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As average life-expectancy increases worldwide, there is a heightened public health 

concern about impaired cognitive function and dementia with advancing age. There are an 

estimated 10 million new cases of dementia each year and the worldwide prevalence is expected 

to triple by 2050. Without current effective treatment, research has expanded to identify modifiable 

risk factors for dementia to promote healthy cognitive aging.  



xiii 

Air pollution is a unique modifiable risk factor as levels can be shaped by individual 

behaviors and population-level environmental policies and regulations. Ambient air pollution is a 

mixture of particulate matter, gases, and other organic and metallic components. Emerging 

evidence suggests chronic exposure may affect diseases of the central nervous system, including 

dementia and cognitive impairment. It is biologically plausible that increased exposure to air 

pollution can produce a neuroinflammatory response, which in turn can result in structural changes 

in the brain. Although epidemiologic studies have observed a link among some populations, the 

causal pathway between air pollution and dementia remains unclear and these studies are subject 

to specific methodological challenges. 

The first chapter of this dissertation reviews the epidemiological evidence regarding the 

relationship between dementia, cognitive impairment, and air pollution and outlines some 

methodological challenges my research addresses. The second chapter demonstrates different 

methods to account for competing events in a cohort of older adults in France and provides 

recommendations for future research in studies of air pollution and dementia. The third chapter 

examines the causal pathway between air pollution and dementia, evaluating cardiovascular 

disease as a potential intermediate in a population-based cohort in Ontario, Canada. The fourth 

chapter expands the generalizability of the current research by examining the relationship between 

air pollution and cognitive impairment in a US cohort of Hispanic/Latino adults, an understudied 

ethnic group with well-documented disparities in both air pollution exposure and chronic health 

outcomes. The final chapter of this dissertation summarizes key findings and highlights future 

directions to advance epidemiologic research of air pollution and cognitive aging.  
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1. Introduction 

1.1. Overview of Dementia 

Dementia is a chronic and progressive condition where higher cortical functions, such as 

memory, orientation, comprehension, and reasoning are impaired and affect daily living.1 The 

progression varies by individual, but symptoms are often characterized by three stages: 1) early 

stage, where the affected individual becomes more forgetful, loses track of time and location, and 

has difficulty making decisions and carrying out complex tasks; 2) middle stage, where there is 

increasing difficulty with communication, decision-making, and observed changes in behavior; 

and 3) late stage with near total loss of independence and physical symptoms such as loss of 

bladder control and incontinence.1 The effect of dementia on mortality is complex, as the interplay 

between co-occurring conditions typically account for death. However, a secular trend of a greater 

proportion of death certificates reporting dementia as cause of death has been observed in the 

United States in recent years.2 

There are many forms of dementia, each with a unique pathology. The most common forms 

are Alzheimer’s disease dementia (AD), accounting for 60-70% of cases1, and vascular dementia 

(VaD). AD is diagnosed when a gradual decline in cognitive function affects daily functioning and 

the impairment is independent of other underlying health conditions. It is progressive in nature and 

primarily affects older adults. VaD can present like AD or have an abrupt onset but is the result of 

injuries to vessels that supply blood to the brain, depriving brain cells of oxygen. Currently, there 

is no diagnostic test to distinguish VaD from other dementias; clinicians use medical history (e.g., 

history of a previous stroke) to inform clinical diagnosis. These two forms of dementia comprise 

most of the dementia cases worldwide and often co-exist.  
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As the proportion of older adults in the world grows, there is increasing concern about 

dementia and dementia-related outcomes. Worldwide, approximately 50 million individuals are 

affected with dementia and there are an estimated 10 million new cases each year.1 In 2018, an 

estimated 5.5 million Americans, about one in 10 people, aged 65 and older are living with 

Alzheimer’s dementia in the United States (US).3 Similarly, approximately 9% of adults 65 years 

and older in Canada, and adults 70 years and older in France are living with dementia.4,5  

Race/ethnic differences in dementia prevalence exist may be due to disparities that affect 

dementia diagnosis. Dementia is largely underdiagnosed, especially among minority populations 

with barriers to accessible health care, reluctance toward screening tests, and perceptions 

surrounding impaired cognitive function.6–8 Studies have suggested race/ethnic disparities in 

dementia incidence and diagnosis are largely driven by social and behavioral factors such as 

socioeconomic status, psychosocial pathways, behavioral norms, and vascular health.9,10 The few 

studies of dementia disparities among Hispanics/Latinos suggest that Hispanics/Latinos have a 

slightly increased risk of Alzheimer’s and related dementias than similarly aged older whites.9,10 

Studying early signs of dementia, such as cognitive impairment among race/ethnic minorities, such 

as Hispanics/Latinos, may improve understanding of dementia among minority populations.  

1.2. Overview of Cognitive Function 

Dementia is diagnosed when deficits in two or more cognitive domains affect daily living. 

The domains used for diagnosis include memory, executive function, visuospatial ability, and 

language.11 A prodromal stage of noticeable decline in cognitive function frequently precedes 

dementia, although not all decline results in dementia. Thus, a broader understanding of cognitive 

impairment can help identify risk factors of early stage dementia with aims of disease prevention 

and healthier aging. As with dementia, there are no objective diagnostic criteria to identify 
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individuals with cognitive impairment. Rather, hundreds of standardized instruments have been 

developed to assess different domains of cognitive function and determine cognitive level. For 

example, episodic memory is commonly tested by asking patients to recall word lists. Visuospatial 

ability can be tested by requesting an individual to draw a clock face depicting a specific time. 

Many of these instruments were developed in predominantly non-Hispanic White populations and 

may not fully account for sociocultural differences that may affect test performance in diverse 

populations.12 Thus, studying cognitive function with multiple measures validated in specific 

race/ethnic minority groups can improve our understanding of different aspects of cognitive level 

among vulnerable populations.  

1.3. Modifiable Risk Factors of Dementia and Cognitive Impairment 

Understanding modifiable risk factors of dementia and dementia-related outcomes is a 

public health priority, especially as there is no current treatment available to reverse the course of 

these conditions. Identifying highly prevalent modifiable exposures associated with dementia and 

cognitive impairment can maximize health benefits at a population level. Substantial 

epidemiological literature suggests the following factors affect risk of dementia: low education, 

midlife hearing loss, obesity, hypertension, late-life depression, smoking, physical inactivity, 

diabetes, and social isolation.13 An estimated 35% of dementia cases could be prevented by 

modifying these factors.13 Although many of these factors co-occur14, this estimated population 

attributable fraction highlights the importance of understanding modifiable risk factors affected by 

health and behaviors across the life course. A marked reduction in dementia can be observed with 

behavioral and lifestyle interventions.  

Recently, another highly prevalent, modifiable risk factor that may be related to dementia 

and cognitive level has been suggested. This risk factor is ambient air pollution and it has been 
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found to be associated with dementia and dementia-related outcomes in recent studies.15,16 

Ambient air pollution is ubiquitous; everyone is exposed, and some populations are exposed at 

high levels. The negative health impacts of exposure to air pollution are well-documented and are 

particularly pronounced among older adults.17,18 These adverse health effects occur at exposure 

levels even below the national standards, suggesting further reduction of air pollutants may 

improve population health.19  Thus, further exploration into the relationship between ambient air 

pollution and dementia and dementia-related outcomes is of heightened importance.   

1.4. Air Pollution and the Brain: Overview and Biologic Plausibility 

Exposure to ambient air pollution has a range of health implications. In 2015, an estimated 

4 million premature deaths, globally, were attributable to air pollution exposure.20 Ambient air 

pollution is a complex mixture of particulate matter (PM), gaseous pollutants (e.g., nitrogen 

dioxide (NO2), ozone (O3)), persistent organic metals, and heavy metals (Table 1.1). 

Table 1.1: Sources of ambient air pollutants 

Pollutant Common Sources 

Fine particulate matter (PM2.5) - Traffic 

- Wildfire smoke 

- Industrial emissions  

- Dust 

 

Nitrogen Dioxide (NO2) - Burning of fossil fuels (e.g., traffic) 

 

Ozone (O3) - Secondary pollutant; product of 

chemical reaction of nitrogen oxides 

(e.g., NO2), volatile organic 

compounds, and ultraviolet radiation 

 

Air pollution exposure can be classified as acute or chronic and each exposure period 

affects the human body through different mechanisms. Acute refers to exposure during a short 

time frame (e.g., hourly, daily or weekly) and is commonly due to a specific extreme event (e.g., 
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wildfire) or meteorological conditions (e.g. atmospheric inversions). Alternatively, chronic refers 

to long-term exposure over months or several years. Chronic exposure to ambient air pollution will 

be the focus of this dissertation research. Chronic exposure to air pollution can result in oxidative 

stress to the human body and increased inflammatory responses which can subsequently impact 

the pathophysiological processes of major chronic diseases and exacerbate existing health 

conditions.21 

Recently, there has been emerging evidence about exposure to air pollution affecting 

diseases of the central nervous system, including dementia.15,22 Neuroimaging and biologic studies 

provide supporting evidence that air pollution may affect the brain.22–29 Animal studies have also 

shown that fine particulate matter (PM2.5) can move from the nose via the olfactory nerve and into 

the brain and nitrogen dioxide (NO2) can impair synapses and induce neuronal damage.23,24 A 

study comparing human post-mortem brain tissues in Manchester, UK, and Mexico found an 

abundance of nanoparticles from an external source (i.e., air pollution) in brain tissues from those 

who lived in more polluted areas.25 Neuroimaging studies have similarly observed an adverse 

effect of PM2.5 and traffic-related pollutants on brain volume26,27, suggesting that air pollution may 

influence structural brain changes resulting in worse health outcomes. These findings can be 

explained by a “neuroinflammation hypothesis”, where innate immune cells and microglia are 

affected by air pollution-induced central nervous system disruptions, directly and indirectly 

impacting risk of neurodegenerative diseases in later life.24 Pollutants can directly reach the brain 

through the nasal pathway or through systemic circulation by crossing the blood brain barrier and 

trigger neuroinflammation.22,24,28 Alternatively, pollutants can produce inflammation in other 

organs and tissues (e.g., cardiovascular systems) that can indirectly affect the central nervous 
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system and result in microvascular brain damage, impairments in cognitive function, and 

dementia.24,29 

Air pollution and climate change are closely interlinked. The increase in global 

temperatures and increased frequency and severity of extreme weather events will greatly impact 

population exposure to air pollution.30 For example, more frequent and persistent wildfires will 

result in increased wildfire smoke, contributing to increased concentrations of PM2.5.
31 Adverse 

health impacts attributable to climate change are also expected to increase.32 Thus, identifying and 

understanding adverse health impacts of increased exposure to air pollution is a public health 

priority. Furthermore, reducing air pollution emissions with climate change mitigation policies 

will have multiple co-benefits.33   

The following sections review recent population studies examining the relationships 

between air pollution, dementia, and cognitive impairment: 

1.5. Review of Epidemiologic Studies on Air Pollution and Dementia 

Fourteen epidemiologic studies have published research on air pollution and incident 

dementia.34–47 These studies were conducted in Canada38,42,43, US34,46,47, Taiwan36,39,41,45, and 

Sweden37,44. With the exception of one case-control study39, alll studies examined this relationship 

in cohort studies using data from administrative databases35,36,38,43,47–49 or from ongoing 

prospective cohort studies34,37,40,44. These cohort studies used time to dementia diagnosis as the 

primary outcome of interest to estimate hazard ratios. Dementia diagnoses were either obtained 

from a combination of administrative databases35,36,38,41–43,45,47 or from clinical 

examinations34,37,40,44. The majority of these studies focused on PM34–36,38–40,42,44–47; other air 

pollutants studied included nitrogen oxides35–38,40–42,44, ozone35,36,39,40,42,45, carbon monoxide36,41, 

and indicators of traffic-related air pollution43. Air pollution exposure was assigned to individuals 
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using measurements from fixed site monitoring stations36,41,45,46 or modeled 

estimates34,35,38,40,42,44,47. Exposure time windows studied ranged from annual to 15-year exposure 

windows. All studies found positive associations between increased exposure to air pollution and 

incident dementia. 

Some studies acknowledged a potential bias resulting in an underestimation of the true 

effect, due to selective attrition out of the study.37,39 This selection bias can arise because of 

competing events, related to increased air pollution exposure, which preclude an individual from 

experiencing the outcome of interest. By selecting individuals who have been diagnosed with 

dementia, the analysis is inherently restricted to individuals who have survived through competing 

events, such as death. In the presence of unmeasured confounding between the competing 

outcomes (likely) and a link between exposure and competing event (also likely), a selection bias 

is induced.50,51 Several approaches have been proposed to account for selection bias and competing 

events.51–53 Despite this, the reviewed literature either failed to account for death in their analyses 

or censored deaths under the strong assumption that censoring occurred independently of exposure. 

Although all studies discussed the adverse health effects of air pollution, only two studies explicitly 

accounted for death as a competing event as a sensitivity analysis.40,44  

The study of air pollution and dementia is a relatively new area of research. Limited 

understanding of the causal mechanisms exists. There are suggestions that air pollution may affect 

health outcomes, such as cardiovascular disease, which may in turn affect risk of dementia. While 

several studies acknowledged this, potential mechanisms have not been formally evaluated. 

Studies that examined the potential mediating role of comorbidities did so by comparing estimates 

from regression models with and without cardiovascular disease and other comorbidities and found 

minimal differences.35,37,41,42,46 Two studies examined effect measure modification determined by 
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the interaction between air pollution and pre-existing comorbidities (e.g., stroke, heart failure, 

diabetes, and hypertension) and found suggestions of modification of some comorbidities on the 

multiplicative scale.42,44 Study participants with heart disease had a stronger relationship between 

PM2.5 and dementia in the Swedish cohort but not in the population cohort in Ontario, Canada.42,44  

These two studies reported conflicting evidence of the potentially modifying role of stroke.42,44 

Recent methodological developments in causal inference that decompose the mechanism into 

direct and indirect effects can be applied to investigate research questions on causal mediation.54  

1.6. Review of Epidemiologic Studies on Air Pollution and Cognitive Function 

Ten cross-sectional studies of air pollution and cognitive function among older adults have 

been conducted within cohorts in U.S.55–60, China61, and Germany 62–64. There are several domains 

that capture cognitive function, each can be assessed by one of several validated instruments. In 

the reviewed literature, the outcome of interest was cognitive function measured at a single time 

point. Indicators of global cognitive function were evaluated from specific assessments of global 

cognitive function (e.g., Mini-Mental State Exam or Six-Item Screener) or created from combining 

domain-specific scores. The primary cognitive domains evaluated were memory, executive 

function, orientation, abstraction, and global cognitive function. These assessments were 

administered in-person at clinical evaluations or over the telephone. Scores were evaluated as raw 

scores, dichotomized into cognitively impaired or not, or standardized. The air pollutants studied 

were PM55–58,63,64, ozone 57,58, nitrogen oxides58,62,64, and combined measurements of air pollution61 

or traffic exposure62–64. Chronic exposure was measured over one to 15-year exposure windows 

using data from monitoring stations55–61,63, satellites56, or modeled estimates62,64.  

With the exception of one study56, all found at least one notable adverse association 

between increased exposure to air pollution and cognitive function. However, it is important to 
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note that many associations were tested when examining batteries of cognitive assessments with 

multiple measurements of air pollution; no consistent pattern with specific associations was 

observed. For example, increased exposure to particulate matter was found to be associated with 

worse verbal learning58, abstraction62, working memory55, and orientation55, and mild cognitive 

impairment. Indicators of air pollution, such as gross air quality indices and traffic exposure were 

also found to be associated with worse cognitive outcome. 61–64 

There is limited generalizability with respect to race/ethnicity in these cross-sectional 

studies of air pollution and cognitive function. Most studies were conducted in predominantly 

white populations in the U.S. or in Germany. Only two studies included individuals who identified 

as Hispanic ethnicity, although this ethnic group made up less than 15% of the study 

population.58,59  

1.7. Methodological Challenges and Proposed Solutions in Studying Air Pollution and 

Neurocognitive Outcomes 

There are several unique methodological challenges in studying neurocognitive outcomes 

among older adults. Over the past two decades, developments in causal inference methods have 

been introduced to the field of epidemiology to answer causal questions from observational studies 

by employing a mathematical framework with assumptions required to identify a causal effect. 

Many of these methods have been adapted from social sciences, economics, mathematics, and 

computer science. The following methodological issues are central to the motivation for this 

dissertation work: 1) informed censoring due to death, 2) limited understanding of the causal 

pathway, and 3) limited generalizability to Hispanic populations in the current evidence base.  
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1.7.1. Informed Censoring due to Death 

Since dementia is typically diagnosed at older ages, events more common in later stages of 

life may prevent a dementia diagnosis. As previously introduced, these events are known as 

competing events as they “compete” with the outcome of interest. An example of a competing 

event in longitudinal studies of older adults is death. In most of the reviewed literature, death was 

considered a censored event in analyses. This analytical decision implicitly assumes death is 

independent of the exposure. However, this may be a poor assumption as seen by substantial 

evidence linking air pollution to adverse health outcomes and premature death.65 A large 

proportion of the study population could have died from air-pollution related causes (e.g., 

cardiovascular disease, respiratory conditions) before living long enough to be diagnosed with 

dementia. This restriction could result in a study of healthier individuals who are resilient to the 

adverse effects of air pollution and threaten internal validity. In other words, this selection of 

participants could result in a false comparison between the lower exposed groups and a healthier, 

more resilient, group of highly exposed individuals. This is ultimately an example of selection 

bias. Failure to account for informed censoring due to the competing event, death, may 

underestimate dementia incidence and bias estimated effects of exposures toward the null, as the 

two comparison groups (low exposure versus highly exposed) are more similar in the study setting 

than in the target population (Figure 1.1). 

 

Figure 1.1: Selection bias due to informed censoring due to death 
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 Several approaches to account for competing events exist. However, these approaches are 

underutilized perhaps due to the lack of clarity in target inference and estimand.53,66 None of the 

previous studies on air pollution and dementia have considered censoring in a way that accounts 

the dependence between air pollution and censored event. Therefore, this dissertation will 

demonstrate and compare different approaches to account for competing events using a case study 

of air pollution and dementia, with death as a competing event. 

1.7.2. Causal Pathways 

Despite growing evidence suggesting a link between increased exposure to air pollution 

and dementia incidence, the exact mechanism is not well understood, as even our understanding 

of the progression of dementia is limited. One way to investigate causal pathways is to decompose 

the relationship between air pollution and dementia into its direct and indirect effects through an 

intermediate of interest. Cardiovascular disease and events (CVD) is an intermediate of interest 

(Figure 1.2) as air pollution has been consistently related to the increased risk of incidence, 

complications, and mortality from CVD.67  

 

 

Furthermore, growing evidence has linked CVD to impaired cognitive function and it often 

co-occurs with dementia.7,68 Previous studies have acknowledged that indirect pathways through 

CVD and other comorbidities that may explain the observed relationship, however, this hypothesis 

was examined by taking the difference between effect sizes with and without adjustment for 

Figure 1.2: Hypothesized direct and indirect effect of air pollution on dementia 
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CVD.35,37,41,42,46 This traditional difference approach is unable to quantify a causal estimand of the 

indirect effect or provide a causal interpretation without identification assumptions or additional 

assumptions about unmeasured confounding between the 1) exposure and outcome, 2) exposure 

and mediator, 3) and mediator and outcome. Additionally, 4) there should be no mediator-outcome 

confounder affected by the exposure.54 Recent developments in formal methods to decompose a 

total effect into its direct and indirect effect have been developed which can provide a causal 

interpretation.54 Applying these methods to disentangle the pathway from air pollution and 

dementia can offer insights into whether there is an indirect path through cardiovascular events 

which can improve understanding of the biological mechanism and prioritize intervention efforts. 

Examining the mediating role of CVD can offer insights into the etiology and biological 

mechanisms between air pollution and neurocognitive outcomes and is examined in this 

dissertation.  

1.7.3. Generalizability  

While there is a growing body of literature examining the relationship between air pollution 

and dementia and dementia-related outcomes, the majority of studies are typically conducted in 

areas of predominantly white populations (e.g., Canada, US, United Kingdom, Sweden, Germany). 

Representativeness is not a requirement of epidemiologic studies.69 However, there are many 

instances where studying subpopulations is important for identifying particularly vulnerable 

groups. Although air pollution is ubiquitous, it is important to understand the relationship in 

minority race/ethnic groups, as some groups are more likely to live in neighborhoods with higher 

levels of air pollution from closer proximity to highly trafficked roads and industrial operations.  

The relationship between air pollution and neurocognitive outcomes among 

Hispanics/Latinos is understudied. Disparities in both air pollution exposure and cognitive 
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functioning between older Hispanics and non-Hispanic Whites are well documented.70 Only two 

previous studies of the reviewed literature included Hispanics/Latinos, albeit a small (<15%) 

proportion of the full study population, in analyses.57,59 Thus, in this dissertation the association of 

air pollution with cognitive function in Hispanics/Latinos is examined.  

1.7.4. Introduction to Causal Inference and Assumptions 

Traditional statistical regression models and hypothesis testing aim at examining 

associations between variables. However, many researchers are interested in inferring causal 

associations, for example, rather than examining the association between smoking and lung cancer, 

an epidemiologist might wonder does smoking cause lung cancer? Developments in causal 

inference methods have been borne out of fields of computer science, economics, and social 

sciences and expand upon traditional statistical techniques by introducing a specific mathematical 

notation and making explicit assumptions required to make causal inferences.  

The counterfactual framework will be introduced to define the causal effect. An individual 

causal effect is observed when treatment 𝐴 has a causal effect on an individual’s outcome 𝑌, 

specifically, when exposure 𝑎 is set to 1, 𝑌𝑎=1 does not equal the potential outcome if 𝑎 is set to 

0, 𝑌𝑎=0. 𝑌𝑎=1 and 𝑌𝑎=0 are counterfactual outcomes – a theoretical concept that describes the 

potential outcome of the individual had the same individual received a different treatment. This is 

a theoretical concept because it is impossible to directly observe a contrast between an individual’s 

observed, or factual, outcome with his/her unobserved, or counterfactual, outcome71; an individual 

can only experience one version of a treatment and subsequent outcome. To overcome this, we can 

turn to examining average causal effects in a population to assess causal associations. Using the 

same notation, an average causal effect of treatment 𝐴 on outcome 𝑌 is observed if Pr [𝑌𝑎=1 =

1] ≠ Pr [𝑌𝑎=0 = 1] in the population of interest. Under the counterfactual framework for causal 
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inference, there are three assumptions required to approximate a counterfactual comparison group 

to identify causal associations: 1) Exchangeability, 2) Positivity, and 3) Consistency. Each of these 

are described below:  

Exchangeability requires that the groups being compared, for example, the exposed and 

unexposed groups, are identical with respect to all confounders such that the same outcome 

will be observed had the exposed group been unexposed. Formally, Pr[𝑌𝑎 = 1|𝐴 = 1] =

 Pr[𝑌𝑎 = 1|𝐴 = 0] for both 𝑎 = 0 and 𝑎 = 1.This is equivalent to independence between 

the counterfactual outcome and the observed treatment (𝑌𝑎 ∐ 𝐴 for all 𝑎). Covariate 

balance is required to achieve exchangeability between comparison groups.  

Positivity ensures that individuals in every stratum of covariates have a non-zero 

probability of being in both the exposed and unexposed groups, or Pr[𝐴 = 𝑎|𝐿 = 𝑙] > 0 

for all values 𝑙 with Pr [𝐿 = 𝑙] ≠ 0 in the population of interest. The covariates 𝐿 are the 

covariates required to achieve exchangeability. Without this condition, it is impossible to 

assess the conditional effect of 𝐴 on outcome 𝑌. For example, if an investigator is interested 

in the conditional effect of treatment A on mortality adjusting for sex, there must be 

individuals in the dataset with all combinations of stratum: treatment A, without treatment 

A, death, survival, male, and female. If there were no males in the study, the investigator 

would be unable to make an inference about the causal effect in a population with both 

males and females.72   

Consistency is the condition that requires the same outcome 𝑌𝑎 = 𝑌 for every 𝐴 = 𝑎. This 

can be achieved with specific, well-defined treatments or exposures of interest, that can be 

related to a specific intervention. For example, diet or exercise is a more consistent and 
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defined treatment than obesity.73 Furthermore, an individual’s potential outcome is not 

affected by other individual’s exposure to treatment (Stable Unit Treatment Value 

Assumption).   

Under the counterfactual framework and the assumptions of exchangeability, positivity, and 

consistency, methods have been developed for observational studies to identify causal 

associations.  

1.7.5. Proposed Solutions to Methodological Challenges 

In this dissertation, we expand on the current literature of air pollution and neurocognitive 

outcomes by addressing some of the unique methodological challenges common in studies of air 

pollution and aging related health outcomes. First, multiple approaches to account for competing 

events will be demonstrated to highlight the differences in target inference and estimand in 

approaches common in survival analyses. Next, the causal pathway between air pollution and 

incident dementia will be decomposed into its direct and indirect effect through cardiovascular 

disease by employing a formal causal mediation analysis. Finally, the relationship between air 

pollution and cognitive impairment will be examined in a cohort of Hispanic/Latino adults to 

identify if the relationship exists in this race/ethnic group. Assumptions required to identify a 

causal effect will be made throughout this dissertation.  

1.8. Specific Aims 

In this dissertation, I examined the relationship between chronic exposure to ambient air 

pollution and incident dementia and cognitive function. The following aims are addressed: 

Aim 1: To demonstrate three common approaches to account for competing events in a 

study of air pollution and dementia, considering death as a competing event 
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Aim 2: To perform a causal mediation analysis to decompose the total effect of chronic 

exposure to air pollution on incident dementia into its direct and indirect effects through 

incident cardiovascular disease 

Aim 3: To examine the effect of chronic exposure to air pollution on cognitive function in 

a well-established cohort of Hispanics/Latinos in the US, the Hispanic Community Health 

Study/Study of Latinos  

This research studied populations of middle to older-aged adults in France, Canada, and in 

the United States. The case study used for Aim 1 draws from an ongoing prospective cohort study 

of older adults France (Three-City Cohort). A retrospective cohort of older adults living in Ontario, 

Canada was created from linkage of several existing health, environmental, and census data 

sources and was used for Aim 2. Finally, a prospective cohort study of Hispanics/Latinos living in 

San Diego, California, was used for Aim 3.  

Findings from these aims provide valuable insight into the relationship between air 

pollution and neurocognitive outcomes by addressing some of the current challenges in dementia 

research by asking inferential questions and applying causal inference methods.  
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2. Competing events in studies of air pollution and dementia: A comparison of multiple 

approaches to account for informed censoring due to death 

2.1. Abstract 

One challenge in studying the effect of chronic exposure to air pollution on aging-related 

outcomes is the presence of informed censoring due to competing events such as death. In studies 

of older adults, premature death may preclude or “compete with” an outcome of interest. Different 

approaches to account for informed censoring have been described in epidemiologic literature but 

are underutilized in air pollution studies and the target estimand is typically poorly defined. The 

first step to answer a causal question is to define a target estimand. Then the investigator can design 

and implement an identification strategy to generate an estimator from a mathematical function 

(e.g., regression model) that takes data as input and produces an estimate (e.g., regression 

coefficient) to approximate the target causal estimand. In this study, we demonstrated three 

approaches to account for competing risks, each with unique assumptions and targeted estimands. 

First, a controlled direct effect of air pollution on dementia, not mediated by the competing event, 

was estimated with a cause-specific hazard ratio. Next,  a Fine and Gray approach was applied to 

estimate the subdistribution hazard ratio. Finally, a weighting scheme was applied with inverse 

probability weights to correct for time-varying informed censoring and estimate a weighted cause-

specific hazard ratio. Each approach is defined under the counterfactual framework and 

demonstrated in a case study evaluating the effect of air pollution on incident dementia in a cohort 

in France, considering death as a competing event. We provide recommendations for future 

investigators considering competing events in survival analyses of air pollution and dementia.  

2.2. Introduction 



18 

In longitudinal studies of older adults, competing events are a common phenomenon where 

an event may preclude an individual from experiencing the outcome of interest. For example, 

consider a study of stroke among older adults. Some study participants will die over the study 

period without developing stroke and consequently drop out of the study at time of death. Death 

from cancer in a stroke-free individual would be considered a competing event, since investigators 

do not know if that individual would have experienced a stroke had they completed the study. 

Here, we can think of death from cancer as an event that “competes” with stroke.  

The presence of competing events can result in an inadvertent selection that threatens the 

internal validity of a study depending notably on the structural relationship between the exposure, 

outcome, and competing event (Figure 2.1). If an adverse exposure and competing event are 

dependent (i.e. the exposure increases the probability of competing event), individuals who remain 

at risk of experiencing the outcome of interest will be systematically different than the population 

of diagnosed cases in the target population we are truly interested in. For example, a simulation 

study demonstrated that the observed protective relationship between smoking and malignant 

melanoma may be due to competing events related to smoking (e.g., death due to lung cancer, 

heart disease, or COPD).50  

 

Figure 2.1: Collider stratification bias due to conditioning on the competing event where 

𝑨=exposure, 𝑪𝑬=competing event, 𝒀=outcome, 𝑳=vector of unmeasured covariates that are 

common causes of 𝑪𝑬 and 𝒀 
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Despite the pervasiveness of competing events in studies of older adults, there is limited 

discussion of accounting for them. Several approaches have been proposed to account for 

competing events and have been described by a number of reviews.52,66,74–77 However, there is 

slow uptake, possibly because of unclear target estimands from each approach. Young et al. 

recently argued that a unifying framework for estimands common in survival analyses may help 

clarify analysis decisions.53 Briefly, the estimation of the cause-specific hazard estimates the risk 

under the elimination of competing events. This is equivalent to the controlled direct effect of the 

exposure on the outcome, not mediated through the competing event. It is typically estimated by 

censoring individuals when they experience the competing event. The subdistribution hazard 

coincides with the cumulative incidence function and estimates the risk in the presence of 

competing events; competing events are not eliminated in this setting. Rather, the subdistribution 

hazard is equivalent to the total effect of exposure on outcome by considering individuals with the 

competing event as at-risk for the outcome for the remainder of the study period. Instead of 

including the competing event as part of the censoring definition as seen in the estimation of the 

cause-specific hazard, individuals with the competing event are considered “cured” from the 

primary outcome. As an extension to the cause-specific hazard, weighting methods can be applied 

in conjunction with hazard functions to further account for specific dependencies that are otherwise 

not considered. In this tutorial, traditional approaches estimating the cause-specific hazard and 

subdistribition hazard will be compared with a weighted cause-specific hazard ratio, an approach 

recently formalized by Young et al. that uses inverse probability weights and applies the potential 

outcomes framework.53 Each approach accounts for competing events, however there are 

differences in the target estimand and inference that are often overlooked. 
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The focus of this paper is to compare these three approaches to account for competing 

events in survival analyses. As a case study, we will use the relationship between air pollution and 

dementia as an example. In recent years, there has been growing evidence suggesting a link 

between increased exposure to ambient air pollution and increased risk of dementia.34–37,39–

43,45,46,49,78 Competing events are common in longitudinal studies of older adults, where study 

participants are vulnerable to several comorbidities that could result in failure to complete the 

study. Increased exposure to air pollution exacerbates many of these comorbidities (e.g., 

respiratory disease, cardiovascular disease, and lung cancer) and shorten life expectancy.65 Air 

pollution alone contributed to 8.7% of global mortality, or 4.9 million deaths, in 2017.65 Older 

adults are particularly vulnerable to climate stressors, including poor air quality.17 The adverse 

effects of air pollution disproportionately affect adults at the same ages at which they may be 

enrolled in dementia studies (e.g., ≥ 65 years). Thus, considering competing events should be 

carefully considered in studies of air pollution and dementia.  

Despite this, only two studies in the reviewed literature on air pollution and dementia 

discuss and account for competing events.40,44 Both considered mortality as a competing event in 

sensitivity analyses and found minimal differences after accounting for competing events. The first 

accounted for competing events by estimating the subdistribution hazard ratio40 and the second did 

not specify their method44. Some studies censored study participants at the time-of-death in 

analyses,35,37,42,43,45,46 an analytical decision that implicitly accounts for competing events by 

estimating a cause-specific hazard ratio. However, this was not specified. Furthermore, these 

studies applied Cox proportional hazard models to generate estimates, which assumes 

independence between exposure and censored event.79 This is likely violated as indicated by 

substantial evidence linking air pollution to adverse health outcomes and premature death.65 
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Failure to account for competing events in settings where a dependency between exposure and 

competing event exists may attenuate or even produce a spurious protective result.50 In dementia 

research, targeting the true causal effect can effectively inform policies and interventions to ensure 

healthy aging.  

Despite the literature documenting the importance and interpretation of estimands that 

account for competing events in survival analyses, in practice there is underutilization and often 

misinterpretation of results.77,79 Previous reviews and tutorials on methods to account for 

competing events have provided both conceptual52,66,75–77 and technical53,79 details about the 

estimation of cause-specific and subdistribution hazards. However, there is limited literature on 

the conceptual application of these methods and weighting procedures to account for competing 

events. We believe a non-technical discussion describing each approach and outlining specific 

analytic recommendations can improve understanding and promote the proper application of 

methods. 

In this tutorial, we demonstrate three approaches to account for competing events. 

Traditional approaches estimating cause-specific and subdistribution hazards will be compared 

with estimation of a weighted cause-specific hazard. Each approach will be defined under the 

counterfactual framework proposed by Young et al.53 and demonstrated in a case study evaluating 

the effect of air pollution on incident dementia, considering death as a competing event in a cohort 

of older adults in France. Finally, we will compare approaches and provide recommendations for 

future investigators considering competing events in survival analyses of air pollution and 

dementia. 

2.3. Methods 
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Key definitions 

We begin this tutorial by defining key terminology used in survival analyses. Statistical 

analyses where information on the timing of events (e.g., date of dementia diagnosis) is available 

to the investigator is referred to as analyses in failure-time settings, time-to-event analyses, or 

survival analyses. Survival analyses are advantageous in estimating associations in the presence 

of time-varying confounding and covariates. The timescale, or time axis, refers to the unit of time 

(e.g., calendar years, age, study duration) used to quantify how long study participants are 

followed. The risk set defines the individuals considered at risk for the event of interest. Several 

events can occur to a study participant. There is the event of interest, censored events, and 

competing events. The event of interest is the outcome under study. Censored events occur when 

the investigator no longer considers an individual at risk for the event of interest and can be due to 

loss-to-follow up or study completion. Competing events are events that may preclude an 

individual from experiencing the outcome of interest and can be considered as censored events in 

specific analyses. A hazard function is a function that describes the instantaneous rate of an event 

in a population and is commonly modeled with Cox proportional hazards models to estimate a 

hazard ratio. The hazard ratio represents the relative change in hazard function associated with a 

1-unit increase in a continuous covariate.  Young et al., suggests that a unifying, formal framework 

for estimands in survival analyses could clarify analysis decisions and interpretations. Thus, in this 

tutorial, we apply their translations of statistical estimands to potential outcome notation and 

include directed acyclic graphs (DAGs).53   

Naïve approaches where competing events are not considered 

In studies where competing events are not considered, individuals are followed until they 

experience the outcome of interest or are censored and no longer contribute to risk sets. If 
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competing events are not considered, it is implicitly assumed they do not exist. Individuals who 

truly experience a competing event (this fact is unrealized to the investigator) remain in the risk 

set until their next study visit, at which point they are censored. In naïve analyses using Cox 

proportional hazard models, we assume proportional hazards and independence between the 

censored event and exposure. The estimand of interest is the marginal hazard ratio, where all 

competing events have been eliminated. Under the counterfactual framework, the contrast between 

marginal hazards with a binary exposure can be defined with the notation:  

Pr [𝑌𝑡+1
𝑎=1, 𝑐𝑒̅̅ ̅=0̅ = 1| 𝑌𝑡

𝑎=1,𝑐𝑒̅̅ ̅=0̅ = 0] vs. Pr [𝑌𝑡+1
𝑎=0, 𝑐𝑒̅̅ ̅=0̅ = 1| 𝑌𝑡

𝑎=0,𝑐𝑒̅̅ ̅=0̅ = 0] 

Where 𝑌=outcome, 𝑎=exposure, 𝑐𝑒=competing event, and 𝑡=time. The overline above the 

variables represents all subsequent events. For example, 𝑐𝑒̅̅̅ = 0̅ means all competing events and 

subsequent competing events are set to 0 by a hypothetical intervention that eliminates competing 

events. 

Cause-specific hazard ratio: the direct effect of exposure on outcome, not mediated by competing 

event 

In contrast to naïve approaches that assume competing events are eliminated, the cause-

specific hazard function represents an instantaneous rate of a specific event among individuals 

who are free of any event (primary outcome and competing event) at time 𝑡. Individuals are 

censored at the time of the competing event and subsequently removed from all risk sets. This 

essentially conditions on the competing event by restricting the study sample to individuals who 

are free of competing events.  

For example, suppose an individual enters the study at age 65 and dies, dementia-free, at 

age 70. In a survival analysis considering age as the time scale, this individual would be considered 
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at-risk for dementia from ages 65 to 70 and then censored. After 70, this individual no longer 

contributes to risk sets for older dementia cases.  

A Cox proportional hazard model can be used to estimate a cause-specific hazard ratio that 

represents the relative change in the cause-specific hazard associated with a 1-unit change in a 

continuous covariate. When competing events do not exist, this hazard ratio coincides with the 

incidence. However, in the presence of competing events, this equivalence does not hold. Rather, 

the cause-specific hazard ratio can be interpreted as a rate of occurrence of the event of interest, 

among study participants who are event-free at that time. Additionally, the Cox proportional 

hazard model assumes independence between exposure and censored events, which may be 

violated if the exposure increases the probability of the competing event. In this scenario, 

alternative methods should be explored.    

In estimating the cause-specific hazard ratio, the target estimand is the contrast between 

cause-specific hazards and is equivalent to the controlled direct effect of exposure on the outcome, 

not mediated through the competing event (Figure 2.2). Under the counterfactual framework, it is 

assumed that competing events are conditioned on by restriction to the population without 

competing events. The contrast between cause-specific hazards with a binary exposure 𝐴 can be 

defined with the notation: 

Pr[𝑌𝑡+1
𝑎=1 = 1| 𝐶𝐸𝑡+1

𝑎=1 = 𝑌𝑡
𝑎=1 = 0] vs. Pr[𝑌𝑡+1

𝑎=0 = 1| 𝐶𝐸𝑡+1
𝑎=0 = 𝑌𝑡

𝑎=0 = 0] 

 

Figure 2.2: Effect of A on Y conditioned (by restriction) on competing events, where 

𝑨=exposure, 𝑪𝑬=competing event, and 𝒀=outcome 
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Subdistribution hazard ratio: the total effect of exposure on outcome 

Rather than estimating the direct effect, an investigator may be interested in the total effect 

of exposure on outcome, considering all competing events. Fine and Grey proposed a method in 

1999 involving estimation of the subdistribution hazard which is commonly used in medical 

research to account for competing events.80 In this approach, individuals who experience a 

competing event during the study period are included in all risk sets. By definition, this person 

cannot truly experience the outcome of interest because they experienced the competing event. 

However, since we do not know whether they would have experienced dementia had they not died, 

the subdistribution hazard and resulting subdistribution hazard ratio estimates the total effect of 

exposure on outcome during the follow up period. By maintaining individuals who have 

experienced the competing event in the risk-set, we inflate the number of people at-risk for 

dementia.  

For example, consider the same individual who entered the study at age 65 and was 

censored at age 70 due to death in the estimation of the cause-specific hazard ratio. To estimate 

the subdistribution hazard ratio, this individual would continue to contribute to risk sets until the 

end of the study period, even after their death at age 70.  

A Cox proportional hazard model can then be used to estimate a subdistribution hazard 

ratio that represents the relative change in the subdistribution hazard associated with a 1-unit 

change in a covariate. In contrast to the cause-specific hazard ratio, estimating subdistribution 

hazards does not require any assumption about the independence between exposure and events 

since the competing event is not censored. Another advantage of the subdistribution hazard is it 

coincides with an estimate of the cumulative incidence function. The direction of the 

subdistribution hazard coincides with the direction of the risk ratio.79   
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There is no formal way to include competing events in DAGs, however it has been 

proposed to consider the outcome as a composite outcome, including both the competing event 

and primary outcome (Figure 2.3).81 The estimand of interest is the contrast of subdistribution 

hazards which is an estimate of the total effect comprising of the direct effect of exposure on 

outcome and the indirect effect of exposure on outcome mediated by competing events. The 

potential outcomes notation for this estimand is defined by: Pr[𝑌𝑡+1
𝑎=1 = 1| 𝑌𝑡

𝑎=1 = 0] vs. 

Pr[𝑌𝑡+1
𝑎=0 = 1| 𝑌𝑡

𝑎=0 = 0]. 

  

 

 

Weighted cause-specific hazard ratio: an application of inverse probability of censoring weights 

The final approach in this tutorial is an application of inverse probability of censoring 

weights to account for informed censoring due to competing events. If there is dependence between 

the exposure and competing events, the application of a Cox proportional hazard model to estimate 

the traditional cause-specific hazard ratio is not appropriate and will result in a biased estimate if 

there is unmeasured confounding between the competing event and outcome (Figure 2.1). In the 

example of air pollution and dementia, the dependency between air pollution and death will result 

in an underestimation of the true effect. Alternatively, a weighted approach can be applied. Inverse 

probability weights are created and applied to the baseline population to create a pseudopopulation 

where there are no dependencies between the competing event and the exposure of interest.82 In 

the context of competing events, these weights are applied to account for the dependency between 

exposure and competing event. To estimate weights, logistic regression models can be used to 

𝐴 𝑌 +  𝐶𝐸 

Figure 2.3: Effect of A on Y and CE, where 𝑨=exposure and 𝒀=primary outcome, and 

𝑪𝑬=competing event 
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predict the probability of survival to the next follow-up period, conditional on factors that may 

predict death (e.g., demographics and socioeconomic characteristics, health conditions, lifestyle 

behaviors). The inverse of the predicted probabilities from the logistic regression models are then 

used to weight each subject in the analysis to create a pseudopopulation at each time point by 

taking the product of the time-specific weights. This essentially upweights uncensored individuals 

who have a higher probability of experiencing the competing event and down-weights individuals 

who have a lower probability of being censored, based on the characteristics included in the logistic 

regression model. This weighting attempts to correct for bias due to informed censoring due to 

death by accounting for competing events in the weighting procedure. The estimand of interest for 

this approach is the contrast between weighted cause-specific hazards. This is similar to the cause-

specific approach where competing events are eliminated, however by using  a marginal structural 

model we remove a potential selection bias due competing events and allow for a more flexible 

application of the Cox proportional hazard model (Figure 2.4). This weighted hazard ratio can be 

represented by the following potential outcomes notation:  

Pr[𝑌𝑡+1
𝑎=1 = 1| 𝐶𝐸𝑡+1

𝑎=1 = 𝑌𝑡
𝑎=1 = 0] vs. Pr[𝑌𝑡+1

𝑎=0 = 1| 𝐶𝐸𝑡+1
𝑎=0 = 𝑌𝑡

𝑎=0 = 0] 

  

 

Figure 2.4:  Effect of A on Y in pseudopopulation where paths 𝑨 → 𝑪𝑬 and 𝑳 → 𝑪𝑬 are 

removed; 𝑨=exposure, 𝑪𝑬=competing event, 𝒀=outcome, 𝑳= covariates that affect 𝒀 
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Case-Study: A comparison of approaches to account for competing events in Three-City Cohort 

 

Study Population 

Data from the Three-City (3C) Cohort was used to demonstrate three approaches to account 

for death as a competing event in a study of air pollution and dementia. 3C is a cohort of 9,294 

adults 65 years and older from electoral rolls in three cities in France (Bordeaux, Dijon, and 

Montpellier). This cohort was designed with aims of understanding risk factors of dementia and 

cognitive impairment and has been previously described.83 Study participants attended a baseline 

visit in 1999-2001 and subsequent follow-up visits every 2-3 years for face-to-face interviews and 

clinical evaluations. Demographic and socioeconomic characteristics, health conditions, and 

dementia status was updated at each follow-up visit.  Individuals were included in this analysis if 

they were free of dementia at the baseline visit and had available residential information. Finally, 

death was assessed through medical, hospital, and death records for individuals who dropped out 

of the study after the baseline visit. The final analysis included 8,314 study participants (Figure 

2.5).  

 

Figure 2.5: Description of study population from the Three-City Cohort 
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Long-term exposure to air pollution was assigned to each participant. Briefly, individuals 

were assigned a 10-year average exposure before study enrollment based on residential address 

reported at study visits. Air pollution estimates for the years 2005-2015 were generated using land-

use regression models using air pollution concentration data from EuroAirnet monitoring sites and 

land use characteristics, population density, road characteristics, and topography. Models to 

generate air pollution estimates in France have been previously validated.84 For air pollution 

estimates 1999-2004, pollutant concentrations were estimated with the CHIMERE chemistry 

transport model.85     

Statistical Analysis 

Study participants were followed over t time (measured in days), from study baseline to 

the end of their follow-up period, determined by a dementia diagnosis or censored event. Dementia 

cases were assigned a 10-year average exposure to air pollution (PM2.5) before the baseline study 

visit.  

We first applied a naïve approach where competing events are not considered. Next, we 

applied an approach that estimates the direct effect of air pollution on dementia not mediated by 

the competing event (cause-specific hazard ratio). We then applied an approach that estimates the 

total effect of air pollution that considers competing events (subdistribution hazard ratio). Finally, 

we apply a weighted extension of the cause-specific hazard ratio using inverse probability of 

censoring weights. Apart from the naïve approach, all methods uniquely account for the competing 

event, death. To estimate the effect of air pollution on time-to-dementia, hazard ratios were 

estimated with multi-level Cox proportional hazards models with calendar time as the time scale. 

We also estimated the effect of air pollution on time-to-competing event by estimating the death-
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specific hazard ratio. For each approach, we included age at baseline study visit, sex, and education 

as potential confounders and the study site as a fixed effect to account for spatial clustering.  

2.4. Results 

The final study sample included 8,314 older adults enrolled in 3C. Study participants had 

a mean age of 74 years at baseline. Approximately 10% of individuals developed dementia over 

the study period and 34% died by the end of the study. The average PM2.5 exposure for participants, 

10 years before study baseline, was 20.5 ug/ml (IQR=2.2). Descriptive statistics comparing 

individuals who developed dementia or experienced the competing event are included in (Table 

2.1). Air pollution increased the risk of death before dementia (HR=1.27 95% CI: 1.06, 1.53). 

Table 2.1: Description of Three-City Cohort by event type 

Characteristic Mean (SD) or Freq (%) 

 Dementia 

(N=947) 

Competing Event 

(N=1,841) 

Age at baseline, years 76.9 (5.4) 76.8 (6.0) 

Sex 

   Male 

   Female 

 

327 (34.5) 

620 (65.6) 

 

977 (53.1) 

864 (46.9) 

Education 

   Low 

   Middle 

   High 

 

418 (44.2) 

223 (23.6) 

304 (32.2) 

 

596 (32.4) 

569 (30.9) 

676 (36.7) 

Center 

   Bordeaux 

   Dijon 

   Montpellier 

 

324 (34.2) 

448 (47.3) 

175 (18.5) 

 

448 (26.5) 

924 (50.2) 

429 (23.3) 

PM2.5, median (IQR) 28.5 (IQR=2.0) 28.4 (IQR=1.8) 

 

Results from analyses using the different approaches are summarized in Table 2.2. The 

naïve analysis where competing events are not considered yielded a hazard ratio of 1.03 (95% CI: 

0.80, 1.34) per 5ug/ml increase in PM2.5. Censoring individuals at the time of the competing event 

yielded a cause-specific hazard ratio of 1.02 (95% CI: 0.79, 1.32). Maintaining individuals who 
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experienced the competing event in the risk set produced a subdistribution hazard ratio of 0.99 

(0.76, 1.28). Finally, the weighted hazard ratio that accounts for informed censoring due to 

competing events produced a hazard ratio of 1.10 (0.87, 1.37).  

Table 2.2: Hazard ratios estimated using different approaches to account for competing 

events 

Approach HR (95% CI) How is competing event considered? 

Naïve 1.03 (0.80, 1.34) Not considered. 

Cause-specific 1.02 (0.79, 1.32) Censored at time of competing event. 

Subdistribution 0.99 (0.76, 1.28) Individuals with competing event remain in risk set. 

IP weighted 1.10 (0.87, 1.37) 
Individuals weighted by the inverse conditional 

probability of experiencing the competing event. 

 

2.5. Discussion 

This tutorial demonstrates three approaches to account for competing events in studies of 

older adults. We consider a case study of air pollution and dementia among older adults in France, 

accounting for death as a competing event by estimating a cause-specific hazard ratio, a 

subdistribution hazard ratio, and a weighted cause-specific hazard ratio. After applying the three 

approaches, we found that the cause-specific hazard model, an estimate of the controlled direct 

effect,  aligned with a naïve model, where competing events were ignored. The subdistribution 

hazard model generated an attenuated hazard ratio. In contrast, the weighted method generated a 

weighted cause-specific hazard ratio greater than all other estimates. Although the effect sizes are 

relatively small and imprecise, the pattern in direction is explained by the unique and distinct target 

inferences for each approach.   

Cause-specific hazard ratios are an intuitive estimate of the controlled direct effect between 

exposure and outcome and are useful for answering etiologic research questions (e.g., how does 

increased exposure to air pollution directly affect risk of dementia among individuals without the 
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competing event?). However, in a situation where increased exposure increases probability of the 

competing event, collider bias may result in an attenuated cause-specific hazard ratio (Figure 

2.1).50 Similarly, a subdistribution hazard ratio will be attenuated, and in this case reverse 

directions, when the increased exposure increases risk of the competing event. This is due to the 

increased proportion of highly exposed individuals who die during the study period and are 

considered “at-risk” for dementia in analyses. While this inflated denominator seems 

counterintuitive, it is in fact an estimate of the total effect of air pollution on dementia, including 

the indirect path through the competing event and coincides with what is observed in the real 

world, where air pollution has a stronger effect on death then dementia. The target estimand of 

interest depends on the truth the investigator is seeking to make an inference about. If the 

investigator is interested in the total effect observed in the real world, that accounts for the 

relationship between the exposure and competing event, the contrast between subdistribution 

hazards is appropriate. However, careful attention to the relationship between exposure and 

competing event, covariate distribution across event types, and sample size are necessary for 

proper interpretation. For example, in the extreme scenario where the exposure has a causal effect 

on the competing event in most participants, the subdistribution hazard ratio will appear protective. 

This is what is observed in the real world, as the exposure has a strong relationship with the 

competing event and the study is underpowered to detect an effect on the primary outcome. 

Previous discussions on the interpretation of subdistribution hazard models suggest that the 

hazards are sensitive to the dependencies between covariates and sample size and require careful 

interpretation of estimates.77,86–88  

Now, suppose the investigator is interested in the etiologic research questions. Then, the 

contrast between cause-specific hazards is appropriate. However, careful attention to potential 
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collider bias and appropriate modeling strategy is necessary. If there is a potential link between 

exposure and competing event, then we recommend the use of the weighted approach to estimate 

the weighted cause-specific hazard to answer etiologic questions. In the context of air pollution 

and dementia, the evidence base suggesting a link between air pollution and dementia is growing 

and further etiologic research is necessary before targeted intervention strategies. Specifically, 

understanding the extent to which air pollution affects risk of dementia can allow for future 

implementation of policy changes. For this reason, the ability to estimate an unbiased direct effect 

is the first step toward translating findings to inform environmental regulation and health policy.  

The application of weighting approaches that account for dependencies between air 

pollution and competing events will improve the internal validity of estimates. This is because the 

weighting procedure creates a pseudopopulation that removes biasing pathways due to known and 

measured covariates. For example, in our 3C case study, air pollution increased the risk of death. 

Thus, the weighted pseudopopulation upweights individuals in the study who have an increased 

probability of death. Weights were created by estimating the inverse probability of the competing 

event, conditioned on air pollution exposure, demographic and socioeconomic characteristics, and 

health conditions. Individuals with a lower probability of death, determined by these same 

characteristics, are assigned smaller weights. Weights were updated for each year of follow-up to 

account for the differing relationships between the covariates and competing events over time. 

This approach accounts for competing events by “randomizing” the competing event in the 

pseudopopulation and the investigator can proceed with a weighted Cox proportional hazard model 

to estimate a weighted cause-specific effect that accounts for the competing event in the weighting 

procedure. There are some limitations to this weighting approach. The creation of the 

pseudopopulation hinges on a strong understanding of the causal relationships and selection 



34 

mechanisms and measured variables on the biasing pathways. Furthermore, one may be hesitant 

to apply a weighting scheme that essentially “upweights” dead participants and creates an immortal 

study population.89 However, if we seek to target a causal interpretation, we suggest that such 

weighting approach is appropriate.90  

The weighting approach is contrary to the traditional cause-specific approach where 

competing events are considered by restricting the study sample to the population who had not 

experienced the competing event (i.e., censoring competing events). It is important to acknowledge 

that this traditional approach constitutes a well-suited approach to deal with etiologic questions 

but may be subject to a selection bias and if so, may not fit the assumptions required to estimate a 

hazard ratio from a Cox proportional hazard model. The weighting approach also contrasts with 

the subdistribution hazard approach, which is an estimate of the total effect. As suggested by 

Rudolph et al, for research questions related to policy evaluation, estimating the subdistribution 

hazard ratio may be an appropriate approach, as estimating the total effect mirrors what we would 

observe in the real world where both the outcome and competing event occur.66     

We recommend the following strategies when implementing a survival analyses of air 

pollution and dementia, where competing events are of concern:  

1. Clarify the question of interest. Is the investigator interested in the direct effect of 

exposure on outcome, not mediated by the competing event? Or, the total effect that 

includes pathways through the competing event.  

2. Think through the causal mechanisms through which the covariates and selection are 

dependent (can present DAG in supplementary material). 
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3. Identify the target inference and estimand of interest (cause-specific or subdistribution 

hazard ratio?). 

4. Describe the competing event by defining how it is classified (e.g., deaths among 

dementia-free individuals before the last follow-up visit). 

5. Present the distribution of exposure of interest and covariates for primary outcome and 

competing events in supplementary material (e.g., Table 2.1). 

6. Present different approaches to account for competing events in supplementary 

material (e.g., Table 2.2). 

We believe implementing these steps will help clarify the target estimand when considering 

competing events and will result in clarity about the expected direction of bias after accounting for 

competing events in analyses. This will make estimates more comparable across studies to help 

triangulate evidence about air pollution and dementia. These guidelines can be extended to settings 

outside of air pollution and dementia. Further developments have been made to extend 

consideration of competing events to deal with confounding between competing events and 

primary outcome, time-varying covariates, delayed entry into study, and missing data.81,91–93  

In summary, in this tutorial we demonstrated three approaches to account for competing 

events, using an example of air pollution and dementia, with death as a competing event. We 

recommend careful thought about the research question and target inference. In general, we 

recommend IP weighting approaches to account for competing events to answer etiologic 

questions. However, the application of any approach requires careful understanding of 

assumptions and interpretation and should be communicated in research.  
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Chapter 2, in part, is currently being prepared for submission for publication of the 

material. Ilango, Sindana D; Mortamais, Marion; Gutierrez, Laura-Anne; Berr, Claudine; 

Benmarhnia, Tarik. The dissertation author was the primary investigator and author of this paper.  

 

 

 

 

 

  



37 

3. The role of cardiovascular disease in the relationship between air pollution and incident 

dementia: a population-based cohort study 

Sindana D. Ilango, Hong Chen, Perry Hystad, Aaron van Donkellar, Jeffrey C Kwong, Karen Tu, 

Randall V Martin, Tarik Benmarhnia   

3.1. Abstract 

Background: Evidence suggests a link between air pollution and dementia. Cardiovascular 

disease (CVD) may be a potential determinant of dementia. This motivated us to quantify the 

contribution of CVD to the association between air pollution and dementia. 

Methods: A cohort of Canadian-born residents of Ontario, who participated in the 1996–2003 

Canadian Community Health Surveys, was followed through 2013 or until dementia diagnosis. 

Exposure to nitrogen dioxide (NO2) and fine particulate matter (PM2.5) was estimated with a 3-

year average and 5-year lag before dementia diagnosis. Incident CVD was evaluated as a mediator. 

We used multi-level Cox proportional and Aalen additive hazard regression models, adjusting for 

individual- and neighborhood-level risk factors to estimate associations with NO2 and PM2.5. We 

estimated the total, direct and indirect effects of air pollution on dementia through cardiovascular 

disease. 

Results: This study included 34,391 older adults. At baseline, the mean age of this cohort was 59 

years. The risk of dementia was moderately higher among those more exposed to NO2 (hazard 

ratio (HR) 1.10, 95% confidence interval (CI) 0.99–1.19; and 100 additional cases per 100,000 

[standard error (SE) <100x10-5]) and PM2.5 (HR 1.29, 95% CI 0.99–1.64; 200 additional cases per 

100,000 [SE 100x10-5]) after adjusting for covariates; however, these estimates are imprecise. A 

greater proportion of the relationship between PM2.5 and dementia was mediated through CVD 

than NO2 for both scales. 
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Conclusions: These results suggest some of the association between air pollution and 

dementia is mediated through CVD, indicating that improving cardiovascular health may 

prevent dementia in areas with higher exposure to air pollution. 

3.2. Introduction 

Ambient air pollution has a range of acute and chronic health implications. In 2015, an 

estimated 4 million premature deaths globally were attributable to exposure to air pollution.20 

Ambient air pollution is a complex mixture of particulate matter (PM), gaseous pollutants (e.g., 

nitrogen dioxide [NO2]), persistent organic pollutants, and heavy metals. Long-term exposure can 

result in oxidative stress and increased inflammation which can impact the pathophysiological 

processes of major chronic diseases and exacerbate existing health conditions.21   

Recent evidence suggests air pollution affects diseases of the central nervous system, 

including dementia.22 Insight into the etiology and prevention of these diseases and 

neurodegeneration is valuable, especially with increasing concern with aging populations and the 

current absence of a cure. The worldwide prevalence of dementia is expected to increase sharply, 

from 44 million people with dementia in 2013 to an estimated 135 million in 2050.94  

 A systematic review of 18 epidemiologic studies published through 2014 on air pollution 

and dementia and cognitive function found most studies identified at least one notable association 

between increased exposure to air pollution and worse cognitive outcome.15 All previous studies 

examining the relationship between long-term exposure to ambient air pollution and dementia 

suggest an association.34,37,39,41–43,45,46 For example, traffic-related air pollutants and close 

proximity to heavy traffic roads were found to be associated with increased risk of dementia in the 

UK, Sweden and Ontario, Canada.37,42,43,95 Evidence relating air pollution to cognitive 
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performance is less consistent. Associations between air pollution and measures of cognitive 

function and decline were found in studies of older US adults55,59,96, in select urban cities in 

Germany64, but not found in a studies of older adults in Los Angeles58  or the UK97.  

Despite growing evidence linking air pollution to dementia34,37,39,41–43,45,46, the exact 

mechanism is not well understood. Emerging literature suggests oxidative stress, 

neuroinflammation, and cardiovascular disease (CVD) to be contributing factors.22,24,98 

Knowledge of the causal pathway can provide valuable insight into disease etiology and 

pathophysiology and inform where medical and public health interventions can be most effectively 

applied to reduce disease burden. Identifying modifiable intermediates along a causal pathway are 

of particular interest in public health research because they offer opportunities to intervene at a 

population level and can have lasting effects.  

In this study, we hypothesize that CVD is on the causal pathway between air pollution and 

dementia. Air pollution has been consistently related to increased risk of incidence, complications, 

and mortality from CVD.67,99–101 Furthermore, growing evidence has linked CVD and its risk 

factors to impaired cognitive function and often co-occur with dementia.7,68  

To date, no study has investigated the extent to which CVD plays an intermediate role in 

the association between air pollution, specifically PM2.5 and NO2, and incident dementia. We 

aimed to disentangle this relationship on both relative and absolute scales that allow for describing 

the strength of the effect and quantifying the potential public health benefits, respectively. 

Dissecting this relationship can provide important insight into the causal mechanism of dementia, 

identify vulnerable populations, and prioritize public health efforts to reduce the burden of 

dementia. We thus performed a causal mediation analysis in a large population-based cohort in 

Ontario, Canada.  
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3.3. Methods 

Study Design and Population 

We conducted a population-based cohort study of older adults in Ontario, Canada. Eligible 

participants included Canadian-born Ontario residents who participated in the 1996-1997 cycle of 

the National Population Health Survey (NPHS) and the 2000/2001, 2003, and 2005 cycles of the 

Canadian Community Health Survey (CCHS). NPHS and CCHS are population-based surveys 

administered across Canada that collect information about health status, health care utilization, and 

health determinants, covering approximately 98% of the Canadian population aged 12 years or 

older with a response rate of about 80%.102 Data from these surveys have been widely used for 

public health surveillance and research.  

Participants were included in this study if they lived in Ontario for at least 5 years and were 

45 years or older at the date of survey (i.e. study baseline). This allowed us to measure prior 

cumulative exposure to air pollution in Ontario and capture older individuals who are at higher 

risk of developing dementia.  

To study the potentially mediating role of CVD, the exposure must accumulate before the 

mediator, which must subsequently occur prior to the outcome. We achieved this by using the year 

of survey completion to define time periods, to ensure proper temporality. Briefly, we estimated 

chronic exposure to air pollution before baseline survey completion. Then, CVD was assessed 

during a window after the baseline survey. Finally, to ascertain dementia, individuals were 

followed from the end of CVD follow-up through 2013 or until incident dementia diagnosis. We 

a priori considered this cohort structure to incorporate a hypothesized lag before the effects of air 

pollution can present itself in neurocognitive outcomes. The Research Ethics Board of Sunnybrook 

Health Sciences Centre, Toronto, Canada approved the study. 
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Exposure Assessment 

Chronic exposure to ambient air pollutants, specifically fine particulate matter (PM2.5) and 

nitrogen dioxide (NO2), was the exposure of interest for this study. We used previously estimated 

mean measurements of PM2.5 and NO2 at a spatial resolution of about 1x1km for each year between 

1993 and 2013 to calculate these exposures. Details are included in the supplementary material.  

To estimate chronic exposure to ambient air pollutants, running averages of pollutant 

measurements over the three years leading up to the time of baseline survey completion were 

calculated (Figure 3.1). For example, if a participant completed the survey at the end of 1996, the 

participant’s chronic exposure was estimated as an average of pollutant measurement from 1994, 

1995, and 1996. This three-year running average was estimated for both PM2.5 and NO2 separately. 

These estimates were updated as the follow-up continued through the study period.  

Outcome Assessment  

Cases of incident dementia were defined as having at least one of the following three 

criteria (see supplementary material for further details):  

1) at least one hospital admission with a diagnosis of dementia [see list in supplementary 

material], or  

2) at least three physician claims over a two-year period, or  

3) a prescription relating to dementia 

We ascertained this information using data linkage to population-based health administrative 

databases. The databases included: hospital discharge records from the Canadian Institute for 

Health Information’s Discharge Abstracts Database, physician claims from the Ontario Health 

Insurance Plan database, and prescription claims from the Ontario Drug Benefits database. These 
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datasets were linked using unique encoded identifiers and analyzed at ICES. The province of 

Ontario has a single-payer, universal health care system offered through the provincial 

government; virtually all Ontario residents are covered through this system and are included in 

these registries. The algorithm for identifying dementia cases has been validated with medical 

chart review and has a sensitivity of 79% and specificity of 99%.103  

Cohort members were followed for incident dementia from five years after completion of 

the baseline health survey through 2013; this took into account a hypothesized five-year lag period 

for air pollution to have an effect on dementia. For example, the same individual who completed 

the survey at the end of 1996 would be followed for dementia from 2001 through 2013. We chose 

5 years as the lag period because this was the greatest length we could statistically account for, 

given the size of this cohort. Individuals diagnosed with dementia during the lag period were not 

included in the analysis.  

Mediator Assessment 

We examined incident cardiovascular events as a potential mediator between exposure to 

air pollution and dementia. After excluding individuals with prevalent cardiovascular events at the 

time of survey completion, cohort members were followed for first cardiovascular event for up to 

five years, beginning at the year of baseline health survey. Cardiovascular events were defined as 

hospital admissions or medical procedures for: coronary heart disease, stroke, arrhythmia, and 

congestive heart failure. We obtained information about these events from hospital discharge 

abstracts, medical procedure codes, and the Ontario Congestive Heart Failure Database (see 

supplementary material for details).104 

The five-year mediator follow-up occurred immediately after the interval during which air 

pollution exposure was measured; it coincided with the five-year lag between air pollution and 
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dementia follow-up. For instance, if the cohort member completed the health survey in 1996, 

he/she would be followed for cardiovascular events from 1996 to 2001 and then followed for 

dementia. Figure 3.1 describes the timing of outcome, exposure, and mediator follow-up periods.  

 

Figure 3.1: Schematic of cohort follow-up periods. Example exposure, mediator, and 

outcome follow-up periods for an individual who completed a health survey in 1996. (1) 

three-year air pollution measurement (exposure); (2) five-year follow-up for CVD 

(mediator); (3) dementia follow-up through 2013 (outcome) 

Covariates 

We selected a priori potential confounders to include as covariates in the model. We 

ascertained demographic and health behavior information from the health surveys. The details of 

all covariates can be found in the supplementary material.  

Statistical Analysis 

The study cohort was described with means (SD) and frequencies (%) for all variables of 

interest. We then estimated the association between air pollution and dementia and air pollution 

and cardiovascular events, separately. We generated a Cox proportional hazards model and an 

Aalen additive hazards model for each of these relationships to estimate hazard ratios (HR) and 

95% confidence intervals (CI) and parameter estimates (β) and standard errors (SE) for every 5 

ppb and 10 ug/m3 increase in NO2 and PM2.5, respectively. In these eight models, we accounted 
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for spatial clustering by incorporating two-level clustering with census neighborhood nested within 

census division as a random effect. We additionally ran minimally adjusted models for each 

pollutant. Final adjusted models included covariates for individual age, sex, education, marital 

status, income quintile, smoking status, body-mass index, physical activity, rural residence, and 

northern region, and neighborhood-level percentages of recent immigrants, income quintile, 

unemployment, and less than high school education.  

Causal Mediation Analysis 

The primary objective of this paper was to perform a formal causal mediation analysis to 

decompose the total effect of air pollution on incident dementia into its natural direct and natural 

indirect effect through cardiovascular events. We used the 2-stage regression method for mediation 

analysis for survival data under (1) Cox proportional and (2) Aalen additive hazard models.54,105,106 

Survival analysis in epidemiology most frequently employs Cox proportional hazard models. A 

newly developed, alternative, and more flexible approach to mediation analysis with survival data 

involves Aalen additive hazard models.107 This approach offers additional flexibility by not 

requiring proportional hazards and is a straightforward and intuitive way of interpreting effect 

sizes are extended to absolute number of events.106   

We made the following assumptions on both models: no unmeasured confounding and no 

mediator-outcome confounder affected by the exposure itself. We also a priori assumed no 

exposure-mediator interaction thus, we expect the controlled direct effect (CDE) to coincide with 

the natural direct effect (NDE) and interpreted them interchangeably.105 For multiplicative and 

additive scales, the NDE compares the dementia incident risk or additional cases for each unit 

increase in exposure to air pollution, controlling for the CVD pathway and all other covariates. 

The natural indirect effect (NIE) represents the change in dementia risk or additional cases when 
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exposure to ambient air pollution is held constant while CVD risk changes in response to one unit 

increase in air pollution exposure.   

For each hazard model, we fit two multi-level, mixed effects regression models to estimate 

the total effect (TE), NDE, and NIE. Both model types were considered to assess mediation on 

multiplicative and additive scales. Further details about estimating these quantities are described 

in the supplementary material. With these estimates we calculated the estimated proportion of the 

total effect of ambient air pollution on dementia mediated through CVD. TEs, NDEs, and NIEs 

and their 95% CIs were computed using bootstrapping procedures (250 replications). We 

conducted various sensitivity analyses to assess the robustness of our findings (see details in the 

supplementary material). All data management and statistical analyses were conducted using 

RStudio Version 1.1.423 with the extension packages coxme and timereg.108,109 

3.4. Results 

This study included 34 391 older adults from Ontario, Canada, who contributed a total of 

366 208 person-years. Approximately 7% (n=2559) of individuals developed dementia during this 

period. At baseline, the mean age of this cohort was ~60 years. Fifty-eight percent were female 

and about half of the population (55%) attended some or completed college. About one-third of 

the study population had no history of smoking.  
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Table 3.1: Baseline characteristics of study population in Ontario, Canada (n=34,391) 

Characteristic Mean (SD) or n (%) 

Demographics  

Age at entry (years) 60.19 (10.56)  

Sex  

   Male 14,555  (42%) 

   Female 19,836  (58%) 

Education  

   Less than high school 9,055 (26%) 

   High school diploma 6,462 (19%) 

   Some college or more 18,874 (55%) 

Income  

     Lowest 758 (2%) 

     Low-middle 1856 (5%) 

     Middle 5,117 (15%) 

     Middle-high 8,083 (24%) 

     Highest 6,645 (19%) 

     Unknown 11,932 (35%) 

Marital Status  

   Married 21,175 (62%) 

   Single 2827 (8%) 

   Separated, widowed, divorced 10373 (30%) 

   Unknown 16 (<1%) 

Health Information  

Physical activity  

   Active 7,346 (21%) 

   Moderate 8,792 (26%) 

   Not active 18,253 (53%) 

Smoking status  

   Never smoker 9,976 (29%) 

   Former smoker 16,441 (48%) 

   Current smoker 7,974 (23%) 

Weight status  

   Underweight 500 (2%) 

   Normal 13,505 (39%) 

   Overweight 13,455 (39%) 

   Obese 6,931 (20%) 

Pre-existing comorbidity  

   Diabetes 3,262 (10%) 

   Hypertension 12,026 (35%) 

   Traumatic brain injury  1,279 (4%) 

Physician density per 1,000 1.49 (1.17) 

Geography  

Northern latitude 5989 (17%)  

   Missing 6 (<1%) 

Rural residence 11,243 (33%) 

Area-level risk factors  

Percentage of recent immigrants 1.87 (2.61) 

Percentage unemployed 6.71 (1.93) 

Percentage under high school 28.50 (5.74) 
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The three-year cumulative exposures to NO2 and PM2.5 five years before dementia follow-

up were 10.4 ppb (range: 2.2-54.4 ppb; IQR: 7.6 ppb) for NO2 and 8.6 µg/m3 (range: 0.8-35.2; 

µg/m3 IQR: 4.7 µg/m3) for PM2.5.  

For every 5 ppb and 10 µg/m3 unit increase in cumulative exposure to NO2 and PM2.5, there 

was a positive association with the incidence of dementia, with fully adjusted HRs of 1.10 (95%CI 

0.99-1.19) and 1.29 (95%CI 0.99-1.64), respectively (Table 3.2). Additive models indicate that for 

each unit increase, 100 (SE <100x10-5) and 200 (SE 100x10-5) additional cases of dementia per 

100 000 per year are diagnosed for NO2 and PM2.5, respectively (Table 3.2). See Table 3.5 for 

minimally adjusted estimates.  

Associations between exposure to NO2 and PM2.5 and CVD were also detected, with HRs 

of 1.01 (95%CI 0.96-1.06) and 1.08 (95%CI 0.94-1.24), although these estimates have wide 

confidence intervals and are imprecise (Table 3.2). For each unit increase, 100 (SE <100x10-5) and 

300 (SE 100x10-5) additional CVD cases per 100 000 individuals per year were diagnosed for NO2 

and PM2.5, respectively (Table 3.2).  

Table 3.2: Associations between air pollutant, dementia, and cardiovascular disease 

 Cox PH Model 

HRa (95% CI) 

Aalen model 

Estimatea (SE) 

NO2 
b   

Dementia c 1.10 (0.99, 1.19) 100x10-5 (<100x10-5) 

Cardiovascular disease 1.01 (0.96, 1.06) 100x10-5 (<100x10-5) 

   

PM2.5 
b   

Dementia c 1.29 (0.99, 1.64) 200x10-5 (100x10-5) 

Cardiovascular disease 1.08 (0.94, 1.24) 300x10-5 (100x10-5) 

HR= hazard ratio; CI= confidence interval; SE=standard error 
a Adjusted for age, sex, education, marital status, income quintile, smoking 

status, body-mass index, physical activity, rural residence, and northern 

region; area level: recent immigrants, unemployment, and education  
b NO2 per 5 ppb, PM2.5 per 10 ug/m3 
c Total effect obtained from product method  
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Our mediation analysis shows that the effect of air pollution on dementia may be partially 

mediated through cardiovascular events for both scales (Table 3.3, Table 3.4). On the 

multiplicative scale, we observed an indirect effect HR of 1.01 (95%CI 0.98-1.03) for NO2 and 

1.06 (95%CI 0.99-1.12) for PM2.5 mediated through CVD. These translate to approximately 9% 

of the effect of NO2 on dementia and 21% of the effect of PM2.5 on dementia being mediated 

through cardiovascular events in this study population. In additive models, for NO2, we observe 

approximately 1.5 (95% CI 1.0-2.6) additional cases per 100 000 per year can be attributed to the 

pathway through CVD. For PM2.5, approximately 4.2 (95% CI 2.9-6.9) additional cases per 

100,000 per year can be attributed to the pathway through CVD. These translate to approximately 

2% and 4% of the pathway from NO2 and PM2.5 can be attributed to the pathway through CVD. 

For both relative and absolute scales, a greater proportion of the effect of PM2.5 on dementia may 

be mediated through CVD than for NO2. It is important to note that measures of proportion 

mediated should be interpreted as a qualitative measure and are imprecise due to the wide 

confidence intervals of our indirect effects. Our conclusions did not change appreciably with 

sensitivity analyses (see supplementary material).  

Table 3.3: Total, controlled direct, and natural indirect effects of ambient air pollutant 

through cardiovascular disease (Cox proportional hazards model) 

Pollutant Total effect 

HRa (95% CI) 

Natural direct effect 

HRb (95% CI) 

Natural indirect effect  

HRb (95% CI) 

NO2
c 1.10 (0.99 – 1.19) 1.09 (1.00 – 1.18) 1.01 (0.98 – 1.03) 

PM2.5
c 1.29 (0.99 – 1.64) 1.22 (0.95 – 1.56) 1.06 (0.99 – 1.12) 

HR=hazard ratio; CI=confidence interval 
a Total effect obtained from product method 
b Adjusted for age, sex, education, marital status, income quintile, smoking status, body-mass 

index, physical activity, rural residence, and northern region; area level: recent immigrants, 

unemployment, and education 
c NO2 per 5 ppb, PM2.5 per 10 ug/m3 
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Table 3.4: Total, controlled direct, and natural indirect effects of ambient air pollutant 

through cardiovascular disease (Aalen additive hazards model) 

Pollutant Total effect 

Estimatea (95% CI) 

Natural direct effect 

Estimateb (95% CI) 

Natural indirect effect 

Estimateb (95% CI) 

NO2
c 100x10-5 (1.2x10-5

, 100x10-5) 100x10-5 (<100x10-5, 100x10-5) 1.45x10-5 (1x10-5
, 2.6x10-5) 

PM2.5
c 100x10-5 (3.6x10-5

, 300x10-5) 100x10-5 (<100x10-5, 300x10-5) 4.20x10-5 (2.9x10-5
, 6.9x10-5) 

CI=confidence interval 
a Total effect obtained from product method 
b Adjusted for age, sex, education, marital status, income quintile, smoking status, body-mass index, physical 

activity, rural residence, and northern region; area level: recent immigrants, unemployment, and education 
c NO2 per 5 ppb, PM2.5 per 10 ug/m3 

 

3.5. Discussion 

 

Using a population-based cohort of 34,391 individuals in Ontario, Canada, we decomposed 

the total effect of exposure to ambient air pollutants, specifically PM2.5 and NO2, on incident 

dementia into its respective direct and indirect effects through CVD on multiplicative and additive 

scales. We found an increased risk of dementia among those with higher exposure to NO2 (HR 

1.10, β 100x10-5) and PM2.5 (HR 1.15, β 200x10-5). We found some evidence of an indirect effect 

through CVD for both pollutants, with incident CVD mediating more of the relationship between 

PM2.5 and dementia than the relationship between NO2 and dementia. These effects are observed 

in a region with pollutant concentrations that are among the lowest in the world.   

This total effect is in line with previous studies. Two recent systematic reviews of air 

pollution and cognitive functioning and dementia reported that the majority of reviewed studies 

found positive associations between higher exposure to air pollution (PM2.5 or living in a high 

traffic area) and worse cognitive aging and dementia.15,16  

Such findings are biologically plausible and are supported by neuroimaging and biologic 

studies.  Pathology studies have shown that dementia is the result of a combination of 

neurodegenerative and vascular lesions, suggesting commonalities in the mechanisms of dementia 

and vascular disease.54,105 Taking this into account with the substantial literature linking air 
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pollution with cardiovascular and cerebrovascular risk factors and disease provides motivation to 

investigate CVD as an intermediate on the pathway.67,99–101  

Understanding dementia disease etiology and the role of CVD in dementia can provide 

invaluable insight toward prevention strategies. Since well-defined interventions to prevent CVD 

exist, targeted efforts to improve cardiovascular health may be beneficial to dementia prevention 

in areas with increased exposure to air pollution. For instance, cardiovascular health programs, 

screening, and access to CVD healthcare can be prioritized in highly polluted areas to not only 

improve CVD outcomes but also potentially reduce the risk of dementia.  

Many methodological challenges exist when studying dementia at the population level.110   

First, our findings are subject to selective attrition due to mortality. While this would likely result 

in underestimating the effect sizes, we acknowledge the possibility that a portion of study 

participants died from air pollution-related causes (e.g., CVD, respiratory conditions) before living 

long enough to develop dementia. Thus, those who developed dementia could be a healthier group 

of participants who were less vulnerable to detrimental air pollution effects. We attempted to 

address this concern by examining the influence of potential risk factors for competing risks in our 

models.  

Second, our classification of dementia is limited to diagnosed cases. This can be a concern 

when cases are ascertained from a data source that doesn’t definitively capture dementia 

information.110 For example, using the hospital discharge data alone underestimates dementia 

cases because the diagnosis and management of dementia does not require hospital admission. We 

addressed this by using three sources (i.e., hospital discharge records, physician claims, and 

prescription claims) to identify cases in a population with universal access to healthcare. It is also 

possible that there might be inconsistencies in diagnoses, because the diagnosis often depends on 
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caregiver’s concern and access to care. Additionally, individuals with CVD conditions may 

interact more frequently with the healthcare system and therefore increase their probability of 

being diagnosed earlier for dementia. However, since our study population is restricted to 

individuals who have completed a health survey, individuals in our study are more likely to be 

health-conscious and are likely of higher socioeconomic status. While this may limit the 

generalizability of our findings, we believe studying dementia in this population minimizes 

potential outcome misclassification, and thus improves the validity of our findings. Similarly, we 

were unable to account for undiagnosed CVD cases.  

Next, the results from this mediation analysis rely on the assumptions of no unmeasured 

confounding and no mediator-outcome confounder affected by the exposure.54 To check this 

assumption, we conducted sensitivity analyses to assess the extent of confounding by measured 

risk factors and health status variables (e.g., diabetes, hypertension, traumatic brain injury) that 

may violate the assumption of no unmeasured mediator-outcome confounding and found no 

appreciable change in our observed indirect effect sizes. We also assumed no interaction between 

air pollution and CVD, allowing the CDE and NDE to be interpreted similarly.  

This study has major strengths including its large size, ability to ascertain incident 

cardiovascular events and incident dementia from validated sources, availability of individual 

socioeconomic and health behavior information, and analytic approach. We encourage future 

studies to replicate our methods in established cohort studies where participants have routine 

evaluations for dementia and cognitive decline.  

A formal causal mediation analysis is a valuable tool to disentangle complex relationships 

and provides insight toward understanding disease etiology and identifying specific prevention 

efforts. Our results suggest an increased risk of dementia among individuals with higher 
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cumulative exposure to air pollution, which were partially mediated through CVD. Our study 

identified and highlighted two modifiable risk factors, ambient air pollution and CVD, for 

dementia. Intervening on one or both have the potential to significantly reduce the burden of 

dementia.  

3.6. Appendix 

 

Ascertainment of Long-term Exposure to PM2.5 and NO2 

Assessment of Ambient Concentrations of PM2.5 and NO2 

Estimates of ground-level concentrations of PM2.5 were derived by relating satellite 

retrievals of aerosol optical depth, a measure of light extinction by aerosols in the total atmospheric 

column, to ground-level PM2.5 using the temporally and spatially varying relationship simulated 

by a global atmospheric chemistry transport model (GEOS-Chem CTM).111 Ground-level 

observations of PM2.5 were then incorporated using a geographically weighted regression with 

predictors that included information on urban land cover, elevation, and aerosol composition at a 

spatial resolution of 1×1km for each year between 1998 and 2012.112 Covering all North America 

below 70oN, which includes all of Ontario, these annual estimates of PM2.5 have been shown to 

closely agree with out of sample ground measurements at fixed-site monitoring stations across 

North America (R2=0.82, n=1440). Similar PM2.5 estimates have been used to determine the 

associations of PM2.5 with cardiorespiratory mortality and morbidity and the global disease burden 

attributable to air pollution.113–117 

To derive exposure to NO2, we made use of a national land-use regression (LUR) model 

developed using measurements of NO2 at the fixed-site stations of Environment Canada’s National 

Air Pollution Surveillance Network.118 Briefly, this model was constructed by regressing observed 
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annual mean concentrations of NO2 in Canada against an array of predictors (e.g., satellite 

estimates of NO2, area of industrial land use, road length) to capture background and regional 

variations of NO2.
119 The estimates were then augmented by incorporating local-scale variations 

of NO2 due to vehicle emissions by applying spatially-varying multipliers that represented 

distance-decay gradient in NO2.
119 The LUR model explained 73% of the variability in annual 

2006 measurements of NO2, with a root mean square error of 2.9 parts per billion.119 The LUR-

derived NO2 estimates have been used to estimate the effect of traffic-related air pollution on 

mortality7 and adverse birth outcomes in Canada.120 

Temporal Calibration of Exposure Surfaces of PM2.5 and NO2 

Because the exposure surface of NO2 was derived for 2006 (the mid-point of the study 

period), to incorporate changes in ambient concentrations of NO2 over time, we conducted yearly 

calibrations of NO2 exposure surface by scaling it with a ratio between the average concentrations 

of NO2 at all fixed-site monitors across Ontario in a given year and that in 2006, thus producing 

annual mean estimates of NO2 between 1994 (seven years before cohort inception to allow for 

lagging exposure) and 2013. This approach assumes that the spatial pattern in NO2 did not change 

appreciably during this period. This is a reasonable assumption because despite decreasing 

concentrations over time, the degree of change in NO2 concentrations and thus the spatial 

difference remained stable in Ontario. 

In addition, we have shown previously that areas in Ontario with higher concentrations of 

PM2.5 have retained their spatial ranking from 1996 to 2010 and that variability in longer-term 

exposure to PM2.5 is primarily spatial rather than temporal.114 Because annual estimates of PM2.5 

were not available before 1998 and after 2012, we extrapolated PM2.5 estimates in 1998 annually 

to 1994-1997, and to 2013, using PM2.5 estimates in 2012.  
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We further verified long-term stability in the spatial patterns of annual mean concentrations 

of NO2 during the period of 2003 to 2014. In doing this, we compiled historical data on the 

monitoring of NO2 from Environment Canada’s National Air Pollution Surveillance (NAPS) 

network. We considered the start year of 2003 because many new fixed-site stations were added 

after 2003. We excluded fixed-site monitors that were located outside Ontario and that were 

operated for less than half of this period, leaving sufficient data to derive annual mean 

concentrations for 20 cities in Ontario, such as Toronto, Hamilton, and Ottawa. 

Using the monitoring data, we estimated long-term average concentrations of NO2 for each 

city over the period 2003-2014. Using the annual mean concentrations of NO2 from the 20 cities, 

we further estimated the total variance of NO2 across the 20 cities and throughout the period 2003-

2014. In addition, we estimated the variance of NO2 due to temporal variability from 2003 to 2014. 

This was done by calculating mean exposure averaged across the 20 cities for each year and then 

estimating the variance of the annual averages over time. The total variance was 16.3 (ppb)2 while 

the temporal variance was 5.4 (ppb)2. Thus, 67% of the total variation in the concentrations of NO2 

among the 20 cities was associated with spatial variability and only 33% with variation over time. 

This result suggests that variability in the concentrations of NO2 in Ontario is primarily spatial in 

nature and not temporal.  

The representativeness of NO2 measurements derived using a land-use regression model 

for longer-term spatial contrast in NO2 has been reported in several previous studies.121–123 For 

example, in the European Study of Cohorts for Air Pollution Effects (ESCAPE), Eeftens and 

coworkers assessed the relationship between NO2 measured in 1999 and NO2 measured in 2007 at 

40 locations in the Netherlands.122 They found strong correlation among NO2 measurements 

between the two periods (coefficient of determination, R2=86% or r=0.92), indicating that the areas 
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with higher NO2 concentrations in earlier periods were likely to retain their spatial ranking. Long-

term stability in the spatial patterns of NO2 has also been shown in a study conducted in Rome, 

Italy, and another study conducted in Vancouver, Canada.121,123 We therefore expect that the 

spatial contrast in NO2 from our land-use regression model provides reasonable estimates of 

longer-term spatial exposure to NO2 in Ontario.  

To further evaluate the robustness of our results, we conducted another sensitivity analysis 

by deriving station-specific temporal scaling factors and applied these spatially-varying scaling 

factors to cohort members living near these fixed-site stations. Because only 13 stations were 

operated continuously between 1994 and 2013, this analysis was restricted to those living within 

50 km from these stations.  

Ascertainment of Dementia 

Cases of incident dementia were defined as having at least one of the following three 

criteria:  

1) at least one hospital admission with a diagnosis of dementia [International Classification 

of Diseases, Ninth Revision, Clinical Modification (ICD-9CM) diagnostic code 46.1, 

290.0-290.4, 294, 331.0, 331.1, 331.5, 331.82 or ICD-10 code F00-F03, G30 after 2002], 

or  

2) at least three physician claims (code 290, 331) over a two-year period, or  

3) a prescription relating to dementia (e.g., donepezil, galantamine) 
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Ascertainment of Cardiovascular Events 

Cardiovascular events were defined as experiencing one or more of the following: coronary 

heart disease, stroke, arrhythmia, and congestive heart failure. Each condition was ascertained 

from the following information: 

Coronary Heart Disease: hospital discharge data using the most responsible or secondary 

diagnostic code (ICD-9: 410-414; ICD10: I20-I25) in conjunction with medical procedure 

codes for percutaneous coronary intervention (PCI) and coronary artery bypass grafting 

(CABG) before 2002: PCI (4802, 4803, 4809) and CABG 481; and after 2002: PCI (1IJ50, 

1IJ57GQxx) and CABG 1IJ76 

Arrhythmia: hospital discharge database with most responsible or secondary diagnostic 

code (ICD-9: 427; ICD-10: I47, I48, I49, I460, I469, R001) 

Stroke: hospital discharge database with most responsible or secondary diagnostic code 

(ICD-9: 430, 431, 434, 436 and ICD-10: I60, I61, I63.0, I63.1, I63.2, I63.3, I63.4, I63.5, 

I63.7, I63.8, I63.9, I64, H34) 

Congestive Heart Failure: Ontario Congestive Heart Failure (CHF) Database which uses 

data from CIHI discharge abstract database, physician service claims from the OHIP 

database, and emergency department records from National Ambulatory Care Reporting 

System (NACRS).104 CHF was defined as one hospital admission with a CHF diagnosis or 

an OHIP claim/ emergency department record with a CHF diagnosis followed within two 

years by either 3 a second OHIP claim/NACRS record or a hospital admission with a CHF 

diagnosis (ICD-9: 428; ICD-10: I500, I501, I509).  
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Ascertainment of Comorbidities  

Information on prevalent depression was obtained from the health survey taken by the 

participant. People with diabetes, hypertension, or heart failure were identified using validated 

databases of all residents diagnosed with these conditions in Ontario.124–126 The presence of the 

diagnosis of a specific disease between 1991 and 2001 was defined as the presence of that 

comorbidity. 

Covariates  

We considered potential confounders between each of the relationships of interest (i.e., 

ambient air pollution and dementia, CVD and dementia, and air pollution and CVD). 

The covariates we used were: age of cohort member (years), sex (male/female), education 

(less than high school, high school graduate, some college or more), income quintile, marital status 

(single; married, common law, or living with partner; separated, widowed or divorced), rural 

residence (yes/no), smoking status (never, current, former), body mass index (BMI) category 

(underweight, normal weight, overweight, obese) and physical activity (active, moderate, not 

active). We also created dichotomous variables using the individual health region to classify 

individuals residing in more northern latitudes (yes/no) and in the Greater Toronto Area (yes/no). 

Two of the 14 health regions in Ontario were considered as northern Ontario (North East and North 

West). We also considered additional covariates including prevalent conditions (yes/no) (diabetes, 

hypertension, and traumatic brain injury) in sensitivity analyses.   

We used neighborhood-level covariates from the Canadian Census to account for clustering 

of socioeconomic status by neighborhood and census division. Estimates from the Census are 

released every five years; we ascertained aggregate estimates from the Census completed in the 

year closest to the year of follow-up to be in line with the time-varying estimates of air pollution 
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exposure in the analysis. Income quintile was aggregated at the neighborhood level and percent of 

recent immigrants, percent of unemployment, and percent of population with less than a high 

school education were aggregated at the census division level. For sensitivity analyses, we also 

included physician density per 1,000 at the municipal or city level using the ICES physician 

database.  

Causal Mediation Analysis Methods 

To account for the time to event outcome and mediator, we fit (1) Cox proportional and (2) 

Aalen additive hazard regression models.54,106 

We fit the following multi-level, mixed-effects models, with age as the time scale, to 

estimate the natural direct effect of air pollution on incident dementia: 

𝜆(𝑡|𝐴, 𝑀, 𝐶) = 𝜆0(𝑡)exp (𝜃1𝐴 + 𝜃2𝑀 + 𝜃3𝐶) (Cox proportional hazard model) 

𝜆(𝑡|𝐴, 𝑀, 𝐶) = 𝜆0(𝑡) + 𝜆1𝐴 + 𝜆2𝑀 + 𝜆3𝐶  (Aalen additive hazard model) 

Here, 𝐴 represents ambient air pollution, 𝑀 represents incident cardiovascular event, 𝐶 

represents the set of covariates described above, and 𝜆0(𝑡) represents the baseline dementia hazard 

at age t for an individual exposed to the lowest unit of chronic ambient air pollution, conditioning 

on the mediator and set of covariates. The controlled direct effects are then estimated by using 

exp (𝜃1) and 𝜆1 for Cox proportional and Aalen additive hazard models, respectively.  

We then fit a second multi-level, mixed-effects model, with age as the time scale, as our 

mediator model to estimate CVD risk: 

𝜆(𝑡|𝐴, 𝐶) = 𝜆0(𝑡)exp (𝛽1𝐴 + 𝛽2𝐶) (Cox proportional hazard model) 

𝜆(𝑡|𝐴, , 𝐶) = 𝜆0(𝑡) + 𝜆′1𝐴 + 𝜆′2𝐶  (Aalen additive hazard model) 
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Here, 𝐴 represents ambient air pollution, 𝐶 represents the set of covariates described above, 

and 𝜆0(𝑡) represents the baseline CVD hazard at age t for an individual exposed to the lowest unit 

of chronic ambient air pollution conditioning on covariates. The natural indirect effect is estimated 

to be the exponential product of 𝛽1 and 𝜃2 for the Cox model and the product of 𝜆′1 and 𝜆1 for the 

Aalen model to simultaneously account for the effect of air pollution on CVD risk and the effect 

of CVD risk on dementia.54,106 

We calculated the estimated proportion of the total effect of ambient air pollution on 

dementia mediated through CVD with the following expressions: 
𝑁𝐷𝐸∗(𝑁𝐼𝐸−1)

𝑁𝐷𝐸∗𝑁𝐼𝐸−1
 for Cox proportional 

hazard models and 
𝑁𝐼𝐸

NDE+NIE
 for Aalen additive models.54,106   

Sensitivity analysis, methods  

First, we considered minimally adjusted models and included age, sex, education, and 

income as covariates. Next, we considered additional comorbidities (further adjusting for diabetes, 

hypertension, and traumatic brain injury) and physician density in our outcome model to address 

potential mediator-outcome confounding. Finally, we estimated natural direct and indirect effects 

accounting for potential exposure-mediator interaction in Cox proportional hazard models using 

the following expressions: 

𝑁𝐷𝐸𝑃𝐻 =
exp(𝛾1𝑎) {1 + exp(𝛾2 + 𝑦3𝑎 + 𝛽0 + 𝛽1𝑎∗ + 𝛽2

′ 𝑐)}

exp(𝛾1𝑎∗) {1 + exp(𝛾2 + 𝑦3𝑎∗ + 𝛽0 + 𝛽1𝑎∗ + 𝛽2
′ 𝑐)}

 

𝑁𝐼𝐸𝑃𝐻 =
{1 + exp(𝛽0 + 𝛽1𝑎∗ + 𝛽2

′ 𝑐)}{1 + exp(𝛾2 + 𝑦3𝑎 + 𝛽0 + 𝛽1𝑎 + 𝛽2
′ 𝑐)}

{1 + exp(𝛽0 + 𝛽1𝑎 + 𝛽2
′ 𝑐)}{1 + exp(𝛾2 + 𝑦3𝑎 + 𝛽0 + 𝛽1𝑎∗ + 𝛽2

′ 𝑐)}
 

These expressions are from extensions of the previously described Cox proportional hazard 

outcome and mediator models and include an exposure-mediator interaction term,  𝜆3.127 To 
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simplify these expressions, we assumed 𝑎 − 𝑎∗ = 1, 𝛽0 = 0, and 𝑐 = 0 for binary variables and  

standardized continuous variables.  

Sensitivity Analyses, results  

We found no appreciable difference between minimally adjusted and fully adjusted total 

effect models (Table 3.5). Including comorbidities and physician density as additional covariates 

in total effect models had no effect or slightly attenuated effect sizes (Table 3.6, Table 3.7). Finally, 

accounting for potential exposure-mediator interaction attenuated the estimated natural indirect 

effect and proportion mediated through CVD for both pollutants (Table 3.8).  
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Supplementary Tables 

Table 3.5: Minimally adjusted total effect between air pollutant and dementia 

Pollutant HRa (95% CI) Estimatea (SE) 

NO2
b 1.09 (1.04-1.13) 61.3x10-5 (13x10-5) 

PM2.5
b 1.28 (1.07-1.53) 200x10-5 (<100x10-5) 

HR=hazard ratio; CI=confidence interval; SE=standard error 
a Adjusted for age, sex, education, income 
b NO2 per 5 ppb, PM2.5 per 10 ug/m3 

 

Table 3.6: Total effect of ambient air pollutant with further adjustment for comorbidities 

Pollutant Cox PH model 

Total effect 

HRa,b (95% CI) 

Aalen model 

Total effect 

Estimatea,b (SE) 

NO2
c 1.08 (1.00 – 1.16) 73.1x10-5 (22.8x10-5) 

PM2.5
c 1.15 (0.93 – 1.42) 200x10-5 (100x10-5) 

HR=hazard ratio; CI=confidence interval; SE=standard error 
a Adjusted for age, sex, education, income, marital status, smoking status, weight 

status, physical activity, rural residence, northern region, diabetes, hypertension, 

traumatic brain injury; area level: percent recent immigrants, unemployed, less than 

high school education 
b Total effect from a total effect model (not product method) 
c NO2 per 5 ppb, PM2.5 per 10 ug/m3 
 

Table 3.7: Total effect of ambient air pollutant with further adjustment for physician 

density 

Pollutant 

Cox PH model 

Total effect 

HRa,b (95% CI) 

Aalen model 

Total effect 

Estimatea,b (SE) 

NO2
c 1.08 (1.00-1.16) 70.1x10-5 (23.9x10-5) 

PM2.5
 c 1.15 (0.93-1.42) 200x10-5 (100x10-5) 

HR=hazard ratio; CI=confidence interval; SE=standard error 

a Adjusted for age, sex, education, income, marital status, smoking status, weight 

status, physical activity, rural residence, northern region, physician density; area 

level: percent recent immigrants, unemployed, less than high school education  
b Total effect from a total effect model (not product method) 
c NO2 per 5 ppb, PM2.5 per 10 ug/m3 
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Table 3.8: Natural direct and indirect effects of ambient air pollutant through 

cardiovascular disease accounting for exposure-mediator interaction (Cox proportional 

hazards model) 

Pollutant Natural direct effect 

HRa (95% CI) 

Natural indirect effect  

HRa (95% CI) 

Proportion 

mediated 

NO2
b 1.14 (1.03 – 1.24) 1.00 (1.00 – 1.01) 1% 

PM2.5
b 1.39 (1.01 – 1.89) 1.01 (1.00 – 1.03) 5% 

HR=hazard ratio; CI=confidence interval 
a Adjusted for age, sex, education, marital status, income quintile, smoking 

status, body-mass index, physical activity, rural residence, and northern 

region; area level: recent immigrants, unemployment, and education 
b NO2 per 5 ppb, PM2.5 per 10 ug/m3 
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Chapter 3, in full, is a reprint of the material as it appears in the International Journal of 

Epidemiology 2020. Ilango Sindana D; Chen, Hong; Hystad, Perry; van Donkelaar, Aaron; 

Kwong, Jeffrey C, Tu, Karen; Martin, Randall V; Benmarhnia Tarik. The dissertation author was 

the primary investigator and author of this paper.  
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4. Long-term exposure to ambient air pollution and cognitive function among 

Hispanics/Latinos in San Diego, California 

Sindana D. Ilango, Kevin Gonzalez, Linda Gallo, Matthew A. Allison, Jianwen Cai, Carmen R. 

Isasi, H. Dean Hosgood, Priscilla M Vasquez, Donglin Zeng, Marion Mortamais, Hector 

Gonzalez, Tarik Benmarhnia 

4.1. Abstract 

Background: Hispanic/Latinos in the US are more likely to live in neighborhoods with greater 

exposure to air pollution and are projected to have the largest increase in dementia among 

race/ethnic minority groups. 

Objective: We examined the associations of air pollution with performance on cognitive function 

tests in Hispanics/Latinos. 

Methods: We used data from the San Diego site of the Hispanic Community Health Study/Study 

of Latinos, an ongoing cohort of Hispanics/Latinos. This analysis focused on individuals ≥45 years 

of age who completed a neurocognitive battery examining overall mental status, verbal learning, 

memory, verbal fluency, and executive function (n=2,089). Air pollution (PM2.5 and O3) before 

study baseline was assigned to participants’ zip code. Logistic and linear regression were used to 

estimate the association of air pollution on overall mental status and domain-specific standardized 

test scores. Models accounted for complex survey design, demographic, and socioeconomic 

characteristics.  

Results: We found that for every 10-ug/m3 increase in PM2.5, verbal fluency worsened (β: -0.21 

[95% CI: -0.68, 0.25]). For every 10-ppb increase in O3, verbal fluency and executive function 
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worsened (β: -0.19 [95% CI: -0.34, -0.03]; β: -0.01 [95% CI: -0.01, 0.09], respectively). We did 

not identify any detrimental effect of pollutants on other domains. 

Conclusion: Although we found suggestions that air pollution may impact verbal learning and 

executive function, we observed no consistent or precise evidence to suggest an adverse impact of 

air pollution on cognitive level among this cohort of Hispanics/Latinos.  

4.2. Introduction 

As average life-expectancy increases in the US and worldwide, there is a heightened public 

health concern about impaired cognitive function with advancing age. Previous literature indicates 

that race/ethnic minorities are at higher risk for age-related cognitive dysfunction compared to 

non-Hispanic Whites.9,128 The Hispanic/Latino population has been projected to have the largest 

increase in Alzheimer’s Disease and related dementias (ADRD) among other race/ethnic minority 

groups over the next four decades.128 Cognitive impairment frequently precedes dementia. Thus, 

improved understanding of cognitive impairment and its determinants can reveal important 

insights into dementia prevention. Furthermore, understanding these determinants in 

Hispanic/Latino populations can inform targeted intervention strategies. In this study, we evaluate 

air pollution as a potential determinant of cognitive function.     

Identifying ubiquitous and modifiable risk factors, such as ambient air pollution, is of key 

interest because they are highly prevalent, affect all populations, and can have multiple benefits if 

effectively intervened upon.129,130 Ambient air pollution is a mixture of particulate matter and 

gaseous pollutants. Emerging evidence suggests that increased exposure to air pollution is 

associated with cognitive impairment and dementia among older adults.15,16 Air pollutants 

including fine particulate matter (PM2.5) and ozone (O3) can impact the brain through both direct 

and indirect pathways.24 First, pollutants can directly reach the brain through the nasal pathway or 
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through systemic circulation by crossing the blood brain barrier and trigger 

neuroinflammation.22,24,28 Secondly, pollutants can produce inflammation in other organs and 

tissues (e.g., cardiovascular systems) that can indirectly affect the central nervous system.22,24,29 

Unlike previous studies that have been conducted in predominantly white populations,55–

59 this study investigates the association between air pollution and cognitive function in a 

Hispanic/Latino population. Examining this relationship in diverse race/ethnic populations, 

specifically in Hispanics/Latinos, is crucial given the expected relative increase in ADRD 

prevalence over the next 40 years.128 Furthermore, there is a strong race/ethnic disparity in 

neighborhood environments.131 In California, Hispanics/Latinos and Blacks are more likely to live 

in socioeconomically segregated communities that are disproportionally exposed to higher levels 

of ambient air pollution than White, Asian/Pacific Islander, and Native American populations.132 

These disparities highlight the need to examine the effect of air pollution on cognitive function 

among race/ethnic groups to inform the need to promote more equitable access to healthier 

neighborhoods. Currently, there is limited information available on the effect of air pollution on 

cognitive function among Hispanics/Latinos, the largest ethnic group in California.58,59,132 Thus, 

we aimed to examine associations between long-term exposure to air pollution and cognitive 

function in the San Diego metropolitan area using data from a representative cohort of community-

dwelling Hispanic/Latino adults.  

4.3. Methods 

Description of Study Participants 

This study used data from the Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL), an ongoing, prospective cohort study of 16,415 community-dwelling 

Hispanic/Latino adults from four U.S. sites: Bronx, New York; Chicago, Illinois; Miami-Dade, 
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Florida; and San Diego, California. Details of this study have been previously published.133 

Briefly, adult participants aged 18-74 years were recruited for the study, with a two-stage 

probability sampling of households. Participants attended a clinic visit in 2008-2011 which 

included a clinical examination and questionnaire about demographic background and health 

conditions. Middle- and older-aged adults aged 45 years and older further underwent 

neurocognitive testing using a battery of five tests (see details below). The present study focuses 

on individuals who completed neurocognitive testing and reside in the San Diego field center  

catchment area. This analysis includes middle-aged adults to capture any early indication of 

dementia. The study population is predominantly Mexican heritage (immigrants, second and third 

generations). Out of 4,086 participants in the San Diego site, n=1,658 were younger than 45 and 

were excluded from the analyses. An additional n=339 participants were excluded for missing 

data. The final study included 2,089 participants. Differences in age, sex, Mexican heritage, and 

education level between those included and excluded in the study are presented in Table 4.3. This 

study received approval from the Institutional Review Board of the participating study site.  

Cognitive Function 

The primary outcome for this study was cognitive score, measured by performance on a 

neurocognitive battery of five tests at a single time point. Examinations were administered at the 

clinic visit by study staff trained and supervised by doctorate-level, licensed, clinical 

psychologists. The battery examined domains associated with aging and included a screener for 

overall mental status and tests of episodic verbal learning, memory, verbal fluency, and executive 

function.  

Detailed information about the test battery and their application within HCHS/SOL has been 

previously published.134 Briefly, the test included the Six-Item-Screener (SIS), Brief-Spanish 
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English Verbal Learning Test (B-SEVLT Sum and Recall), Word Fluency (WF), and Digit Symbol 

Substitution test (DSST). The SIS is a mental status test derived from the Mini-Mental State 

Examination that includes three-item recall and three-item temporal orientation probes.135,136 

Scores range from 1 to 6, with higher scores indicating better performance. The measure of overall 

mental status was dichotomized in line with previous work in this cohort, with normal mental 

status defined as SIS > 4.134 The B-SEVLT is an episodic learning and memory test. Participants 

were presented with and asked to recall a list of 15 common words immediately (B-SEVLT Sum) 

and after an interference task and short delay (B-SEVLT Recall). The total score for each is the 

number of correctly recalled words across three trials.137 WF is a phonemic verbal fluency test. 

Participants were asked to recite as many words beginning with the letters “F” and “A” within 60 

seconds. The total score is the number of correctly generated words during this time span.134 The 

DSST is a mental processing speed and executive function measure. Participants were asked to 

encode symbols to numbers. The total score is the number of correctly coded symbols.138 Domain-

specific test scores were transformed into z-scores using the means and standard deviations of the 

measures in the study population, to allow comparability of results across the different tests.  

Air Pollution Measurement  

The air pollutants PM2.5 (ug/m3) and O3 (ppb) were the primary exposures for this study, 

specifically, a four-year average of daily estimates at the zip-code level. Neighborhood exposure 

to PM2.5 and O3 was estimated using 24-hour daily means and 8-hour daily maximums, 

respectively, sampled and analyzed by the US Environmental Protection Agency Air Quality 

System. Measured concentrations within a 20 km radius of each population-weighted centroid 

were used for interpolation.139 Values were estimated using an inverse distance weighting each 

point of interest; this gives greater importance to values reported by monitoring stations closer to 
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the point of interest than monitoring stations farther away in distance.45,140 We assumed 

participants resided in the same zip code and estimated long-term exposure with a running average 

of daily estimates the four years before study entry. ArcMap10.3 was used to generate air pollution 

estimates.  

Covariates 

Demographic and socioeconomic characteristics were obtained from questionnaires 

administered at the clinic visit. The following covariates were considered in this analysis: 

Hispanic/Latino heritage (Mexican vs. not), age, sex (male or female), educational attainment (less 

than 12 years, 12 years or equivalent, or greater than 12 years) and household income (less than 

$20k, $20k-$40k, or more than $40k).  

Statistical Analysis 

The study population was described with means (SD) and frequencies (%) of demographic 

characteristics. All analyses were conducted for each pollutant, evaluating exposures as both 

continuous (per 10 ug/m3 and 10 ppb for PM2.5 and O3, respectively) and categorical variables (cut 

points at the 5th, 25th, 50th, 75th, and 95th percentiles) to explore potential non-linear dose-responses. 

The primary outcome of interest was cognitive score measured at a single timepoint. Since scores 

were transformed, results reflect a change in outcome relative to a standard deviation increase. We 

used logistic regression models for survey data to estimate the effect of air pollution on normal 

mental status function (SIS > 4). Linear regression models for survey data were generated to 

estimate the effect of air pollution exposure on performance on each domain-specific test. For all 

tests, high scores reflect better performance. Models were adjusted for Hispanic/Latino heritage, 

age, sex, education, and income; this is a minimal set of variables, decided a priori, that may 

confound the relationship between air pollution and cognitive function. In sensitivity analyses, we 
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stratified the domain-specific models by age group (<55 years and ≥ 55 years). All descriptive and 

regression models accounted for the complex sampling design of the HCSC/SOL, to improve 

generalizability to the target population. Survey weights were calibrated to 2010 US census 

characteristics by age, sex, and Hispanic/Latino heritage for each study site to account for 

nonresponse, oversampling of subpopulations, and spatial structure of participants. All analyses 

were executed using the survey function in Stata v. 16. 

4.4. Results 

The mean age of the target population was 55.3 (SD: 9.5) years. Approximately 55% of 

the population were female and 70% reported an annual household income of less than $40,000. 

The mean exposure concentration was 12.0 ug/m3 (SD: 1.3, range: 10.2 to 13.3) and 50.1 ppb (SD: 

4.1, range 39.4 to 52.6) for PM2.5 and O3, respectively.  
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Table 4.1: Characteristics of study population (unweighted n=2,089) 

Characteristic Unweighted N (%) 

Age  

   =< 54 1127 (52.72) 

   55-64 711 (30.88) 

   >=65 251 (16.60) 

Sex  

   Female 1381 (55.46) 

   Male  708 (44.54) 

Hispanic/Latino heritage  

   Mexican 1960  (93.84) 

   Not Mexican 129 (6.16) 

Marital status  

   Single 239 (10.49) 

   Married/Living with partner 1304 (63.27) 

   Separated/Divorced/Widower 546 (26.33) 

Education  

   Less than high school 887 (39.53) 

   High school or equivalent 420 (18.42) 

   Greater than high school 782 (42.05) 

Income  

   Less than $20k 893 (41.57) 

   >20k - <$40k 742 (31.00) 

   More than $40k 454 (27.43) 

 

Approximately 90% of the study population were classified as normal cognitive function 

(n=1,859). On average, individuals had raw scores of SIS: 5.4 (SD: 0.03, range: 0 to 6),  B-SEVLT 

Sum: 23.7 (SD: 0.2, range 3 to 40), B-SEVLT Recall: 8.9 (SD: 0.1, range: 0 to 15), WF: 20.8 (SD: 

0.4, range: 1 to 45), and DSST: 39.3 (SD: 0.6, range: 0 to 81).  

In regression analyses, increased exposure to PM2.5 and O3 was associated with lower odds 

of normal mental status (SIS > 4). For domain-specific measures, standardized performance on 

cognitive function exams was marginally worse for WF (β: -0.21 SD; 95% CI: -0.68, 0.25) but 

slightly better for B-SEVLT-Sum (β=0.89 SD; 95% CI: 0.42, 1.35), SEVLT-Recall (β=0.67 SD; 

95% CI: 0.20, 1.13), and DSST (β=0.13 SD; 95% CI: -0.33, 0.60) for every 10 ug/m3 increase in 

PM2.5. For every 10 ppb increase in O3, we observed worse performance for WF (β= -0.19 SD; 
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95% CI: -0.34, -0.03) and DSST (β= -0.01 SD; 95% CI: -0.12, 0.09) and slightly better 

performance in standardized cognitive function scores for B-SEVLT Sum (β=0.12 SD; 95% CI: -

0.01, 0.25), and SEVLT Recall (β=0.15 SD; 95% CI: 0.02, 0.29) (Table 4.2). 

Table 4.2: Associations between air pollution and cognitive performance 

Test PM2.5 O3 

 Overall Mental Status OR (95% CI) 

SIS>4 0.67 (0.05, 8.39) 0.69 (0.34, 1.44) 

 

 Domain-Specific Standardized Scores β (95% CI) 

B-SEVLT-Sum 0.89 (0.42,  1.35) 0.12 (-0.01, 0.25) 

B-SEVLT-Recall 0.67 (0.20, 1.13) 0.15 (0.02, 0.29) 

WF -0.21 (-0.68, 0.25) -0.19 (-0.34, -0.03) 

DSST 0.13 (-0.33, 0.60) -0.01 (-0.12, 0.09) 
*Models adjusted for age, sex, heritage, marital status, education, and income 

*Abbreviations: PM2.5 (per 10 ug/m3); O3 (per 10 ppb); SIS: Six-Item-Screener; B-

SEVLT: Brief Spanish English Verbal Learning Test; WF: Word Fluency; DSST: 

Digit Symbol Substitution Test. Higher scores indicate better performance for all tests. 
    

For PM2.5, we observed some indication of worsening performance on DSST for PM2.5 

concentrations greater than the 50th percentile. We found no consistent pattern of worse cognitive 

performance with increasing exposure levels for either B-SEVLT test, WF, or overall mental status 

(Figure 4.1, Table 4.5). Similarly, we observed decreasing performance on DSST for higher O3 

exposure groups and no pattern of worse cognitive performance with higher exposure levels for 

B-SEVLT exams, WF, or overall mental status (Figure 4.1, Table 4.6).  

In analyses stratified by age group, we found suggestions of a stronger effect of air 

pollution on worse performance on WF and DSST for PM2.5, and WF for O3 in the older age group 

(Table 4.7).   
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Figure 4.1: Domain-specific associations between standardized scores of cognitive function 

and air pollution percentile groups. Lowest exposure group (<5th percentile) is reference. 

A) Brief Spanish English Verbal Learning Test (B-SEVLT) - Sum; B) B-SEVLT-Recall; C) 

Word Fluency; D) Digit Symbol Substitution Test    

4.5. Discussion 

This study examined the effect of exposure to PM2.5 and O3 on performance in several 

domains of cognitive function in a cohort of middle- and older-aged Hispanic/Latino adults in San 

Diego, CA. We observed that increased exposure to air pollutants was marginally associated with 

lower mental status, poorer verbal fluency and worse executive function; however, these results 
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were not precise. We did not identify any detrimental influence of PM2.5 and O3 exposure on 

measures of learning or memory included in this study. Overall, we did not find consistent or 

robust evidence for a role air pollution exposure in worse cognitive function across the considered 

domains in this cohort of Hispanic/Latino adults.  

In contrast with the present findings, previous studies have observed a link between 

particulate matter and worse verbal learning 58, abstraction 62, working memory 55, and orientation 

55. Previous studies have also found exposure to ozone may be associated with reduced 

performance in neurocognitive tests of short-term memory, attention, and perceptual function, and 

executive function.57,58 Although it is biologically plausible that air pollution can produce a 

neuroinflammatory response resulting in structural brain changes26,27, findings in the present study 

were imprecise as indicated by wide confidence intervals. This may be explained by the relatively 

young age of our cohort (mean age is 55.26 years), the selection of our participants, and the limited 

variability of air pollution exposure in our study population.  

Potential explanations for our findings first include the study population which comprised 

middle- and older- aged adults to potentially capture the prodromal stages of cognitive decline that 

develops at earlier ages. This selection of middle-aged adults may attenuate the effect of air 

pollution on cognitive function because notable influences on cognitive function may not be 

observed until later in life. We found suggestions of a stronger effect among the older age group 

and we recommend future cohorts of Hispanics/Latinos that include a wider age range of older 

adults to replicate this work.  

Second, it is possible that Hispanic/Latinos have higher cognitive resilience and are less 

vulnerable to the effects of air pollution on cognitive function. This resilience is observed in a 

recent study of air pollution and cognitive decline in New York, where less decline in global 
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cognitive function was observed among Hispanics compared to non-Hispanic White and Black 

participants, across PM2.5 and other pollutants.141 

Third, our study area focused on a relatively small geographic area within San Diego 

county. Despite applying survey weights to obtain a representative sample of the target population, 

we may not have had enough exposure heterogeneity to detect substantive effects. In this study 

population, exposure to fine particulate matter and ozone ranged from 10 to 13 ug/m3 and 39 to 53 

ppb, respectively. In contrast, a cohort study in Los Angeles, CA of the same pollutants had 

exposures ranging from approximately 6 to 29 ug/m3 and 21 to 59 ppb.58  We suggest future studies 

explore diverse geographical areas in order to capture various levels of air pollution exposure.  

We acknowledge limitations in our study. Our participants were assigned individual 

exposure to pollutants based on residential zip codes reported at study baseline. These 

measurements do not account for residential movement and each zip code is assigned a uniform 

concentration. Furthermore, we assumed that exposure is fully experienced at the residential zip 

code. Exposure misclassification may also arise due to seasonal and traffic characteristics that are 

not accounted for in our air pollution estimates. While we acknowledge some misclassification 

due to residential movement varying time spent at home, and modeling method, we expect this 

misclassification to be unrelated to cognitive performance. Any bias due to this misclassification 

would underestimate estimates. 

In addition, we examined cognitive function measured at one time-point. This is 

susceptible to unmeasured confounding due to socioeconomic and sociocultural characteristics 

that affect both neighborhood residence and performance on exam. We recommend longitudinal 

studies of cognitive decline to examine within-person changes in cognitive function to overcome 

this challenge.  
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In this study, we examined the effect of long-term exposure to air pollution on cognitive 

function in a well-characterized cohort of Hispanic/Latino adults in San Diego. We did not find 

consistent evidence of an association between increased exposure to PM2.5 and O3 and worse 

performance on cognitive function exams. Further work among ethnically diverse older study 

populations and with repeated measures of cognitive function are important to confirm or 

challenge these findings. 

4.6. Appendix 

 

Table 4.3: Comparison of age, sex, Hispanic/Latino, and education characteristics for those 

included (n=2,089) and excluded (n=339) from study due to missingness 

Characteristic Not Missing (%) Missing (%) Total 

Age    

   <54 52.52 46.24 51.61 

   55-64 30.88 33.29 31.23 

   65+ 16.60 20.47 17.16 

Sex    

   Female 55.46 62.44 56.47 

   Male 44.54 37.56 43.53 

Mexican Status    

   Not Mexican 6.16 3.56 5.80 

   Mexican 93.84 96.44 94.20 

Education    

   Less than High School (HS) 39.53 42.76 39.97 

   HS or Equivalent 18.42 19.23 18.53 

   Greater than HS 42.05 38.01 41.50 
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Table 4.4: Unadjusted associations between air pollution and cognitive level   

Test PM2.5 O3 

Overall Mental Status OR (95% CI) 

SIS>4 0.73 (0.07, 7.30) 

 

0.86 (0.42, 1.76) 

Domain-specific Standardized Scores β (95% CI) 

B-SEVLT-Sum 0.83 (0.34, 1.33) 0.16 (-0.02, 0.34) 

B-SEVLT-Recall 0.61 (0.11, 1.10) 0.19 (-0.02, 0.40) 

WF -0.23 (-0.82, 0.35) -0.15 (-0.35, 0.04) 

DSST 0.18 (-0.52, 0.88) 0.11 (-0.15, 0.36) 

*Abbreviations: PM25 (per 10 ug/m3); O3 (per 10 ppb); SIS: Six-Item-

Screener; B-SEVLT: Brief Spanish English Verbal Learning Test; WF: 

Word Fluency; DSST: Digit Symbol Substitution Test. Higher scores 

indicate better performance for all tests. 

 

Table 4.5: Associations between fine particulate matter percentile groups and cognitive 

level 

Test <5 [ref] 5-25 25-50 50-75 75-95 95+ 

Overall Mental Status OR (95% CI) 

SIS > 4 -- 2.01 (0.57, 7.10) 1.81 (0.61, 5.40) 0.95 (0.28, 3.22) 1.98 (0.58, 6.76) 2.85 (0.79, 10.21) 

 
Domain-Specific Standardized Scores β (95% CI) 

SEVLT-Sum -- 0.25 (0.01, 0.50) 0.32 (0.08, 0.55) 0.30 (0.02, 0.58) 0.44 (0.12, 0.68) 0.46 (0.18, 0.74) 

SEVLT-Recall -- 0.09 (-0.15, 0.33) 0.12 (-0.13, 0.37) 0.16 (-0.11, 0.42) 0.22 (-0.02, 0.47) 0.27 (0.02, 0.53) 
WF -- 0.07 (-0.10, 0.23) 0.03 (-0.19, 0.24) 0.09 (-0.10, 0.27) 0.07 (-0.09, 0.23) -0.05 (-0.27, 0.17) 

DSST -- 0.12 (-0.04, 0.28) 0.03 (-0.11, 0.18) 0.14 (-0.02, 0.31) 0.18 (0.01, 0.36) -0.04 (-0.31, 0.23) 

*Models adjusted for age, sex, heritage, marital status, education, and income 

*Abbreviations: SIS: Six-Item-Screener; B-SEVLT: Brief Spanish English Verbal Learning Test; WF: Word Fluency; DSST: Digit 
Symbol Substitution Test. Higher scores indicate better performance for all tests. 

 

Table 4.6: Associations between ozone percentile groups and cognitive level 

Test <5 [ref] 5-25 25-50 50-75 75-95 95+ 

Overall Mental Status OR (95% CI) 

SIS > 4 -- 0.13 (0.04, 0.49) 0.11 (0.03, 0.46) 0.13 (0.03, 0.47) 0.16 (0.04, 0.55) 0.24 (0.06, 1.06) 

       
Domain-Specific Standardized Scores β (95% CI) 

SEVLT-Sum -- -0.10 (-0.23, 0.02) -0.11 (-0.22, -0.001) 0.03 (-0.12, 0.18) 0.04 (-0.09, 0.17) 0.12 (-0.05, 0.29) 

SEVLT-Recall -- -0.05 (-0.16, 0.06) -0.04 (-0.16, 0.08) 0.11 (-0.04, 0.26) 0.06 (-0.09, 0.20) 0.16 (0.03, 0.30) 
WF -- -0.05 (-0.34, 0.23) -0.14 (-0.41, 0.14) -0.19 (-0.48, 0.10) -0.15 (-0.43, 0.13) -0.25 (-0.55, 0.06) 

DSST -- 0.06 (-0.06, 0.18) -0.03 (-0.13, 0.06) -0.01 (-0.13, 0.11) 0.04 (-0.10, 0.18) -0.13 (-0.37, 0.11) 

*Models adjusted for age, sex, heritage, marital status, education, and income 

*Abbreviations: SIS: Six-Item-Screener; B-SEVLT: Brief Spanish English Verbal Learning Test; WF: Word Fluency; DSST: Digit Symbol 

Substitution Test. Higher scores indicate better performance for all tests. 
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Table 4.7: Associations between air pollution and cognitive performance, by age group 

Test PM2.5 O3 

Ages 45 to 54 years (n=1127) 

Overall Mental Status OR (95% CI) 

SIS>4 1.63 (0.12, 23.29) 0.90 (0.43;1.97) 

Domain-Specific Standardized Scores β (95% CI) 

B-SEVLT-Sum 1.26 (0.69, 1.83) 0.14 (-0.04, 0.32) 

B-SEVLT-Recall 1.00 (0.44, 1.55) 0.12 (-0.05, 0.29) 

WF 0.17 (-0.34, 0.68) -0.02 (.0.22, 0.18) 

DSST 0.25 (-0.25, 0.74) -0.12 (-0.25, 0.01) 

   

55 years and older (n=962) 

Overall Mental Status OR (95% CI) 

SIS>4 0.35 (0.01, 13.16) 0.71 (0.29, 1.68) 

Domain-Specific Standardized Scores β (95% CI) 

B-SEVLT-Sum 0.35 (-0.28, 0.97) 0.08 (-0.07, 0.22) 

B-SEVLT-Recall 0.15 (-0.50, 0.80) 0.15 (-0.05, 0.35) 

WF -0.68 (-1.37, -0.00) -0.35 (-0.54, -0.16) 

DSST -0.07 (-0.93, 0.78) 0.07 (-0.09, 0.23) 

*Models adjusted for age, sex, heritage, marital status, education, and income 

*Abbreviations: PM2.5 (per 10 ug/m3); O3 (per 10 ppb); SIS: Six-Item-Screener; B-SEVLT: Brief Spanish 

English Verbal Learning Test; WF: Word Fluency; DSST: Digit Symbol Substitution Test. Higher scores 

indicate better performance for all tests. 
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Chapter 4, in full, has been submitted for publication of the material as it may appear in 

the Journal of Alzheimer’s Disease. Ilango, Sindana D; Gonzalez, Kevin; Gallo, Linda; Allison, 

Matthew A; Cai, Jianwen; Isasi, Carmen R; Hosgood, Dean H; Vasquez, Priscilla M; Zeng, 

Donglin; Mortamais, Marion; Gonzalez, Hector M; Benmarhnia, Tarik. The dissertation author 

was the primary investigator and author of this paper. 
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5. Discussion 

5.1. Summary of dissertation research 

In the last decade, there has been a surge of epidemiologic studies investigating the effect 

of air pollution on dementia and dementia-related outcomes. The compelling evidence resulted in 

the inclusion of air pollution exposure in later life as a potentially modifiable risk factor in the 

2020 Lancet Commission report on dementia.142 In this report, an estimated 2.3 percent of 

dementia cases, worldwide, are attributable to living in urban areas with high air pollution 

exposure.142 Cognitive impairment can be an early indicator of dementia, thus understanding the 

effect of air pollution on cognitive function may also improve our understanding of how air 

pollution impacts the brain. Although the evidence base on air pollution and dementia appears to 

be consistent and growing, there are some methodological concerns which are discussed in the 

literature but have not been adequately assessed. Addressing these concerns will improve the 

internal and external validity of findings which can help shape our understanding of disease 

etiology and effective intervention strategies. 

The purpose of this dissertation was to examine the role of chronic exposure to air pollution 

on dementia and cognitive impairment. This research expands the current literature by addressing 

methodological challenges common in epidemiologic research of environmental exposures and 

aging-related outcomes. The first aim of this dissertation underscores the importance of 

considering competing events, an area that is typically not discussed or clearly accounted for in 

studies of air pollution and dementia. This study demonstrated multiple approaches by detailing 

the difference between the target inference, computation, and statistical estimand. This work 

expands on the previous reviews on competing events by applying a causal framework to explain 
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the differences between the compared approaches and providing specific recommendations to 

consider competing events in studies of air pollution and dementia.  

The second aim of this dissertation examined the mediating role of cardiovascular disease 

in the causal pathway between air pollution and incident dementia. Several papers discussed 

cardiovascular disease as a potential intermediate to explain the association, but this had not been 

formally investigated. An adverse relationship between increased exposure to air pollution and 

incident dementia had been established in a population-based cohort in Ontario, Canada.42 This 

paper expands on this work by applying a causal mediation analysis to decompose the total effect 

into its component natural direct and indirect effects through cardiovascular disease. We found 

that some of the effect was mediated by air pollution, with a greater proportion mediated for PM2.5 

(4% on the additive scale, 21% on the multiplicative scale) than NO2 (2% on the additive scale, 

9% on the multiplicative scale).  

The final aim of this study addressed the lack of race/ethnic diversity and generalizability 

of the current research on air pollution and cognitive outcomes. In this aim, the relationship 

between air pollution and multiple domains of cognitive function was examined in a cohort of 

Hispanic/Latino adults in San Diego. Most of the previous research on air pollution, dementia, and 

dementia-related outcomes have been conducted in predominantly White populations. To expand 

the external validity of present findings it is important to study these same research questions in 

understudied, vulnerable populations. Furthermore, understanding the relationship in specific 

subpopulations can inform tailored intervention efforts. Hispanics/Latinos are a minority group 

that  are projected to have the largest increase in Alzheimer’s disease and related dementias by 

2050.128 Similarly, Hispanic/Latino adults are a minority group disproportionately exposed to 
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higher levels of air pollution.132 In this study, we found limited evidence to suggest a relationship 

between air pollution and cognitive impairment among this cohort of Hispanic/Latino adults.   

This dissertation advances the field of air pollution and dementia. It discusses a source of 

selection bias that is common but typically not well-addressed in studies of air pollution and 

dementia. The tutorial presented in Chapter 2 will increase the accessibility of methods to account 

for competing events and encourage stronger methodological discussions to strengthen the 

evidence base. Chapter 3 contains the first application of causal mediation to disentangle the 

relationship between air pollution and dementia. Causal mediation analyses are useful for two 

primary reasons. First, they are a tool that can be applied to investigate disease etiology through 

population studies. Second, they can inform prevention efforts by identifying intermediates or 

specific vulnerable populations where interventions would have effective reductions in disease. 

This work has motivated subsequent work answering similar research questions.44 Finally, Chapter 

4 is the first study of air pollution and cognitive function in a cohort of Hispanic/Latino adults, 

expanding the external generalizability of previous research on this topic.  

5.2. The importance of understanding the relationship between air pollution and dementia 

Understanding the effect of air pollution on dementia is an important area of research for 

several reasons. First, it improves our knowledge of dementia etiology. Biologic studies support a 

“neuroinflammation hypothesis”, where innate immune cells and microglia are affected by air 

pollution-induced central nervous system disruptions, directly and indirectly impacting risk of 

neurodegenerative diseases in later life.24 Identifying these pathways from a population-level lens 

can help narrow the research focus to understand dementia etiology.  

Second, as there is currently no treatment to reverse the course of the disease, research 

focus has expanded to identify modifiable risk factors. Air pollution is a unique modifiable 
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exposure that can be modified by both individual behaviors and population-level policies and 

regulations. Mitigation strategies to reduce greenhouse emissions include economic policies (e.g., 

to incentivize fuel standards), physical policies (e.g., land-use policies), soft policies (e.g., 

advertising campaigns to promote lifestyle and behavioral changes), and knowledge policies (e.g., 

the support of research).143 Implementation of such policies and regulations can have multiple co-

benefits including improved physical and behavioral health outcomes and overall wellbeing.143 

Even if the magnitude of the observed effect sizes between air pollution and dementia is small, 

reducing air pollution by a small amount across a large population  can have lasting reductions of 

dementia and improved population health.  

Third, air pollution has differential impacts on population health. Health is closely 

interlinked with where an individual lives, as residential address determines access to health care, 

healthy food, green spaces, quality education, and air pollution levels. For example, 

Hispanics/Latinos are more likely to live in socioeconomically segregated communities that are 

disproportionally exposed to higher levels of ambient air pollution than White, Asian/Pacific 

Islander, and Native American populations.132 Furthermore, Hispanics/Latinos are projected to 

have the largest increase in Alzheimer’s Disease and related dementias (ADRD) among other 

minority groups over the next four decades.128 These disparities highlight the need to examine the 

effect of air pollution on dementia and dementia-related outcomes among Hispanics/Latinos to 

promote equal access to healthy neighborhoods. Understanding the specific relationship in specific 

race/ethnic minority groups is valuable for identifying disproportionately vulnerable populations 

and for providing societal basis for health disparities.  

5.3. Air pollution, climate change, and aging-related health outcomes 



84 

Research on air pollution and dementia can be extended to underline the importance of 

studying how climate change may impact the health of older adults. In the context of climate 

change, extreme weather conditions and events are becoming more frequent, more severe, and less 

predictable; all are linked to affecting air pollution levels and adverse health outcomes like heart 

disease, respiratory conditions, and premature mortality.17,144 Older adults are less resilient to 

climate change because they are more likely than younger populations to have impaired physical 

function, comorbidities, compromised immune systems, and to be more socially isolated.17 

Expanding public health research to examine the effects of multiple aspects of climate change 

(e.g., ambient air pollution, extreme weather events) and aging-related health outcomes can benefit 

older adults and the greater population.  

5.4. Recommendations for future work in studies of air pollution and dementia 

This dissertation research is not without limitations. First, several assumptions about 

unmeasured confounding, causal identification, critical windows of exposure, and model 

specification are made throughout analyses. For the studies in this dissertation, the robustness of 

findings was tested with various sensitivity analyses. However, there are still gaps in this body of 

work where future research is recommended.  

First, further work on disease etiology is recommended. In Chapter 3, we considered a 

broad definition of cardiovascular disease. This work can be expanded by investigating specific 

disease pathways by exploring multiple dependent mediators.145,146 The application of causal 

mediation analysis in studies with available information on biomarkers and brain scans can 

immensely add to this field.  

Second, selection bias is inherent in studies of older adults. Selection bias due to competing 

events was addressed in Chapter 2 of this dissertation.  However, selection bias may also arise 
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from selective entry into the study, as individuals who are dementia free at baseline are likely a 

healthier group than those who have been excluded because of prevalent disease. Furthermore, 

there may be selective attrition from the study due to reasons apart from competing events. 

Additional weighting approaches, principal stratification, and multiple imputation can be applied 

to account for selection bias in studies of older adults.147  

Next, misclassification of the exposure and outcome should be formally evaluated. Much 

of the reviewed literature and this dissertation research relied on residential addresses to determine 

exposure to air pollution. Residential movement and alternative methods to assign exposure is 

recommended to understand the effect of exposure misclassification. Air pollution is also 

considered at different critical windows (e.g., exposure before baseline, before diagnosis) which 

could be inferentially problematic given the secular trends in air pollution. For example, given the 

overall decline in PM2.5 in North America148, studies with rolling entry and exposure assigned 

before the baseline study visit may result in systematically less exposure for individuals who 

participated in the study during later periods. This can be accounted for by considering such secular 

trends with time-varying covariates and alternative exposure windows as sensitivity analyses. 

Research efforts identifying the effect of specific components of air pollutants are also 

recommended. For example, particulate matter is comprised of several components defined by size 

However, the composition is heterogenous across time and geographic regions and differentially 

impacts health.149  

   Similarly, outcome misclassification is largely dependent on socioeconomic status, 

access to health care, and race/ethnicity. The extent to which potential differential exposure or 

outcome misclassification affects results is poorly understood and can be formally evaluated with 

quantitative bias analyses. Studying cognitive function as an alternative outcome offers advantages 
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in understanding early phases of dementia, as cognitive impairment typically precedes dementia. 

As previously described, hundreds of assessments have been developed to measure cognitive 

function. Each test has its own distribution and range, and performance is often sensitive to 

socioeconomic and sociocultural factors as these assessments were originally developed for 

specific subpopulations.110 Test performance is affected by these socioeconomic and sociocultural 

characteristics which in turn can influence place of residence, occupation, and ultimately, long 

term exposure to ambient air pollution. These characteristics are difficult to fully capture in 

standard adjustment of demographic variables (e.g., age, sex, race/ethnicity, education); there is 

likely unmeasured confounding when studying the relationship between air pollution and cognitive 

function measured at a single point in time. One method to deal with this unmeasured confounding 

is to study associations with cognitive decline, instead of cognitive level at a single measurement, 

by using repeated measurements of cognitive function as the outcome. Studies examining 

associations with within-person change in cognitive function over time will adjust for time-fixed 

confounders by design and future research of air pollution and cognitive decline is recommended.  

Additionally, applying alternative study designs, such as quasi-experimental methods can 

help triangulate results and deal with residual confounding. For example, residential relocation can 

be considered as a natural experiment where air pollution exposure changes depending on where 

the individual relocated to. Dementia risk can then be compared for populations that moved to 

higher or lower levels of air pollution.   

Further exploration of social disparities by expanding research to diverse cohorts and 

asking research questions about health inequity, access to health care, race/ethnic disparities, can 

improve the external validity of our findings and help us understand the specific relationships in 

particularly vulnerable populations. For example, causal mediation analyses can be extended to 
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decompose the total effect of race/ethnicity on dementia into its direct and indirect effect through 

air pollution to identify specific areas to intervene on. 

Finally, the recent growth of epidemiologic research on air pollution and dementia research 

motivates a parallel, understudied area of research: the effect of climate change on older 

adults.17,150 Research on other aspects of climate such as extreme heat, exposure to smoke from 

wildfires, noise, and greenspaces in relation to aging-related outcomes is recommended.  

5.5. Concluding remarks 

In conclusion, this dissertation offers a thorough epidemiologic examination of the effect 

of chronic exposure to air pollution on dementia and cognitive aging, by building upon the 

evidence base to account for competing events, identify causal pathways, expand the 

generalizability of previous work. This body of research advances the field of air pollution and 

cognitive outcomes by addressing some of the methodological issues common in epidemiologic 

studies of environmental exposures and aging-related outcomes and provides detailed 

recommendations to guide future research.  
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