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Thermal Fault Diagnostics in Lithium-ion Batteries
based on a Distributed Parameter Thermal Model

Satadru Dey, Hector E. Perez and Scott J. Moura

Abstract— Lithium-ion (Li-ion) battery faults or failure
mechanisms are potentially hazardous to battery health, safety
and performance. Thermal fault mechanisms represent a crit-
ical subset of such failures. To ensure safety and reliability,
battery management systems must have the capability of
diagnosing these thermal failures. In line with this requirement,
we present a Partial Differential Equation (PDE) model-based
scheme for diagnosing thermal faults in Li-ion batteries. For
this study, we adopt a distributed parameter one-dimensional
thermal model for cylindrical battery cells. The diagnostic
scheme objective is to detect and estimate the size of the thermal
fault. The scheme consists of two PDE observers arranged in
cascade with measured surface temperature feedback. The first
observer, denoted as Robust Observer, estimates the distributed
temperature inside the cell under nominal (healthy) and faulty
conditions. The second observer, denoted as Diagnostic Ob-
server, receives this estimated temperature distribution, and in
turn outputs a residual signal that provides the fault infor-
mation. Furthermore, the residual signal is evaluated against
non-zero thresholds to achieve robustness against modeling and
measurement uncertainties. Lyapunov stability theory has been
utilized to verify the analytical convergence of the observers
under heathy and faulty conditions. Simulation studies are
presented to illustrate the effectiveness of the proposed scheme.

I. INTRODUCTION

Lithium-ion (Li-ion) batteries are the key energy storage
devices in automotive, power grid and portable electronics
applications. Performance, safety and reliability are crucial
aspects of Li-ion battery operation. Several failure mecha-
nisms, ranging from internal micro-scale failures to external
sensor faults, can potentially deteriorate battery performance
and safety. Thermal failure and degradation mechanisms
constitute an important subset of such factors [1]. Some
of these thermal failures, e.g. thermal runaway, may even
lead to catastrophic events if not detected or diagnosed early
enough. Therefore, diagnosis of battery thermal failures is
extremely important to ensure safe and reliable operation. In
this paper, we propose a Partial Differential Equation (PDE)
model-based diagnosis scheme for thermal faults in Li-ion
batteries.

In the battery controls/estimation literature, real-time esti-
mation of State-of-Charge (SOC) and State-of-Health (SOH)
have received substantial attention in the past decade.
Broadly, these estimation approaches can be divided into
two major categories based on the type of model used: (i)
Equivalent Circuit Model based approaches [2] [3] [4] [5] [6]
and, (ii) Electrochemical Model based approaches [7] [8] [9]
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[10]. Compared to SOC and SOH estimation, temperature
estimation problems have received significantly less atten-
tion. There are some recent studies. For example, an adaptive
observer is presented for core temperature estimation in
[11]. Observer design for temperature estimation in battery
packs is studied in [12]. In [13], an internal temperature
estimation algorithm is proposed using combined impedance
and surface temperature measurements. In [14], an algorithm
is presented for estimation of the temperature distribution in
cylindrical cells under unknown cooling conditions.

The body of literature on real-time fault diagnosis prob-
lems in batteries is significantly smaller than estimation
problems. Some of the existing approaches deal with sensor
and actuator faults [15] [16] [17], electrochemical faults
[18], overcharge/over-discharge faults [19], and terminal
voltage collapse [20]. However, real-time diagnosis of ther-
mal faults is almost unexplored in the existing published
literature, despite its critical importance for battery safety
and performance. A few efforts exist in battery thermal fault
diagnostics. In [15], a one state thermal model capturing the
averaged temperature of the battery cell is used to diagnose
a cooling system fault. A two-state thermal model capturing
the core and surface temperature dynamics is used in [21] to
diagnose certain thermal faults. These approaches, however,
(i) rely on lumped parameter thermal models which may
not be sufficient to capture the effect of distributed thermal
faults inside the cell, and (ii) do not estimate fault size. Note
that information on fault size can be crucial for thermal
management under faulty conditions. In the present paper,
we extend this research by proposing a battery thermal fault
diagnosis scheme which (i) utilizes a distributed parameter
thermal model and, (ii) detects and estimates the thermal
fault size.

In the proposed diagnostic scheme, we adopt a one-
dimensional distributed parameter thermal model of a cylin-
drical battery cell [22]. The scheme consists of two PDE
observers arranged in cascade and utilizes measured surface
temperature feedback. The first observer, denoted as Robust
Observer, estimates the distributed temperature inside the
cell under healthy and faulty conditions. Robust state estima-
tion is a bi-product of this scheme that provides convergent
estimates of the temperature distribution inside the battery
cell irrespective of healthy or faulty conditions. The sec-
ond observer, denoted as Diagnostic Observer, receives this
estimated temperature distribution information from Robust
Observer and in turn outputs a residual signal that provides
the fault information. The backstepping transformation and
Lyapunov stability [23] have been utilized to design and



analyze the observer. Furthermore, the residual signals are
compared with non-zero thresholds to incorporate robustness
to modeling and measurement uncertainties. These non-zero
thresholds are designed offline based on the probability dis-
tribution of the residual signals under a fault-free condition.

The rest of the paper is organized as follows. Section
II introduces the distributed parameter thermal model of
the battery cell. Section III designs and analyzes the fault
diagnosis scheme in detail. Simulation studies are presented
in Section IV. Finally, Section V concludes the work.
Notations: In this paper, following notations are used:

∥u(·)∥ =
√∫ 1

0
u2(x)dx, ut =

∂u
∂t , ux = ∂u

∂x , uxx = ∂2u
∂x2 .

II. DISTRIBUTED PARAMETER THERMAL
MODEL FOR LI-ION BATTERIES

Nominal Model: We adopt the following (nominal or fault-
free) one-dimensional thermal model that predicts the radi-
ally distributed temperature dynamics of a cylindrical battery
cell (Fig. 1) [22]:

β
∂T̄

∂t̄
(r, t̄) =

∂2T̄

∂r2
(r, t̄) +

(
1

r

)
∂T̄

∂r
(r, t̄) +

Q̇(t̄)

k̄
(1)

with Neumann boundary conditions

∂T̄

∂r
(0, t̄) = 0, (2)

∂T̄

∂r
(R, t̄) =

h

k̄

(
T∞ − T̄ (R, t̄)

)
, (3)

where t̄ ∈ R+ represents time and r ∈ [0, R] is the
spatial coordinate in the radial direction. The parameter k̄
is the thermal conductivity of the battery cell, Q̇(t̄) is the
volumetric heat generation rate, and β = (ρCp)/k̄ is the
inverse of thermal diffusivity, where ρ is the mass density
and Cp is the specific heat capacity.

Next, we: i) transform the system to the Cartesian coor-
dinate system with spatial coordinate variable x̄ and time t̄
and, ii) scale the space and time variables in the Cartesian
coordinate system by defining T (x, t) = T̄ (x̄, t̄) with x =
x̄/R, t = t̄/βR2 and k = k̄/R2. This transformation and
scaling results in the following system, known as a heat
equation:

Tt(x, t) = Txx(x, t) +
Q̇(t)

k
, (4)

with Neumann boundary conditions

Tx(0, t) = 0, (5)

Tx(1, t) =
h

k
(T∞ − T (1, t)) , (6)

where t ∈ R+ and x ∈ [0, 1]. The remainder of this paper
considers (4)-(6) as the plant model.

Furthermore, we adopt a second order electric circuit
model to capture the electrical dynamics of the battery (see
Fig. 2) [24]. The electrical circuit consists of an open circuit
voltage source (Voc), an internal series resistance (Rint) and
two resistance-capacitance branches in series. Furthermore,
it is assumed that the SOC of the battery is computed online

Fig. 1. Schematic of the electro-thermal battery model

via Coulomb-counting. The state-space equations for the
electrical model are:
dSOC

dt
(t) = − I(t)

Cbatt
, (7)

dV1
dt

(t) = − V1(t)

R1C1
+
I(t)

C1
, (8)

dV2
dt

(t) = − V2(t)

R2C2
+
I(t)

C2
, (9)

Vterm(t) = Voc(SOC)− V1(t)− V2(t)−RintI(t), (10)

where I(t) is the battery current, Cbatt is the battery charge
capacity in Ah and Vterm is the terminal voltage. The open
circuit voltage (Voc) is a function of the State-of-Charge
(SOC) and computed online. This function can be determined
via offline experimental studies. In this distributed parameter
model, Rint is assumed to have Arrhenius dependence on the
average battery temperature Tavg given as:

Rint = f (Tavg) , (11)

where f (Tavg) = Rint,ref · exp
(

Tref

Tavg

)
and Rint,ref is a

known reference value at a known reference temperature
Tref . Figure 3 provides a schematic of the coupled electrical-
thermal model. The average temperature of the cell is given
by:

Tavg(t) =

∫ 1

0

T (x, t) dx. (12)

Measurements: Measured variables include the current (I),
terminal voltage (Vterm), and surface temperature (T (1)).

Remark 1. The heat generation rate Q is expressed as:

Q̇(t) = I(t)(Voc(SOC)− Vterm(t)). (13)

In this work we assume that Q̇ is computed online using
the measured variables Vterm, I , and Voc(SOC), which is
computed using the SOC information from (7). Furthermore,
we assume that the electrical states V1 and V2 are computed
online via the open-loop model (8)-(9).

Fault Model: The faulty battery thermal dynamics can be
mathematically modeled as

Tt(x, t) = Txx(x, t) +
Q(t)

k
+∆Q(x, t), (14)

with Neumann boundary conditions

Tx(0, t) = 0, (15)



Fig. 2. Battery electrical circuit model

Fig. 3. Schematic of the electro-thermal battery model

Tx(1, t) =
h

k
(T∞ − T (1)) , (16)

where ∆Q(x, t) represents a distributed thermal fault, such as
abnormal internal heat generation from electrochemical side
reactions, or internal failure due to mechanical or thermal
abuse [1][25].

III. FAULT DIAGNOSIS SCHEME

The fault diagnosis scheme is diagramed in Fig. 4. The
scheme consists of two observers working in a cascaded
manner. The first observer, Robust Observer, uses the surface
temperature feedback and estimates the distributed battery
cell temperature under healthy (non-faulty) and faulty con-
dition. The second observer, Diagnostic Observer, receives
the estimated temperature distribution from Robust Observer
and in turn provides a residual signal. The residual signal is
used for detection and estimation of the thermal fault (∆Q).
In the next subsections, we will discuss the design of these
two observers in detail.

Remark 2. The proposed diagnostic scheme provides an
accurate estimation of the temperature distribution inside the
battery cell irrespective of faulty or healthy condition. This
is an additional beneficial feature of this scheme.

A. Robust Observer

The following structure is chosen for the Robust Observer,

T̂1t(x, t) = T̂1xx(x, t) +
Q(t)

k
+ P1(x)T̃1(1, t), (17)

with Neumann boundary conditions

T̂1x(0, t) = 0, (18)

T̂1x(1, t) =
h

k
(T∞ − T (1, t)) + P10T̃1(1, t), (19)

Fig. 4. Fault diagnosis scheme

where T̂1(x, t) is the estimated temperature distribution,
T̃1(1, t) = T (1, t)− T̂1(1, t) is the boundary estimation error
and P1(x) and P10 are the observer gains to be determined.

The error dynamics of the Robust Observer are given by
subtracting (17)-(19) from (14)-(16),

T̃1t(x, t) = T̃1xx(x, t) + ∆Q(x, t)− P1(x)T̃1(1, t), (20)

T̃1x(0, t) = 0, (21)

T̃1x(1, t) = −P10T̃1(1, t). (22)

Next, we follow the backstepping approach to analyze the
error dynamics and design the observer gains [23]. The back-
stepping approach seeks the linear Volterra transformation
T̃1(x, t) 7→ ω(x, t)

T̃1(x, t) = ω(x, t)−
∫ 1

x

P (x, y)ω(y, t)dy, (23)

which transforms (20)-(22) to the following target error
system

ωt(x, t) = ωxx(x, t) + ∆ωQ(x, t)− cω(x, t), (24)
ωx(0, t) = 0, (25)
ωx(1, t) = 0, (26)

with c > 0 as a parameter of user’s choice and ∆Q(x, t) =

∆ωQ(x, t) −
∫ 1

x
P (x, y)∆ωQ(y, t)dy. Note that, the gain

kernel P (x, y) in (23) must satisfy the following conditions:

Pyy(x, y)− Pxx(x, y) = cP (x, y), (27)

P (x, x) = −cx
2
, (28)

Px(0, y) = 0, (29)

and the observer gains can be computed as:

P1(x) = −Py(x, 1), (30)
P10 = −P (1, 1), (31)

Remark 3. There exists a unique and closed-form solution
of the kernel PDE (27)-(29) [23], given by

P (x, y) = −cy
I1(

√
c(y2 − x2))√
c(y2 − x2)

. (32)



Therefore, the observer gains can be computed offline via
(30)-(31) using the closed form solution (32).

Remark 4. It can be proven that the transformation (23)
is invertible [23]. Hence, stability of the target system (24)-
(26) implies stability of the original system (20)-(22). Next,
we present a theorem for the convergence of the Robust
Observer via stability analysis of the target system.

Theorem 1 (Convergence of Robust Observer). Consider the
error dynamics (24)-(26). If c > 0, then
(a) under Scenario 1: ∆ωQ = 0 i.e. in presence of no fault,
the origin of the error space ω(x, t) = 0 is exponentially
stable in the sense of spatial H1 norm. Furthermore, it can
also be shown that ω(x, t) → 0, ∀x ∈ [0, 1] as t→ ∞.
(b) under Scenario 2: ∆ωQ ̸= 0 i.e. in presence of the fault,
the error ω(x, t) converges to a ball of radius (in the sense of
spatial H1 norm) defined by RB =

∥∆ωQ∥2+∥∆ωQx∥2

2c2 . Note
that the magnitude of RB can be made arbitrarily small by
choice of a high value of c. Furthermore, it can also be
shown that ω(x, t), ∀x ∈ [0, 1] settles to a bounded region
as t→ ∞.

Proof. We consider the spatial H1 norm as a Lyapunov
function candidate to analyze the error dynamics (24)-(26):

W1(t) =
∥ω∥2 + ∥ωx∥2

2
(33)

, 1

2

∫ 1

0

ω2(x, t)dx+
1

2

∫ 1

0

ω2
x(x, t)dx. (34)

The derivative of W1(t) along the state trajectory can be
written as:

Ẇ1(t) =

∫ 1

0

ωωtdx+

∫ 1

0

ωxωxtdx. (35)

Now consider the first term of the right hand side of (35),∫ 1

0

ωωtdx =

∫ 1

0

ωωxxdx+

∫ 1

0

ω∆ωQdx− c

∫ 1

0

ω2dx.

(36)
Applying Cauchy-Schwarz inequality on the second term and
integration by parts on the first term of the right hand side
of (36) yields∫ 1

0

ωωtdx ≤ −∥ωx∥2 + ∥ω∥ ∥∆ωQ∥ − c ∥ω∥2 (37)

Now applying integration by parts on the second term of
right hand side of (35), we have∫ 1

0

ωxωxtdx = −
∫ 1

0

ωtωxxdx

= −
∫ 1

0

ω2
xxdx−

∫ 1

0

ωxx∆ωQ + c

∫ 1

0

ωωxxdx. (38)

Next applying integration by parts on the second and third
terms of the right hand side of (38), we have∫ 1

0

ωxωxtdx = −
∫ 1

0

ω2
xxdx+

∫ 1

0

ωx∆ωQx − c

∫ 1

0

ω2
xdx

(39)

Further, we apply Cauchy-Schwarz inequality on the second
term of right hand side of (39) which yields∫ 1

0

ωxωxtdx ≤ −∥ωxx∥2+∥∆ωQx∥ ∥ωx∥−c ∥ωx∥2 . (40)

Finally, considering (37) and (40) we can write the upper
bound of the derivative of the Lyapunov function

Ẇ1(t) ≤ ∥ω∥ (∥∆ωQ∥− c ∥ω∥)+∥ωx∥ (∥∆ωQx∥− c ∥ωx∥).
(41)

Now considering Scenario 1: ∆ωQ = 0, we can write (41)
as

Ẇ1(t) ≤ −2cW1(t). (42)

If c > 0 the solution of the differential inequality (42) is
W1(t) ≤ W1(0) exp(−2ct) which confirms the exponential
convergence of W1(t). Next, using Agmon’s inequality we
can write that

max
x∈[0,1]

|ω(x, t)|2 ≤ 2 ∥ω∥ ∥ωx∥ ≤ ∥ω∥2 + ∥ωx∥2 = 2W1(t).

(43)
Therefore, from the knowledge of W1(t) → 0 as t → ∞
and (43), we prove that ω(x, t) → 0, ∀x ∈ [0, 1] as t→ ∞.
Next, we consider Scenario 2: ∆ωQ ̸= 0. From (41), the
sufficient conditions for the negative definiteness of Ẇ1(t)
are

∥ω∥ > ∥∆ωQ∥
c

, ∥ωx∥ >
∥∆ωQx∥

c
. (44)

Squaring both sides of the conditions in (44) and adding
them, we can write a single sufficiency condition as

∥ω∥2 + ∥ωx∥2

2
> RB , ∥∆ωQ∥2 + ∥∆ωQx∥2

2c2
. (45)

Therefore, we can conclude that the negative definiteness
of Ẇ1(t) will hold outside the ball of radius in the ∥ω∥H1

space defined by RB . Hence, W1(t) will settle on or within
a bounded ball of radius RB . Note that the magnitude
of RB can be made arbitrarily small by choosing a high
value of c. Next, considering the boundedness of W1(t) and
following the same argument as in (43), we can conclude
that ω(x, t), ∀x ∈ [0, 1] settles to a bounded region as
t→ ∞.

B. Diagnostic Observer

The Diagnostic Observer utilizes the estimated tempera-
ture distribution from Robust Observer as a feedback signal.

Remark 5. The estimated temperature distribution from
Robust Observer can be written as:

T̂1(x, t) = T (x, t) + ϵ(x, t).

However, we have proven that ϵ can be made arbitrarily
small by selecting c arbitrarily large. Therefore, we consider
T̂1(x, t) ≈ T (x, t) for all practical purposes in the following
analysis.

Assumption 1. We assume the following structure of the
fault function

∆Q(x, t) = θψ(T (x, t), I(t)) (46)



where ψ(·, ·) is a known function of distributed state T (x, t)
and input current I , and θ ∈ R is an unknown constant pa-
rameter which determines the fault size. The main objective
of the diagnostic observer is to estimate the value of θ.

Considering Remark 5 and Assumption 1, the following
structure is chosen for the Diagnostic Observer,

T̂2t(x, t) = T̂2xx(x, t)+
Q(t)

k
+θ̂ψ(T (x, t), I(t))+L2T̃2(x, t),

(47)
with Neumann boundary conditions

T̂2x(0, t) = 0, (48)

T̂2x(1, t) =
h

k
(T∞ − T (1, t)) , (49)

where T̂2(x, t) is the estimated temperature distribution by
Diagnostic Observer, T̃2(x, t) = T (x, t) − T̂2(x, t) is the
distributed estimation error with T (x, t) as the estimated
temperature distribution from Robust Observer, θ̂ is the
estimated size of the fault and, L2 ∈ R is an observer gain
to be determined. The update law for θ̂ is chosen as

˙̂
θ =

1

L3

∫ 1

0

ψ(T (x, t), I(t))T̃2(x, t)dx, (50)

where L3 > 0 is a user-defined gain that determines the
parameter convergence rate. Subtracting (47)-(49) from (14)-
(16), we can write the error dynamics of Diagnostic Observer
as

T̃2t(x, t) = T̃2xx(x, t) + θ̃ψ(T (x, t), I(t))− L2T̃2(x, t),
(51)

with Neumann boundary conditions

T̃2x(0, t) = T̃2x(1, t) = 0, (52)

In the following theorem, we analyze the performance of
the Diagnostic Observer.

Theorem 2 (Performance of Diagnostic Observer)). Con-
sider the error dynamics (51)-(52) and the parameter update
law (50). If Remark 5 and Assumption 1 are valid and
L2 ≥ − 1

4 , then the distributed state estimation error T̃2(x, t)
and parameter estimation error θ̃ will be bounded. i.e.∥∥∥T̃2∥∥∥ , ∣∣∣θ̃∣∣∣ ∈ L∞ as t→ ∞.

Proof. We consider the following Lyapunov function candi-
date to analyze the error dynamics

W2(t) =
1

2

∫ 1

0

T̃ 2
2 (x, t)dx+

L3

2
θ̃2 (53)

The derivative of W2(t) along the state trajectories can be
written as:

Ẇ2(t) =

∫ 1

0

T̃2T̃2tdx+ L3θ̃
˙̃
θ (54)

Now considering (51) and the fact θ̇ = 0, we can write

Ẇ2(t) =

∫ 1

0

T̃2T̃2xxdx− L2

∫ 1

0

T̃ 2
2 dx

+θ̃

∫ 1

0

ψ(T, I)T̃2dx− L3θ̃
˙̂
θ

(55)

Next applying integration by parts on the first term of the
right hand side of (55) and then applying Poincaré inequality:
−
∫ 1

0
T̃ 2
2xdx ≤ − 1

4

∫ 1

0
T̃ 2
2 dx, we have

Ẇ2(t) ≤ −1

4

∫ 1

0

T̃ 2
2 dx− L2

∫ 1

0

T̃ 2
2 dx

+θ̃

∫ 1

0

ψ(T, I)T̃2dx− L3θ̃
˙̂
θ

(56)

Finally, applying the update law (50) on (56), we can write:

Ẇ2(t) ≤ −(
1

4
+ L2)

∫ 1

0

T̃ 2
2 dx. (57)

From (57) it can be concluded that Ẇ2(t) is negative
semidefinite if L2 ≥ − 1

4 . Hence, the estimation errors
∣∣∣θ̃∣∣∣

and T̃2(x, t) will be bounded. i.e.
∥∥∥T̃2∥∥∥ , ∣∣∣θ̃∣∣∣ ∈ L∞ as t→ ∞.

Remark 6. The parameter estimate θ̂ will be used as a resid-
ual signal which serves the purpose of detection (indicated by
the fact θ̂ ̸= 0) and estimation (indicated by the magnitude
of θ̂) of the thermal fault ∆Q.

C. Robustness to Uncertainties

Uncertainties, such as unmodeled dynamics and measure-
ment noise, have not been considered in the diagnostic
scheme design. The presence of these uncertainties prohibits
the residual θ̂ from having the idealized property of equaling
zero in the absence of a fault. One approach to handle this
issue is to use nonzero thresholds. The residuals will be
evaluated as follows: Fault is detected when θ̂ > th; no
fault when θ̂ ≤ th, where th is the predefined threshold. The
effect of the uncertainties on the residuals will be suppressed
below these threshold values.

Below are the guidelines for selection of constant thresh-
old values for the evaluation of the residual:
Step 1: Collect residual data under non-faulty conditions
from Monte-Carlo simulations or experimental studies.
Step 2: Plot the probability distribution of the residual data.
In general, this probability distribution will depend on the
statistics of the uncertainties and dynamic system structure
in the experimental data or Monte-Carlo study.
Step 3: Select an allowable probability of false alarms.
Step 4: The probability of the false alarms is given by:

PFA =

∫ −th

−∞
p0 (x) dx+

∫ ∞

th

p0 (x) dx (58)

where PFA is the probability of false alarm, th is the selected
threshold and p0 (x) is the residuals probability distribution
under no fault. The goal here is to select th which will yield
an acceptable PFA.



Fig. 5. Applied Current and Terminal Voltage Under No Fault Condition.
Positive current corresponds with discharge.

IV. SIMULATION STUDIES

In this section, we conduct simulation studies to test the ef-
fectiveness of the scheme. The battery under consideration is
a commercial Lithium Iron Phosphate A123 26650 cylindri-
cal cell with rated capacity of 2.3 Ah. Battery parameters are
taken from [14] and [24]. In simulation, applied current to the
battery and corresponding voltage and temperature responses
under no fault condition are shown in Fig. 5 and Fig. 6. To
emulate a realistic scenario, we inject following zero mean
Gaussian noises in the measured quantities: 10mA current
(I) noise, 0.3oC surface temperature (Ts) noise and 5mV
voltage (Vterm) noise. Under these assumed uncertainties, we
select a a constant threshold value for the residual signal (θ̂)
following the procedure discussed in the previous section.
In the following results, the performance of the observers
will be shown in terms of spatially averaged temperature,
i.e. Tavg =

∫ 1

0
T (x, t)dx and T̂i−avg =

∫ 1

0
T̂i(x, t)dx where

T (x, t) represents actual temperature and T̂i(x, t) represent
estimated temperatures with i ∈ {1, 2}. Furthermore, we
will quantify the convergence performance of the estimates
in terms of convergence time defined as the time taken to
reach within ±2% band of the true value starting from
the incorrect initial condition. The observer estimates are
provided in Fig. 7 under no fault condition. To verify the
convergence properties, both the observers are initialized
with incorrect temperature 295 K, 3 K less than the true
initial condition of 298 K. Recall from Theorem 1 that we
have proven exponential stability of T̃1(x, t) to the origin,
pointwise-in-space. Theorem 2 proves boundedness of the L2

norm of T̃2(x, t), i.e. ∥T̃2∥ ∈ L∞. In Fig. 7, both T̂1−avg and
T̂2−avg from the Robust Observer and Diagnostic Observer,
respectively, converge to the true temperature Tavg. The
convergence time for both observers are within 0.1 sec.

Next we illustrate the effectiveness of the proposed
approach under the following faulty cases.
Case 1: A constant and distributed additive heat generation
fault is injected between 50 sec and 170 sec in the battery.
In this case we have ψ(T (x, t), I(t)) = 1 and ∆Q(x, t) = θ.

Fig. 6. Temperature distribution inside the battery Under no fault condition

Fig. 7. Temperature estimation performance under no fault condition

The nature of the fault is abrupt/step-like. The temperature
distribution is shown in Fig. 8, which clearly exhibits
higher temperatures. The corresponding performance of
the observers (in terms of estimated average temperature
and estimation error) is provided in Fig. 9. Similar to the
nominal case, both observers are initialized with incorrect
temperatures to test the convergence properties. In Fig. 9,
both T̂1−avg and T̂2−avg from the Robust Observer and
Diagnostic Observer, respectively, converge to the true
temperature Tavg. The convergence time for both observers
are within 0.1 sec. This is expected, of course, since the
fault does not occur until 50sec. Furthermore, the fault
estimation parameter θ̂ crosses the threshold shortly after
the fault occurrence at 50 sec, thus detecting the fault.
Moreover, θ̂ converges to a neighborhood of the true fault
size θ, as shown in the bottom subplot in Fig. 9. Recall that
Theorem 2 only guarantees boundedness of θ̃, i.e. |θ̃| ∈ L∞.
Nevertheless, we find the estimate can be successfully used
to estimate fault size. In this case, the detection time is
1 sec whereas the fault estimate (θ̂) converges to the true
value (θ) within 5 sec. In addition, convergence of both
observer estimates T̂1−avg , T̂2−avg remains robust to the



Fig. 8. Temperature distribution inside the battery under faulty condition.
The fault is injected between 50 sec and 170 sec. Nature of the fault: abrupt.

Fig. 9. Temperature and fault estimation performance under fault case 1.
The fault is injected between 50 sec and 170 sec. Nature of the fault: abrupt.

fault presence.

Case 2: In this case study an internal short circuit fault has
been injected at 100 sec under a constant current discharge
scenario. The internal short circuit fault is characterized by
internal short circuit current Isc and resistance Rsc, and
mathematically modeled by adding an additional voltage
drop (IscRsc) in the terminal voltage equation (10) and
∆Q(x, t) = θ = I2scRsc in (14) [26]. Applied current,
voltage, and temperature responses under the fault are shown
in Fig. 10. We have chosen Isc = 25A and Rsc = 40mΩ for
this case study. The nature of the fault is abrupt/step-like.
The temperature distribution is shown in Fig. 11, which has
faster temperature rise than the preceding two case studies.
The performance of the observers (in terms of estimated

Fig. 10. Applied current and terminal voltage under the internal short
circuit fault. The fault is injected at 100 sec. Nature of the fault: abrupt.

Fig. 11. Temperature distribution inside the battery under the internal short
circuit fault. The fault is injected at 100 sec. Nature of the fault: abrupt.

average temperature and estimation error) is shown in Fig. 12
under the faulty condition. Similar to the nominal case, both
observers are initialized with incorrect temperature to test the
convergence properties. As before, both T̂1−avg and T̂2−avg

converge to the true temperature Tavg . The convergence time
for both observers are within 0.1 sec. Furthermore, the fault
estimation parameter θ̂ crosses the threshold shortly after
the fault occurrence at 100 sec, signaling a detected fault.
Furthermore, θ̂ accurately estimates the fault magnitude θ, as
shown in the bottom subplot in Fig. 12. The detection time
is 0.2 sec and the fault estimate (θ̂) converges to the true
value (θ) within 50 sec. Note the observers state estimates
T̂1−avg , T̂2−avg are robust to the fault presence.

V. CONCLUSIONS

This paper presents a PDE-observer based diagnostic
scheme for diagnosing thermal faults in Li-ion batteries.
We consider a distributed parameter thermal model coupled
to a second order electrical model for diagnostic scheme
design. The scheme consists of two PDE observers working
in cascade. The first observer, Robust Observer, estimates the
internal temperature distribution. We prove the distributed
state estimate (i) converges exponentially to the true dis-
tributed temperature state under nominal conditions, and (ii)
converges within a neighborhood of the true temperature



Fig. 12. Temperature and fault estimation performance under the internal
short circuit fault. The fault is injected at 100 sec. Nature of the fault: abrupt.

state, which can be made arbitrarily small, under fault con-
ditions. The second observer, Diagnostic Observer, utilizes
this estimated temperature distribution and in turn detects and
estimates thermal faults. We prove the fault estimation error
θ̃ is bounded in terms of the L∞ norm. The proposed scheme
is tested on two case studies. Case 1 considers an internal
heat generation fault and Case 2 considers an internal short
circuit fault. Simulation results illustrate the convergence and
robustness properties of the proposed scheme. Future work
includes experimental validation of the proposed scheme.
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