (CVT) method of crystal growth was used. In this
method, a volatile transport agent, often a halogen, is used in tandem with a thermal
gradient to mediate a reaction producing single crystals of a target compound. This process
is illustrated in Figure 5.1 for the specific reaction of TaAs. A precursor power is made from
powdered forms of the elements composing the target compound in a solid state reaction.
This powder is added to the transport agent and placed into one end (the source) of an
evacuated and sealed quartz ampule. The ampule is placed into a two-zone furnace that
maintains a temperature gradient between the two ends of the tube. Both temperatures
must be sufficiently high for the transport agent to evaporate and become gaseous. Moreover,
when the transport agent reacts with the precursor powder, the products of that reaction
must be gaseous as well.

The gaseous products of the vapor transport reaction will diffuse from the source end of
the tube to the sink end through a temperature gradient. There, the change in temperature
will favor the reverse CVT reaction. The products will disassociate into the transport agent
and the target compound, which will be deposited into single crystals. The transport agent
will then diffuse back to the source end of the ampule, starting the cycle over again. By
holding the ampule in this temperature gradient for several days, single crystals can be
formed of compounds whose melting points are too high for more direct growth techniques.
A more detailed discussion can be found in Ref. [61].

The choice of transport agent and temperature gradient will depend sensitively on the
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Figure 5.1: The chemical vapor transport reaction. The solid precursor powder (black)
on the left (source) end of the quartz ampule reacts with iodine (purple), the transport agent
to form TaI5 and AsI3, both gaseous species (green). The products diffuse to the right (sink)
end of the tube where the reaction runs in reverse, depositing the TaAs into crystals (black).
The iodine gas then diffuses back to the source to continue the reaction. The ampule was
held in this temperature gradient for 14 days.

specifics of the reaction being run. The transport agent must be chosen such that both
it and the reaction products will be gaseous at the furnace temperatures. Moreover, the
CVT reaction must be reversible, proceeding preferentially in the forward direction on the
source end of the tube and in the reverse direction on the sink end of the tube [62]. If the
equilibrium is shifted too far to one side or the other, the temperature gradient will not
be enough to reverse the reaction to any significant degree, and an unrealistic amount of
time will be required to obtain sizable crystals. Typically, the reaction equilibrium constant,
Kp, should be in the range 10−4 < Kp < 104 at the midpoint of the tube [63]. Kp can be
calculated from the Gibbs free energy by

∆G = −RT lnKp (5.1)

where ∆G is the change in the Gibbs free energy from reactants to products, R is the universal
gas constant, and T is the average temperature of the two-zone furnace. If the chemical
reaction and enthalpies of formation are known, calculating the equilibrium constant can
help determine the optimal transport agent and thermal gradient to use for a given target
compound.

One consequence of Eq. 5.1 is that the direction of the thermal gradient will depend on
whether the CVT reaction is endothermic or exothermic. In an endothermic reaction, an
increase in temperature will shift the reaction equilibrium towards the reaction products.
Therefore, the high temperature should be on the source end of the ampule, where the
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products are desired, and the low temperature on the sink end, where the reactants are
desired. In an exothermic reaction, the opposite is true: an increase in temperature will favor
the reactants. Therefore, the source and sink should be held at low and high temperatures,
respectively, and the gradient is reversed. The temperature gradient in Figure 5.1 is shown
for an exothermic reaction.

In the specific case of TaAs, iodine was used as the transport agent. The precursor
powder was grown by sealing a stoichiometric mixture of arsenic and tantalum powder in a
quartz ampule under vacuum. The ampule was heated to 1100°C and held there for 4 days
to allow the precursors to completely react. The resulting powder was confirmed to be TaAs
in the I41md (No. 109) space group by powder x-ray diffraction. The TaAs powder was then
mixed with 2.5 mg/cm3 of iodine in a sealed ampule and loaded into a two-zone furnace.
The source end of the furnace was held at 950°C and the sink end at 1050°C for 14 days.
The reaction driving the CVT process is [64]

TaAs(s) + 4I2(g) 
 TaI5(g) + AsI3(g) (5.2)

At the source end of the tube, the reaction equilibrium is shifted towards the right-hand
side, driving the reaction in the forward direction. At the sink end of the tube, the change in
temperature shifts the equilibrium to the left-hand side, driving the reverse reaction. In this
manner, the TaAs powder is reacted on the source end, then diffuses to the sink end where it
is deposited into single crystals. Well-faceted crystals up to 3mm per side were obtained and
their structure was confirmed with x-ray diffraction. A typical crystal is shown in Figure
5.2a.

5.3 FIB microstructuring and superconductivity

The project goal was to microstructure transport devices of TaAs and directly observe the
Fermi arc surface states in a similar manner to Cd3As2. Crystals were mounted and fab-
ricated into transport devices using the FIB. A typical device is shown in Figure 5.2b. It
is a multi-terminal resistivity bar produced from a lamella of TaAs. Similar devices were
fabricated from the entire TaAs family of compounds (TaAs, NbAs, TaP, NbP). Figure 5.2c
shows the measured resistivity as a function of temperature. At low temperature, all the
samples became superconducting with transition temperatures ranging from 2-4K. Super-
conductivity has not been observed in bulk crystals, indicating that the FIB fabrication
process has changed the material composition in some way.

In order to elucidate the origins of the superconducting state, a NbAs device was suc-
cessively thinned down, with resistivity measurements performed at each thickness. The
resistivity was found to be strongly thickness dependent. This would not be expected from
a bulk conduction channel, where the total device resistance should scale geometrically with
the thickness, and the resistivity should remain constant. Instead, a thickness-dependent
resistivity would be expected for a surface conduction channel that would not scale with the
device geometry. Evidence for the presence of such a channel comes from SRIM calculations,



CHAPTER 5. SURFACE STATES IN THE TAAS-CLASS OF WEYL SEMIMETALS 41

Figure 5.2: TaAs bulk crystal, FIB device, and superconductivity. (a) A typical
TaAs crystal grown via the described chemical vapor transport method. (b) A FIB fabricated
resistivity bar device. (c) Resistance as a function of temperature for FIB fabricated devices
of TaAs and related compounds. All exhibit superconductivity at low temperature (inset),
likely due to an excess of tantalum or niobium on the device surface. Adapted from Ref. [5].

TaAs NbAs TaP NbP
Ta/Nb 4.86 5.07 5.11 5.39
As/P 26.38 24.23 10.17 9.82

Table 5.1: Sputtering yields per incident 60keV Ga2+ ion at grazing incidence. For
all compounds, the pnictide is preferentially sputtered leaving an excess of Ta/Nb on the
device surface.

which show that the pnictide element (As, P) is preferentially sputtered compared to the
transition metal (Ta, Nb), as might be expected from the large difference in sublimation
temperatures. Table 5.1 shows the SRIM results. For 60keV Ga2+ ions at grazing incidence,
4.8 arsenic atoms are sputtered for every niobium atom. This leaves a large excess of niobium
in the surface layer of the FIB devices. Although this layer is amorphous, superconductivity
has been observed in amorphous sheets of niobium with a similar transition temperature to
what was observed [65].

A confirmation of the surface conduction layer comes from the observed magnetoresis-
tance. The magnetoresistance rolls over and appears to saturate at high fields, as shown in
Figure 5.3. Bulk NbAs, like the rest of the TaAs family, exhibits a conventional quadratic
magnetoresistance for fields applied along the a-axis, however. This behavior can be well
explained using a parallel conduction model with contributions from both the bulk and
the surface. The magnetoconductivity of bulk NbAs is given by the usual quadratic form
σbulk = 1/(aH2 + c), where c is a constant. Because the surface layer is disordered, it can
be modeled by a constant conductivity that is field-independent, σsurf . As shown in Figure
5.3a, the combined conductivity, σ = σbulk +σsurf , is an excellent fit to the data and yields a
surface resistivity of 16.7 Ω/�. This value is in close agreement with what has been observed
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Figure 5.3: Surface conduction and high field magnetoresistance. (a) A 300nm NbAs
FIB device shows a rollover in the magnetoresistance, a deviation from the quadratic behavior
observed in bulk samples. The resistance can be well fit with a parallel conduction model
assuming a field-independent surface conductance. Adapted from Ref. [5]. (b) High field
measurements on a 270nm TaAs device show no indication of surface oscillations stemming
from Fermi arcs at any angle. The oscillations observable at intermediate fields can be well
explained by the bulk Fermi surface. At high fields, the bulk is nearly completely short
circuited by the conducting surface and even the bulk quantum oscillations are suppressed.

in irradiated thin films of niobium [65].
Although conduction at high fields in these devices is dominated by the surface FIB-

irradiated layer, signatures of the bulk Fermi surface remain. Specifically, quantum oscilla-
tions were observed in intermediate fields (7-14T) with a frequency of 85T. This frequency
agrees with what is observed in bulk NbAs with field along the a-axis. Three conclusions can
be drawn from the presence of these SdH oscillations. First, the crystallinity is preserved
in the bulk of the material. Although the FIB causes significant damage and alterations to
stoichiometry, the damage is confined to the surface layer, leaving the bulk intact. Second,
the agreement between the SdH frequency observed in the FIB devices and previous mea-
surements in bulk samples indicates that the bulk of the sample has not been doped by the
FIB, further evidence that the FIB technique only affects the surface layer. Finally, although
the surface layer of the device is highly conductive, it has not completely shorted the bulk.
This raises the prospect that the original goal of these devices, namely the measurement of
Fermi arc surface states, may still be possible.

SdH oscillations from the bulk of NbAs were observable at 14T and 2K, additional oscil-
lations expected from Fermi arc surface states were not. This could be due to these states
having a larger effective mass than the bulk, or the increased scattering expected at the
surface. The former would require lower temperatures, and the latter higher magnetic fields.
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Figure 5.4: Critical current scaling with device width. The critical current does not
directly scale with the surface area of the device, as would be expected for a supercurrent
carried exclusively by the surface. Instead, there is an “excess” critical current which may
indicate that some of the supercurrent is carried in the bulk. If so, this would be an example
of proximity induced superconductivity in a Weyl semimetal and may provide a route to the
realization of Majorana fermions. Adapted from Ref. [5].

In order to achieve both of these conditions, the FIB devices were taken to Los Alamos Na-
tional Laboratory to perform pulsed field measurements up to 65T at 300mK. The measured
resistivity in a TaAs device of 270nm width is shown in Figure 5.3b. Although pronounced
SdH oscillations can be seen below 20T, they are in close agreement with what has been ob-
served from the bulk Fermi surface. Additional oscillations, however, were not observed. Not
only are additional oscillations from potential surface states not present, but the oscillations
from the bulk appear to be suppressed at higher fields. This is the opposite of what would
normally be expected. Moreover, the resistivity is almost flat from 20T onward. All three
of these observations are consistent with the surface layer carrying almost all of the current
as the resistivity of the bulk increases with field. Either the oscillations from the Fermi arc
surface states are too small to measure in parallel with the highly conductive surface, or
the Fermi arcs themselves have been damaged by the FIB milling process. In either case,
the conclusion is that the FIB technique, although successful in Cd3As2, cannot be used to
measure the surface states in the TaAs-family of Weyl semimetals.

Although FIB fabrication was not successful in measuring the topological surface states in
TaAs, it may be useful in creating interfaces at which to study topological superconductivity.
If topologically protected surface states can be made superconducting through the proximity
effect, they may host Majorana modes [66]. These elusive states are their own antiparticles
and are predicted to be one route to implementing quantum computation [67]. Although
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evidence of Majorana edge modes is not present in these measurements, the dependence of
critical current on device width, as shown in Figure 5.4, does not scale with the circumference
of the device, as would be expected for a purely surface superconductivity. Instead, an
excess critical current is observed, indicating that the bulk NbAs may be carrying some of
the supercurrent. If so, then this might be an example of topological superconductivity and
FIB fabrication may be an ideal technique for making such systems. Further measurement
is required to elucidate the exact nature of the superconductivity in these devices.

5.4 Mechanical polishing and SdH oscillations

In order to avoid the surface damage caused by FIB fabrication, mechanical polishing were
used instead. Crystals of TaAs were cut and polished into Hall bars ranging from 14µm
to 272 µm, with the main face normal to the [001] crystallographic axis. Figure 5.5 shows
the magnetoresistance from one such device. At 2K, pronounced SdH oscillations can be
observed on the non-saturating background typical of these materials. A Fourier analysis of
this data yields oscillatory frequencies of 7.3T and 19.9T, in close agreement with frequen-
cies previously reported for the W1 and H1 pockets in bulk TaAs [57]. Moreover, because of
the change in fabrication methods, superconductivity was no longer present down to 1.8K.
Subtraction of a high temperature (10K) background from the 2K magnetoresistance, how-
ever, reveals the presence of an additional, subtle SdH oscillation onsetting at approximately
8T. This oscillation has a frequency of 285T and has not been previously reported by any
study of TaAs. Moreover, band structure calculations do not show any bulk Fermi surfaces
large enough to produce such a frequency, hinting that it may instead come from a surface
contribution.

The angle dependence of the 285T frequency is shown in Figure 5.6 and shows clear
indications of being two-dimensional in origin. As the field is tilted away from the [001]-axis
and into the plain of the Hall bar, the oscillatory frequency is observed to increase and the
onset of the oscillations moves to higher field. Specifically, if the frequency is plotted as a
function of field angle, it is found to be well-fit by a 1/ cos θ dependence, consistent with what
would be expected from a two-dimensional or cylindrical Fermi surface. The two-dimensional
nature of this orbit has been confirmed in multiple devices along multiple rotation axes, as
summarized in Figure 5.8. Moreover, the dispersion of the bulk oscillations is consistent
with previous results, indicating that the additional frequency does not stem from a doping
or crystal growth issue and is instead intrinsic to thin TaAs devices.

The temperature dependence of the 285T SdH oscillation is shown in Figure 5.7. As
expected, the amplitude of the oscillation decays as a function of temperature and can be
well-fit by the Lifshitz-Kosevich thermal damping factor. A fit of the 7.3T bulk frequency
yields an effective mass of 0.066me, in close agreement with values previously observed and
predicted by band structure calculation [57]. A fit to the 285T frequency, on the other hand,
yields a much larger effective mass of 0.5me. As will be discussed, this large effective mass
can be explained by a unique surface orbit involving multiple Fermi arcs.
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Figure 5.5: A new oscillation in TaAs. (a) The longitudinal (upper) and Hall (lower)
resistivities of a polished 33 µm Hall bar device at 2K (blue) and 10K (red, dotted) with field
applied along the [001] direction, normal to the plane of the device. (b) The 2K resistivities
from panel (a) with the 10K curves subtracted. An additional oscillation can be observed,
onsetting around 8T with a frequency of 285T. (c) The resistivity shows metallic behavior
down to 1.8K with a residual resistivity ratio of 56. No superconductivity is observed. The
crystal structure of TaAs is shown in the inset, with tantalum atoms in red and arsenic in
blue. Adapted from Ref. [4].

Although the reproducibility of the 285T oscillation suggests an intrinsic origin, several
likely impurity phases were considered and subsequently ruled out as possible origins. The
most likely impurity phases in TaAs would be elemental tantalum, elemental arsenic, the
binary compound TaAs2, and a predicted hexagonal phase of TaAs. In all three cases, the
known SdH frequencies are either far from 285T, the crystal symmetries are inconsistent
with the observed angle dependence, and/or the effective masses do not agree with that
measured. Elemental tantalum shows quantum oscillations at much higher frequencies than
what was observed, with frequencies above 2700T for all field angles [68].

Elemental arsenic shows SdH frequencies in the same range as those observed [69]. The
alpha and beta Fermi surfaces both show oscillations crossing 285T as a function of field
angle. Elemental arsenic, however, can be eliminated as the cause of the observed 285T
oscillation for three reasons. First, both the pockets that show a 285T oscillation only exhibit
that frequency at a specific field angle and have global minima at lower frequencies, at 139T
and 213T for the alpha and beta pockets, respectively. During extensive rotations in field,
the TaAs devices never show high frequency oscillations below 285T. Second, arsenic has a
six-fold rotational symmetry in the ab-plane. The observed 285T frequency, however, never
show a six-fold symmetry in multiple devices rotated along multiple orthogonal directions.
Finally, the effective masses of the alpha and beta pockets in arsenic are 0.098me and 0.13me,
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Figure 5.6: Angle dependence. (a) The derivative of the Hall resistivity is plotted against
inverse magnetic field at various angles. As the field is rotated into the plane of the device,
the oscillations increase in frequency and move to higher field. (b) The angle dependence
of the oscillatory frequency shows the characteristic 1/ cos(θ) dependence associated with
a two-dimensional cyclotron orbit. Inset: The angle dependence of the low frequency SdH
oscillations is in good agreement with what has been measured in bulk samples of TaAs [57].
Adapted from Ref. [4].
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Figure 5.7: Temperature dependence and effective mass. (a) The temperature de-
pendence of the SdH oscillations with field along the [001] axis and a 10K background
subtraction. (b) The oscillatory amplitude can be well-fit by the standard Lifshitz-Kosevich
thermal reduction factor and yields an effective mass of 0.066me for the low-frequency bulk
oscillations and 0.5me for the high-frequency surface oscillations. (c) A Dingle analysis of
the bulk SdH oscillations gives a Dingle temperature of 3.8K corresponding to a quantum
lifetime of 0.32ps. Adapted from Ref. [4].
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significantly lower than the measured mass 0.5me for the 285T oscillation in TaAs.

Similarly to arsenic, TaAs2 shows quantum oscillations from two principal Fermi pockets
[70]. The frequencies of these pockets, however, are significantly lower than the 285T oscil-
lation observed in TaAs. The alpha and beta pockets have frequencies of 104T and 130T
with field along the c-axis, decreasing to 100T and 50T when rotated into the ab-plane.
Additionally, the effective masses in TaAs2 are 0.083me and 0.078me, much lower than what
was measured in TaAs.

Although it has not been experimentally confirmed, a hexagonal phase of TaAs is pre-
dicted to be stable under pressure [71]. The presented samples are not under pressure, but
it may be possible that small impurity domains of this hexagonal phase have been stabi-
lized and may be contributing to the SdH spectrum. However, the 285T frequency is not
observed to be six-fold symmetric along any rotation axis, a requirement for a hexagonal
lattice. Moreover, DFT calculations predict an SdH frequency of approximately 100T for
the hexagonal phase, much lower than the 285T observed.

Finally, it has been reported that planar defects, primarily in the form of stacking faults,
can occur in crystals of TaAs [72]. Band structure calculations show these defects to primarily
change the location of the Fermi energy, appearing as an effective doping. The measured
bulk quantum oscillation spectrum in the FIB devices, however, agrees with what has been
observed in the literature implying that the Fermi energy is not significantly different than
those measured previously. Moreover, one would expect defects, such as stacking faults, to
be evenly distributed throughout the crystal. This would not result in a systematic thickness
dependence to the magnetotransport, as observed in the Hall bar devices (see Figure 5.10).

Finally, extensive powder and single crystal diffraction studies were performed, including
using micro-Laue to scan with micron resolution across the active area of several devices.
Laue diffraction patterns were obtained using broadband x-rays focused to a 1µm spot. The
spot was scanned across the sample to obtain spatially-resolved diffraction patterns. The
observed peaks could be well-indexed by TaAs and no patterns corresponding to impurity
phases were observed. Figure 5.9 shows the summed diffraction image obtained from a
100µm × 100µm scan with a 2µm step size of the active area of one of the transport devices
exhibiting the 285T oscillations. The image was generated by averaging 2500 individual
Laue images. The peaks can all be indexed by TaAs and the lack of stray peaks indicates
that no impurity phase is present over this 10,000µm2 area. Similarly, powder diffraction did
not reveal any peaks that could not be indexed by TaAs, confirming the single-phase nature
of the samples.

5.5 Signatures of Fermi arcs

With impurity phases ruled out, one possible origin of the 285T frequency is the surface
of TaAs. High-mobility, two-dimensional surface states would be a natural explanation of
the 1/ cos(θ) dispersion observed in the angle dependence. In order to evaluate whether the
surface is playing a role in the transport, a thickness dependence was performed. A TaAs Hall
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Figure 5.9: Integrated Laue diffraction pattern. A Laue diffraction pattern taken
by scanning a 1µm x-ray spot across a device and summing the 2500 resulting individual
patterns. All peaks can be fit by TaAs with no impurity phases observed.

bar was polished to 272µm, 130 µm, 43 µm, and 14µm with magnetoresistance measurements
performed at each successive thickness. As shown in Figure 5.10, both the longitudinal
and Hall resistivities show a strong thickness dependence, immediately suggesting a surface
contribution.

Although complicated, the thickness dependence can be effectively modeled using a par-
allel channel conductance model incorporating both bulk and surface contributions to the
resistivity. Specifically, four contributions to the conductivity were assumed: bulk electrons,
bulk holes, surface electrons, and surface holes. Although the true band structure is signifi-
cantly more complicated, involving multiple pockets of each carrier type, this minimal model
captures some of the essential features of the thickness dependence. The conductivity tensor
of each carrier type is assumed to take the semiclassical form

σ =
n|e|µ

1 + (µB)2

[
1 ±µB
∓µB 1

]
(5.3)

where n is the carrier density, e is the electron charge, µ is the carrier mobility, B is the
applied magnetic field, and ± denotes holes or electrons, respectively. The fitting parameters
used are shown in Table 5.2. The bulk is partially compensated, consistent with what has
been observed in other measurements [57, 73]. The surface is also close to compensation, with
much lower mobilities than the bulk. This would be expected from polishing-induced damage
that might cause additional scattering on the surface. SdH oscillations were incorporated
by adding a Lifshitz-Kosevich oscillatory term to the diagonal elements of the conductivity
tensor to simulate the 7.3T oscillations of the bulk W1 Fermi pocket.
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Figure 5.10: Thickness dependence. Longitudinal (a) and Hall (b) resistivities show
a non-trivial thickness dependence. Resistivities were calculated using bulk geometrical
factors. For a purely bulk conductivity, this would cause the curves to collapse. In addition,
the SdH oscillations in the transverse magnetoresistivity appear to show a phase inversion
between the 14µm/43 µm devices and the 130µm/272µm devices. Insets: The thickness
dependence can be well-modeled with a parallel channel conductance model incorporating
both surface and bulk contributions to device resistance. This model captures the overall
shape and ordering of the resistivity curves and the phase inversion of the SdH oscillations.
Adapted from Ref. [4].

The model captures the thickness dependence shown in Figure 5.10 through a geometry-
driven difference in scaling between the surface and the bulk. As the sample is thinned, the
surface plays a proportionally larger role, leading to a systematic change in the net carrier
concentration and a decrease in the Hall resistivity. This, in turn, changes the proportion of
the current carried by the surface, leading to the complicated thickness dependence observed
in the longitudinal resistivity. Although this is a very simple minimal model, the calculated
resistivities closely reproduce the features of the measured data with the parameters sum-
marized in Table 5.2.

One specific feature that is captured is the phase inversion of the bulk oscillations between
the 43 µm and 130 µm devices in the longitudinal, but not Hall channel. The oscillation
at 7T, for example, appears as a peak in the longitudinal resistivities of the 272um and
130um devices, but a trough in the 43um and 14 um devices. In the Hall resistivities, on
the other hand, the same oscillation appears as a peak for all thicknesses. This thickness-
dependent phase inversion is well captured by the model. Similar phase inversions have
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Electron Density Hole Density Electron Mobility Hole Mobility
Bulk 6.9× 1018cm−3 6.2× 1018cm−3 100, 000cm2/Vs 30, 000cm2/Vs

Surface 5.6× 1015cm−2 6.1× 1015cm−2 570cm2/Vs 600cm2/Vs

Table 5.2: Modeling parameters. The carrier densities and mobilities used to model the
surface contribution to the transport.

Figure 5.11: High field transport. (a) Above approximately 14T additional structure
can be observed in the high frequency SdH oscillations. (b) A Fourier transform shows two
frequencies, 274T and 287T, emerging at high field. Adapted from Ref. [4].

been observed in samples of elemental bismuth and antimony [74, 75]. They are understood
as a competition between diagonal and off-diagonal terms of the conductivity tensor. As
the devices are thinned, the larger influence of the surface changes the strength of the Hall
conductance relative to the longitudinal conductance, leading to the change of phase in the
SdH oscillations. The fact that this phase change is also captured by the model is strong
evidence of the influence of surface conduction on the overall conductivity.

In order to observe the evolution of the 285T oscillation, the samples were measured in
pulsed fields up to 60T. Below 14T, the oscillations appear fully periodic in inverse field with
a frequency of approximately 285T, as previously noted. Above 14T, however, additional
peaks emerge and the oscillation begins to show a beating pattern (Figure 5.11). A Fourier
transform shows that two distinct frequencies at 274T and 287T can be resolved. These two
frequencies can be traced to a unique Fermi arc interference orbit that may be present in
this system.

ARPES experiments and DFT calculations can help elucidate the origin of the surface
oscillations. Figure 5.12 shows a schematic of the electronic surface structure of the [001]
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Figure 5.12: Theoretical expectations from quantum interference orbits involving
Fermi arcs. A DFT band structure calculation showing trivial and Fermi arc surface states
on the [001] surface of TaAs. The interference orbit between two adjacent Fermi arcs is
highlighted in orange. The area enclosed agrees closely with the SdH oscillation frequency
observed in transport. The orbit near X is 7% larger than the equivalent orbit near Y,
in remarkable agreement with the frequency splitting observed at high fields (Figure 5.11).
Adapted from Ref. [4].

As-terminated surface of TaAs. Although Weyl orbits involving individual Fermi arcs and
traversing the bulk, as observed in Cd3As2 in Chapter 4, would be a natural explanation
of the oscillations in TaAs, the expected frequencies would be much higher than observed.
Moreover, coherent orbits from Fermi arcs on opposite surfaces require the traversal of the
bulk and since these samples are not FIB fabricated and therefore significantly thicker than
the quantum mean free path (λ ∼ 0.1µm) it seems highly unlikely that coherent orbits of
this sort can form [24].

However, one orbit that matches the observations corresponds to the cyclotron path
connecting two different Fermi arcs on a single surface, as illustrated in Figure 5.12. Such an
orbit involves an interband transition from one arc to another, a process known as magnetic
breakdown that is observed in materials with nearly degenerate bands near the Fermi energy
[76, 13, 77]. What is especially unusual about this orbit is that it is semiclassically forbidden;
it involves electrons traveling opposite to the Lorentz force along one of the arcs. Such
orbits are known to appear by Stark interference, the interference of two coherent cyclotron
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trajectories, and have been observed in magnesium and certain organic superconductors [78,
79, 80]. In essence, the quantum mechanical phase of the particles interferes as they are
transmitted and reflected at the junctions where the arcs terminate.

To see that interference orbits can lead to quantum oscillations, consider a particle at
position A in Figure 5.12, at the left junction of the two arcs. If the particle travels to
position B along the top or bottom arc, it will pick up an Aharonov-Bohm phase from
the field enclosed by the associated real-space trajectory, φ = e

~

∫
~A · d~l, where ~A is the

vector potential. The phase difference between the two paths leads to interference of the
wavefunction where the paths rejoin at point B. As a result, the total probability amplitude
will be of the form T ∼ cos(φtop − φbottom) = cos( e~

∮
~A · d~l), where the integral is over the

real-space path enclosed by the two Fermi arcs. By Stokes theorem, this path integral can
be converted to a surface integral over the area enclosed, and the real space area, Ar, can be
converted into a k-space area, Ak, by Ak = ( eB~ )2Ar. Therefore, as a result of the quantum

interference of the paths, the probability amplitude becomes T ∼ cos(~Ak

eB
). This is of the

exact same form as SdH oscillations with a frequency F = ~Ak

2πe
, where Ak is now the area

enclosed between the two Fermi arcs. A more detailed derivation is available in Ref. [81].

Ak estimated from ARPES measurements (Ak ∼ 0.026�A−2
) is consistent with DFT calcu-

lations, and corresponds to a frequency of 277T, in close agreement with the observed 285T
[30]. This is also consistent with previous DFT calculations of the Fermi surface reported in
Refs. [82, 60]. Additionally, from different energy cuts, the cyclotron effective mass can be
estimated by m∗ = ~2

2π
∂Ak

∂ε
, and is found to be approximately 0.4me, in reasonable agreement

to the observed effective mass of 0.5me. Given that no other surface or bulk states of TaAs,
let alone known impurity phases, have masses close to this value, this agreement is a strong
indication that the observed frequency arises from the quantum interference of the Fermi
arcs.

The observation of two distinct frequencies at high field is also consistent with the Fermi
arc interference orbit. The [001] surface of TaAs breaks the four-fold rotational symmetry
of the crystal. As a result, the surface band structure does not have to be the same in the X
and Y directions. In fact, the Fermi arcs connecting the W2 Weyl nodes are found to differ
slightly in both DFT calculations and ARPES measurements [30]. This difference leads to
an approximately 7% change in the area enclosed by the two quantum interference orbits,
very close to the 5% splitting of the observed SdH frequencies.

5.6 Conclusion

Surface signatures of the Fermi arcs in Weyl and Dirac semimetals have proven extraor-
dinarily difficult to detect, let alone evidence of coherent orbits among them. The only
system in which such orbits have been observed is Cd3As2, where the samples lend them-
selves to microfabrication techniques, allowing device thicknesses to approach the bulk mean
free path. In TaAs, observation of these arcs is much more complicated; not only are there
many more arcs that intersect in complex ways, but trivial surface states are also present
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and the material chemistry prevents the same microfabrication techniques from being used
without significantly altering the sample [5]. In this work, mechanically polished samples
reveal a new SdH oscillation that sustains electron coherence along a cyclotron orbit. This
orbit cannot be explained by any bulk Fermi surface or likely impurity phase. DFT calcu-
lations instead show that this orbit quantitatively agrees with a cyclotron path involving
the quantum interference of two Fermi arcs on the same surface, distinguishing it from the
oscillatory phenomena observed in Cd3As2. These observations demonstrate that there are
exciting possibilities not only to reveal the transport behavior of the Fermi arcs in high
magnetic fields, but to utilize field-driven interferometry as a means to study and employ
their topological properties.
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Chapter 6

Dirac Electrons in ZrTe5

6.1 Motivation and previous results

Although many materials have been identified as topological and non-topological in recent
studies, very few materials appear to exist at the boundary of these two phases. ZrTe5 is
one such material that is believed to reside close to such a phase boundary. Because of
this proximity, however, its exact topological nature has been hotly debated, having been
predicted and verified as a Dirac semimetal [83, 84, 85, 86, 87], a topological insulator
[88, 89, 90, 91, 92] and a trivial semiconductor [93] by different studies. The putative
topological phase transition (TPT) is thought to be manifested as an unusual peak in the
temperature dependence of the resistivity, whose position is strongly sample dependent and
ranges between ∼ 10K to 150K. Density functional theory calculations suggest this sample
dependence arises directly from a (structural) proximity to a TPT [94], and evidence for this
has been bolstered by recent angle-resolved photoemission and pressure-dependent transport
measurements [95, 96, 97]. Nevertheless, the topological nature of ZrTe5 above and below the
resistivity anomaly has remained controversial, highlighting the need for better experimental
signatures of topological character.

Previous studies on the Weyl semimetal NbAs found that its topological character could
be probed by measuring the sample’s magnetization at large magnetic fields [98]. Specifi-
cally, topological Weyl and Dirac Fermi pockets will exhibit paramagnetism as they approach
the quantum limit, the field at which all electrons are in the zeroth Landau level. This or-
bital paramagnetism is diminished above the quantum limit and gives way to a background
diamagnetism that is usually also present. This cross-over from paramagnetism to diamag-
netism at the quantum limit is a signature of topological carriers. Although this phenomenon
was first confirmed in NbAs, a previously known Weyl semimetal, it can be used to search
for other materials whose topological character is less clear.

In the most general case, all materials show some small degree of orbital diamagnetism
arising from the local orbital moment of the ions. Trivial metals show an additional Landau
diamagnetism arising from the orbital motion of their itinerant electrons. In topological
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materials, however, a paramagnetic response can be observed due to the presence of a chiral
Landau level at zero energy. For a massless Dirac fermion in a magnetic field B along z, this
is given by

εn = vF
√

2~eB(n+ γ) + ~2k2
z , (6.1)

where n is the Landau index and vF the Fermi velocity. γ is a quantum correction associated
with Berry’s curvature of the band structure. In trivial systems, it takes the value 1/2. In
Dirac systems, on the other hand, γ = 0. This Berry’s phase is often used as evidence
for the existence of a topological bandstructure, which can in principle be extracted from a
plot of the Landau level indices versus inverse magnetic field [99]. However, the influence
of Zeeman splitting, the complicating effects of conductivity contributions from other bands
and the presence of a Dirac mass can make this extraction unreliable, particularly in three
dimensions [100, 101].

Instead, a robust consequence of Eq. 6.1 is a sign-change of the magnetization beyond the
quantum limit. In the absence of any other magnetic transitions, this serves as a characteris-
tic signature of the presence of an electron-like Weyl or Dirac Fermi surface. A consequence
of γ = 0 in Eq. 6.1, is that the n = 0 Landau level is pinned at zero energy. As the magnetic
field is increased, the growing degeneracy of this Landau level pulls down the total energy
of the system, leading to an overall paramagnetic response given by M = −dE/dB. When
the quantum limit is exceeded, the chemical potential asymptotically approaches the zeroth
Landau level and the paramagnetic response diminishes, crossing over to the diamagnetic
response expected from fully occupied bands [98]. In a single-band system, this crossover
from paramagnetic to diamagnetic at the quantum limit leads to a kink and evidences the
topological nature of charge carriers in a system.

Moreover, the crossover and associated kink should be a band-specific probe of topology.
Since each Fermi surface crosses the quantum limit at a different field determined by its
quantum oscillation frequency, the field at which the magnetization kink occurs can isolate
which Fermi pocket contains the topological charge carriers. In a multiband system such
as ZrTe5, this may be a more sensitive probe than fitting Landau level intercept plots from
SdH or dHvA oscillations.

6.2 Magnetic torque

Note, in many cases measuring the magnetization of a sample directly is not feasible. This
is true when the magnetization of the sample is very weak, either intrinsically or due to
sample size. It is true at high magnetic fields, especially pulsed fields, where the field is
noisy and rapidly changing over time. It is also true if continuous rotations of a sample in
the magnetic field are required. In these cases measuring a closely related parameter, the
magnetic torque, is often an easier route to probe the same physics.

The magnetic torque is proportional not to the magnetization of the sample, but to
its magnetic anisotropy. In general, the magnetization, Mi, of a sample is related to the
applied magnetic field, Hj, by Mi = χijHj, where χij is the magnetic susceptibility, a 3× 3



CHAPTER 6. DIRAC ELECTRONS IN ZRTE5 58

second rank tensor. In an orthorhombic system such as ZrTe5, the off-diagonal elements are
constrained to be zero by symmetry and the expression for the magnetization simplifies to
~M = χaHaâ+χbHbb̂+χcHcĉ, where â, b̂, ĉ are the crystallographic principal axes [102]. As a

result, the magnetization will not point in the same direction as the applied magnetic field,
unless the field is applied along one of the principal axes or additional crystal symmetries
further reduce the susceptibility tensor. This will lead to a torque on the crystal given by
~τ = ~M × ~H = (MbHc −McHb) â. Simplifying using the susceptibility tensor gives:

τ =
1

2
(χb − χc)H2 sin(2θ) (6.2)

where θ is the angle of the applied magnetic field measured from the c-axis.
The magnetic torque is proportional to the susceptibility anisotropy and will be large in

highly anisotropic systems. Any effects from Landau level quantization that manifest them-
selves in the magnetic susceptibility, such as dHvA oscillations, will also be apparent in the
magnetic torque. Magnetic torque, however, has the advantage that it can be extracted from
the straightforward resistance measurement of a microfabricated piezoresistive cantilever.

An example of the cantilever used is shown in Figure 6.1. This is a commercially avail-
able piezoresistive AFM tip onto which a sample is attached with vacuum grease. When
placed into a magnetic field, the magnetic torque acting on the sample flexes the cantilever
causing a change in resistance. A dummy cantilever is also present and can be wired into
a Wheatstone bridge circuit to offset any non-torque magnetoresistance of the sample can-
tilever. In this manner, high precision measurements of a sample’s magnetic torque, and
therefore its susceptibility anisotropy, can be made in a variety of different environments,
including pulsed magnetic fields and rotating sample stages.

6.3 Magnetization measurements

ZrTe5 single crystals were grown by the vapor transport technique as outlined in Section
5.2 using iodine as the transport agent. A precursor powder was prepared by sealing a
stoichiometric mixture of zirconium and tellurium in a quartz ampule under vacuum which
was heated to 500°C and held for 7 days. The resulting powder was mixed with 5mg/cm3

of iodine and sealed in a quartz ampule under vacuum before being loaded into a two-zone
furnace. The source and sink ends of the ampule were held at 520°C and 480°C, respectively
for 21 days. Needle-like crystals up to 7mm long in the space group Cmcm (No. 63) were
obtained from the cold end of the ampule. Crystal structure and orientation was confirmed
with x-ray diffraction.

Figure 6.2 illustrates the results of ZrTe5 magnetization, magnetic torque, and transport
measurements. The magnetization has a paramagnetic response at low field crossing over
to diamagnetism at high field. The magnetic torque, related to the magnetization by Eq.
6.2, shows a very similar cross-over behavior. Both exhibit two kinks: a dominant kink
at ∼ 1.5T and a smaller, more subtle kink at ∼ 2.5T, after which the sign change occurs.
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Figure 6.1: Magnetic torque. (a) A microscope image of a piezoresistive cantilever
with sample and dummy cantilevers. (b) The sample (blue) generates a torque when the
magnetization is not aligned with the applied magnetic field. This flexes the cantilever
(black) and leads to a measurable change in its resistance.

Finally, the magnetoresistance of ZrTe5 shows pronounced SdH oscillations with field along
the crystallographic b-axis. Note that the oscillations are spin-split, so the Landau level
position should be identified as the trough between spin-split SdH peaks. From this one can
identify that the n = 1 Landau level crosses the Fermi energy at 2.6T, in agreement with the
frequency extracted from the low-field SdH oscillations and very close to the smaller kink at
∼ 2.5T.

From the arguments presented in Section 6.1, this crossover should be associated with a
topological Fermi surface entering the quantum limit. Specifically, the kink observed ∼ 2.5T
matches well with the quantum oscillations which show a Fermi pocket entering its quantum
limit at 2.6T. Since ZrTe5 is inversion-symmetric, this pocket would have to be doubly de-
generate and therefore Dirac-like in nature. Although both a cross-over from paramagnetism
to diamagnetism and a kink can be observed in the magnetization and magnetic torque, the
shape of these curves is not as clear-cut as similar measurements in NbAs [98]. Specifically,
the dominant change in curvature occurs not at the quantum limit, but at ∼ 1.5T. As will be
discussed, this may actually be explained by the presence of additional bands that contribute
to the magnetization.

In order to distinguish the low-field behavior from other sources of paramagnetism an
angle dependence can be used to confirm that the sign change in the magnetization tracks
with the quantum limit of the Fermi surface (Figure 6.3). As the angle of the field with
respect to the principal axes of the crystal is changed, the cross-sectional area tracked by
the frequency of the SdH oscillations shifts accordingly, pushing the quantum limit out to
higher field. Figure 6.3b shows SdH oscillations in the magnetoresistance of ZrTe5 at different
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Figure 6.2: Magnetization, torque, and resistivity. (a) The magnetization of ZrTe5

with field applied along the crystallographic b-axis shows a clear paramagnetic response at
low field and a transition to a diamagnetic response at high field. Inset: The crystal structure
of ZrTe5 with Zr atoms in purple and Te atoms in orange. (b) The magnetic torque measured
on the same sample as (a) is in close agreement with the magnetization and exhibits the
same transition from para- to dia-magnetism. Inset: An image of the ZrTe5 sample mounted
on a torque cantilever with the long direction along the a-axis. (c) The magnetoresistance of
ZrTe5 shows pronounced SdH oscillations and the onset of the quantum limit in the vicinity
of the sign change observed in (a) and (b). Inset: The low-field oscillations show no evidence
of beating, implying that only one spin-split frequency is being observed. All measurements
were performed at 1.8K. Adapted from Ref. [6].

angles. The frequency and the expected position of the n = 1 Landau level can be extracted
from the oscillation and is plotted as black dots in Figure 6.3c. The anomaly observed
in the torque, plotted as empty red circles, tracks well with the expected position of the
n = 1 Landau level up until angles where the kink is so broad that it can no longer be well
determined. However, one can track the n = 2 feature (filled circles in Figure 6.3a) in the
torque to much higher fields, and it can be seen to follow the angle dependence of the SdH
very closely up to high angles. The correlation between the kink in magnetic torque and loss
of paramagnetism with the quantum limit provides strong evidence for the presence of an
electron-like Dirac Fermi surface which is responsible for the observed SdH oscillations.

6.4 Evidence for Dirac electrons

There is one peculiar feature of the data which requires additional explanation. Although
the n = 1 kink observed in the magnetic torque tracks well with the quantum limit, the
dominant change in curvature of the torque signal appears at fields lower than the quantum
limit (see the filled circles in Figure 6.3a). This would, in general, not be expected from a
single Dirac band. Figure 6.4a shows a simulation of the magnetization from a single Dirac
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Figure 6.3: Angle dependence. (a) Torque measured at different magnetic field orien-
tations in the b-c plane. The paramagnetic response and cross-over field grows with field
angle. Two kinks can be extracted from the data. The more prominent low-field kink (filled
circles) can be tracked for all angles. The less prominent high-field kink (empty circles) is
only observable for intermediate angles. (b) The magnetoresistance measured at different
field orientations in the b-c plane shows that the quantum limit grows monotonically with
increasing field angle. (c) The kinks in the magnetic torque from (a) (red circles) compared
to the SdH oscillation frequency extracted from the magnetoresistance data in (b) (black
circles). The quantum limit, which occurs at the SdH frequency, tracks well with the high-
field kink over the observable range. All measurements were performed at 1.8K. Adapted
from Ref. [6].

conduction band with a linear diamagnetic background. While this broadly reproduces the
oscillatory part of the data, it does not capture the overall curvature of the magnetization
and the position of the dominant kink. In particular, to reduce the magnitude of the feature
arising from the n = 1 Landau Level below that of the n = 2 with linear diamagnetism only,
one has to suppress the weak field paramagnetism entirely. This implies that a non-linear
diamagnetic background must be present.

Most conventional sources of magnetism in semiconductors will lead to a linear back-
ground in the magnetization, and non-linear contributions from correlated spins seem un-
likely in a system with filled shells like ZrTe5. A more natural possibility is the presence of
a second Dirac pocket. This pocket – which may be itself slightly gapped – would enter its
quantum limit at weak fields and enhance the low field paramagnetic signal. As shown in
Figure 6.4b, a simulation of this system better captures the key features of the data. Note
that if another Dirac pocket exists, no direct signature in the quantum oscillatory signal is
observed. This may be because it enters the quantum limit at very low fields and therefore
oscillations are not resolved. Nevertheless, the existence of such a pocket is consistent with
DFT calculations of the band structure, and may have already been observed by ARPES
experiments [93, 103].
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The magnetization calculations shown in Figure 6.4 were performed by considering the
effective Hamiltonian H0 = ~ (vxkxτxσz + vykyτy + vzkzτxσx) + mτz, where m is a possible
Dirac mass and σ and τ denote Pauli matrices for spin and Chern number, as given in
[83, 104]. A magnetic field applied along the z direction (crystallographic b-axis) leads to
a Zeeman term of the form Hz = −µBgσzB/2. The band velocities, to first order, can be
approximated as isotropic with ~vx,y,z = ~v = 3.0 eVÅ, an averaged value of those reported
in Ref. [103]. The carrier density and g-factor, g = 15, are fixed so the simulation matches
the position of the spin-split n = 1 peak in Figure 6.2c. Solving for the energy eigenvalues

of this Hamiltonian gives εn,kz ,s = ±[v2~2k2
z +
(√

2v2e~Bn+m2 + sµBBg/2
)2

]1/2, where n is
the Landau level index, s = ±1 labels the Zeeman split bands and the overall ± sign denotes
the conductance and valance bands.

Assuming the Fermi energy to be in the conduction band, as is expected for the n-
type carriers observed in ZrTe5 the ground state energy of the system is given by E(B) =
(eB/2π~)Σn,kz ,sεn,kz ,snF (εn,kz ,s − µ), where nF is the Fermi distribution restricting the sum
to occupied states, and eB/2π~ is the Landau level degeneracy. The chemical potential µ is
calculated by fixing the carrier density ρ = (eB/2π~)Σn,knF (εn,k − µ) to the experimentally
determined value. The magnetization is then given by M(B) = −dE/dB. The effects of
the valence band can be included by subtracting a contribution linear in B [98]. For the
parameters considered, the presence of a small zero-field mass does not noticeably alter the
simulation and m is set to 0. A Gaussian convolution is applied to the magnetization to
account for disorder and thermal broadening of the Landau levels.

The basic result of this calculation is shown in Figure 6.4a. As can be seen, the dominant
kink occurs at the quantum limit, in contrast to what is observed in the magnetization and
magnetic torque measurements. In Figure 6.4b, an additional Dirac band with g′ = 15
and ~v′x,y,z = 5.0 eVÅ is added, which reaches its quantum limit at ∼ 1T. The resulting
calculated magnetization much more closely resembles the measured data. The low-field
paramagnetism is enhanced, resulting in the dominant change in curvature occurring at a
lower field value than the quantum limit. There is quite a range of parameters for this second
Dirac band that can reproduce the observed low field paramagnetic boost, evidencing the
generality of the model.

DFT calculations find several features close to the Fermi level that are consistent with
the assumptions made when calculating the magnetization. As shown in Figure 6.5, without
including spin-orbit coupling there are two Dirac crossings close to the Γ and S points.
With the inclusion of spin-orbit interaction, the Dirac crossings become gapped and a new
feature with a Dirac-like dispersion appears at Γ, in addition to several other bands close to
the Fermi level in the Z to T direction. Hall effect data shows electron-like carriers at low
temperature, implying some of these additional bands must be populated and Dirac-like or
massive Dirac-like features should be present [95]. Note that these features are extremely
sensitive to cell volume and strain, which may explain the conflicting experimental reports
on the electronic properties and topological signatures in ZrTe5 [94, 83, 64, 85, 86, 87, 88,
89, 90, 91, 92, 93].
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Figure 6.4: Bandstructure calculations. (a) Upper: Simulated magnetization of a single
Dirac band at constant density, with (red) and without (blue) a linear diamagnetic back-
ground. The vertical dashed line at 3T indicates where the Dirac band enters its quantum
limit. Lower: Dirac band-structure at magnetic field 3T with chemical potential µ indicated
by the grey dashed line. (b) Simulated magnetization for two Dirac bands with (red) and
without (blue) a linear diamagnetic background. The response from the high velocity Dirac
pocket enhances the paramagnetic response at low field; with background diamagnetism, the
n = 2 peak may become dominant. Adapted from Ref. [6].

The temperature dependence of the magnetic signal is shown in Figure 6.6. Strikingly, the
low-field paramagnetic response is rapidly suppressed by increasing temperature and com-
pletely disappears by 5K. This suppression strongly suggests that the balance of Dirac and
non-Dirac contributions to the total magnetization is highly dependent on thermal processes.
By 10K the magnetization is dominated by the diamagnetic response, but its non-linearity
suggests there is still a competing contribution from the Dirac pocket. At temperatures
above 30K, which coincides with the peak observed in transport, the magnetization ap-
proaches the temperature-independent diamagnetic response typical of ordinary metals. In
general, such a sign reversal would not be expected in a thermodynamic quantity over such
a short temperature range without a phase transition. This surprising result indicates that
the Dirac-like signatures of ZrTe5 are very sensitive, indicating a proximity to a possible
topological phase transition (TPT), in which the topological nature of the charge carriers
changes.

The disappearance of the paramagnetic response coincides with a peak in the resistivity
occurring at 35K (see Figure 6.6b). This peak, which has been observed to range from 10K
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Figure 6.5: DFT calculations. Calculated electronic band structure for ZrTe5 with (dashed
line) and without (solid line) spin-orbit coupling. Lattice parameters were fixed to experi-
mental values. The Fermi level is set to 0 eV and marked by the dashed line. Adapted from
Ref. [6].

to 150K in other samples, has been attributed to a Lifshitz transition [95]. However, the fact
that the peaks/troughs of the quantum oscillations in Figure 6.6a do not appear to shift as a
function of temperature implies that the chemical potential is not varying with temperature
or is varying slowly. Therefore, while a Lifshitz transition cannot be ruled out, the behavior
of the magnetization and the resistivity hump is more consistent with a TPT associated with
the opening of a gap in a Dirac cone [94]. Figure 6.6c shows the temperature dependence
of the zero-crossing of the magnetization, which can be used to parameterize the critical
response of the system as it crosses the TPT.

Two key features provide a clue as to the mechanism: the frequency of the quantum
oscillations remain constant across the TPT, and the high field diamagnetism is similar
above and below the TPT. This suggests that the dominant source of the diamagnetism is
the same (namely trivial bands) and that only the Dirac band is changing. In the scenario
where there are two Dirac bands, it is possible that the smaller of the two undergoes the TPT.
This may explain its dominant paramagnetic signal at low temperatures (since M ∼ vF ), as
well as the preservation of the Fermi surface size of the large Dirac band, since a TPT of the
smaller pocket would only weakly affect the filling of the large Dirac band. Another scenario
is that one or both bands become massive above the TPT, which would strongly suppress
the paramagnetic signal but without necessarily affecting the SdH frequency.
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Figure 6.6: Temperature dependence. (a) Temperature dependence of the magnetization
with magnetic field oriented along the crystallographic b-axis. The low-field paramagnetic re-
sponse is rapidly suppressed with increasing temperature, becoming completely diamagnetic
by 5K. Above 30K, the magnetization approaches the constant, temperature-independent
diamagnetic response typically found in ordinary metals. (b) The resistivity shows a peak
around 30K, which has been attributed to a Lifshitz transition in ZrTe5 and matches the
temperature scale at which the paramagnetism disappears. (c) The field, B0, at which the
magnetization changes sign evolves in a manner suggestive of an order parameter. The
dashed line is a guide with functional form B0 ∝ (1− T/Tc)2/3. Adapted from Ref. [6].

6.5 Conclusion

Although the band structure of ZrTe5 is complex and unanswered questions remain, the
measurements presented show a clear thermodynamic signature of Dirac electrons. By com-
bining magnetic torque, magnetization and magneto-transport data the disappearance of
this signature can be correlated with a possible TPT coincident with a transport anomaly
occurring at low temperatures. This is broadly consistent with photoemission and pressure-
dependent transport studies of these compounds [95, 96, 97]. Magnetization measurements
provide an indirect measure of the topological nature of ZrTe5, exhibiting a bulk, magnetic
signature of the transition. ZrTe5 thus provides a rare experimental platform in which the
fundamental statistical mechanics of topological systems and their transitions can be studied
directly. Understanding topological phase transitions may allow for topological invariants to
be used as a robust platform for information storage and computation.
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Chapter 7

Antiferromagnetic Memory in
Intercalated Transition Metal
Dichalcogenides

7.1 Motivation and previous results

Although the FIB has proven to be an extremely useful tool in the exploration of topological
semimetals, it can also be used to make devices from other quantum materials that are not
readily exfoliated. In this chapter, FIB fabrication techniques are used to show electroni-
cally accessible magnetic memory storage in antiferromagnetic (AFM) intercalated transition
metal dichalcogenides (TMDs). AFM memory storage has long been sought-after due to the
improvements it promises over widely-used ferromagnetic (FM) memory heterostructures.
Like FMs, AFMs are a non-volatile method of memory storage. Unlike FMs, AFMs produce
no external fields, making memory stored in this manner invisible to external probes and
reducing crosstalk between individual devices. AFMs possess ultrafast spin dynamics. They
have been demonstrated to switch at speeds up to several THz, compared to the GHz limit
of FM memory devices [105, 106]. Moreover, AFMs couple weakly to magnetic fields, mak-
ing them robust against magnetic perturbations. This insensitivity to field, however, makes
manipulating and detecting AFMs difficult, limiting their use primarily to passive layers in
FM heterostructure devices [107, 108]. As a result, electronically accessible AFM memory
remains a challenge.

One option for manipulating AFM systems for memory storage would be through the use
of a spin transfer torque. The spin transfer torque describes the torque applied on localized
moments by the spins of the conduction electrons and, in its most general form, is given by

τ = ~MA/B × ~p
field−like

+ ~MA/B × ( ~MA/B × ~p)
antidamping−like

(7.1)

where ~MA/B is the local magnetic moment on the A/Bth sublattice and ~p is the net spin
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polarization of the injected charge current [107, 109, 110]. The first term in the spin transfer
torque is referred to as “field-like” and the second as “antidamping-like”. Generally, the field-
like term will lead the local moment to precess around the direction of spin polarization, in
much the same way that a moment would precess around an applied magnetic field. The
antidamping term, however, will point in the direction of the spin polarization, ~p, and will
tend to align the two. As a result, the direction of the antidamping torque will depend on the
spin polarization of the conduction electrons and can be used to change the magnetization
of the sample. Note, a Gilbert damping term will also be present. Overcoming the Gilbert
damping leads to a minimum current threshold required to reorient magnetic order.

In FM systems, the effect of the antidamping torque is straightforward. Given a large
enough current, it will align the local magnetic moments with the spin polarization of the
applied current. This is the basic principle of operation behind the magnetic tunnel junction.
A fixed FM layer acts as a spin valve, which polarizes the conduction electrons. These
polarized electrons then flow to a second, free FM layer, whose magnetization will realign
due to the antidamping torque. Since the direction of the electron polarization depends on
the direction of current flow, this creates a reversible magnetic switch. Combined with the
giant magnetoresistance effect, this forms the basis of commercial magnetoresistive random
access memory (MRAM) storage technologies [111, 112, 113].

In AFMs, the situation is a little more complicated. Because of the large exchange
coupling energy between neighboring spins, they cannot be treated individually and the
system must be treated as a whole. The antidamping torque will act in the same direction
on the moments in both sublattices. Since the sublattices are aligned antiparallel, this
would, in general cause those moments to rotate in opposite directions. The AFM exchange
energy, however, enforces that these moments remain largely antiparallel, up to a small
canting. This results in a new equilibrium where the sublattice moments are antiparallel
and orthogonal to the direction of the conduction spin polarization. In this configuration,
the Néel vector is orthogonal to the conduction spin polarization with a small parallel FM
component associated with the canting of the moments. Once the current is no longer
present, this FM moment will relax. This mechanism is conceptually similar to a spin-flop
transition in an AFM due to an applied magnetic field and is discussed in detail in [114].

Figure 7.1 compares the effect of a spin transfer torque in a FM and an AFM. In a
FM, the antidamping torque causes a reorientation of the local magnetic moments to lie
parallel to the conduction spin polarization. Typically, this leads to a 180° reversal of the
moment, due to the fixed nature of the spin valves [115]. In AFMs, however, the same spin
polarization will lead to a 90° rotation of the moments and the associated Néel vector [114].

The magnitudes and directions of the spin transfer torque terms is determined by the
spin polarization of the injected charge current, ~p. In a conventional heterostructure device,
a nonzero ~p is achieved by injecting charge carriers through a fixed FM spin polarizing layer,
as is the case in magnetic tunnel junctions [114]. In the absence of such a layer, the value of
~p is determined instead by the symmetries of the crystal lattice. In an inversion symmetric
lattice, the net spin polarization over the entire Brillouin zone must be zero, although it
may be locally non-zero [116]. In the absence of inversion symmetry, however, the spin
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Figure 7.1: Spin transfer torque switching in FMs and AFMs. (a) The antidamping
torque in a FM rotates the local moments by 180° resulting in a reversal of the magnetization.
Adapted from Ref. [115]. (b) In AFMs, the antidamping term results in a 90° rotation of
the moments and associated Néel vector. Adapted from Ref. [114].

polarization may be globally non-zero as a result of the inverse spin galvanic effect (ISGE)
or Edelstein effect. This is a result of Rashba spin-orbit coupling, which couples a charge
carrier’s spin to its crystal momentum. An applied electric field will cause the Fermi surface
to gain a net momentum, and the Rashba spin-orbit coupling causes a corresponding gain in
net spin polarization. In a multiband system, asymmetric interband scattering can enhance
this effect [117, 118, 119]. (Note, in an inversion symmetric system the Fermi surface is
doubly degenerate and therefore any change in spin population of one subband is offset by
an opposite population shift on the other subband.) The ISGE-induced spin polarization is

given by ~p = ẑ × ~J , where ẑ is the unit vector along the direction of the relevant broken
mirror symmetry and ~J is the injected charge current [116].

Two AFM compounds, CuMnAs and Mn2Au, were recently predicted and subsequently
measured to possess electronically accessible switching dynamics in single crystal form [116,
120, 121]. A third AFM compound, NiO, was found to be switchable when coupled to spin-
polarizing platinum contacts in a heterostructure [122, 123]. It both cases, it was shown that
DC electric current pulses could be used to rotate the direction of the AFM order and this
rotation could be detected as a change in the device resistance. In this manner, fabricated
devices could be used as memory bits with electronic write-in and read-out. Because both
CuMnAs and Mn2Au are inversion-symmetric, their switching behavior has been attributed
to the field-like term of the spin transfer torque, which differs from the antidamping-driven
switching mechanism described above. Although the charge carrier polarization, ~p, must be
globally zero, it may be locally non-zero and was predicted to be non-zero with opposite
polarity on the two magnetic sublattice sites [116]. As a result, the effective field associated

with the field-like term of the spin transfer torque, ~BFL
eff ∼ ~p, will be staggered with the AFM

sublattice periodicity. From a symmetry standpoint, it has the same symmetry as the AFM
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order, and therefore the two would be expected to couple strongly, allowing a relatively
weak electric field to rotate the AFM order. The corresponding field associated with the
antidamping term, on the other hand, will have the same value over both sublattice sites,
and therefore would not be expected to couple to the AFM order any more strongly than a
constant external magnetic field. Although both materials were shown to operate at room
temperature, the current densities required for their switching was in excess of 107A/cm2.
Combined with the fact that tens of pulses are required for the resistance to saturate to the
“low” or “high” value, these compounds are far from ideal for device applications.

The NiO/Pt heterostructure devices, on the other hand, use a different physical mech-
anism to switch the AFM order [122, 123]. In that case, a strong spin Hall effect in the
platinum layer gives a nonzero spin polarization, ~p, at the NiO interface. The resulting spin
transfer torque rotates the AFM moments in the NiO, and the result can be measured as
an anisotropic magnetoresistance-driven change in the device resistance. Because the in-
duced spin polarization is constant across the Brillouin zone, the switching is attributed to
the antidamping-like term of Eq. 7.1. Switching in these heterostructures, however, still
requires current densities in excess of 107A/cm2, making it difficult to implement in com-
mercial applications. Similarly to CuMnAs and Mn2Au, multiple current pulses are required
to approach saturation. Although switching in these heterostructures has been attributed
to the antidamping-like term of the spin transfer torque, it should be noted that switching
in a single crystal material driven by the same term has not been observed.

The inadequacy of existing AFM materials for device applications points to a need for new
candidates. The existing materials all required high current densities to switch and multiple
pulses to approach saturation. Intercalated TMDs have a rich landscape of magnetic orders
and may provide a platform for electronically addressable AFM memory devices.

7.2 Growth and magnetic properties of Fe1/3NbS2

This chapter focuses on the inversion symmetry-breaking compound Fe1/3NbS2. Fe1/3NbS2

consists of iron atoms intercalated in a periodic lattice between layers of the 2H phase of the
TMD NbS2. The unit cell is in the hexagonal space group P6322 (No. 182), which breaks
inversion symmetry due to the stacking of the iron atoms. The iron atoms are octahedrally
coordinated by sulfur and take a 2+ oxidation state with 6 electrons on the d-shell. Because
the crystal field splitting is weak compared to the exchange interaction, the d-electrons
take the high spin state. The crystal field splitting, however, is larger than the spin-orbit
interaction and quenches the majority of the orbital angular momentum [124]. As a result,
the iron atoms are observed to have an effective moment of µ ∼ 5µB/Fe (corresponding to
Jeff ∼2) [125]. The electronic structure is metallic with hole-like carriers from the partially-
filled niobium d-band.

Crystals were grown using the vapor transport method described in Section 5.2 with
iodine as the transport agent. A polycrystalline precursor powder was prepared from stoi-
chiometric amounts of iron, niobium, and sulfur sealed in a quartz ampule. The ampule was
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Figure 7.2: Magnetization measurements. (a,b) C-axis and in-plane magnetization mea-
surements show a peak at the AFM transition temperature of 42K in both 0.1T field cooled
(FC) and zero field cooled (ZFC) measurements. The FC and ZFC curves deviate below
approximately 25K. (c,d) C-axis and in-plane magnetization measurements at 2K and 30K.
Hysteresis is present with an out-of-plane field at 2K. This hysteresis vanishes by 30K and
is not present for an in-plane field at any temperature. Adapted from Ref. [7].

heated to 400°C for 12 hours followed by 900°C for 48 hours. The resulting powder was then
mixed with 2.2 mg/cm3 of iodine and loaded into a horizontal two-zone furnace. The vapor
transport reaction is

6Fe1/3NbS2(s) + 14I2(g) 
 Fe2I4(g) + 6NbI4(g) + 6S2(g) (7.2)

The source end was held at 950°C and the sink end at 800°C for a period of 7 days. On the
source end of the tube, the reaction equilibrium is shifted towards the products, which diffuse
to the sink end. The lower temperature at the sink shifts the equilibrium back towards the
reactants, causing Fe1/3NbS2 to be deposited in single crystal form. Note, that although
Eq. 7.2 represents the dominant reaction taking place, minority species of FeI2 and FeI3

will be present on the right hand side, complicating the reaction and associated calculations
[61]. High quality crystals in excess of 5mm were obtained. These crystals were fabricated
into devices using the FIB fabrication techniques outlined in Chapter 3. Because of their
platelet morphology, lamella cutting was not required. Instead, thin (<10 µm) crystals could
be directly mounted into epoxy for device fabrication.

The iron atoms in Fe1/3NbS2 are arranged in a triangular lattice, leading to geometric
frustration. Nevertheless, it exhibits AFM ordering at low temperature with a transition from
a paramagnetic state at 42K [126, 127, 128, 129, 124]. Most likely, this is a coupled with a
structural relaxation to relieve the geometric frustration, consistent with heat capacity and
magnetization measurements [125]. Recent single-crystal neutron diffraction measurements
have shown an AFM stripe ordering of the iron moments, which are mostly colinear with the
c-axis, but have a 10° - 15° canting into the ab-plane [130]. This AFM order is thought to be
primarily driven by an RKKY interaction mediated by the conduction electrons associated
with the niobium d-band [124]. A superexchange interaction mediated by the calcogen atoms
may play a smaller, secondary role [128].
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Figure 7.3: Basic switching results. (a) A false-color SEM image of a Fe1/3NbS2 switching
device. The transverse resistivity (R⊥) is measured using the yellow contacts. A 100µA
(5.4× 102 A/cm2) AC probe current is applied along one yellow bar, while the voltage drop
is measured along the orthogonal bar using standard lock-in techniques. Simultaneously,
DC current pulses can be applied along the red and blue contacts in the [100] and [12̄0]
directions. (b) When orthogonal current pulses are applied, the transverse resistivity switches
between two states. Applying 5.4×104 A/cm2 for 10ms along the blue contacts switches the
device into a low transverse resistivity state. Applying the same pulse along the red contacts
switches the device into a high state. The time between pulses is 30 seconds and the switching
has been repeated 10 times to show the robustness of this behavior. The measurement was
performed at 2K. (c) The crystal structure of Fe1/3NbS2 is that of 2H-NbS2 with iron atoms
intercalated between layers. At this stoichiometry, the iron intercalants form an ordered
lattice with space group P6322 (no. 182). Adapted from Ref. [7].

Magnetization measurements show a peak at 42K, with field cooled (FC) and zero field
cooled (ZFC) curves overlapping, a strong indication of AFM order. As shown in Figure 7.2,
however, there is a slight residual moment between the FC and ZFC curves below approxi-
mately 25K. This residual moment has been attributed to a spin glass phase stemming from
iron impurities due to deviations from perfect stoichiometry. Thermodynamic measurements
show hysteresis in the magnetization, a giant exchange bias, a broadened transition in heat
capacity, memory effects, and time relaxation, all pointing to the presence of a spin glass
phase. Nuclear magnetic resonance measurements, however, show clear indications of a co-
existing AFM order, manifested as two distinct resonance peaks as a function of magnetic
field [125].
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Figure 7.4: Multiple pulses. The switching response of the device with the same contact
geometry shown in Figure 7.3a. Five pulses are applied in each orthogonal direction (blue
and red). After the first pulse switches the resistance state, the four subsequent pulses have
no effect, indicating that the response has saturated after the application of the first pulse.
Adapted from Ref. [7].

7.3 Electrical switching in microstructured Fe1/3NbS2

devices

Figure 7.3 shows the basic results of this project. When fabricated into an eight-contact
device using standard FIB techniques, the AFM order in Fe1/3NbS2 can be switched using
electrical current pulses and measured as a change in device resistance. The transverse
resistance of the device is measured by driving a 100 µA (5.4 × 102 A/cm2) alternating
current (AC) across one leg of the device and measuring the resulting voltage drop across
the orthogonal leg (yellow contacts in Figure 7.3a) using standard low-frequency lock-in
measurement techniques. In tandem, direct current (DC) pulses can be applied along two
orthogonal directions (red and blue contacts).

The application of a DC pulse along the thick bars switches the sample between two
different magnetic states, reflected in the transverse resistivity. A 5.4 × 104 A/cm2 current
density applied for 10ms along the blue bar (A direction) switches the device into a low
transverse resistance state. The same pulse applied along the red bar (B direction) switches
the device into a high resistance state. This switching is repeatable, reversible, and stable.
The device can be switched from one resistance state into the other with subsequent ap-
plication of pulses along the two orthogonal directions. This process can be run in either
direction. Moreover, once in the high or low resistance state the device is stable and the
measured transverse resistance does not decay over the 30-second intervals shown in Figure
7.3b.

Applying multiple current pulses in the same direction does not change the resistance
value of the high/low state, implying that a single pulse saturates the response, as shown in
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Figure 7.4. This is in sharp contrast to the previously discovered switching AFM systems,
all of which required tens of pulses to approach their saturation values [120, 121, 122, 123].
Reversing the polarity of the current pulses also does not change the switching behavior.
The device switches to the low resistance state for both positive and negative current pulses
along the blue bar and to the high resistance state for both negative and positive current
pulses along the red bar. This is a direct result of the anisotropic magnetoresistance (AMR)
read-out mechanism as will be discussed in further detail.

Figure 7.5 shows the temperature and magnetic field dependence of the switching am-
plitude. The switching amplitude was extracted by fitting a square wave to the measured
device response when applying 10 alternating A/B current pulses. It is suppressed by both
temperature and out-of-plane (c-axis) magnetic field. By 40K and 14T, switching is no
longer observable. These values are closely related to the suppression of the AFM order. A
phase transition to a paramagnetic state is observed at 42K, and a spin-flip transition at
16T. The coincidence of the suppression temperature and field with the magnetic transitions
imply that the switching must be driven by the AFM state. The robustness of the effect
to large out-of-plane fields is remarkable and a direct consequence of the AFM origin of the
switching. Interestingly, in-plane magnetic fields do not appear to have any effect on the
switching amplitude.

One interesting aspect of the field dependence is shown in Figure 7.6. Although the
ability to switch the AFM order is suppressed by an out-of-plane magnetic field, memory
of the ordered state appears to be preserved. Specifically, sweeping the magnetic field after
switching the device preserves the change in resistance between the high and low states,
although the absolute resistance values change due to hysteresis caused by the spin glass.
An A (B) pulse is applied to the device, switching it into the low (high) transverse resistance
state after which the magnetic field is swept from 0T to 14T to -14T and back to 0T. The
difference between the two resistance curves remains essentially unchanged, implying that
although the field changes the magnetization state of the spin glass, it does not change the
magnetization state of the AFM, which is determined by the initial A or B current pulse. The
magnetic field does not erase the information stored in the AFM state, but instead “freezes”
it, preventing it from being altered by subsequent current pulses. As will be discussed, this
is strong evidence that the AFM, not the spin glass, is in fact driving the switching behavior.

Rotating the device geometry, as shown in Figure 7.7a, can help elucidate the mechanism
of the switching behavior. The AC excitation current and the associated four-point resistance
measurements (R‖ and R⊥) were rotated between contacts while keeping the direction of the
DC current pulses fixed. 45° (column 1) denotes the configuration shown in Figure 7.3.
At this angle, all the switching is observed in the transverse channel (R⊥) while almost no
signal is observed in the longitudinal resistance (R‖). Rotating the contacts to 90° (column 2)
reverses this. The switching appears parallel to the current while the signal in the transverse
channel is suppressed. Rotating the contacts further, to 135° and 180° moves the switching
signal back into the perpendicular and longitudinal channels, respectively, however the sign is
now reversed. Namely, application of the same pulse sequence results in a reversed ordering
of high and low resistance states. Figure 7.7a shows angles 45° to 180°. Angles 225° to 360°
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Figure 7.5: Temperature and field dependence. (a) The switching behavior is sup-
pressed by temperature. By 40K, the switching amplitude is completely suppressed, as
shown in the inset. The temperature-dependent background of R⊥ has been subtracted
from all curves to highlight only the switching component. (b) The switching behavior at
2K is suppressed by an out-of-plane magnetic field, although it shows surprising robustness
and can be observed at fields as high at 12T. The field-dependent background of R⊥ has been
subtracted to highlight only the switching component. The extracted switching amplitude
is shown in the inset. (c,d) Application of an in-plane field has little effect on the switching
behavior, which can still be observed as high as 14T. Measurements were performed at 2K
and for two orthogonal field directions: [100] (c) and [12̄0] (d). Note, these measurements
were performed on a different device from the previous two panels. Adapted from Ref. [7].
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Figure 7.6: Memory persistence. Field sweeps performed after applying DC current
pulses to a FIB device show the robustness of the switching memory. Applying a DC current
pulse along the A (B) bar of the device at 0T switches the device into a low (high) transverse
resistance state. A magnetic field along the c-axis is then swept from 0T to +14T to -14T
and back to 0T. Although the sample returns to a different absolute resistance value, due to
the hysteretic spin glass background, the difference in resistance between the A and B pulses
remains unchanged, indicating that the AFM phase remembers which state it was initially
switched to and the magnetic field does not erase this information. This measurement was
performed at 2K. Adapted from Ref. [7].
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(not shown) repeat the behavior, giving an overall 2-fold periodicity to the switching.

The angle dependence of the switching is intimately connected to the anisotropic magne-
toresistance (AMR). The AMR was measured by field cooling a bulk crystal in a 9T in-plane
field from above the AFM transition to 2K. The magnetic field was then turned off, and R‖
and R⊥ were measured. This process was repeated at several angles, as shown in Figure
7.7b. After background subtraction, R‖ and R⊥ show the characteristic sinusoidal AMR
behavior offset by 45° [131]. The amplitude of the AMR signal is completely suppressed by
40K (Figure 7.7b, inset), the same temperature at which the switching behavior disappears
and close to the AFM transition.

There are two important things to note in the AMR data. First, the AMR presented
in Figure 7.7 is the zero field AMR. This differs from a conventional AMR measurement in
which R‖ and R⊥ are measured in the presence of a finite magnetic field. The fact that this
quantity is non-zero means that the in-plane field influences the direction of the AFM order,
which remains frozen-in even after the field has been removed. As a result, the magnetic
field can be used to write information into Fe1/3NbS2, which can then be read out via the
AMR after cooling, in a similar manner to the current pulses. Similar field-induced memory
effects stemming from a zero field AMR have been observed in the AFM systems FeRh and
MnTe [132, 133].

Note, the field dependence of the zero field AMR is evidence for the presence of domains in
this system. Figure 7.8 shows the non-saturating behavior of the zero field AMR at 2K with
increasing field. This is likely due to the formation of AFM domains whose local Néel order
is oriented along the principal axes of the lattice, as required by symmetry. The aggregate
Néel vector, however, may point in an arbitrary direction since it averages the contributions
from each individual domain. As such, it can point along the applied magnetic field (or
current pulse) direction. This pseudo-continuous rotation of the aggregate Néel vector from
additional of local, discretely rotatable domains is described in detail in Refs. [133, 134].
As the magnetic field is increased, the domains become increasingly polarized, leading to
the increasing AMR response. The quadratic increase at low fields should eventually lead to
saturation, however this field threshold appears to be larger than 14T. Saturation appears
to be easily reached when applying current pulses, however.

Second, the zero field AMR also has the same angle dependence as the switching am-
plitude. The AMR is independent of the sign of the magnetic field, as is the switching
amplitude to the sign of the current pulse. Where R‖ or R⊥ in the AMR is maximized, the
switching amplitude is maximized in the same channel. Where R‖ or R⊥ go through zero,
the switching behavior is suppressed. Where R‖ or R⊥ become negative, the switching order
inverts. This implies that the application of a current pulse to the device is similar to an
in-plane magnetic field: they both write a preferred orientation into the AFM state, which
can then be electronically read out via the AMR. In other words, both a current pulse and an
applied magnetic field in the same direction act to rotate the principal axes of the resistivity
tensor in the same way. In this manner, the device can be used to store information with
electrical write-in and read-out.
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Figure 7.7: Geometry dependence and AMR. (a) The switching behavior is dependent
on device geometry. As the angle between the AC probe current and the DC write pulses
is rotated (top row), the switching signal moves between the transverse (red, middle row)
and longitudinal (blue, bottom row) resistance channels, picking up a sign change between
90° and 135°. Black arrows denote the fixed directions of the DC pulses, with the horizontal
bar pulsed first followed by the vertical bar, repeated five times. Red denotes the transverse
resistivity. Blue denotes the longitudinal resistivity and the direction of the AC probe
current. The measurement configuration at 45° is equivalent to that in Figure 7.3. (b) The
zero field AMR shows a very similar angle dependence. Every 45° rotation shifts the signal
from one resistance channel to the other. Moreover, the sign of the AMR switches in the same
angular range as the sign change in the switching. As shown in the inset, the AMR vanishes
at approximately 40K, the same temperature at which the switching behavior disappears.
A constant offset has been subtracted from both curves. Adapted from Ref. [7].
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Figure 7.8: Field dependence of the AMR. (a) The field dependence of the zero field
AMR measured on a bulk crystal and fit to the characteristic sinusoidal dependence. (b) The
zero field AMR amplitude grows with field without saturating up to 14T. This may indicate
that magnetic domains are present and are being successively polarized with increasing
magnetic field. This is in contrast to the electrical current dependence, where saturation
appears to be reached after a single pulse. Adapted from Ref. [7].
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Figure 7.9: Pulse current density and duration dependence. (a) The switching ampli-
tude saturates at large current densities but shows non-monotonicity and a local maximum
at small currents. Switching can be observed at current densities as low as 2.7× 104 A/cm2.
The extracted switching amplitude is plotted in the inset. Measurements were performed at
2K in the absence of an external field with a 20ms pulse duration. (b) The pulse duration
shows a very similar behavior to the current dependence, with a local maximum followed by
saturation of the switching amplitude. Switching is observed as low as 10µs, the limit of the
experimental apparatus. Measurements were performed at 2K in the absence of an external
field with a 5.4× 104 A/cm2 current density. Adapted from Ref. [7].
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Figure 7.9 shows the dependence of the switching behavior on the current density and
pulse duration of the DC pulses. At large current densities and durations the switching
amplitude saturates, indicating that an in-plane magnetic component has been fully polarized
by the DC pulse. At low densities/durations, however, the switching amplitude is non-
monotonic, exhibiting a local maximum. Moreover, although the device appears to exhibit
switching in this region, the amplitude is smaller than in the saturated region and the high
and low resistance states are not perfectly repeatable; the resistance values appear to change
between pulse sets. This may be due to domains of an in-plane AFM order that cannot be
fully polarized below a critical threshold. Although not fully saturated, switching can be
observed at current densities as low as 2.7×104 A/cm2 and pulse durations as short as 10µs
(the limit of the experimental apparatus), both orders of magnitude lower that what has
been previously reported for DC pulses in CuMnAs, Mn2Au, and NiO/Pt heterostructures
[120, 121, 122].

Although the data presented thus far has come from a single FIB device, the behavior de-
scribed has been observed in multiple devices. The switching characteristics of an additional
device are summarized in Figure 7.10. The device was fabricated using the same FIB tech-
niques. The current dependence shows a similar non-monotonic behavior, with saturation
of the switching response starting around 5.6× 104 A/cm2, in close agreement to the value
of 5.4× 104 A/cm2 observed in the first device. The temperature and out-of-plane field de-
pendencies are also very similar; the switching behavior is suppressed by both, disappearing
by 35K and 12T, respectively.

7.4 Spin transfer torques and magnetic order

The switching behavior points to a magnetic order that is significantly more complicated than
previously suggested. Previous studies found the moments to be AFM ordered and parallel
to the c-axis in a Wurtzite-type geometry [126, 127]. An applied in-plane magnetic field
would be expected to couple isotropically to such an order in the absence of any additional
symmetry breaking. In contrast, AMR and magnetization measurements indicate that some
component of the AFM order lies in the ab-plane. This could be due to canting of the
spins or the coexistence of a more complicated magnetic order, like the helical textures,
observed in other intercalated TMDs such as Cr1/3NbS2 and predicted by theory for these
frustrated system [135, 136]. Recent neutron diffraction measurements indeed suggest that
the magnetic moments are canted into the ab-plane by 10° to 15° while remaining antiparallel
to each other. This in-plane AFM component is likely the origin of both the zero field AMR
and the switching behavior.

In addition to a canting of the AFM order, a coexisting low-temperature spin glass state
has been observed. This spin glass likely stems from iron vacancies and is responsible for the
residual moment between the field cooled and zero field cooled curves and the magnetization
hysteresis in Figure 7.2. In addition, Fe1/3NbS2 shows a giant exchange bias, a broadened
transition in heat capacity, memory effects, and time relaxation effects, all supporting the
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Figure 7.10: Second switching device. (a) An SEM image of an additional switching
device. The narrow bars are used for resistivity measurements and the wide bars for current
pulses. The A bar is pulsed first followed by the B bar. (b) The current dependence at 2K
shows the non-monotonic behavior observed in first device. The switching response saturates
around 5.6 × 104 A/cm2. (c) The switching response is suppressed by temperature, disap-
pearing by 35K. (d) The switching is also suppressed by magnetic field, disappearing around
12T. Measurements were performed at 2K. Temperature and field-dependent backgrounds
have been subtracted from (c) and (d). Adapted from Ref. [7].
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conclusion of a coexisting spin glass phase [125]. Although the interplay between the spin
glass state and the AFM order is quite complicated, the spin glass state itself is not believed
to be responsible for the switching behavior for several reasons. First, although the mag-
netization curves in Figure 7.2 show hysteresis at 2K, the hysteresis is suppressed by 30K.
The switching behavior, however, persists up to at least 40K, close to the AFM transition
temperature of 42K. Moreover, the in-plane magnetization curves do not show hysteresis at
any temperature. This implies that the spin glass moments do not cant significantly into
the plane, as would be required to produce the previously discussed AMR.

Second, switching the magnetic field after switching the device appears to preserve the
change in the resistance between the high and low states, as shown in Figure 7.6. Although
the absolute value of the transverse resistance shows hysteretic behavior and does not return
to the same resistance value, as would be expected with a spin glass contribution, the dif-
ference between the two curves remains essentially unchanged. Although the field changes
the magnetization state of the spin glass, it does not change the magnetization state of the
AFM order initially established through application of the A or B current pulse.

Finally, the strength of the spin glass phase can be tuned by varying the iron stoichiom-
etry. At certain stoichiometries, all trace of the spin glass phase vanishes but switching can
still be observed. See Section 7.5 for a more detailed discussion of the spin glass.

In order to better understand the switching behavior, it is useful to treat it as two separate
processes: “write-in” in which information is encoded into the AFM state via the current
pulses, and “read-out” in which the AFM state is probed by the resistivity measurement. The
read-out process is equivalent to the aforementioned AMR measurements. The anisotropic
scattering of conduction electrons from the localized iron moments changes the measured
resistance depending on the relative orientation of the AFM order and the AC probe current.
This effect typically stems from scattering of conduction electrons into the localized iron d-
orbitals and is discussed in more detail in Refs. [131, 137, 138]. In this manner, the resistivity
tensor is sensitive to the direction of the in-plane Néel vector. When the in-plane moments
are rotated 90° by a current pulse, the measured resistance switches from a maximum to a
minimum (or vice versa), reading-out the information encoded into the magnetic state.

In the write-in process, the current pulses reorient the Néel order and hence rotate the
principal axes of the AMR-derived resistivity tensor. This is accomplished by the spin trans-
fer torque discussed in Section 7.1. The lack of inversion symmetry in Fe1/3NbS2 generates
a net spin polarization in the conduction electrons when a current pulse is applied according
to the inverse spin galvanic effect (ISGE). This polarization is given by ~p = ẑ × ~J [117, 118,
119]. In Fe1/3NbS2, this leads the conduction electrons to be spin polarized in the ab-plane,
orthogonal to the current pulse. Since AFM moments will be rotated perpendicular to the
spin polarization by the spin transfer torque, this causes the preferred orientation of the
in-plane component of the Néel vector to be parallel to the current pulse. This agrees with
the AMR measurements, showing that current and magnetic field should transform in the
same way. Because of Gilbert damping, a minimum current threshold is required to achieve
this rotation.
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Figure 7.11: Iron concentration: switching. Devices of FexNbS2 were fabricated and
measured for five different iron stoichiometries, x. The normalized traverse resistivity is
shown at various temperatures. Applying the same A/B pulse sequence to each device results
in changes to the high/low switching order depending on iron concentration. Moreover,
at intermediate concentrations the switching amplitude is non-monotonic as a function of
temperature and shows a sign reversal.

7.5 Iron stoichiometry

Up to this point only a single iron intercalation has been discussed. When measured using
energy dispersive x-ray spectroscopy, this iron stoichiometry was found to be 0.31, slightly
below the nominal value of 1/3 due to iron vacancies. These iron vacancies are likely re-
sponsible for the aforementioned spin glass phase. Varying the iron concentration, therefore,
should change the strength of the spin glass phase and, it turns out, dramatically influences
the switching behavior.

Crystals of FexNbS2 were grown by the same vapor transport method described in Sec-
tion 7.2, where x, the iron concentration, was confirmed using energy dispersive x-ray spec-
troscopy. Eight-contact devices were then produced using FIB fabrication. The switching
behavior as a function of temperature for x = 0.30, 0.31, 0.33, 0.34, 0.35 is shown in Figure
7.11.
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There are several important features to note in the data. First, the switching behavior at
low temperature depends strongly on the iron concentration. Applying an A pulse followed
by a B pulse to the x = 0.31 device, switches it between a low and high transverse resistance
state, as has been discussed for most of this chapter. This is also true of the x = 0.30 and
x = 0.34 intercalations. Applying the same pulse sequence to the x = 0.33 and x = 0.35
devices, however, results in a reversed ordering of the resistance states. Namely, the A (B)
pulse produces a high (low) transverse resistance state.

The second major result of varying the iron concentration is that it changes the tempera-
ture dependence. Whereas the x = 0.31 device shows a monotonic temperature dependence
in which the switching amplitude is suppressed by increasing temperature, the x = 0.33
and x = 0.34 both show a much more complicated behavior. In these devices the switching
amplitude actually changes sign as a function of temperature, reversing the order of the high
and low resistance states.

Changing the iron concentration also affects the evolution of the zero field AMR, as
shown in Figure 7.12. The zero field AMR measured on bulk crystals shows a sign change as
a function of temperature in the intermediate intercalations, x = 0.33 and x = 0.34. There
the low-temperature AMR is opposite to the rest of the series. In contrast to the switching
behavior, where the intercalant end-points showed opposite responses, the AMR shows the
same response at both end points.

There are two aspects of this behavior that must be explained: the sign change of the
switching, and the sign change of the correlation between the switching and the AMR.
These two effects cannot be fully explained with the straightforward model presented of a
spin transfer torque acting exclusively on an AFM state, even if that AFM state changes
with iron intercalation. Instead, the solution likely requires that the spin glass phase play
a role in mediating the spin transfer torque interaction in addition to an AFM state that is
intercalation-dependent due to the inherent frustration of the system.

Small variations in iron concentration can lead to large changes in spin glass dynamics.
Specifically, above and below the x = 0.33 iron stoichiometry, the spin glass will switch from
being generated by iron vacancies to being generated by excess iron moments. Since spin
glasses can be driven by ferromagnetic or antiferromagnetic correlations, it is possible that
the spin glass phases on opposite ends of the concentration series have opposite spin-spin
correlations. As per Section 7.1, this will lead to a qualitative change in the response of the
spin glasses to the spin transfer torque.

At the same time, moving through the x = 0.33 fully packed iron stoichiometry causes a
change in the AFM phase. Frustrated magnetic systems such as Fe1/3NbS2 lie on the cusp
of multiple magnetic ground states. Which one is spontaneously selected is determined by
small variations in lattice parameters, intercalations, disorder, etc. Changing the intercalant
concentration, therefore, may lead to the selection of a new AFM ground state with similar
interaction strengths to the first, but with a different microscopic spin texture. This may
result in a similar low-temperature AMR behavior in the presence of an external magnetic
field, but a different interaction with the spin glass state, and therefore a change in the
response to a current pulse.
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Figure 7.12: Iron concentration: AMR. The zero field AMR measured on crystals of
various iron stoichiometries, x. The AMR shows a sign change as a function of temperature
at low temperatures for the intermediate intercalants (x = 0.33 and x = 0.34). Interestingly,
the AMR shows the same sign at opposite ends of the intercalation spectrum, in contrast to
the switching, which shows opposite sign.

The role of the spin glass in mediating spin transfer torque interactions and the nature
of the AFM phases in this system is not fully understood and is the subject of ongoing
research [139]. Nevertheless, the intercalation dependence of switching in Fe1/3NbS2 provides
a platform where one can precisely tune the material response for both exploring fundamental
spin torque interactions and developing applied devices.

7.6 Conclusion and future prospects

Electronically accessible magnetic memory promises to dramatically improve device density,
power dissipation, and read/write times in addition to being non-volatile. This has lead to
a tremendous research effort and the production of the first commercial magnetoresistive
random access memory (MRAM) chips. MRAM represents a significant step forward in
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memory storage with the potential to be a “universal memory”, providing the scalability
and cost-effectiveness required for long-term data storage, as well as the write and read
speeds required for on-chip caching.

MRAM, however, is built on the magnetic tunnel junction and the reorientation of fer-
romagnetic moments. The next leap forward in memory technology may come from encod-
ing information into antiferromagnets instead, allowing for memory to become even faster,
denser, and more robust. Fe1/3NbS2 would be a good candidate material for this applica-
tion due to the low currents required for switching, and the single-pulse saturation of the
response. There are, however, a few key challenges that would need to be overcome.

First, the device only operates below its AFM transition temperature of 42K. In order to
be useful as a commercial technology, it will need to operate at room temperature. This will
require a significant increase in the transition temperature. This may be achievable through
carrier doping given that the AFM exchange energy is controlled by an RKKY interaction.
In bulk crystals the carrier concentration may be tuned by chemical doping. In thin films, it
may be done through electric field gating or by modifying lattice parameters through careful
substrate selections. All of these methods have been used to tune the RKKY interaction
strength in other compounds [140, 141].

Second, the Fe1/3NbS2 device presented here has a very low switching amplitude. There
is only a few percent change in the resistance between the high and low states. In general,
higher switching ratios make detection easier allowing for faster and lower-power readout
operations. In the magnetic tunnel junction, high switching ratios are achieved through the
incorporation of a tunneling barrier. A similar approach has been proposed for AFM memory
devices [142, 143, 144]. In this case, the density of states will depend on the orientation of the
AFM state, and therefore the tunneling probability will as well. As a result, small changes
in the density of states from the reorientation of the AFM order can lead to large changes in
the device resistance. Implementing Fe1/3NbS2 into similar tunneling heterostructures may
similarly enhance the measured switching ratios.

If the room temperature operation and switching ratio shortcomings can be solved, then
Fe1/3NbS2 is well-positioned to play an important role in future AFM spintronic devices.
Even if these issues cannot be solved, however, Fe1/3NbS2 is just one compound in a much
larger family of intercalated transition metal dichalcogenides. Many magnetic elements can
be intercalated into these layered materials producing exotic magnetic phases that are just
beginning to be explored. It is likely that some of these compounds may possess similar
switching behaviors to Fe1/3NbS2 but may do so at higher temperatures, lower currents,
or with larger switching ratios. This makes Fe1/3NbS2 a promising platform for realizing
antiferromagnetic spintronics.
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Chapter 8

Conclusion and Outlook

The results presented in this dissertation are an exploration of some of the emergent phenom-
ena in the ever expanding field of quantum materials. These materials require a departure
from the paradigm of single particle bandstructures and phase transitions defined only by
symmetry. They have provided the research community with a new set of fundamental
physical concepts to explore. Moreover, the new behaviors associated with these materials
represent a new set of building blocks from which to build novel electronic devices.

Chapter 4 presented the first transport measurements of Fermi arc surface states using
microstructured devices of Cd3As2. Since then, additional measurements of these states have
been performed. Studies on nanoplate crystals grown through chemical vapor deposition
explored the dependence of this orbit on carrier doping and found non-local behavior in the
surface transport [145, 146]. In sufficiently thin samples, the Weyl orbit was found to undergo
quantized transport in a version of the quantum Hall effect driven by Fermi arcs [147]. Fermi
arcs have also been observed in other compounds such as TaAs, as discussed in Chapter
5. The observation of surface transport associated with the Fermi arcs is important for
understanding the sometimes conflicting experimental reports on this compound. Moreover,
inducing superconductivity in the presence of these Fermi arcs using the focused ion beam
may be a promising route to realizing Majorana fermions in these materials. Majorana
fermions are quasiparticle excitations which are their own antiparticles and are governed by
non-abelian statistics, making them very useful for quantum computing applications.

Chapter 7 presented measurements on the antiferromagnet Fe1/3NbS2, which was found
to be electronically switchable at surprisingly low current densities, forming a magnetic
memory bit. The rotation of the Néel order via electrical currents writes information into
the device, and the change in the anisotropic magnetoresistance reads it back out again.
Combined with the ultrafast dynamics intrinsic to antiferromagnetic interactions, this makes
Fe1/3NbS2 a promising platform for high speed, non-volatile memory storage applications.
Since the initial discovery, the switching behavior in this compound has been explored as a
function of iron concentration and an interesting interplay between the spin glass dynamics
and the antiferromagnetic order has been observed [139]. This may lead to the discovery
of new switching mechanisms in magnetic systems. Finally, Fe1/3NbS2 is part of a large
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family of magnetically intercalated transition metal dichalcogenides that is only beginning
to be explored. Some may show magnetic switching at even lower current densities or higher
temperatures, or show new, unanticipated emergent behaviors.
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