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Abstract 
Although visual representations are generally beneficial for 
learners, past research also suggests that often only a subset of 
learners benefits from visual representations. In this work, we 
designed and evaluated anticipatory diagrammatic self-
explanation, a novel form of instructional scaffolding in which 
visual representations are used to guide learners’ inference 
generation as they solve algebra problems in an Intelligent 
Tutoring System. We conducted a classroom experiment with 
84 students in grades 5-8 in the US to investigate the 
effectiveness of anticipatory diagrammatic self-explanation on 
algebra performance and learning. The results show that 
anticipatory diagrammatic self-explanation benefits learners on 
problem-solving performance and the acquisition of formal 
problem-solving strategies. These effects mostly did not 
depend on students’ prior knowledge. We analyze and discuss 
how performance with the visual representation may have 
influenced the enhanced problem-solving performance.  

Keywords: visual representations; diagrams; self-explanation; 
learning; tape diagrams; middle-school algebra 

Introduction 

Visual Representations as Instructional Scaffolding 
Instructional scaffolding is any form of external assistance 
that helps learners achieve their learning goals (Delen et al., 
2014). Instructional scaffolding can take a variety of forms, 
including chunking, explanation, instructional cues, and 
worked examples, to help learners engage in the target task 
in a less cognitively-demanding way (e.g., Barbieri et al., 
2019). One form of instructional scaffolding is visual 
representations, such as diagrams. Visual representations are 

frequently used across domains and have generally been 
shown to enhance performance and learning (Rau, 2017). 

Despite the widespread use and effectiveness of visual 
representations, many studies also report that visual 
representations are not universally beneficial. In particular, 
learners with low prior knowledge and younger learners do 
not consistently benefit from learning with visual 
representations (e.g., Booth & Koedinger, 2012), and in some 
cases, visual representations are actually detrimental (e.g., 
Magner et al., 2014). Therefore, research is needed to 
understand variations in the benefits of visual representations 
and the mechanisms through which visuals help or fail to help 
learning and performance.  

Middle-school algebra is one domain in which visual 
representations are regularly used (Murata, 2008). 
Researchers have investigated the effectiveness of a specific 
type of visual representation, called “tape diagrams” 
alongside algebra problems as an instructional aid for 
problem solving (Bartel et al., 2021; Booth & Koedinger, 
2012; Chu et al., 2017). Tape diagrams depict relations 
between different quantities in an equation or mathematical 
situation (Figure 1; Murata, 2008). Prior studies have shown 
that adding tape diagrams to symbolic equations or word 
problems can enhance middle-school students’ problem-
solving performance and help avoid conceptual errors (Booth 
& Koedinger, 2012; Chu et al., 2017). However, as 
previously discussed in regard to using visual representations 
as scaffolding, the effects of tape diagrams are not consistent 
across students with varying levels of prior knowledge in the 
target domain. Specifically, students with lower prior 
knowledge or in lower grade levels do not tend to benefit 
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from tape diagrams (Booth & Koedinger, 2012) and they 
have difficulty understanding the information conveyed 
through the diagram (Chu et al., 2017). 
 

 
 

Figure 1: An example of tape diagrams. The tapes 
together represent the equation, x + 2 = 6. 

Learning with Visual Representations through 
Integrated Scaffolding Support 
When using visual representations as a form of instructional 
scaffold, one must design the scaffolding support so that 
learners can engage with the visual representations in a 
pedagogically meaningful way (Davenport et al., 2008; 
Nagashima, Yang et al., 2020). Merely adding visuals to the 
target content as an additional representation does not 
necessarily encourage student engagement. This is 
particularly true among learners with low prior knowledge, 
who may need extra instructional support to connect multiple 
representations (Booth & Koedinger, 2012; Davenport et al., 
2008). Therefore, in order to support learners with varied 
levels of prior knowledge, it is essential to design additional 
instruction or activities that appropriately scaffold learning 
through interactive and integrative use of visual 
representations (e.g., Nagashima, Bartel et al., 2020).  

Prior studies have integrated various types of interactive 
support for the use of visual representations. In particular, 
studies have tested the effect of using self-explanation with 
visual representations (Ainsworth & Loizou, 2003; Aleven & 
Koedinger, 2002; Butcher & Aleven, 2013; Rau et al., 2015) 
and, specifically, with tape diagrams (Nagashima, Bartel et 
al., 2020). Self-explanation is an established learning strategy 
in which learners make sense of new information by 
generating an explanation that connects the new information 
to their existing knowledge (Chi et al., 1989). Self-explaining 
target content with the help of visual representations provides 
an opportunity for learners to explicitly make connections 
between the target representation (e.g., mathematical 
symbols) and the visual representation. Indeed, a prior study 
found that integrating tape diagrams into self-explanation 
enhances learning (Nagashima, Bartel et al., 2020). However, 
studies rarely explore whether self-explanation can promote 
efficient learning (e.g., “do learners spend less time if they 
self-explain?”) (Bisra et al., 2018; but see Aleven & 
Koedinger, 2002) and studies rarely seek to identify the 
mechanisms through which self-explanation with visual 
representations helps efficient performance and learning. As 
designing an appropriately-scaffolded self-explanation 
activity is key for its benefits (Nagashima, Yang et al., 2020), 
it is important to design and examine whether and how self-
explanation as scaffolding support contributes to 
instructional effectiveness and efficiency when learning with 
visual representations. 

Anticipatory Diagrammatic Self-Explanation 
We designed a novel form of self-explanation support for 
learning with visual representations called anticipatory 
diagrammatic self-explanation (Nagashima et al., 2021). 
Anticipatory diagrammatic self-explanation integrates visual 
representations, contrasting cases (Schwartz et al., 2011), and 
anticipatory self-explanation (Renkl, 1997) to support both 
learning and performance in a highly scaffolded way. In 
anticipatory diagrammatic self-explanation, learners infer 
future problem-solving steps, in contrast to the more common 
form of self-explanation during problem solving, in which 
learners provide an explanation for the step that they have 
already completed or seen (e.g., Rau et al., 2015).  

We implemented anticipatory diagrammatic self-
explanation using tape diagrams in the context of algebra 
equation solving in an Intelligent Tutoring System (ITS). 
Figures 2 and 3 show the step-by-step interaction that takes 
place in anticipatory diagrammatic self-explanation. Learners 
first engage in a diagram selection task in which they infer, 
or explain, the next strategic problem-solving step. Then, 
they enter the corresponding problem-solving step expressed 
in symbols on the right side of the screen. The diagrammatic 
and symbolic representations are tightly linked; the ITS asks 
learners to try again if they type in a symbolic step that does 
not follow the diagram selected, even if it is algebraically 
correct. The ITS also provides hints and feedback messages 
to support individual practices (Figure 3). 

Anticipatory diagrammatic self-explanation could be 
effective as instructional scaffolding and potentially bring 
benefits to learners with different levels of knowledge. It may 
support the acquisition of knowledge of strategic problem 
solving (i.e., “which next step is correct and strategic?”) by 
having learners engage with the representations for the next 
step before actually doing that step with the target 
representation. In anticipatory diagrammatic self-
explanation, learners are asked to select a correct-and-
strategic next step in the form of a tape diagram (Figure 2). 
For learners with low prior knowledge who may not know 
how to solve the equation, this scaffolding may guide their 
understanding of what is correct and strategic to do, before 
being asked to solve the equation in mathematical symbols. 
For those with high prior knowledge, the diagram steps 
would introduce a new way of thinking about processes they 
already know—how to solve equations—which may further 
strengthen their knowledge about correct and strategic 
problem solving. These processes could lead to efficient 
problem solving (i.e., solving problems with a low error rate, 
little use of hints, and within less time). 

These expected benefits may be accompanied by other 
potential benefits introduced by visual representations and 
contrasting cases. For example, engaging with a visual 
representation in the form of contrasting cases may help 
students understand algebra concepts, such as isolating the 
variable (Nagashima, Bartel et al., 2020; Schwartz et al., 
2011). Also, problem solving within an ITS may help 
students acquire problem-solving skills, as shown in past 
work with ITSs (e.g., Long & Aleven, 2013). 
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Figure 2: Learners first select a correct-and-strategic 
diagram option for the next problem-solving step. They 

receive feedback on the correctness of the selected option. 
 

 
 

Figure 3: After selecting a correct diagrammatic step, 
learners are asked to solve the step with mathematical 
symbols. The ITS gives feedback and hints. Here the 

feedback says, “The diagram you picked shows subtracting 
3 from each side. Type that step in.” 

 
In the present study, we investigate whether and how 

anticipatory diagrammatic self-explanation enhances 
students’ performance, learning, and understanding of the 
formal problem-solving strategy. We also consider whether 
anticipatory diagrammatic self-explanation is differentially 
effective for learners with different levels of prior knowledge. 

Method 

Participants 
We conducted a randomized controlled classroom 
experiment at a single private school in the US. Participants 
included 30 5th graders, 17 6th graders, 23 7th graders, and 
21 8th graders (total n = 91).1 These students were taught by 
two teachers across seven class sections. We conducted the 
experiment in October 2020 when the school was operating 
under a hybrid teaching mode due to the COVID-19 
pandemic. In this hybrid mode, the majority of students (n = 
89) attended the study in-person while two students attended 
remotely. Both participating teachers noted that students’ 
prior exposure to tape diagrams was minimal; some students 
had seen tape diagrams in learning materials, but the 
instruction had never focused specifically on tape diagrams. 

                                                        
1 Data from the 6th and 7th graders were also included in 

Nagashima et al. (2021), which reports a few overlapping results but 
with different research questions and types of analyses.  

Materials 
Intelligent Tutoring System for Equation Solving We 
developed two versions of the ITS with anticipatory 
diagrammatic self-explanation (described above) and another 
with no anticipatory diagrammatic self-explanation support, 
based on a prior ITS built by Long and Aleven (2014). The 
only difference between the versions in the study was 
whether or not the ITS provided the diagrammatic self-
explanation support. Other features, including step-level 
hints, correctness feedback, and feedback messages, were 
consistent across the two versions. We implemented 41 
equation problems that varied in difficulty level in both ITS 
versions, including one-step equations (x + a = b), two-step 
equations (ax + b = c), and equations with variables on both 
sides (ax + b = cx and ax + b = cx + d), Per teachers’ reports, 
participating students included those who had experienced 
solving all of these equation types and those who had only 
been exposed to one-step equations. The same problem set 
was assigned for all participants. 

 
Pretest and Posttest We developed a web-based pretest and 
posttest to assess students’ conceptual knowledge (or 
knowledge of underlying concepts in a domain) and 
procedural knowledge (or problem-solving skills) of basic 
algebra (Crooks & Alibali, 2014), drawn from our previous 
work (Nagashima, Bartel et al., 2020). The conceptual 
knowledge items consisted of eight multiple-choice questions 
and one open-ended question. They assessed a range of 
conceptual knowledge constructs, including inverse 
operations, isolating variables, and keeping both sides of an 
equation equal. We also included four problem-solving items 
(e.g., “solve for x: 3x + 2 = 8”), including two items that were 
similar to those in the ITS and two transfer items involving 
negative numbers. (The problems in the ITS used positive 
numbers only.) None of these items included tape diagrams. 
We developed two isomorphic versions of the test that varied 
only with respect to the specific numbers used in the items; 
participants received one form as pretest and the other as 
posttest, with versions counterbalanced across subjects. 

 
Procedure The study took place during two regular 
mathematics class periods, in which most of the students and 
the teacher were present “live” in the actual classroom, and 
in which experimenters and remote learners joined through a 
video conferencing system. Students in each class were 
randomly assigned to either the Diagram condition or the No-
Diagram condition. In the Diagram condition, students used 
the ITS with anticipatory diagrammatic self-explanation. 
Students in the No-Diagram condition used the ITS without 
the self-explanation support.  

On the first day, students first worked on the pretest for 15 
minutes. Then the teacher or the experimenter showed 
students in both conditions a five-minute video describing 
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how to use the ITSs and what tape diagrams represent for 
both conditions. Next, students practiced equation solving 
using their randomly-assigned ITS version for about 15 
minutes. On the second day, students started the class by 
solving equation problems in the assigned ITS for 
approximately 15 minutes. After working with the ITS, 
students took the web-based posttest for 15 minutes. Students 
were given access to both ITS versions a week after the study. 
Figure 4 illustrates the study procedure. 

 

 
 

Figure 4: Study procedure. The difference between the 
conditions (Diagram vs No-Diagram) was whether students 

used the ITS with anticipatory diagrammatic self-
explanation support or the ITS without the support. 

Results 
Of the 91 participants, we excluded five students who did not 
complete the posttest and two other students who were at 
ceiling at the pretest. Therefore, the following analyses focus 
on 84 students (26 5th graders, 16 6th graders, 23 7th graders, 
and 21th 8 graders), of whom 41 were in the Diagram 
condition and 43 were in the No-Diagram condition. Two 
researchers evaluated all answers for the open-ended items 
on the pretest and posttest (840 student answers) and 
achieved high inter-rater reliability (Cohen’s kappa = .81). 

Effects on Learning 
Table 1 shows pretest and posttest scores on the conceptual 
knowledge (CK, max: 9) and procedural knowledge (PK, 
max: 4) items. One-way repeated measures ANOVAs 
showed a significant pretest-posttest gain across conditions 
on the procedural knowledge items (F(1, 83) = 12.88, p < .01) 
and positive but non-significant pretest-posttest gain for the 
conceptual knowledge items (F(1, 83) = 2.86, p = .09). To 
test the effect of the intervention and its interaction with 
learners’ prior knowledge, we conducted two separate linear 
regressions, one with conceptual knowledge posttest scores 
and one with procedural knowledge posttest scores as 
dependent variables. In both models, condition (Diagram or 
No-Diagram), prior knowledge pretest score (combined CK 
and PK scores), and the interaction between the two served 
as predictors. Additionally, the number of problems solved in 
the ITS and grade level were included as covariates. Grade 
level was treated as a continuous variable, with 5th, 6th, 7th, 
and 8th grade coded as -1.5, -.5, .5, 1.5, respectively. In both 
models, there was no significant main effect of condition 
(CK: β = -0.20, t(78) = -0.28, p = .78, PK: β = -0.28, t(78) = 

-0.60, p = .55) and no significant interaction of condition and 
pretest scores (CK: β = .09, t(78) = .76, p = .45, PK: β = .03, 
t(79) = .39, p = .69). 

 
Table 1: Pretest and posttest scores and standard 

deviations (in parentheses) 
 

Condition Pretest Posttest 
 CK  PK CK PK 

Diagram 3.63 
(1.93) 

1.15 
(1.35) 

4.10 
(2.37) 

1.56 
(1.52) 

No-
Diagram 

4.30 
(2.29) 

1.63 
(1.57) 

4.47 
(2.53) 

2.19 
(1.82) 

 
Strategy Coding To examine whether engaging with 
anticipatory diagrammatic self-explanation influenced 
students’ use of formal problem-solving strategies, for the 
procedural items, we coded for whether students used the 
formal algebraic strategy in solving equations, independent 
of the correctness coding, following the coding scheme used 
in Chu et al. (2017). If an answer uses algebraic 
manipulations to reach the solution, it was coded as 
“Algebra” strategy. Otherwise, we coded it as “Non-
Algebra” strategy, which included informal strategies such as 
substituting different values in the equation and providing an 
answer without showing any intermediate steps. Two 
researchers coded all 672 student answers (Cohen’s kappa = 
.64). 

There was no difference between the conditions in the 
number of students who used the Algebra strategy at least 
once on the procedural items at both pretest (Diagram: 12 out 
of 41, No-Diagram: 20 out of 43, χ2[1, n = 84]  = 2.65, p = 
.10) and posttest (Diagram: 16 out of 41, No-Diagram: 22 out 
of 43, χ2[1, n = 84] = 1.25, p = .26). However, for the two 
transfer items, we found a significant increase in the number 
of students using the Algebra strategy from pretest to posttest 
for the Diagram condition (from 7 to 16, p = .01), but not for 
the No-Diagram condition (from 16 to 18, p = .72: Figure 5). 
 

 
 

Figure 5: The change, by condition (left: No-Diagram; 
right: Diagram), from pretest to posttest, in the number of 

students who used the Algebra strategy  
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Effects on Performance in the ITS 
To investigate students’ performance in the ITS, we analyzed 
log data collected by the ITS. Specifically, we explored the 
total number of problems solved, the average number of 
incorrect attempts at each problem-solving step, the average 
number of hints requested at each step, and the time spent on 
each step (Table 2), which are process measures typically 
used in the literature (e.g., Long & Aleven, 2013). We only 
compare the process measures on the symbolic steps, 
excluding the transactions for the diagrammatic steps, to 
make fair comparisons between the conditions. 
 

Table 2: The means and standard deviations (in 
parentheses) of the process measures 

 

Condition 

Number 
of 

problems 
solved 

Average 
number of 
incorrect 
attempts 
per step 

Average 
number of 

hints 
requested 
per step 

Average 
time 

spent per 
step 

Diagram 14.22 
(8.47) 

1.07  
(2.03)  

0.31 
 (0.52) 

18.42 
(13.02) 

No-
Diagram 

20.14 
(13.94) 

1.09  
(1.57) 

0.56  
(0.72) 

21.30 
(17.15) 

 
To examine whether learners in the Diagram condition 

showed efficient learning, we ran four separate linear 
regressions with each of the process measures as a dependent 
variable. In all four models, condition, pretest score, and their 
interaction were included as independent variables. 
Additionally, grade level was included as a covariate. Also, 
we added the number of problems solved as a covariate to 
three of the four models (the ones in which it was not the 
dependent variable) because the number of problems solved 
was strongly/moderately correlated with each of the three 
other dependent variables.  

First, we found a main effect of pretest scores on the 
number of problems solved, β = 3.04, t(79) = 7.49, p < .01, 
indicating that as prior knowledge increases, students solved 
more problems in the ITS. This increase was steeper for 
students in the No-Diagram condition than the Diagram 
condition, β = -1.24, t(79) = -2.12, p = .04 (Figure 6). We then 
tested simple main effects of condition at one standard 
deviation below the mean for combined pretest scores and 
one standard deviation above the mean for combined pretest 
scores (see dotted vertical lines in Figure 6). Results showed 
that among those who scored above average on the pretest, 
learners in the No-Diagram condition solved significantly 
more problems than those in the Diagram condition. β = 3.53, 
t(79) = 2.69, p < .01. However, there was no difference in the 
number of problems solved between conditions for learners 
who scored below average on the pretest, β = -0.40, t(79) = -
0.31, p = .76.  

Regarding hint use and average time spent per step, we 
found a significant main effect of condition (hint use: β = -
0.71, t(78) = -3.08, p < .01; time per step: β = -12.18, t(78) = 
-2.89, p < .01) but no significant interactions between 

condition and pretest score. There were no significant main 
nor interaction effects on the average number of incorrect 
attempts made per step. These results indicate that 
anticipatory diagrammatic self-explanation helped learners 
spend less time and request fewer hints on symbolic steps 
than learners with no self-explanation support, but it did not 
help them make fewer errors on symbolic steps. 

 

 
 

Figure 6: An interaction between condition and pretest 
score on the number of problems solved. The slope is 

steeper for the No-Diagram condition than the Diagram 
condition. The two dotes lines indicate our two tests of 

simple main effects; one standard deviation below and one 
standard above the mean for combined pretest score. 

 
To uncover how the anticipatory diagrammatic self-

explanation scaffolded student performance, we examined 
relations between performance on the diagrammatic steps 
and the symbolic steps using ITS log data from the 
participants in the Diagram condition (n = 41). We tested if 
any of the performance measures for diagrammatic steps 
predicted learners’ performance on symbolic steps. We ran 
three additional linear regressions with the same set of 
predictors of primary interest: pretest scores, the average 
number of incorrect attempts for each diagrammatic step, and 
the average time spent for each diagrammatic step. We did 
not include the average number of hints requested since only 
one student used hints for diagrammatic steps. We included 
grade level and the number of problems solved as covariates 
in order to keep the models consistent with other models 
presented earlier. The dependent variables for the three 
models were the average number of incorrect attempts for 
each symbolic step, the average time spent for each symbolic 
step, and the average number of hints requested for each 
symbolic step. When controlling for these other variables, the 
average number of incorrect attempts on diagram steps 
significantly predicted more incorrect attempts on symbolic 
steps (β = 6.17, t(35) = 2.50, p = .02) and more time spent on 
symbolic steps (β = 25.64, t(35) = 2.34, p = .03). There was 
also a significant association between more incorrect 
attempts on diagrammatic steps and lower hint use on 
symbolic steps (β = -1.46, t(35) = -2.32, p = .03). 
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Discussion 
We investigated whether and how anticipatory diagrammatic 
self-explanation, a novel scaffolding support for learning 
with visual representations, affects performance and learning 
for learners with different levels of prior knowledge when 
integrated into an Intelligent Tutoring System. Our findings 
indicate that, regardless of their prior knowledge, 
anticipatory diagrammatic self-explanation helped learners 
solve symbolic steps faster and ask for fewer hints within the 
ITS, and supported them in the transition from informal 
strategies to the formal algebra strategy use for transfer 
problems with negative numbers on the procedural items in 
the pretest and posttest. Also, despite the additional 
diagrammatic steps, which almost doubled the number of 
steps for each problem, there was no difference, for students 
with lower prior knowledge, in the number of problems 
solved between those who received anticipatory 
diagrammatic self-explanation and those who did not. By 
contrast, for learners with higher prior knowledge, 
diagrammatic steps led to fewer problems solved, suggesting 
that the diagrams introduced additional workload. Still, our 
results suggest that learners can use inferential activity with 
tape diagrams to guide their symbolic problem solving. 
Learners with lower prior knowledge may have used the 
scaffolding to help with selecting strategic problem-solving 
steps. For those with higher prior knowledge, although the 
new representation may have largely captured what they 
already knew how to do and may not have scaffolded them to 
solve more problems, it still helped them process symbolic 
steps faster with fewer hints. 

How did anticipatory diagrammatic self-explanation 
support learning and performance? Our analysis revealed that 
making more incorrect attempts during anticipatory 
diagrammatic self-explanation was associated with more 
time spent and more incorrect attempts made on the symbolic 
steps, even after controlling for prior knowledge. However, 
making incorrect diagram selections was also associated with 
fewer hint requests on the symbolic steps. These results 
suggest that, although students who make errors on the 
diagrammatic steps tend to make more errors and spend more 
time on symbolic steps, anticipatory diagrammatic self-
explanation also serves as a guiding step that learners could 
use when entering the next symbolic step. Making incorrect 
diagrammatic self-explanations and receiving feedback on 
their incorrect attempts may allow learners to reflect on their 
selection deeply, rather than processing the multiple-choice 
diagrammatic step shallowly, leading to fewer hint requests 
made on the symbolic steps. However, we also acknowledge 
that the observed relation between diagrammatic steps and 
symbolic steps might be a manifestation of a behavior known 
as “gaming the system” (Baker et al., 2008). That is, the 
multiple-choice diagrams with feedback may have invited 
quick guessing and therefore students may not have fully 
engaged with diagrams and the ITS. 

We did not find any predictors for decreased time spent on 
the symbolic steps in our model, except the number of 
problems solved, which was included as a covariate. Further 

research is necessary, with a larger sample, to explore other 
potential variables, such as learners’ problem-solving 
performance on the diagrammatic steps for different problem 
types. Finally, although we had expected to see fewer 
symbolic problem-solving errors for learners in the Diagram 
condition, the results did not show a difference in the average 
number of incorrect attempts made on symbolic steps 
between the conditions. It may have been that, during 
symbolic problem-solving, the diagrammatic scaffolding was 
used as a reference for quicker recovery from errors, but not 
as a guide for informing how to correctly write the next 
symbolic step, which has been reported as a challenging 
translation task for middle-school students (Chu et al., 2017). 

We acknowledge several limitations of the study. First, the 
study focuses on one specific visual representation in one 
specific domain: tape diagrams for middle-school algebra. 
The results may or may not generalize to other types of 
visualizations or other ways of implementing anticipatory 
diagrammatic self-explanation. Also, a sample size of 84 
participants is not large. The additional analysis for the 
participants in the Diagram condition was performed with an 
even smaller subset of the data. Therefore, the findings from 
this study might not correctly reveal causal and predictive 
relationships. Furthermore, the experiment was conducted 
remotely during the COVID-19 pandemic, in which the 
school operated under a special guidance and rules (e.g., 
socially-distanced layout in the classroom). Given the unique 
context of the study, it is uncertain whether and to what extent 
our results generalize to more typical classroom conditions. 
Lastly, the study was conducted in a private school in the 
United States. Future studies are necessary to investigate the 
impact of the intervention with students at other types of 
schools and in other locations.  

Conclusion 
Designing appropriate instructional scaffolding is key to 
supporting effective and efficient learning with visual 
representations. Our study demonstrated that anticipatory 
diagrammatic self-explanation helps learners spend less time 
and request fewer hints during problem solving. This effect 
appeared not to vary with learners’ prior knowledge. We also 
found suggestive evidence that anticipatory diagrammatic 
self-explanation supports the acquisition of the formal 
algebraic problem-solving strategy. Further, the findings 
suggested that learners used the diagrams to guide their 
problem solving with mathematical symbols. Our findings 
contribute to understanding of effective and efficient 
instructional scaffolding for learning with visual 
representations. While prior work had found that diagrams 
often do not benefit learners with low prior knowledge, the 
current study suggests that appropriate scaffolding can make 
benefits of visual representations available to learners who 
start with lower prior knowledge. 
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