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Summary

In March 2019, SmartTots, a publiceprivate partnership between the US Food and Drug Administration and the

International Anesthesia Research Society, hosted a meeting attended by research experts, anaesthesia journal

editors, and government agency representatives to discuss the continued need for rigorous preclinical research and

the importance of establishing reporting standards for the field of anaesthetic perinatal neurotoxicity. This group

affirmed the importance of preclinical research in the field, and welcomed novel and mechanistic approaches to

answer some of the field’s largest questions. The attendees concluded that summarising the benefits and disad-

vantages of specific model systems, and providing guidance for reporting results, would be helpful for designing new

experiments and interpreting results across laboratories. This expert opinion report is a summary of these discus-

sions, and includes a focused review of current animal models and reporting standards for the field of perinatal

anaesthetic neurotoxicity. This will serve as a practical guide and road map for novel and rigorous experimental

work.

Keywords: anaesthesia; animal model; neurodevelopment; neurotoxicity; paediatric anaesthesia; research guidelines;

research reporting
Editor’s key points

� Preclinical research has been instrumental in identi-

fying and characterising anaesthetic neurotoxicity.

� An expert panel was convened to recommend stan-

dards for future research and reporting in this field.
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The SmartTots consortium is a publiceprivate partnership

between the US Food and Drug Administration (FDA) and the

International Anesthesia Research Society (IARS). Its mission

is to facilitate research that ensures safe anaesthesia and

sedation for millions of children who undergo surgery or

procedures that require anaesthesia each year. In March 2019,

a group of preclinical research experts in this field, editors

from leading anaesthesia journals, and representatives from

the FDA and funding agencies met with the support of

SmartTots to discuss the need for high-quality preclinical

studies with consistency in reporting methods and results. In

the nearly 20 yr since the alarm was raised in neonatal rats,1

preclinical investigations have consistently shown neuroan-

atomical changes and lifelong cognitive deficits after exposure

to common anaesthetics in early life.2,3 This has sparked

clinical studies, both prospective and retrospective, that have

corroborated the consistent preclinical finding that single

anaesthetic exposures of short duration in otherwise healthy

individuals do not cause long-term deficits, but concerns from

both preclinical and clinical studies regarding longer duration

and multiple exposures remain unsettled.

As with any other scientific question, different model sys-

tems present unique advantages and limitations, and there-

fore, investigations of developmental anaesthetic

neurotoxicity have been conducted using a wide range of or-

ganisms and systems. In vitro models as varied acute brain

slice cultures to human embryonic stem cells provide mech-

anistic and physiological insights to important but narrow

questions. Animal models offer the best practical approach to

testing potential strategies tominimise ormitigate risks with a

goal of identifying a non-toxic anaesthesia technique.4 Studies

in animals are critical to understanding the phenotype

resulting from developmental anaesthetic neurotoxicity,

which can be difficult to discern in human patients, in which

the confounding influences of surgery, co-morbid disease,

socio-economic and environmental factors, etc. are difficult to

control. Although progress has been made in this arena,

further research in animal models is essential to under-

standing the mechanism(s) of transient and permanent

anaesthetic effects on the brain, as there is no feasible

approach to conducting mechanistic studies in humans.

Studies in animals must be carefully designed, rigorously

executed, and thoroughly reported to achieve this goal.

A number of different approaches have demonstrated

anaesthetic neurotoxicity in a wide range of organisms and

systems. Although confirmatory, these different approaches

present challenges when comparing results. In addition, the

maturation of the field and technological developments have

increased the threshold of novelty that merits publication in

high-quality journals. The aim of this expert opinion report

was to provide guidance to improve novelty, rigour, and

reproducibility for preclinical research of anaesthetic neuro-

toxicity by establishing commonly agreed-upon standards and

to support meaningful advances in research design and

implementation.

We propose a framework for approaching preclinical

questions regarding the effects of anaesthetics on neuronal

development. Appropriate design and reporting standards for

preclinical studies will enable comparative analyses across

studies and correlation with available human data. Such

carefully conducted, reliably reported, and reproducible

anaesthetic-mediated developmental neurotoxicity research

may expand our knowledge of fundamental processes

important to brain development and neuronal plasticity, and
to mechanisms of anaesthetic action. This report provides an

analysis with recommendations to guide and challenge in-

vestigators in this field to follow and adhere to best practices in

preclinical research, experimental design, and model system

selection.
Methods

This article is a synthesis of discussions that occurred at the

preclinical SmartTots meeting held from April 31 to May 1,

2019 in New York City. Attendees included basic science re-

searchers with active research interests in this area, journal

editors, and members of the FDA and IARS (see online Sup-

plementary material). The specifics of the process were dis-

cussed before adjournment on the last meeting day and were

agreed upon by all present. Briefly, participants were divided

into four groups of eight to 10 people with group leaders who

are all experts in the field. The group topics were animal models,

research methods, publication and reporting, and future directions.

The group leaders were tasked with leading and summarising

the small group discussions, presenting the small group

summary to the entire group, and providing written notes of

the entire group and conference organisers after the meeting.

This was synthesised into a manuscript by several junior at-

tendees, and circulated and edited by the group leaders and

conference organisers. All conference participants, represen-

tatives from the FDA, and the SmartTots advisory board were

given an opportunity to provide input after the initial draft was

complete. Final suggestions were incorporated and the

completed manuscript submitted for publication.
Models

The choice of preclinical model of neonatal anaesthesia

exposure depends on the particular question to be answered.

There are multiple different experimental models in the

literature, each with relative advantages and disadvantages.

Here, we highlight the most common preclinical models, and

discuss the advantages and inherent limitations for their use

in this type of research (Table 1).
In vitro models

As long as fundamental questions regarding anaesthetic

mechanism(s) and cellular toxicity remain, there will continue

to be a role for in vitro models. These models include estab-

lished cell lines, primary cell cultures, acute and organotypic

slice cultures, human stem cell cultures, and three-

dimensional organoids. Each model can be exquisitely

controlled and molecular mechanisms and electrophysiology

can be interrogated at precise time points in single-cell types

or reductionist systems. Connectivity can be explored

depending on the complexity of existing circuits. They also

allow for inexpensive, high-throughput screening experi-

ments, and could prove valuable in the development of novel

anaesthetics or protective agents. The use of in vitro models is

preferred over the use of live animals, given increasing ethical

concerns for using animals in research.5,6

Such reductionist models have certain disadvantages, but

when used appropriately and in concert with in vivo models,

scientists can leverage their simplicity for great potential.

Nonetheless, it is important to recognise the limitations of

in vitro models relative to in vivo systems, as even the best

in vitro models consist of damaged tissue and disrupted



Table 1 Comparison of animal models used in preclinical anaesthetic neurotoxicity research.

Animal model Advantages Disadvantages

Cell culture Economy
Least ethical concerns
Focus on cellular mechanisms
Insights into molecular and genetic
mechanisms

No or limited connectivity
Translation unclear
Lack of long-term outcomes
Lack complexity, including immune and
vascular systems that are essential for
maturity and function

Brain slice culture
3D organoids

Non-mammalian species: Space-efficient housing
Genetic and molecular mechanisms
apply to humans
Suitable for toxic screens
Mechanistic studies
Genetic manipulations

Maturational stages unclear
No cognitive outcomes
No physiological monitoring

Nematode (Caenorhabditis elegans)
Fruit fly (Drosophila melanogaster)
Zebrafish (Danio rerio)

Small rodents Smallest animal models with interacting
neuronal networks

Established, validated cognitive tests
Equivalent tests available in humans
(startle reflex)

Genetic manipulations
Prenatal human brain stages can be
modelled postnatally

Limitations in physiological monitoring
Brain morphology dissimilar to humans
(lissencephaly)

Guinea pigs Precocious brain development compared
with humans (in utero comparable with
term human neonates)

Pigs Gyrencephalic brain similar to humans
Most economic large animal models
Full physiological monitoring available

Limited cognitive assessment

Sheep Precocious brain development compared
with humans (in utero comparable with
term human neonates)

Relatively high cost
Non-human primates Closest to human morphology and

physiology
Ethical considerations
Limited supply
High cost
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circuits in artificial media under non-homeostatic conditions.

Direct comparison of cell culture assays with in vivo develop-

ment is inherently flawed given the artificial environment that

in vitro systems necessitate. Although it is possible to correlate

specific developmental events that occur in cells in vitro with

analogous events for the same cell type in vivo, the timescales

between the two models are not necessarily the same. Rather

than drawing tenuous connections between in vitro and in vivo

systems, it may be better to acknowledge the limitations of the

model and define the parameters meticulously. These models

should be supported by measuring expression of develop-

mental molecular markers and physiological variables. Rather

than generalising findings of in vitro work to animal models or

even clinical scenarios, it may be more powerful to focus on

mechanistic actions that can be interrogated in these simpli-

fied systems.
In vivo models

These models cover a range of species from flies and worms to

non-human primates (NHPs). One of the distinct advantages of

animal models over in vitro models is the ability to interrogate

drug effects on animal behaviour. Here, we highlight the most

commonly used animal models and identify appropriate areas

of use.
Non-mammalian species

Several non-mammalian species are routinely used as model

systems in the investigation of anaesthetic effects on the
developing nervous system, including Caenorhabditis elegans,

zebrafish, andDrosophila melanogaster. Space-efficient housing,

animal costs, robust genetic tools, and short life cycles make

these models useful for toxicological screening, mechanistic

studies, and exploration of the interactions between genes and

anaesthetics. What remain unclear are the equivalent devel-

opmental states of these organisms in comparison with

mammalian species. In addition, fewer cognitive assays are

available for use in non-mammalian species and monitoring

of physiological factors is difficult. Finally, it is a challenge to

compare exposure levels in non-mammalian species with

plasma exposures in humans.
Mammalian species

The majority of model systems that have been used are

mammalian, with a heavy reliance on small rodents. Here, we

highlight some of the advantages and disadvantages of small

rodents that are specific to this field, and explore the role for

larger mammalian models.

One challenge for any animal model that translates brain

development to humans has been the inherent differences

in maturation between species. Computational models,

such as those published on translatingtime.org,7,8 offer es-

timates of equivalent post-conceptional dates across

mammalian species using empirical neural events for

comparison. This can be useful for testing hypotheses

regarding specific developmental events; however, it should

be recognised that computational approaches necessarily

http://translatingtime.org
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simplify the complex process of brain development that

limit its extrapolation.
Small rodents

Rodent models are the most commonly used mammalian

models for studying anaesthetic neurotoxicity. However,

these models have been criticised, in particular regarding both

the lack of physiological control and monitoring of physio-

logical parameters during anaesthetic exposure.9e11 However,

because rodents possess a brain cytoarchitectonic organisa-

tion comparable with humans, they remain a powerful model

to study neonatal anaesthetic toxicity and the cornerstone of

paediatric drug development programmes. The tremendous

growth in the field of murine genetic engineering has made

mice particularly useful for identifying molecular mecha-

nisms involved in neuronal development and toxicity. Batte-

ries of established assessments of behaviour, anxiety, and

memory are available for mice and rats.12,13 These rodent

behavioural tests have corollary methods that can be applied

in primates and humans,14e17 allowing for potential trans-

lation from rodent to human studies should a relevant

phenotype within a subpopulation of rodents be identified.

Another advantage is that the rodent brain develops sub-

stantially in early postnatal life; this allows for an easy study of

events that occur in utero and early neonatal life in humans.

The genetic tools available for mice make them ideal for

certain types of mechanistic and proof-of-concept experi-

ments. Rats may be preferred to other rodents with regard to

their consistency in behavioural tasks, which can result in

fewer animals needed per experimental group.18e20
Guinea pigs

Guinea pigs possess some of the advantages and disadvan-

tages of mice and rats. In contrast to smaller rodents, brain

development in guinea pigs is more precocious, meaning that

their third trimester in utero development mirrors the early

postnatal period in humans.21 The longer length of gestation

in guinea pigs compared with mice (59e72 vs 20 days,

respectively),22 can allow the study of anaesthetic exposure

duration relative to the rate of brain development. As the

larger pregnant guinea pig allows appropriate physiological

monitoring, this model provides the opportunity of main-

taining physiological homeostasis.23 However, this approach

precludes the randomisation of littermates to different expo-

sure groups, and the lack of genetic tools and species-specific

reagents can be a significant drawback that contributes to the

paucity of studies using this animal model. Guinea pigs

require more space relative to smaller rodents even when

socially housed, which can incur increased costs.
Pigs

Porcine models have substantial advantages over rodent

models, mostly related to size and neuroanatomy. The larger

size allows for accurate physiological monitoring, anaesthetic

delivery via tracheal intubation and mechanical ventilation,

and ease of venous and arterial vascular access.24e26 The

gyrencephalic brains of pigs closely resemble humans in both

appearance and developmental sequence.27 Behavioural tests

include corollaries to many commonly tested domains in ro-

dents and NHPs.28 However, swine behavioural models are

less established compared with rodents because of fewer
published studies and the different testable behaviours in

pigs vs rodents.28 Imaging studies might be particularly

fruitful in this model as their larger size means that human

scanners (CT or MRI) can be utilised.29 This is advantageous

over smaller animals whose brains are particularly difficult to

image and require specialised scanners with extremely

powerful magnets.30 Furthermore, the timing of the rapid

increase in brain size, known as the brain spurt, is most closely

aligned between pigs and humans compared with the other

mammals reviewed here.21 The disadvantages of pigs include

the costs of animals and husbandry, and the lack of species-

specific biochemical reagents, such as antibodies, gene se-

quences, and primers. However, they are significantly less

expensive and have a much shorter gestation period relative

to NHPs (115 vs 165 days in pigs vs NHPs, respectively).31,32
Sheep

The maturation stages of neonatal sheep are precocious with

the end of the third trimester corresponding to early postnatal

human development.33 Despite differences in developmental

time, this gyrencephalic model has been used in other fields of

paediatric neurology to model vascular disruptions and their

effects on brain development.34 Like guinea pigs and swine,

the physiological parameters in this large mammalian model

can be accurately monitored and controlled. However, the in

utero exposure required for brain developmental equivalency

to human neonates precludes randomisation to different

exposure groups for littermates of the same gestation. Similar

to other large animal species, the limitations on behavioural

assessments and lack of species-specific reagents, and the

relative cost, pose significant challenges to the use of sheep

models.35
Non-human primates

Non-human primate research offers perhaps the strongest

preclinical evidence for the human relevance of develop-

mental anaesthetic neurotoxicity observed in animals.36e45

The comparable physiology, parallel neuronal development,

and complex behaviours all contribute to the importance of

this model. NHP models offer the closest evolutionary model

to human brain development. However, this model should be

limited to the most clinically relevant questions to maximise

the scientific gain from their limited use.46,47 NHPs remain

critical for corroborating experimental findings in lower

mammals. The primary limitations are the ethical concerns,

costs, and time required for these studies, and a much more

limited set of tools to investigate cellular and molecular

mechanisms. Although critically important for linking find-

ings in lower vertebrates to humans, NHP studies cannot be

relied on to guide this field.
Reporting standards

With the maturation of this field of research, there is an

increasing need for rigorous and thoughtfully designed ex-

periments disseminated with clear reporting standards. This

is crucial for the replication of experiments and for the com-

parison and interpretation of results across different research

groups, models, and experimental designs. Here, we present

the best practice guidelines for performing experiments and

reporting methods and results in developmental anaesthetic

neurotoxicity.
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General considerations

Improving the design of preclinical studies with regard to

rigour and reproducibility has been the subject of ongoing

debate for the past decade in research. In fact, the US National

Institutes of Health (NIH) has published the Principles and

Guidelines for Reporting Preclinical Research48 that mirrors

recommendations from a prominent white paper.49 Similarly,

the UK National Centre for the Replacement, Refinement &

Reduction of Animals in Research published the Animal

Research: Reporting of In Vivo Experiments guidelines for

reporting preclinical animal studies commonly referred to as

the ARRIVE guidelins.6 These have beenwidely adopted as best

practice by journals, although they are rarely enforced in their

entirety for all published studies. The document, as a check-

list, is freely available.50 Although detailed and structured, the

specifics do not apply universally. However, the authors of this

report strongly recommend adhering to these standards. The

following are recommendations specific to the field of anaes-

thetic toxicity.
Anaesthesia exposure

In addition to the basics of agent, dose, and length of exposure,

details regarding the delivery method, depth of anaesthesia,

and monitoring of the agent should be clearly stated. For

inhaled gases, the relative concentration should be directly

measured, not solely relying on delivery settings. Anaesthetic

records should be kept with frequent measurements of vola-

tile concentrations and other physiological parameters. The

volumetric composition of the carrier gas should be reported

for both the anaesthesia and control groups. Mortality and

adverse events must be reported. Although the cause of death

may be unknown, speculation can be helpful for interpretation

of results and adjustment of methods to mimic clinical

relevance.

For experiments aiming to define a therapeutic index and

determine safety margins, in vivo studies should also be

designed to include multiple doses and exposure durations

that might define adverse effect exposures, in which no

adverse effects are observed (no-observed-adverse-effect

level). When feasible, obtaining toxicokinetic data can be

extremely helpful to extrapolate exposures across species.
Physiological data

Various species present different opportunities to monitor

physiological parameters during anaesthetic exposure. Tem-

perature remains a minimum essential variable to report

when studying all neonatal animals. Temperature measured

directly by skin or other method (not only ambient tempera-

ture) should be recorded several times an hour, particularly in

the smallest animals. For animals larger than rodents, blood

pressure in neonates can be reliably taken either by a non-

invasive blood pressure cuff or by arterial cannulation.25,51

Although there are reports of successful pulse oximetry

monitoring in neonatal rodents,52 practical limitations in an-

imal size and device accuracy for neonatal rodents have

limited widespread use. Accurate pulse oximetry is readily

achievable in larger models and should be used.25,53

End-tidal CO2 should be monitored and recorded for

models of volatile anaesthetic exposure when delivered by

tracheal intubation, and can be measured in anaesthetic

chambers for smaller animals. Care should be taken to limit
inhaled CO2 as much as possible, and can include using CO2

absorbers. In larger animals, which readily allow tracheal

intubation, methods for ventilation should be recorded

along with the technical description of the intubation

procedure.

In the absence of continuous monitoring of oxygenation

and ventilation, arterial blood gas analysis is critical for

establishing a new model system, or for new investigators to

the field attempting to replicate what other laboratories have

reported. Each laboratory should report the impact of the

anaesthetic protocol on arterial blood gases at least once. In an

effort to reduce rodent use, we advisemeasuring arterial blood

gases only when a group is publishing an initial study from

their laboratory, or if there have been changes made in the

anaesthetic protocol (e.g. regarding the duration of exposure

or dose).
Nutritional status

Given the time of pups away from their mothers during

anaesthesia exposure, it is possible for nutritional status to

affect outcomes. Intermittent recording of weight should be

done after the anaesthetic exposure, especially for new

models of anaesthesia exposure, validation of a new method,

or survival studies. Litter size, particularly if culled, should be

noted, as this can influence nutritional status.
Sex as a biological variable

Animals of both sexes should be included in a study if

appropriate, and the distribution of male/female subjects

should be reported.54 It should be specified whether sex was

analysed as a biological variable. The US NIH55 recommends

that, ‘sex as a biological variable will be factored into research

designs, analyses, and reporting in vertebrate animal and

human studies. Strong justification from the scientific litera-

ture, preliminary data, or other relevant considerations must

be provided for applications proposing to study only one sex’.

Within the field of anaesthetic neurotoxicity, sex has become

an important variable with differences in behavioural and

neurochemical responses to anaesthetics between males and

females.56e58
Experimental sample size

Ideally, sample size should be determined by a priori power

analysis.59 However, effect size is often unknown before per-

forming the experiments. Furthermore, the number critically

depends on the relevant primary outcome, physiologically and

pharmacologically significant differences, number of com-

parisons, type of data, and statistical testing. In rodent

behavioural studies, groups of 12e20 are commonly required

to detect differences between two groups with an effect size of

1.0e1.5 at an alpha of 0.05 and power of 0.95. In contrast,

immunohistochemistry effect sizes are often as large as two to

three, so groups of three to six animals may be appropriate to

maintain the same alpha and power. The FDA, the US Envi-

ronmental Protection Agency, and the Organization for Eco-

nomic Cooperation and Development generally recommend a

sample of 20 animals per sex per group for developmental

neurotoxicity studies.60 In the case of large animals, in which

individual animals are particularly expensive, robust pheno-

types should be prioritised to utilise appropriate cohort sizes

and limit underpowered studies.
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An important criticism of animal work in general has

been that studies are often highly underpowered.61e63 This

leads to problems with interpretation and decreases repro-

ducibility.63 It also further complicates broader interpreta-

tion of outcomes within the field, leads to delays, and

requires additional studies to arrive at agreed-upon con-

clusions. Although there is a continuing push to reduce and

replace the number of animals used in biomedical research,

this should not come at the expense of adequate statistical

power. Appropriate powering of a study by using more an-

imals could ultimately reduce total animal use, as under-

powered studies that lead to erroneous or ambiguous results

might need to be repeated, or lead to unnecessary studies to

explore unsubstantiated results.
Animal husbandry

Animal husbandry, particularly in the perinatal period, plays

an important role in animal development and subsequent

behaviour.28,64e67 Therefore, care should be taken to minimise

neonatal and maternal stressors during this period. The

sources of animals (i.e. vendor vs breeding) and day (age) of

arrival should be described. The type of cage (i.e. with or

without enrichment or ventilation) should also be described,

as this can influence subsequent behaviour. Details regarding

weaning (age), separation of animals, and housing number

should also be reported.

Post-anaesthesia animal care should be described (i.e. what

criteria were used to return animals to their mothers). Special

care, including rubbing animals with bedding, may help cue

rodent dams to continue to care for infants and may prevent

rejection.68 Light/dark cycles and time of day of experiments

should be noted, as sleep and learning/behavioural perfor-

mance are critically linked, and some behaviours are more

sensitive to performance during resting or active periods.69e71

The order of behavioural assessments should be consid-

ered and reported. Details, such as the sequence of behav-

ioural assessments, days of rest, time of day, and sex of the

test administrator, can significantly influence animal behav-

iour results.72,73 For multiple or repeated studies, care should

be taken to replicate testing conditions as closely as possible

for all animals and all groups.
Experimental design/outcomes

Experiments should be transparently reported in detail. If

detailed reporting of a method has been published, it is

acceptable to reference an earlier study for details. Established

methods usually have best practices. For example, with im-

munoblots, a sample size of more than two biological repli-

cates is preferred, in addition to technical replicates that

originate from the same animal,74,75 and the entire blot must

be available for critical evaluation.75 In primary cell culture

experiments, at least two separate cultures should be inves-

tigated for true replication.76 A best practice approach should

apply to other methods commonly used, such as immunoflu-

orescence, electron microscopy, and electrophysiology, and

should include the number of animals the sections originated

from, howmany sections per animal were evaluated, and how

the sections evaluated were chosen. For all studies, the sample

size (n) should be clearly defined, such that data can be

interpreted easily and other investigators can replicate the

technique and compare results. Methods for blinding, ran-

domisation, and sampling should be clearly described.
Behavioural experiments should be sufficiently detailed for

replication and comparison with other studies. Reporting

should include the protocol, administrators of testing, time of

the day, and details of the environment where testing

occurred. Exclusion of individual animals during testing

should be reported and justified in detail. Positive and negative

controls should be carefully considered especially if conclu-

sions are made regarding negative outcomes.
Statistical analysis

Power analyses should ideally be conducted a priori using ef-

fect size from similar experiments, even if this may be difficult

for preclinical pilot studies. Statistical approaches for ana-

lysing data should be clearly reported in a specific statistical

method section. Data sets should be made available for inde-

pendent analysis, in particular for large data studies, such as

genetic screens. The discussion of excluded data should be

explicit with appropriate rationale.
Negative data and controls

Bias against publishing negative results continues in science

in general.77,78 We encourage investigators to publish negative

results with transparent experimental methods with appro-

priate positive controls critical for the interpretation of these

observations. Negative controls are also critical for verifying

the accuracy of assays. Editors and reviewers are encouraged

to consider well-designed and conducted studies on important

topics for publication, even if their results are negative.
Redundant methods

The conclusions drawn from experiments with redundant

methods are inherently stronger given the testing of the hy-

pothesis by different means. There is a need for rigorously

testing hypotheses by multiple methods if possible, especially

for negative data. An example is validating experiments using

both a receptor knockout model and a receptor-blocking drug.
Raw data

For small data sets, individual data points should be displayed

on graphs so the interpretation of scatter and outliers can be

assessed.79 Summarising data with bars can be misleading

and hide the effects of outliers, and should be used with

caution or when sample size makes display of all points

difficult. In accordance with the push to make science more

open, we recommend that raw data be submitted to journals

when the option is available to allow for an independent

analysis.80,81 If data hosting is not possible, we encourage

providing data to investigators upon request.
Ethical treatment of animals

Animal studies must undergo an institutional review. A

statement that includes the approved protocol and attestation

to the ethical treatment of animals should be included.
Conflict of interest and funding source

Authors must state funding sources and list potential conflicts

of interest including financial (Industry and government con-

tracts or travel and consultanting fees) and personal interests

(stock holdings and company ownership).
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Conclusions

The ultimate goal of preclinical research is to enhance

biomedical discovery by conducting experiments that are

difficult or impossible in humans, but may lead to improved

clinical care and understanding. As with other clinically

related preclinical research, laboratory investigations in the

field of developmental anaesthesia neurotoxicity face prac-

tical questions of scaling animal work to humans, such as

equating age of exposure or exposure length in animals to

brain maturation and exposure times in humans, comparing

i.v. with i.p. injections, and extrapolating the significance of

observed behavioural outcomes. This area of research is

particularly challenging, given the absence of a simple robust

phenotype in humans. Expected outcomes from neurotoxic

exposure are cognitive deficits that require complex neuro-

psychological testing to be detected. Nevertheless, the

SmartTots workshop participants agree that the current clin-

ical data show signals in behavioural domains and secondary

outcomes that may be related to findings observed in pre-

clinical work. Future research is necessary to define these

domains in both healthy and potentially vulnerable (i.e. with

co-morbidities) populations of children who require sedation

or anaesthesia.

Results from experimental research will continue to

expand our understanding of anaesthetic neurotoxicity and

can provide guidance on how to design future human studies.

Whether such investigations involve genetic mechanisms of

toxicity in nematodes or rodents, imaging and connectivity in

large mammals, or carefully titrating doses to establish

toxicity levels in NHP, these experiments will be valuable and

informative to the study of the effects of anaesthetics in

particular and developmental neuroscience in general.

Rigorous experimental design and reporting will provide a

higher standard in advancing the field toward the collective

goal of improving anaesthetic care and outcomes in young

children.
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