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ABSTRACT OF THE DISSERTATION
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Professor Velibor Mǐsić, Chair

Modeling consumer choice plays a central role in modern business operations and demand

prediction. Precedented approaches assume consumers are rational, i.e., assume that con-

sumer choice models follow rational choice theory and are based on the random utility

maximization (RUM) principle. However, abundant evidence from marketing science, psy-

chology, and behavioral economics has shown that consumer choice is not always consistent

with the RUM assumption.

In this thesis, we introduce a nonparametric and data-driven choice model that is capable

of representing any consumer choice, including those that are outside the RUM class. We

theoretically characterize the model complexity and propose two practical estimation proce-

dures to learn the model from data. Using real-world transaction data, we demonstrate the

out-of-sample prediction ability of the proposed model and extract business insights.

We further transform the proposed model into effective prescriptions. We consider a

mixed-integer optimization approach to find the optimal assortment that maximizes expected

revenue under the proposed model. We introduce three formulations, analyze the necessary

ii



conditions for integrality, and solve them at a large scale by applying Benders decomposition

method. Using synthetically generated data, we demonstrate the tractability of our approach

and its edge over heuristic approaches from the literature.

Finally, we generalize the estimation procedure of the proposed model as a general so-

lution method for solving large-scale linear optimization problems. The proposed solution

method is a randomized algorithm that first samples a set of columns and then solves the

linear program that only consists of sampled columns. We theoretically characterize the algo-

rithm’s convergence property and apply it to a wide range of applications, including Markov

decision processes, covering and packing problems, portfolio optimization, and choice model

estimation.
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CHAPTER 1

Introduction

A common problem in business is to decide which products to offer to customers by using

historical sales data. Specifically, a firm offers a set of products (an assortment) to a group

of customers. Each customer makes a decision to either purchase one of the products or not

purchase any of the products. The goal of the firm is to decide which products to offer, so

as to maximize the expected revenue when customers exercise their preferences.

In order to make such decisions, it is critical to have access to a model for predicting

customer choices. Customer choice models have been used to model and predict the sub-

stitution behavior of customers when they are offered different assortments of products. In

general, a choice model can be thought of as a conditional probability distribution over all

purchase options given an assortment that is offered. A rich literature spanning marketing,

psychology, economics, and operations management has contributed to the understanding of

choice models.

A widely-used assumption is that customers are rational, i.e., choice models are assumed

to follow rational choice theory and are based on the random utility maximization (RUM)

principle. The RUM principle requires that each product is endowed with a stochastic

utility. When a customer encounters the assortment and needs to make a purchase decision,

all utilities are realized and the customer will choose the product from the assortment with

the highest realized utility. A consequence of the RUM principle is that whenever we add a

product to an assortment, the choice probability of each incumbent product either stays the

same or decreases. This property is known as regularity or weak rationality.
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Table 1.1: Behavioral experiment involving subscriptions to The Economist ; reproduced

from [7]

Option Price Num. of Subscribers

Internet-Only $59.00 68

Print-&-Internet $125.00 32

Option Price Num. of Subscribers

Internet-Only $59.00 16

Print-Only $125.00 0

Print-&-Internet $125.00 84

However, customers are not always rational. There is an increasing body of experimental

evidence, arising in the fields of marketing, economics, and psychology, which suggests that

the aggregate choice behavior of individuals is not always consistent with the RUM principle

and often violates the weak rationality property. A well-known example is the experiment

involving subscriptions to The Economist magazine from [7], which is re-created in Table 1.1.

One hundred MIT students were asked to make decisions given two different assortments of

subscription options. In the first assortment in Table 1.1, two subscription options are given:

“Internet-Only” ($59.00) and “Print-&-Internet” ($125.00). The first option is chosen by the

majority of the students (68 out of 100). In the second assortment, the students are given

one more option: “Print-Only” ($125.00). For this second assortment, due to the obvious

advantage in “Print-&-Internet” over “Print-Only”, no one chose the latter option. But

with the addition of the the “Print-Only” option, the number of subscribers of the “Print-

&-Internet” option actually increased from 32 to 84, thus demonstrating a violation of the

weak rationality property. Here, the option “Print-Only” serves as a decoy or an anchor: its

presence can influence an individual’s preference over the two other options “Internet-Only”

and “Print-&-Internet”. While this example comes from a classroom experiment, there has

been an extensive peer-reviewed research literature on this phenomenon, known as the decoy
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or attraction effect, since the seminal work of [70].

The example that we have described above is important for two reasons. First, even

for this very simple example, no choice model based on RUM can perfectly capture the

subscribers’ observed behaviors; as such, choice predictions based on RUM models will be

inherently biased if customers do not behave according to a RUM model. Second, the pres-

ence of irrationality in customer choice behavior can have significant operational implications

on which products should be offered. As a concrete example, observe that in Table 1.1, as-

suming that customers have no outside option, the expected per-customer revenue arising

from the first assortment is $80.12, whereas the expected per-customer revenue of the sec-

ond assortment is $114.44 – an increase of more than 40%! Indeed, outside of experimental

settings (as in the above example), deviations from rational behavior have been observed

– and exploited – in business practice. For example, when Williams-Sonoma observed low

sales of a bread bakery machine priced at $275, it introduced a larger and more expensive

version priced at $429; few customers bought the new model, but sales of the original model

almost doubled [96].

Motivated by the observations of non-rational choice in real-world scenarios, we want to

address the following question:

“How can we model non-rational choice

from a data-driven perspective to create value?”

Here is our contribution:

1. Decision Forest Model (Chapter 3): We propose a new type of choice model

(Section 3.1), called the decision forest model, that is capable of modeling non-rational

choice behavior, i.e., choice behavior that is inconsistent with the RUM principle. In

this choice model, one assumes that the customer population can be described as a

finite collection of customer types, where each customer type is associated with a binary
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decision tree, together with a probability distribution over those types. Each decision

tree defines a sequence of queries that the customer follows in order to reach a purchase

decision, where each query involves checking whether a particular product is contained

in the assortment or not. We provide several examples of how well-known behavioral

anomalies, such as the decoy effect and the preference cycle, can be represented by

this model. We also prove a key theoretical result: any choice model, whether it obeys

the RUM property or not, can be represented as a probability distribution over binary

decision trees (Theorem 1). We theoretically characterize the depth of the forest needed

to fit a data set of historical assortments and prove that with high probability, a forest

whose depth scales logarithmically in the number of assortments is sufficient to fit

most data sets (Section 3.2). We also propose two practical algorithms – one based on

column generation and one based on random sampling – for estimating such models

from data (Section 3.3). Using real transaction data exhibiting non-rational behavior,

we show that the model outperforms both rational and non-rational benchmark models

in out-of-sample predictive ability (Section 3.4).

2. Assortment Optimization Under the Decision Forest Model (Chapter 4):

We further study the problem of finding the assortment that maximizes expected rev-

enue under the decision forest model. This problem is of practical importance because

it allows a firm to tailor its product offerings to profitably exploit deviations from

rational customer behavior, as we have demonstrated in the Economist example in

Table 1.1. We approach this problem from a mixed-integer optimization perspective

and propose three different formulations (Section 4.1). We theoretically compare these

formulations in strength, and analyze when these formulations are integral in the spe-

cial case of a single tree. We propose a methodology for solving these problems at a

large-scale based on Benders decomposition, and show that the Benders subproblem

can be solved efficiently by primal-dual greedy algorithms when the master solution

is fractional for two of our formulations, and in closed form when the master solution
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is binary for all of our formulations (Section 4.2). Using synthetically generated in-

stances, we demonstrate the practical tractability of our formulations and our Benders

decomposition approach, and their edge over heuristic approaches (Section 4.3).

3. Column-randomized Linear Program (Chapter 5): We generalize the estimation

method of decision forest model as a solution method for linear programs that con-

sist of a large number of columns but a relatively small number of constraints. Such

large-scale linear programs are commonly used in business analytics for statistical es-

timation, revenue management, and vehicle routing. Our proposed method involves

sampling a collection of columns according to a user-specified randomization scheme

and solving the linear program consisting of the sampled columns (Section 5.2). We

derive an upper bound on the optimality gap that holds with high probability and

converges with rate 1/
√
K, where K is the number of sampled columns, to the value

of a linear program related to the sampling distribution. We further apply the pro-

posed method to various applications, such as linear programs with totally unimodular

constraints, Markov decision processes, covering problems and packing problems, and

derive problem-specific performance guarantees (Section 5.3). We also generalize the

method to the case that the sampled columns may not be statistically independent

(Section 5.4). Finally, we numerically demonstrate the effectiveness of the proposed

method in the cutting-stock problem and in nonparametric choice model estimation

(Section 5.5).

We review the related literature of choice modeling and assortment optimization in Chap-

ter 2. We conclude this thesis in Chapter 6. We relegate proofs and additional numerical

results to the end of the thesis as appendices.
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CHAPTER 2

Background and Literature

In this chapter, we overview the basic concept of choice modeling (Section 2.1) and assort-

ment optimization (Section 2.2), and comment on our contribution to the literature. We

also discuss related works in other disciplines (Section 2.3).

2.1 Choice Modeling

In consumer choice modeling, one concerns the purchase behavior of consumers when a set

of products, i.e., an assortment, is available. Specifically, consider a market of N products,

denoted by the set N ≡ {1, 2, . . . , N}. The full set of purchase options is denoted by

N+ ≡ {0, 1, 2, . . . , N}, where 0 corresponds to an outside or “no-purchase” option and i ∈ N

corresponds to the action of buying product i. An assortment S is a subset of N . When

offered the assortment S, a customer may choose to purchase one of the products in S, or

choose the no-purchase option 0. We denote S+ as S ∪ {0} for all S ∈ N .

The behavior of a customer population is represented through a discrete choice model. A

discrete choice model is defined as a conditional probability distribution P(· | ·) : N+×2N →

[0, 1] that gives the probability of an option in N+ being purchased when the customer is

offered a particular set of products; that is, P(o | S) is the probability of the customer

choosing the option o ∈ S∪{0}, when offered the assortment S ⊆ N . Note that P(o | S) = 0

whenever o /∈ S ∪ {0}, which models the fact that the customer cannot choose a product o

that is not in the assortment S.
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2.1.1 Rational Choice Model

The most common way to construct the choice probability distribution P(· | ·) is to follow

random utility maximization (RUM) principle. In a RUM discrete choice model, each option

o ∈ N+ is associated with a random variable Vo, which corresponds to a stochastic utility

for the option o. When offered the assortment S ⊆ N , the customer’s choice is given by

the random variable arg maxo∈S+ Vo; in other words, the utilities V0, . . . , VN are realized, and

the customer chooses the option from S+ that offers the highest utility. Under such a choice

model, the choice probabilities are given by

P(o | S) = P(Vo > Vj for all j ∈ S+, j 6= o). (2.1)

Since consumers choose the option with highest utility, one also refers RUM choice models

as rational choice models [102]. By specifying the joint distribution of the random vector

(V0, V1, . . . , VN), one can obtain many different types of choice models. Here we introduce

two examples.

Definition 1 (Multinomial Logit Model (MNL)) In a MNL model, one assumes that

Vi = vi+εi for i ∈ N+, where vi is a deterministic constant that represents the expected utility

of option i and εi is a standard Gumbel random variable. Also, without loss of generality,

we set v0 = 0. One can show that in a MNL model,

P (i | S) =
exp(vi)

1 +
∑

j∈S exp(vj)
, ∀i ∈ S.

Note that MNL model is a parametric model characterized by parameters (v1, . . . , vN).

Definition 2 (Mixed-MNL Model) In a mixed-MNL model, one assumes that there are

K customer segments in the market. Each customer segment k accounts for the ratio λk

of the total population and follows a MNL model with parameters (vk1, . . . , vkN) to make

decisions. The resulting choice probability is given by

P (i | S) =
K∑
k=1

λk ·
exp(vki)

1 +
∑

j∈S exp(vkj)
, ∀j ∈ S.
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MNL and mixed-MNL models are among the most commonly-used choice model; we refer

the reader to [9] and [115] for more details. We denote that both MNL and mixed-MNL

models can be estimated by maximum likelihood estimation (MLE). The MLE of MNL model

can be solved exactly as a concave maximization problem, while the MLE of mixed-MNL

model is generally solved by expectation-maximization (EM) algorithm.

There has been a significant effort to develop “universal” choice models within the RUM

class. A well-known universality result in choice modeling comes from the paper of [85],

which showed that any RUM choice model can be approximated to an arbitrary precision by

a mixture of MNL models, i.e., mixed-MNL model. Outside of logit models, earlier research

proposed the ranking-based model (also known as the stochastic preference model), in which

one represents a choice model as a probability distribution over rankings.

Definition 3 (Ranking-based choice model [20, 52]) A ranking or a permutation σ

over options N+ is a bijection from N+ to N+ such that option i is preferred to option j if

and only if σ(i) < σ(j). A ranking-based model assumes that there are K customer segments

in the market. Each segment k accounts for the ratio λk of the total customer population and

makes decisions according to a ranking σk. The choice probability of a ranking-based model

is given by

P (i | S) =
K∑
k=1

λk · I{i = arg max
i∈S+

σk(i)}, ∀i ∈ N+, (2.2)

where I{·} is the indicator function, i.e., I{B} = 1 if B is true and 0 otherwise.

[20] showed that the class of RUM choice models is equivalent to the class of ranking-

based models. Later, the seminal paper of [52] developed a data-driven approach for making

revenue predictions via the ranking-based model; specifically, the method involves computing

the worst-case revenue of a given assortment over all ranking-based models that are consistent

with the available choice data. Subsequent research on ranking-based models has studied

other estimation approaches [72, 73, 87, 119], as well as methods for obtaining optimal or
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near-optimal assortments; see Section 2.2. Another universal RUM choice model is the

Markov chain model of customer choice [19]. By modeling substitution behavior between

products as transitions between states in the Markov chain, the model provides a good

approximation to any choice model based on the RUM principle. Since the original paper

of [19], later research has considered other methods of estimating such models from limited

data [111] as well as methods for solving core revenue management problems under such

models [40, 42, 56].

A property that is satisfied by rational choice models, i.e., RUM choice models, is the

regularity or weak rationality property, which corresponds to the following family of inequal-

ities.

Definition 4 (Weak Rationality)

P(i | S ∪ {j}) ≤ P(i | S), ∀ S ⊆ N , i ∈ S+, j ∈ N \ S. (2.3)

In words, whenever we add a new product j to an assortment S, the choice probability of

each existing product in S cannot increase. Note that every RUM choice model satisfies the

regularity property; however, there exist discrete choice models that satisfy the regularity

property and that are outside of the RUM class [20].

2.1.2 Non-rational Choice Model

The study of non-rational choice has its roots in the seminal work of [74], which demon-

strated how expected utility theory fails to explain certain choice phenomena, and proposed

prospect theory as an alternative model. Since this paper, significant research effort has been

devoted to the study of non-rational decision making. Within this body of research, the con-

cept of choice modeling beyond RUM class, i.e, non-rational choice modeling, relates to

the significant empirical and theoretical work in behavioral economics on context-dependent

choice [118], which includes important context effects such as the attraction effect [70], the

compromise effect [110], and the similarity effect [117].
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Recently, new choice models have been proposed for modeling behavior outside of the

RUM class. Within behavioral economics, examples include the generalized Luce model

[48] and the perception-adjusted Luce model (PALM) [49]. The focus of these papers is

descriptive, in that they develop axiomatic theories for new models. In contrast, the focus

of this thesis is prescriptive, as we develop optimization-based methods for estimating our

proposed model from data and making operational decisions.

Within operations management, examples of new choice models include the generalized

stochastic preference (GSP) model [10], the general attraction model (GAM) [62], and the

HALO-MNL model [82]. The main difference between the proposed model in this thesis

and these prior models is in expressive power. As we will show in Section 3.1.5, our choice

model is universal and is able to represent any discrete choice model that may or may not

be in the RUM class; in contrast, for each of the generalized Luce model, PALM, GAM,

HALO-MNL model and GSP model, there either exist choice models that do not obey the

RUM principle and cannot be represented by the model, or the representational power of

the model is unknown.

2.1.3 Universal Choice Models

Within the economics literature, there are two classes of non-rational models that also have

the universal expressive power (as our Theorem 1 in Section 3.1.5). We review these two

classes of models in details, followed by the contribution of our proposed model to this

“universality” paradigm.

The first is the class of game tree models and randomized game tree models. The game

tree model was proposed by [126] as a model for how an option is deterministically chosen

from a given choice set. In a game tree model, the tree encodes a hierarchy where each

leaf corresponds to a product, and each non-leaf node correspond to a decision maker that

is endowed with a ranking over the product universe. To make a decision, one starts at

the non-leaf nodes whose children are leaves, and the decision maker at each such non-leaf
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node chooses its most preferred product according to its ranking. The parent nodes of those

non-leaf nodes then choose from the products chosen by their children. This process repeats

until reaching the decision maker at the root of the tree who makes the final decision. The

model can be thought of as a representation of how an organization, through several rounds

of decision making, reaches a decision. This type of model bears a superficial similarity to

ours in that both models involve trees. However, the details differ significantly: in our trees,

as we will see in Section 3.1.1, the decision process starts at the root (rather than the leaves)

and involves checking for the existence/non-existence of a product in the assortment, until

reaching a leaf. In addition, the trees that we describe are always binary, whereas game trees

can in general be non-binary trees. Since the paper of [126], other research has extended

this type of model in different ways. For example, [69] considers game trees where all of

the decision makers follow the same ranking. In the subsequent literature, the paper of [77]

considers the randomized game tree model, where one assumes a probability distribution

over the tuple of rankings for the non-leaf nodes; that paper shows that this model can

represent any discrete choice model, which is similar to our universality result (Theorem 1

in Section 3.1.5).

The second type of model that has the universality property is the pro-con model in

the working paper of [44]. In this choice model, one considers two sets of rankings: “pro”

rankings and “con” rankings. Then, over the union of the pro and con rankings, one posits

a signed probability distribution, where the pro rankings receive positive probabilities, and

the con rankings receive negative probabilities. The choice probability of a product given

an assortment is the sum of the (positive) probabilities for the pro rankings for which that

product is highest ranked, plus the sum of the (negative) probabilities for the con rankings

for which that product is lowest ranked. The model aims to represent the idea of a decision

maker who makes decisions by listing the pros and cons of an option, adding up the pros and

subtracting the cons. The main result of [44] is the result that every choice model can be

represented as a pro-con model, which is again similar to our universality result (Theorem 1
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in Section 3.1.5).

While these two classes of models also have the universality result, to date, all research on

the game tree models and the pro-con model has been descriptive in nature, and has focused

on categorizing and relate these models to existing models. These papers do not include

methodological contribution: specifically, there has not been any research that answers the

question of how to efficiently estimate these models from data, and that empirically validates

these models on real data. In contrast, in our paper, we show that the proposed model can

be estimated from data in two tractable ways (Section 3.3), and its performance can be

validated using real transaction data (Section 3.4). In other words, the decision forest model

is not only theoretically rich in its expressive power, but also practical and ready to be used

by practitioners.

2.2 Assortment Optimization

Assortment optimization is a basic operational problem faced by many firms. In its simplest

form, the problem can be posed as follows. A firm has a set of products that it can offer,

and a set of customers who have preferences over those products; what is the set of products

(an assortment) the firm should offer so as to maximize the revenue that results when the

customers choose from these products? We formally define the problem as follows.

Definition 5 (Assortment optimization problem)

maximize
S⊆N

N∑
i=1

r̄i ·P (i | S) , (2.4)

where r̄i is the marginal revenue of product i, P(· | ·) is a choice model, and the objective is

the expected revenue.

The problem of assortment optimization has been extensively studied in the operations

management community; we refer readers to [63] for a recent review of the literature. The
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literature on assortment optimization has focused on developing approaches for finding the

optimal assortment under many different RUM choice models, such as the MNL model

[112, 113], the latent class MNL model [25, 86, 106], the nested logit model [38, 2] the

Markov chain choice model [41, 56] and the ranking-based model [4, 5, 55].

Assortment optimization problem is also related to the literature on product line design

found in the marketing community. While assortment optimization is more often focused on

the tactical decision of selecting which existing products to offer, where the products are ones

that have been sold in the past and the choice model comes from transaction data involving

those products, the product line design problem involves selecting which new products to

offer, where the products are candidate products (i.e., they have not been offered before)

and the choice model comes from conjoint survey data, where customers are asked to rate

or choose between hypothetical products. Research in this area has considered different

approaches to solve the problem under the ranking-based/first-choice model [8, 13, 84] and

the multinomial logit model [30, 105]; for more details, we refer the reader to the literature

review of [13].

The assortment optimization technique proposed in this thesis is most closely related

to [8] and [13], both of which present integer optimization formulations of the product line

design problem when the choice model is a ranking-based model. As we will see later, our

formulations LeafMIO and SplitMIO can be viewed as generalizations of the formulations

of [8] and [13], respectively, to the decision forest model. In addition, the paper of [13]

develops a specialized Benders decomposition approach for its formulation, which uses the

fact that one can solve the subproblem associated with each customer type by applying a

greedy algorithm. We will show in Section 4.2 that this same property generalizes to two

of our formulations, LeafMIO and SplitMIO, leading to tailored Benders decomposition

algorithms for solving these problems at scale.

Beyond these specific connections, the majority of the literature on assortment optimiza-

tion and product line design considers rational choice models, whereas our paper contributes

13



a methodology for non-rational assortment optimization. Fewer papers have focused on

choice modeling for irrational customer behavior; see Section 2.1.2. An even smaller set of

papers has considered assortment optimization under non-rational choice models, which we

now review. The paper of [58] considers assortment optimization under the two-stage Luce

model, and develops a polynomial time algorithm for solving the unconstrained assortment

optimization problem. The paper of [104] considers a context-dependent utility model where

the utility of a product can depend on other products that are offered and that can cap-

ture compromise, attraction and similarity effects; the paper empirically demonstrates how

incorporating context effects leads to a predicted increase of 5.4% in expected profit.

Relative to these papers, the assortment optimization problem considered in this thesis

differs in that it considers the decision forest model. As noted earlier, the decision forest

model can represent any type of choice behavior, and as such, an assortment optimization

methodology based on such a model is attractive in terms of allowing a firm to take the next

step from a high-fidelity model to a decision. In addition, our methodology is built on mixed-

integer optimization. This is advantageous because it allows a firm to leverage continuing

improvements in solution software for integer optimization (examples include commercial

solvers like Gurobi and CPLEX), as well as continuing improvements in computer hardware.

At the same time, integer optimization allows firms to accommodate business requirements

using linear constraints, which further enhances the practical applicability of the approach.

Lastly, integer optimization also allows one to take advantage of well-studied large-scale

solution methods for integer optimization problems. One such method that we focus on in

this paper is Benders decomposition, which has seen an impressive resurgence in recent years

for delivering state-of-the-art performance on large-scale problems such as hub location [35],

facility location [57] and set covering [36]; see [101] for a review of the recent literature. Stated

more concisely, the main contribution of our approach is a general-purpose methodology for

assortment optimization under a general-purpose choice model.
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2.3 Tree Ensembles in Machine Learning and Other Fields

Our decision forest model is also related to the rich literature on tree models in machine

learning. Many machine learning methods construct binary tree models that can be used for

classification or regression, such as ID3 [97], C4.5 [98] and classification and regression trees

(CART; [22]). In addition, there are also many predictive models that consist of ensembles

or forests of trees, such as random forests [21] and boosted trees [60]. Recently, tree ensemble

models are also used for estimating and inferring treatment effects [125]. The main difference

between our work and prior work in machine learning is in the use of forests for discrete choice

modeling, that is, using a forest to probabilistically model how customers choose from an

assortment. To the best of our knowledge, the use of tree ensemble models for discrete choice

modeling has not been proposed before.

Finally, we note that the term decision forest coincides with the general name for tree

ensemble models in the literature; we refer readers to the survey paper [103]. However, same

as decision tree which has different meanings in different research communities, the term

decision forest also has been used in various ways to refer to a collection of trees. In this

thesis, we restrict our discussion on choice modeling.
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CHAPTER 3

Decision Forest

In this chapter1, we present a new model for customer choice based on representing the cus-

tomer population as tree ensemble (Section 3.1). We theoretically characterize the depth of

the trees needed to fit a data set of historical assortments (Section 3.2). We also propose two

practical algorithms for estimating the presented model from data (Section 3.3). Using real

transaction data exhibiting non-rational behavior, we demonstrate the out-of-sample predic-

tive ability of the model and further extract business insights from the data (Section 3.4).

All proofs in this chapter are relegated to Section A.1 in Appendix.

3.1 The Decision Forest Model

In this section, we present our decision forest choice model. We first introduce binary decision

trees and define how customers make purchases according to such decision trees. We then

define our choice model, compare it to the ranking-based model, describe a couple of well-

known examples of behavioral anomalies that can be represented by our model. Finally, we

establish our first key theoretical result, namely that decision forest models can represent

any customer choice model.

1This chapter is based on my doctoral research work “Decision Forest Model: A Nonparametric Approach
to Modeling Irrational Choice” [34].
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3.1.1 Decision Trees

The choice model that we will define is based on representing the customer population

through a collection of customer types. A customer type is associated with a purchase decision

tree t, which is structured as a directed binary tree graph. We use leaves(t) and splits(t)

to denote the sets of leaf nodes and non-leaf nodes (also called split nodes) of decision tree

t, respectively. For each split node s in splits(t), we define LL(s) and RL(s) as the sets of

leaves that belong to the left and right subtree rooted at split node s, respectively. Similarly,

for each leaf node `, we define LS(`) and RS(`) as the sets of all split nodes for which ` is

to the left or to the right, respectively. We use r(t) to denote the root node of tree t. Each

node in the tree, whether it is a split or a leaf, is associated with a purchase option; let xv

denote the purchase option associated with node v.

1

2

3

1 2

4

1 0

3

2

2 3

4

4 0

Figure 3.1: An example of a decision tree.

Given an assortment S ⊆ N and a customer following purchase decision tree t, the

customer will make their purchase decision as follows: starting at the root node r(t), the

customer will check whether the purchase option of that node is contained in the assortment

S or not. If this option is a member of S, the customer proceeds to the left child node;

otherwise, if it is not in the assortment S, the customer proceeds to the right child node.

The process then repeats until a leaf node is reached. The purchase option o that corresponds

to the leaf node is then the customer’s purchase decision.
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Figure 3.1 visualizes an example of a purchase decision tree. Consider a customer follow-

ing the tree in Figure 3.1, and consider three assortments: SA = {1, 2, 4}, SB = {2, 4}, and

SC = {1, 3}. When offered SA, she will choose product 2; when offered SB, she will choose

product 4; and finally, when offered SC , she will choose the no-purchase option 0.

To ensure that a purchase decision tree is well-defined, we impose three additional re-

quirements on it.

Definition 6 (Structural requirements of purchase decision trees) A purchase deci-

sion tree t must satisfy the following three requirements:

1. For each split s ∈ splits(t), xs ∈ N .

2. For each leaf ` ∈ leaves(t), x` ∈
(
{0} ∪

⋃
s∈LS(`){xs}

)
.

3. For each leaf ` ∈ leaves(t) and any two distinct splits s and s′ from set LS(`)∪RS(`),

xs 6= xs′.

Requirement 1 is needed because the no-purchase option can never belong to the assort-

ment; thus, setting xs = 0 at a particular split will force the decision process to always

proceed to the right. Requirement 2 is needed to ensure that each possible purchase decision

is consistent with the path followed in the tree and that the customer is only able to select

products that have been observed to exist in the assortment. An example of a tree that does

not satisfy the second requirement is given in Figure 3.2. Observe that if the assortment

{1, 2} is offered to a customer following this tree, the customer will choose to purchase prod-

uct 3, which is not part of the assortment. As another example, if the assortment {2, 3} is

offered, the customer would choose product 1, which again does not exist in the assortment.

Finally, Requirement 3 enforces that each product appears at most once in the split nodes

on the path from the root r(t) to any leaf `. This requirement ensures that for each leaf in

the tree, there exists some assortment that will be mapped to it. An example of a tree that

does not satisfy the requirement is given in Figure 3.3, where product 1 appears twice on the
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path from the root to the third leaf node from the left. In order to reach this leaf, product

1 must simultaneously be included and not included in the assortment, which is impossible.

As a result, this leaf node can never be reached given any assortment.

1

2

3 1

3

1 0

Figure 3.2: A decision tree that vio-

lates Requirement 2.

1

2

2 1

1

1 0

Figure 3.3: A decision tree that vio-

lates Requirement 3.

Before describing our choice model, we introduce two useful definitions. We define the

depth of tree t as Depth(t) = max{dist(r(t), `) + 1 | ` ∈ leaves(t)}, where the distance

dist(r(t), l) is the number of edges connecting leaf ` and root r(t). Note that our definition

of depth starts at 1, i.e., a tree consisting of a single leaf would have Depth(t) = 1. We

also say that a tree is balanced if and only if all leaves in the tree have same distance to the

root. For example, the tree in Figure 3.1 is a balanced tree of depth 4. Lastly, notice that

Requirement 3 implies that all purchase decision trees have depth at most N + 1. Therefore,

there are only finitely many purchase decision trees that satisfy Requirement 1-3.

3.1.2 Decision Forest Model

We now present our choice model based on purchase decision trees. Consider a collection F

of purchase decision trees; we will refer to F as a forest. Let λ : F → [0, 1] be a probability

distribution over all decision trees in forest F . Each tree t in the decision forest F can be

thought of as a customer type. For each type t, the probability λt can be thought of as the

percentage of customers in the population that behave according to the purchase decision
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tree t; alternatively, one can think of λt as the probability that a random customer will

choose according to tree t. Define Â(S, t) ∈ N+ as the purchase option that a customer

associated with decision tree t would choose when an assortment S is given. Therefore,

for any assortment S, the probability that a random customer selects option o ∈ N ≡

{0, 1, . . . , N} is

P(F,λ)(o | S) =
∑
t∈F

λt · I{o = Â(S, t)}, (3.1)

where I{·} is the indicator function. Note that if a product p ∈ N is not in assortment S,

i.e., p /∈ S, then P(F,λ)(p | S) = 0; this is a consequence of Requirement 2 from Definition 6

in Section 3.1.1, that is, for any leaf, we must have x` ∈
(
{0} ∪

⋃
s∈LS(`){xs}

)
. We refer to

the pair (F,λ) as a decision forest model.

3.1.3 Comparison to Ranking-based Model

Our decision forest model resembles the ranking-based model of [52]; see Definition 3. In

the model of [52], each customer type corresponds to a ranking over all products and the

no-purchase option. When offered an assortment, a customer will choose the product in the

assortment that is most preferred according to that customer’s ranking. A ranking-based

model can be represented as a collection Σ of rankings and a probability distribution λ over

rankings in Σ. The resulting choice probability is given by Equation (2.2).

The ranking-based model and the decision forest model are structurally similar, in that

they are both probability distributions over a collection of “primitive” choice models. How-

ever, it turns out that the decision forest model is more general than the ranking-based

model, which we formalize in the proposition below.

Proposition 1 Let Σ = {σ1, . . . , σm} be a collection of rankings and λ be a probability

distribution over them. Then there exists a forest F such that, for all o ∈ N+ and S ⊆ N ,

P(F,λ)(o | S) = P(Σ,λ)(o | S).
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Note that the class of RUM choice models is equivalent to the class of ranking-based

models [20]. Thus, Proposition 1 also implies that we can represent any RUM choice model

by a decision forest model. The proof of Proposition 1 is presented in Section A.1.1, where

we explicitly represent each ranking in Σ by a purchase decision tree. We illustrate the same

idea in the following example.

Example 1 (RUM choice model) Consider a ranking-based model (Σ,λ) that consists

of two rankings σ1 = {2 � 3 � 0} and σ2 = {3 � 2 � 1 � 0}, where a � b denotes that

a is preferred to b, and distribution λ = (0.4, 0.6). This ranking-based choice model can

be represented by a decision forest model (F,λ) such that F consists of two trees t1 and t2

(see Figure 3.4). The ranking σ1 and the decision tree t1 give the same decision process: if

product 2 is in the assortment, then the customer buys it; otherwise, if product 2 is not in

the assortment but 3 is, then the customer buys product 3; otherwise, if both 2 and 3 are not

available, the customer will not buy anything. The equivalence between the ranking σ2 and

the tree t2 can be argued in the same way. By using the same probability distribution, the

decision forest model (F,λ) is equivalent to the ranking-based model (Σ,λ).

2

2 3

3 0

3

3 2

2 1

1 0

Figure 3.4: Decision tree t1 (left) and t2 (right) give the same purchase decisions as the two

rankings σ1 and σ2 in Example 1, respectively.

We remark that the reverse statement of Proposition 1 is not true. That is, there exist

decision forest models that cannot be represented as a ranking-based model. For instance,
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consider a decision forest model that consists of a single purchase decision tree t as in Figure

3.5, for which the probability λt must be 1. This decision tree t gives the following choice

probabilities: P (1 | {1, 2}) = 1 and P (1 | {1}) = 0. Since the inequality P (1 | {1, 2}) >

P (1 | {1}) violates the regularity property (inequality (2.3)), no RUM choice model can

satisfy both P (1 | {1, 2}) = 1 and P (1 | {1}) = 0.

2

1

1 0

0

Figure 3.5: A decision tree that cannot be modeled by a ranking-based model.

Before continuing, it is worth interpreting how choices are made by a purchase decision

tree and differentiating them from those of a ranking. Example 1 shows how a ranking

is effectively a purchase decision tree that is constrained to always grow to the right. In

addition, each purchase decision of a leaf corresponds to the product on its parent split

(with the exception of the right-most leaf, which is always the no-purchase option). A

customer who chooses according to a ranking behaves in the following way: they check the

assortment in accordance with a sequence of products (their ranking); as soon as they reach

a product that is contained in the assortment, they choose it; and if they go through their

entire sequence without successfully finding a product, they choose the no-purchase option.

Such a decision process is always forced to immediately choose a product when the existence

of the product in the assortment has been verified. In contrast, for a purchase decision tree,

the decision process can be more complicated: if the customer checks for a product and finds

that it is indeed contained in the assortment, the customer is not forced to immediately

choose the product; instead, the customer can continue checking for other products in the

assortment before making a purchase decision. This difference is why purchase decision trees
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are potentially valuable: a purchase decision tree can model more complicated, assortment-

dependent customer behavior than a ranking can. Indeed, in Section 3.1.4, we will see

some simple examples of non-rational behavior that can be represented in the decision forest

framework.

3.1.4 Modeling Irrational Behavior by Decision Forest Models

Research in marketing, psychology, and economics has documented numerous examples of

choice behavior that is inconsistent with the RUM principle. We show how two well-known

examples of irrational choices, the decoy effect and the preference cycle, can be modeled by

decision forests.

Example 2 (Decoy Effect) In marketing, the decoy effect is the phenomenon whereby con-

sumers tend to change their preference between two options when a third option exists and it

is asymmetrically dominated. The experiment involving the The Economist from [7], shown

in Table 1.1, is an example of this effect. When the option “Print-Only” is strictly dominated

by option “Print-&-Internet” (same price but with additional online access), the preference

between the other two options changes.

We model the example in Table 1.1 as follows: denote the subscription options “Internet-

Only”, “Print-Only”, and “Print-&-Internet” as products 1, 2, and 3, respectively. Define

F = {t1, t2, t3} as in Figure 3.6 and the corresponding distribution as λ = (0.52, 0.16, 0.32);

it can be verified that this model leads to the choice probabilities in Table 1.1. Note that

customers following t2 will always choose “Internet-Only”(option 1), regardless of whether

“Print-Only”(option 2) is available or not. Similarly, customers following t3 will always

choose “Print-&-Internet” (option 3). But for customers following t1, the preference between

“Internet-Only” (option 1) and “Print-&-Internet” (option 3) changes when“Print-Only”

(product 2) exists. As in Figure 3.6a, if product 2 is included in the assortment, the decision

process proceeds to the left subtree and chooses according to the ranking {3 � 0}, i.e., if
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2

3

3 0

1

1 0

(a) Tree t1 with λ1 = 0.52

1

1 0

(b) Tree t2 with λ2 = 0.16

3

3 0

(c) Tree t3 with λ2 = 0.32

Figure 3.6: The forest-distribution pair F = {t1, t2, t3} and λ = (λ1, λ2, λ3) that can model

the decoy effect in The Economist subscription example in Table 1.1.

product 3 exists then we buy it; otherwise, we do not buy anything. If product 2 is not

included in the assortment, the decision process proceeds to the right subtree and chooses

according to the ranking {1 � 0}, i.e., if product 1 exists then we buy it; otherwise, we

do not buy anything. Thus, customers of type t1 account for the decoy effect observed in

Table 1.1.

Example 3 (Preference Cycle) The preference cycle is a behavioral anomaly in which

the preference relation is not transitive. A classic example is given by [116] and is re-

created in Table 3.1 (see also [102]). Participants were offered gambles varying in winning

probabilities but with similar payoffs. One group of participants behaved in the following way:

when offered two gambles with similar probabilities, they preferred the gamble with the larger

payoff. Specifically, they preferred A to B, B to C, C to D, and D to E. However, when

offered gambles where the winning probabilities were significantly different, they would prefer

the gamble with the higher winning probability, e.g., preferring E to A.

We can use a purchase decision tree to model this type of preference cycle, as in Figure 3.7.

It is easy to see that, when assortments {A,B}, {B,C}, {C,D}, {D,E}, {A,E} are given,

participants who follow the decision tree would choose A, B, C, D, and E, respectively. Note

that the right subtree of the root node corresponds to the ranking {A � B � C � D � E}

but the left subtree corresponds to the ranking {E � A}, therefore leading to the cycle.
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Gamble Prob. of Winning Payoff

A 7/24 5.00

B 8/24 4.75

C 9/24 4.50

D 10/24 4.25

E 11/24 4.00

Table 3.1: Gambles to demonstrate pref-

erence cycle [116].

A

E

E A

B

B C

C D

D 0

Figure 3.7: A decision tree representation

of a preference cycle.

3.1.5 Decision Forest Models are Universal

As we have shown that two classic examples of irrational choices can be modeled by decision

forest model, a natural question to ask is: what is the class of the choice models that

can be represented by a decision forest model? Stated differently, for any given general

choice model P(· | ·), does there exist a forest F and a probability distribution λ such that

P(o | S) = P(F,λ)(o | S) for every assortment S and purchase option o? The answer, given

by Theorem 1, is in the affirmative.

Theorem 1 Assume a universe of N products. Let Fd be the collection of all purchase

decision trees that satisfy Requirement 1-3 in Definition 6 (Section 3.1.1) and are of depth

at most d. For any customer choice model P(· | ·), there exists a distribution λ over FN+1

such that

P(o | S) = P(FN+1,λ)(o | S), (3.2)

for any assortment S and purchase option o ∈ N+.
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The proof of Theorem 1, given in Section A.1.2, follows by explicitly constructing a forest

of balanced trees of depth N+1 that gives identical choice probabilities to P, where each tree

corresponds to a possible combination of purchase decisions on all 2N assortments and the

probability of each tree is given by the product of the choice probabilities of those purchase

decisions. Theorem 1 shows that the decision forest model is universal : any choice model

can be represented by a decision forest model. Additionally, Theorem 1 gives another way

to prove Proposition 1: since any choice model can be modeled by the decision forest model,

ranking-based choice models are thus included as a special case.

3.2 Model Complexity of the Decision Forest Model

In this section, we theoretically analyze the problem of estimating a decision forest model

(F,λ) from data corresponding to a set of M historical assortments. While Theorem 1

implies that a forest of trees of depth at most N + 1 is sufficient to fit any data set, this

choice may not be attractive when N is large, as the trees will be extremely deep and

contain an exponentially large number of leaves. Therefore, we ask the question of whether

it is possible to fit the data using a “simple” decision forest model. In Section 3.2.1, we

define the estimation problem precisely and provide further motivation for considering simple

decision forest models. We then show how the number of assortments relates to the depth

of the trees, number of leaves of the trees, and number of trees in the forest.

3.2.1 Motivation for Simple Decision Forests

To motivate the value of considering simple forests, let us assume that we have access to sales

rate information for a collection of historical assortments S1, . . . , SM , and let vo,Sm denote the

probability with which customers selected option o ∈ N+ when assortment Sm was offered,

for m = 1, 2, . . . ,M . We let vS denote the vector of vo,S values for each historical assortment

S, and we use S = {S1, . . . , SM} to denote the set of historical assortments.
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We will make the assumption that vo,Sm is known exactly, that is, vo,Sm = P(o |Sm) for

every (o, Sm), where P(· | ·) is the ground truth choice model. This is a reasonable assumption

if the number of transaction records for each assortment is large enough that each vo,Sm will

be close to the true choice probability P(o |Sm). Later, in Section 3.3.4, we will discuss how

our estimation methodology can be readily adapted to the setting where the vo,Sm values are

derived from limited data.

We now define the estimation problem. For now, let us assume that we have fixed a

collection of candidate trees F . For each tree t ∈ F , let us define At,(o,S) to be 1 if tree t

chooses option o when offered assortment S, and 0 otherwise. Let us also define At,S to be

the vector of At,(o,S) values for o ∈ N+ with a given assortment S. Let λ = (λt)t∈F be the

probability distribution over F . With these definitions, to find the probability distribution

for the decision forest model, we must find a vector λ that satisfies the following system of

constraints: ∑
t∈F

At,Sλt = vS, ∀ S ∈ S, (3.3a)

1Tλ = 1, (3.3b)

λ ≥ 0. (3.3c)

In the above constraint system, constraints (3.3b) and (3.3c) model the requirement that λ

be a probability distribution, while constraint (3.3a) requires that for each assortment S in

the data, the vector of predicted choice probabilities,
∑

t∈F At,Sλt, is equal to the vector of

actual choice probabilities, vS. Thus, if we could select a reasonable set of candidate trees

for our decision forest, then we could, at least in theory, solve the feasibility problem (3.3)

to obtain the corresponding probability distribution λ.

Notwithstanding any computational questions surrounding problem (3.3), the remaining

question is how one should choose the forest F of candidate trees. According to Theorem 1,

decision forest models that are defined with F = FN+1, where FN+1 is the set of trees of

depth at most N + 1, are sufficient to represent any choice model, whether it belongs to the
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RUM class or not. Thus, an immediate choice of F is FN+1, and we would simply solve the

feasibility problem (3.3) with FN+1 to obtain the corresponding probability distribution λ.

However, upon closer examination, this particular choice of F is problematic. The flexibility

of the FN+1 decision forest model that we established in Theorem 1 implies that, without

any additional structure, it is impossible to learn this model from data. Specifically, a

consequence of Theorem 1 is that there always exists a distribution and a set of trees of

depth at most N + 1 such that (i) the model perfectly fits the training data {(S,vS)}S∈S ,

and (ii) the model also perfectly fits any other possible choice probabilities on the assortments

outside of the training data. For example, there exists a forest model that is consistent with

the training data {(S,vS)}S∈S , but always chooses the no-purchase option for every other

assortment, i.e., P(0 | S) = 1 for any S /∈ S.

This challenge with estimating the decision forest model motivates the need to impose

some form of structure on the set F of candidate trees that may be used in the decision

forest model. While there are many ways to quantify the size or complexity of a tree, we will

primarily focus on two measures: (i) depth and (ii) number of leaves. Both of these measures

are commonly applied in tree-based models found in machine learning. For example, the

method of limiting the depth of decision trees has been widely used in machine learning

algorithms, such as in CART [22], to avoid overfitting. Similarly, limiting the number of

leaves can also prevent overfitting and has been adapted in tree boosting methods [31].

Both depth and number of leaves are closely linked to model complexity: intuitively, as the

purchase decision trees in the forest become deeper or have more leaves (which is equivalent

to having more splits), each tree is able to exhibit a wider range of behavior as the assortment

varies.

There are three advantages to estimating decision forest models consisting of simple trees:

1. Generalization. Given two decision forest models that perfectly fit a set of training

assortments, it is reasonable to expect that the decision forest that is simpler will be

more likely to yield good predictions on new assortments outside of the training set.
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2. Tractability. It is also reasonable to expect that the estimation problem will become

more tractable, as the set of possible trees will be much smaller than the set of all

possible trees of depth N + 1 as required by Theorem 1.

3. Behavioral plausibility. Lastly, forests of simple trees are more behaviorally plau-

sible than trees of depth N + 1. As discussed in [68], customers often make purchase

decisions by first forming a consideration set (a small set of products out of the whole

assortment) and then choosing from among the considered products. Restricting the

depth or limiting the number of leaves of each tree implies that customers only check for

a small collection of products before making their purchase decision, and is congruent

with empirical research on how customers choose.

Before presenting the results, we require some additional definitions. We define the size

of a forest F as |F |, the number of trees in the forest. We define the size of a forest F as |F |,

the number of trees in the forest; the depth of a forest F as maxt∈F Depth(t), the maximal

depth of any tree in the forest F ; and the leaf complexity of a forest F as maxt∈F |leaves(t)|,

the maximal number of leaves of any tree in the forest F .

3.2.2 Forests of Simple Tree are Sufficient to Fit Data

Previously, we motivated the estimation of forests comprised of simple trees, i.e., trees whose

depth is bounded by some value d or trees whose number of leaves is bounded by some value

L. However, selecting the right depth d and L is not straightforward. While Theorem 1

guarantees the existence of a forest of depth N + 1 that is consistent with the training data

{(S,vS)}S∈S , it is not clear whether there exists a forest of depth d� N+1 that is consistent

with the training data. Additionally, the trees guaranteed by Theorem 1 may have up to 2N

leaves.

In this section, we explore the relation between depth, leaf complexity, and size of a

decision forest model to the number of historical assortments M . We propose two theoretical
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results that provide guidance on how these complexity parameters may be selected.

Theorem 2 For any training data S with M distinct historical assortments, S = {S1, . . . , SM},

there exists a probability distribution λ and a forest F of depth at most min{N + 1,M + 1},

of leaf complexity at most 2M , and of size at most M(N + 1) + 1 such that

P(F,λ)(o | S) = vo,S

for all S ∈ S and o ∈ N+.

The proof of Theorem 2 (see Section A.1.3) involves mathematical induction and poly-

hedral theory. In terms of depth, while Theorem 1 guarantees that we can fit the data with

a forest of depth N + 1, Theorem 2 ensures that we can fit the data with a forest of depth at

most min{N + 1,M + 1}. This result is particularly attractive when M < N . For example,

if a seller has only offered 5 historical assortments over 20 products, then instead of building

a decision forest of depth 21 as in Theorem 1, the seller can fit the customer behavior in

the data by a forest of depth 6. In terms of leaf complexity, while Theorem 1 implicitly

bounds the leaf complexity by 2N , Theorem 2 guarantees that the complexity that scales

only linearly in M . This result is also attractive because in practice M is unlikely to scale

exponentially with respect to N and thus M � 2N . Finally, in term of size, Theorem 2

guarantees that number of trees in the decision forest scales as O(NM). We note that [52]

established a similar size result for ranking-based models, showing that there exists a worst-

case distribution over the set of all rankings that is consistent with the data and that has

at most K + 1 non-zero components, where K is the number of item-assortment pairs (see

the proof of Theorem 1 of that paper); our result here about forest size can be viewed as a

generalization of that result to the decision forest model.

In the case that the number of products N and the number of assortments M are both

large, then the forests furnished by Theorem 2 will be very deep. A natural question is

whether it is possible to do better than min{N + 1,M + 1} in this setting. To address model
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complexity when both N and M are sufficiently large, we propose our second theoretical

result, which is formalized below as Theorem 3. This theorem assumes a simple generative

model of how historical assortments are chosen and establishes that, with high probability

over the historical assortments, one can fit the data with a decision forest whose depth scales

logarithmically in M .

Theorem 3 Assume the M assortments S = {S1, S2, S3, . . . , SM} of N products are drawn

uniformly at random and independently from the set of all 2N possible assortments. With

probability at least 1 − O
(
M2 · 2−CN/ log2M

)
, there exists a distribution λ and a forest F of

depth O (log2M) such that P(F,λ)(o | S) = vo,S for all S ∈ S and o ∈ N+, where C > 0 is a

positive constant.

Theorem 3 provides an asymptotic lower bound on the probability of the event that there

exists a forest of depth logarithmic in M that can perfectly fit the training data, where the

randomness is over the draw of M assortments from the set of all 2N assortments. Note

that the inequality N ≥ log2M always holds, since one will have at most 2N assortments

for N products. On the other hand, in real-world data, M is unlikely to scale exponentially

with respect to N ; for example, a retailer offering 1000 products is unlikely to have offered

21000 ≈ 10300 subsets of those products in the past. Thus, when N is large and M does

not scale exponentially with respect to N , the factor N/ log2M makes the probability lower

bound very close to 1. Stated differently, when N is large and M is not too large, most

data sets – that is, most collections of assortments S of M assortments of the N products

– will admit a forest representation that has depth O(log2M). We note that the result is

completely independent of the choice probabilities: the result holds no matter what (vS)S∈S

is.

To prove Theorem 3, we prove an intermediate result, Theorem 18 (see Section A.1.4),

which provides an explicit upper bound on the probability of not being able to find a forest

of a specific choice of depth that is O(log2M) that fits the data. To give a sense of the scale
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of the probability bound, for a retailer with N = 10000 products and M = 2000 historical

assortments, the bound implies that the probability that the data set cannot be fit by a

decision forest of depth at most 33 is no greater than 6.2 × 10−12. In contrast, Theorem 1

and Theorem 2 yield decision forests of depths 10001 and 2001 respectively.

3.3 Estimating Decision Forest Model from Data

In this section, we describe two methods to estimate the decision forest model from data,

based on column generation (Section 3.3.1) and randomized tree sampling (Section 3.3.2).

In Section 3.3.3, we discuss two practical strategies for addressing overfitting. Lastly, in

Section 3.3.4, we discuss how our methods can be extended to other forms of data and other

types of objectives.

3.3.1 Method #1: Column Generation

Suppose for now that we select a large collection F of candidate trees. As discussed earlier,

we wish to find a probability distribution λ over F that satisfies the constraint system (3.3)

for F . If we specify the set of candidate trees F according to the depth or leaf complexity

given in Theorem 2, then we are guaranteed the existence of a probability distribution λ

that satisfies the constraint system (3.3). However, the collection of trees F may still be

large enough that directly solving the feasibility problem (3.3) with F is computationally

unwieldy. More importantly, if we specify F to consist of trees that are simpler (have a lower

depth or fewer leaves) than those prescribed in Theorem 2, then it may not be possible to

find a λ that exactly satisfies (3.3).

Thus, we will instead focus on finding a λ for which v̂S =
∑

t∈F At,Sλt, the vector

of predicted choice probabilities for the assortment S, is close to vS, the vector of actual

choice probabilities for S, for all S ∈ S. One approach to finding such a λ is to formulate

an optimization problem where the objective is to minimize the average L1 norm of the
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prediction errors in the choice probabilities over all historical assortments:

minimize
λ,v̂

1

|S|
·
∑
S∈S

‖v̂S − vS‖1 (3.4a)

subject to v̂S =
∑
t∈F

At,Sλt, ∀ S ∈ S, (3.4b)

1Tλ = 1, (3.4c)

λ ≥ 0. (3.4d)

By introducing additional variables ε+
S and ε−S for each assortment S ∈ S, we can reformulate

problem (3.4) as a linear optimization problem. For a given data set S and forest F , we

refer to this problem as EstLO, which we define below:

EstLO(S, F ) = minimize
λ,ε+,ε−

1

|S|
·

(∑
S∈S

1Tε+
S +

∑
S∈S

1Tε−S

)
(3.5a)

subject to
∑
t∈F

At,Sλt + ε−S − ε
+
S = vS, ∀ S ∈ S, (3.5b)

1Tλ = 1, (3.5c)

ε+
S , ε

−
S ≥ 0, ∀ S ∈ S, (3.5d)

λ ≥ 0. (3.5e)

Before presenting our algorithm for solving this problem, we pause to comment on prob-

lem (3.5). Problem (3.5) is similar to the estimation problem that arises for ranking-based

models. In particular, [119] study a maximum likelihood estimation problem, while [87]

studies a similar L1 estimation problem, both of which are formulated in a similar way to

problem (3.5). Both [87] and [119] study solution methods for this general type of problem

that are based on column generation, where one alternates between solving a master problem

like (3.5) for a fixed set of rankings, and solving a subproblem to obtain the new ranking

that should be added to the collection of rankings. In a different direction, the conditional

gradient approach of [73] also involves iteratively adding rankings to a ranking-based model,

which also involves solving a similar subproblem.
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In the same way, one can also apply a column generation strategy to solve the decision

forest estimation problem (3.5), which we now describe at a high level. For a fixed forest F̂ ,

we solve the problem EstLO(S, F̂ ) to obtain the primal solution λ and the dual solution

(α, ν), where α = (αo,S)o∈N+,S∈S is the dual variable corresponding to constraint (3.5b) and

ν is the dual variable corresponding to the unit sum constraint (3.5c). We then solve a

subproblem to identify the tree in F with the lowest reduced cost:

min
t∈F

[
−
∑
S∈S

αTSAt,S − ν

]
. (3.6)

If the lowest reduced cost is nonnegative, we terminate with λ as the optimal solution. (Note

that λ is an optimal solution to EstLO(S, F̂ ); by setting λt = 0 for all t ∈ F \ F̂ , λ can be

extended to be an optimal solution of EstLO(S, F ).) If the reduced cost is negative, then

we add the tree to F̂ , solve the problem again, and repeat the procedure until the reduced

cost becomes nonnegative. The steps of this approach are summarized in Algorithm 1.

Algorithm 1 Column generation method for solving Problem (3.4).

1: procedure ColumnGeneration(F )

2: Initialize F̂ ← ∅

3: repeat

4: Solve EstLO(S, F̂ ) to obtain λ, α, ν

5: Set t∗ ← arg mint∈F
[
−
∑

S∈S α
T
SAt,S − ν

]
6: Set F̂ ← F̂ ∪ {t∗}

7: until −
∑

S∈S α
T
SAt∗,S − ν ≥ 0

8: return (F̂ , λ̂)

The key difference in the column generation approach for decision forests compared to

column generation approaches for ranking-based models is the subproblem (3.6): rather

than optimizing over the set of all rankings of the N + 1 options, one must optimize over

a collection of trees. This subproblem can be formulated exactly as an integer optimiza-

tion problem, with a structure that is different from the integer optimization problem that
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arises in ranking-based models (as in [119]); we provide the details of the formulation in

Section A.2.1. Although the resulting exact column generation approach is able to solve

problem (3.5) to provable optimality, it is unfortunately not scalable; for example, for trees

of depth d = 4, N = 8 products and M = 50 training assortments, the approach can require

over 6 hours (see Section A.2.2 for detailed runtime results).

Motivated by the intractability of solving the subproblem (3.6) exactly, we consider an

alternate strategy where we solve the subproblem heuristically. The heuristic procedure

involves starting from a degenerate tree consisting of a single leaf, and then iteratively

replacing each leaf with a split with two child leaf nodes. The leaf that is chosen for splitting,

as well as the product that is placed on that leaf node and the purchase decisions for the two

new leaves, are chosen in a greedy fashion, so as to result in the largest improvement in the

reduced cost. The procedure terminates when the reduced cost can no longer be decreased.

In addition, the procedure also grows each tree to a user-specified maximum depth of d;

stated differently, a leaf cannot be considered for splitting when it reaches a depth of d.

We formally define our top-down induction heuristic as Algorithm 2. Within Algorithm 2,

we use t0 to denote a degenerate tree that consists of a single leaf node, whose purchase

decision is the no-purchase option 0. We use leaves(t, d) to denote the set of all leaves in the

tree t that are at a depth up to (but not including) d. We define Zt,`,p,o1,o2 as the reduced cost

of the tree that is obtained by replacing leaf ` of tree t with a split, setting the product x` of

that new split to the product p, and setting the left child leaf node’s purchase decision to o1

and the right child leaf node’s purchase decision to o2; we also use GrowTree(t, `, p, o1, o2)

to denote the tree that is obtained from growing tree t in this way. Lastly, we use P (`) to

denote the set of products that have appeared in the ancestral splits of leaf ` (i.e., the set

of products p for which xs = p for some split s along the path from the root node to leaf `).

When choosing the product p to appear on the split at leaf `, Algorithm 2 is restricted to

using only those products that have not appeared in an ancestral split, i.e., those products

in N \ P (`); this ensures that the trees generated by Algorithm 2 satisfy Requirement 3 in
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Definition 6 (Section 3.1.1).

When we use the top-down induction heuristic (Algorithm 2) within the column genera-

tion method (Algorithm 1), we refer to the overall method as the heuristic column generation

(HCG) method.

Algorithm 2 Top-down induction method for heuristically solving the subproblem (3.6).

1: procedure TopDownInduction(α, ν, d)

2: Initialize t← t0

3: Initialize Zc ←
[
−
∑

S∈S α
T
SAt,S − ν

]
4: while |leaves(t, d)| > 0 do

5: Compute Zt,`,p,o1,o2 for all ` ∈ leaves(t, d), p ∈ N \ P (`),

o1 ∈ {p, 0} ∪ {xs | s ∈ LS(`)}, o2 ∈ {0} ∪ {xs | s ∈ LS(`)}

6: Set Z∗ ← min`,p,o1,o2 Zt,`,p,o1,o2

7: Set (`∗, p∗, o∗1, o
∗
2)← arg min(`,p,o1,o2) Zt,`,p,o1,o2

8: if Z∗ < Zc then

9: Set Zc ← Z∗

10: Set t← GrowTree(t, `∗, p∗, o∗1, o
∗
2)

11: else

12: break

13: return t, Zc

We comment on three important aspects of our heuristic column generation method.

First, our top-down induction procedure resembles greedy heuristics that are used for other

tree models in the machine learning literature, such as CART [22], C4.5 [98] and ID3 [97]. In

addition, such algorithms are also used in algorithms that build collections of trees. Within

this literature, our heuristic column generation method most resembles boosting, wherein one

adds trees (or other weak learners) iteratively to reduce the training error; see, for example,

[31], [60], and [61].

Second, since our top-down induction heuristic considers trees of maximum depth d,
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the overall column generation approach – Algorithm 1 combined with Algorithm 2 to solve

the subproblem – effectively solves the problem EstLO(S, Fd), where Fd is the set of un-

balanced trees of depth at most d. We note that the overall approach heuristically solves

EstLO(S, Fd); it does not guarantee that the resulting solution is an optimal solution of

EstLO(S, Fd). However, we find that the approach performs well in practice. In Sec-

tion A.2.2 we numerically compare the heuristic column generation approach against the

exact approach; we find that the heuristic approach obtains optimal or near-optimal train-

ing error in a fraction of the time required by the exact approach.

Third, the main complexity control in Algorithm 2 is the limit imposed on the depth of

the tree. As discussed in Section 3.2.2, one could use the number of leaves instead of the

depth to control the complexity of the trees. We can thus consider a variant of Algorithm 2

wherein one terminates the induction procedure upon reaching a user-specified limit on the

total number of leaves. We formally define this alternate method in Section A.2.3.

3.3.2 Method #2: Randomized Tree Sampling

In this section, we present our second estimation method, which we refer to as the randomized

tree sampling (RTS) approach. In this approach, instead of sequentially adding trees to a

growing collection, we directly sample a large number of trees to serve as the forest F̂ , and

then solve an optimization problem to find the corresponding probability distribution λ.

The overall procedure requires three inputs. The first input K is the number of trees to

be sampled. The second input F is a base collection of trees that the algorithm will sample

from, while the third input ξ is a probability distribution over F according to which we will

draw our sample of K trees. We formally define the method as Algorithm 3.

We theoretically characterize how the distribution ξ and the sample size K affect the

performance of Algorithm 3 as follows. We first define the training error or empirical risk of
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Algorithm 3 Randomized tree sampling method for solving Problem (3.4).

1: procedure RandomizedTreeSampling(K, F , ξ)

2: Draw K trees t1, t2, . . . , tK from F according to distribution ξ

3: Set F̂ ← {t1, t2, . . . , tK}

4: Solve EstLO(S, F̂ ) to obtain probability distribution λ̂

5: return (F̂ , λ̂)

a decision forest model (F,λ) with respect to the data {(S,vS)}S∈S as

R(F,λ) ≡ 1

|S|
∑
S∈S

∥∥∥∥∥∑
t∈F

At,Sλt − vS

∥∥∥∥∥
1

. (3.7)

Our main theoretical result (Theorem 4) states that with high probability, the empirical risk

of the model returned by Algorithm 3 converges to the lowest risk attainable by any forest

model in a set Λ(C, ξ), which will be defined in Theorem 4, with rate 1/
√
K.

Theorem 4 Let F be any collection of trees, let ξ be a probability distribution over F such

that ξt > 0 for all t ∈ F , and let C > 1 be a constant. Define the set

Λ(C, ξ) ≡
{
λ ∈ R|F | | λt ≤ C · ξt, ∀t ∈ F ; 1Tλ = 1; λ ≥ 0

}
(3.8)

as a collection of probability distributions over F . Then for any δ > 0, Algorithm 3 returns

a forest model (F̂ , λ̂) such that its empirical risk R(F̂ , λ̂) satisfies

R(F̂ , λ̂) ≤ min
λ∈Λ(C,ξ)

R(F,λ) +
C√
K
·
(√

N + 1 + 3
√

log(4/δ)
)

with probability at least 1− δ over the sample of trees t1, . . . , tK that comprise F̂ .

In words, the training error (i.e., the objective value of problem (3.4)) of the decision

forest model (F̂ , λ̂) is bounded with high probability by the sum of two terms, where the

first term measures the best possible training error over decision forest models (F,λ) where

λ is in Λ(C, ξ), while the second term depends linearly on C. When C is large, the first
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term will be small because the set Λ(C, ξ) will be larger, but the second term will be large.

Similarly, when C is small, the second term will be reduced, but the first term will become

larger because the set Λ(C, ξ) will shrink.

The set Λ(C, ξ) reflects the “coverage” ability of the distribution ξ. If the choice proba-

bilities (vS)S∈S can be generated by a decision forest model (F,λ) for some λ from Λ(C, ξ)

corresponding to a small value C, then the number of trees that we need to sample in order

to obtain a low training error R(F̂ , λ̂) will be small. As an example, if ξ corresponds to the

uniform distribution over F and if the optimal λ∗ that fits the choice probabilities (vS)S∈S

is “close” to being uniform, then we only need to sample a small number of trees to achieve

a low training error, because the implied value of C (i.e., the value of C needed for λ∗ to be

contained in Λ(C, ξ)) is small. As another example in contrast to the previous one, if the

optimal λ∗ is one where (for example) one tree t′ has a disproportionately higher probability

than the other trees, then we will need to sample many trees from ξ because the implied

value of C is large; this makes sense intuitively because one has a low likelihood of sampling

t′ from ξ when |F | is large. We also note that the effect of the structure of F in terms of

the depth or the number of leaves of the trees is captured in the term minλ∈Λ(C,ξ) R(F,λ).

As F contains a richer collection of trees, this term will in general become smaller.

We note that Theorem 4 is inspired by the literature on randomization in machine learn-

ing – specifically, the idea of training weighted combinations of (nonlinear) features by ran-

domly sampling the features [91, 99, 100]. Indeed, our proof of Theorem 4 adapts the

technique in [100], which considers the problem of learning arbitrary weighted sums of fea-

ture functions, to the problem of learning a probability distribution (in the setup of [100],

the weights need not add up to one). In choice modeling, random sampling was previously

used in [52]. In that paper one formulates the problem of finding the worst-case probabil-

ity distribution over a collection of rankings, which is a linear optimization problem of a

similar form to our estimation problem EstLO(S, F ). To solve this worst-case problem,

one formulates the dual and randomly samples a collection of constraints (i.e., rankings).
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The paper of [52] justifies this by appealing to the paper of [26], which shows that with

O((1/ε)(NM ln(1/ε) + ln(1/δ)) constraints being sampled, at most an ε fraction of the con-

straints will be violated, with probability at least 1 − δ over the sampling. However, as

noted in [52], the theory of [26] does not govern how far the optimal objective of the sampled

problem will be from the complete problem, which is the focus of our result here.

3.3.3 Addressing Overfitting

Given the richness of the decision forest model, an important concern is overfitting. In this

section, we describe two practical strategies for addressing overfitting in the decision forest

model.

k-fold cross-validation: As in other machine learning methods, one can use k-fold cross

validation to tune the hyperparameters for the decision forest model. In this approach, we

divide the training set into a collection of k smaller subsets or folds. For a fixed value of

a hyperparameter, we use the k − 1 folds as training data to estimate the model with that

hyperparameter value, and evaluate the model’s performance on the remaining hold-out fold;

we repeat this k times, with each of the k folds serving as the hold-out fold, and average

over the k folds. We then repeat this for each value of interest for the hyperparameter, and

choose the best value. This approach can be used to set the depth limit d for the top-down

induction method (Algorithm 2) within HCG. This approach can also be used to select an

appropriate collection of trees F and probability distribution ξ for the randomized tree sam-

pling method; a simple implementation of this idea is to specify F as the set of all balanced

trees of depth d that satisfy Requirement 1-3 in Definition 6 (Section 3.1.1), specify ξ as the

uniform distribution over F , and use k-fold cross-validation to determine the optimal depth

d. In our numerical experiments in Section 3.4.2, we use k-fold cross-validation to tune the

depth d for the HCG and RTS approaches.
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Figure 3.8: Collection of trees F0 corresponding to an independent demand model.

Warm-starts: Both the heuristic column generation method and the randomized tree sam-

pling method build the collection of trees F̂ from scratch, without any set of trees explicitly

provided by the user. However, they can be easily modified to take an initial set of trees

F0 as an input: in Algorithm 1, we can modify line 2 so that we initialize F̂ ← F0, while

in Algorithm 3, we can modify line 3 to set F̂ ← {t1, . . . , tK} ∪ F0. With regard to F0, the

simplest choice is the independent demand model, which corresponds to the forest shown in

Figure 3.8. Another natural choice for F0 is the set of trees that correspond to a ranking-

based model learned by another method (such as [87] or [119]). By warm-starting either

Algorithm 1 or Algorithm 3 in this way, one can bias the estimation so that the resulting de-

cision forest model is close to the best-fitting ranking-based model, and reduce the possibility

of overfitting in cases where the customer choice behavior is close to a rational model.

3.3.4 Estimating Decision Forests with Log-Likelihood Objective

So far, we have assumed that the choice probabilities v = (vo,S)o∈N+,S∈S for a set of historical

assortments S is known. Our goal has thus been to minimize the error between v and v̂,

the choice probabilities predicted by a decision forest model, and we have measured error

using the L1 norm. In practice, when the number of transactions is sufficiently large for each

assortment S, then the frequency of each observed option o given assortment S can serve as

an ideal value for vo,S.

In other real-world settings, transaction records may be abundant for some assortments

but scarce for others. A more common objective function for this finite sample setting
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is log-likelihood. Let c(o, S) be the number of transactions in which o was chosen given

assortment S. The maximum likelihood problem can be represented as the following concave

optimization problem:

maximize
λ,v̂

∑
S∈S

∑
o∈N+

c(o, S) · log v̂o,S (3.9a)

subject to v̂S =
∑
t∈F

At,Sλt, ∀ S ∈ S, (3.9b)

1Tλ = 1, (3.9c)

λ ≥ 0, (3.9d)

where the objective is the log-likelihood of the transaction records and v̂o,S is the choice prob-

ability of the forest model for option o given assortment S. Problem (3.9) only differs from

problem (3.4) in the objective function. Note that when each column (At,S)S∈S corresponds

to a ranking, then problem (3.9) coincides with the maximum likelihood problem that is

solved in [119]. The paper of [119] solves this problem using column generation, and shows

how one can obtain the dual variables for constraints (3.9b) and (3.9c) in closed form. In

addition, the paper of [121] proposes a specialized expectation maximization (EM) method

for solving the ranking-based maximum likelihood problem, without invoking a nonlinear

optimization solver. It turns out that for the forest maximum likelihood problem (3.9), the

dual variables can be obtained in the same way as in [119] and the problem itself can be

solved with the same EM algorithm from [121]. We thus adapt the heuristic column genera-

tion and randomized tree sampling methods as follows. For the heuristic column generation,

we solve the restricted master problem at each iteration using the EM algorithm of [121] and

solve the subproblem using our top-down induction method, with the dual variables obtained

as in [119]. For the randomized tree sampling algorithm, instead of solving EstLO(S, F̂ )

with a sampled collection of trees F̂ , we solve problem (3.9) with F̂ using the EM algorithm

of [121].
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3.4 Decision Forest Model on a Real-World Dataset

In this section, we apply our decision forest model to the IRI Academic Dataset [23] and

evaluate its predictive performance.

3.4.1 Background

The IRI dataset is comprised of real-world transaction records of store sales and consumer

panels for thirty product categories, and includes sales information for products collected

from 47 U.S. markets. The purpose of these experiments is to show how the decision forest

model can lead to better predictions of real-world customer choices. We note that the same

data set was used in [73] to empirically demonstrate the loss of rationality in real customer

purchase data.

To pre-process the data, we follow the same pre-processing steps as in [73]. In the dataset,

each item is labeled with its respective universal product code (UPC). By aggregating the

items with the same vendor code (denoted by digits four through eight of the UPC) as a

product, we can identify products from the raw transactions; we note that this is a common

pre-processing technique (see [24, 92]). By selecting the top nine purchased products and

combining the remaining products as the no-purchase option, we create transaction records

for the model setup. Due to the large number of transactions, we follow [73] by only focusing

on data from the first two weeks of calendar year 2007.

After pre-processing the data, we convert the sales transactions for each product category

into assortment-choice pairs {(St, ot)}t∈T , where T is a collection of transactions, as follows.

Each transaction t contains the following information: the week of the purchase (wt), the

store ID where the purchase was recorded (zt), the UPC of the purchased product (pt). Let

W and Z be the non-repeated collection of {wt}t∈T and {zt}t∈T , respectively. With week

w ∈ W and store z ∈ Z, we define the offer set Sw,z =
{⋃

t∈T {pt | wt = w, zt = z}
}
∪ {0},

as the collection of the products as well as the no-purchase option, purchased at least once
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at store z in week w. As in Section 3.3.4, we define c(o, S) as the purchase count for option

o given assortment S, i.e., c(o, S) =
∑

t∈T I{St = S, ot = o}.

To quantify the out-of-sample performance of each predictive model on testing transaction

set Ttest, we use Kullback-Leibler (KL) divergence per transaction, which is defined as

KL(Ttest) = − 1

|Ttest|
∑

S∈S(Ttest)

∑
o∈N+

c(o, S, Ttest) log (po,S/vo,S(Ttest)) ,

where S(Ttest) is the set of assortments found in Ttest, c(o, S, Ttest) is the number of pur-

chases of option o given assortment S observed in Ttest, po,S is the predicted choice prob-

ability for option o given assortment S, and vo,S(Ttest) is the empirical choice probabil-

ity for option o given assortment S derived from the transaction set Ttest. Specifically,

vo,S(Ttest) = c(o, S, Ttest)/
∑

o′∈N+
c(o′, S, Ttest). We remark that [73] also used KL divergence

as a measure of goodness of fit. While their work focused on the in-sample information

loss from fitting any RUM model, our numerical experiments here emphasize out-of-sample

predictive ability.

3.4.2 Experiment #1: Assortment Splitting

In our first experiment, we test the out-of-sample predictive ability of our models using five-

fold cross validation, where the splitting is done with respect to assortments. We divide the

set of assortments S into five (approximately) equally-sized subsets S1, . . . ,S5, and for each

i ∈ {1, . . . , 5}, we use the transaction data for assortments S1, . . . ,Si−1,Si+1, . . . ,S5 to build

each predictive model and the remaining fold Si is used for testing. We note that this is

a more stringent test of the predictive performance of the models than the standard cross

validation based on splitting the transactions, as each model is used to make predictions on

assortments that are different from the assortments used to train the models.

In addition to the decision forest model, we test four other models: the ordinary (single-

class) MNL model, the latent-class MNL (LC-MNL) model, the ranking-based model and

the HALO-MNL model [82]. For both the MNL and the HALO-MNL models, we fit the
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parameters using maximum likelihood estimation.

For the LC-MNL model, we implement the EM algorithm of [115]. We tune the number

of classes K within the set {2, 3, 5, 10, 15} using k-fold cross validation with k = 4, using the

previously-defined folds S1, . . . ,S5. We emphasize here that this “inner” cross-validation,

which involves four folds and is used for tuning the number of classes K, is distinct from

the “outer” cross-validation, which involves five folds and is for the purpose of obtaining a

reliable estimate of the out-of-sample KL divergence.

For the ranking-based model, we estimate the model using the column generation method

of [119], where the master problem is solved using the EM algorithm in [121]. We define the

parameter τ for this model as the maximum allowable consideration set size; in other words,

any ranking must be such that there are no more than τ products that are more preferred

to the no-purchase option. We tune the parameter τ within the set {2, 3, 4, 5, 6, 7, 8, 9} using

k-fold cross validation with k = 4, using the folds S1, . . . ,S5. We note that ranking-based

models with constrained consideration sets have been considered in previous research on the

ranking-based model (see [54]).

For the decision forest model, we estimate the model in two different ways. The first

involves using the heuristic column generation method in Section 3.3.1 with log-likelihood

as the objective function (as in Section 3.3.4). We solve the master problem using the same

EM algorithm from [121]. We warm start the model by setting the initial set of trees F0

to be the set of trees corresponding to the rankings estimated for the ranking-based model

with τ = 9 (note that since the number of products N = 10, this value corresponds to

estimating ranking-based model without a constraint on the consideration set size). In the

same way that we tune K for the LC-MNL model, we also tune the value of d, the maximum

depth parameter of the top-down induction method (Algorithm 2). We tune d within the

set {3, 4, 5, 6, 7} using k-fold cross validation with k = 4, again using the folds S1, . . . ,S5

defined earlier.

The second approach for the decision forest model that we consider is the randomized
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tree sampling method in Section 3.3.2, again with log-likelihood as the objective function.

We find the optimal λ using the EM algorithm from [121], and as with the HCG method, we

warm start the model by setting the initial set of trees F0 to be the set of trees corresponding

to the rankings estimated for the ranking-based model with τ = 9. We set the base collection

of trees F to be sampled as the set of all balanced trees of depth d, and the distribution

ξ as the uniform distribution over F . We tune d within the set {3, 4, 5, 6, 7} using k-fold

cross-validation with k = 4. We fix the number of sampled trees K to 2000; for simplicity,

we do not tune the value of K.

Table 3.4.2 summarizes the out-of-sample performance of each predictive model over

the thirty product categories. The first three columns under “Datasets” show the product

category, and the number of historical assortments and transactions in that category. The

remaining columns report the average out-of-sample KL divergence over five folds. The best

performing method in each category is indicated in bold.

Out of 30 product categories, the MNL model attains the lowest KL divergence in 1

category, the LC-MNL model attains the lowest in 4 categories, the HALO-MNL model in 8

categories, the ranking-based model in 1 category, and the decision forest model (using either

HCG or RTS) in 16 categories. Comparing the decision forest using HCG to the three RUM

models (the MNL, LC-MNL and ranking-based models), we find that the decision forest

model leads to a lower out-of-sample KL divergence in 22 out of 30 categories. Similarly, the

decision forest model using HCG also outperforms the HALO-MNL model in 22 out of 30

categories. In addition, the decision forest model (using either HCG or RTS) achieves lower

average, median and maximum KL divergences over the thirty product categories than the

other benchmark models. These results suggest the potential of the decision forest model to

provide accurate predictions of choice probabilities on new, unseen assortments. For space

consideration, we relegate the runtime and complexity results of each predictive model in

Section A.3.1.
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Product Category |S| |T | MNL LC-MNL HALO-MNL RM DF DF

(HCG) (RTS)

Beer 55 380,932 6.43 5.68 0.79 5.49 0.88 1.56

Blades 57 92,404 0.48 0.40 0.52 1.44 0.41 1.02

Carbonated Beverages 31 721,506 2.85 2.54 0.95 2.65 1.56 1.56

Cigarettes 68 249,668 1.91 1.67 0.91 1.65 0.98 0.96

Coffee 47 372,536 2.99 2.03 2.11 2.03 1.96 1.64

Cold Cereal 15 577,236 1.73 1.79 0.58 2.10 0.90 0.69

Deodorant 45 271,286 0.61 0.73 0.82 0.83 0.42 0.68

Diapers 18 143,055 3.34 1.54 58.56 7.13 1.07 1.51

Facial Tissue 43 73,806 1.39 1.09 1.47 1.21 0.77 1.32

Frozen Dinners 30 979,936 1.44 0.95 3.84 0.94 2.40 1.98

Frozen Pizza 61 292,878 2.76 2.13 1.04 2.10 1.10 1.13

Hotdogs 100 101,624 3.52 3.22 2.81 3.17 2.97 2.92

Household Cleaners 19 282,981 0.94 0.93 1.61 0.96 0.68 0.51

Laundry Detergent 56 238,163 2.37 2.30 2.29 2.39 2.13 2.33

Margarine/Butter 18 140,969 2.21 2.06 1.68 2.04 1.19 0.74

Mayonnaise 48 97,282 1.33 0.94 0.93 0.90 0.84 0.89

Milk 49 240,691 4.22 3.63 1.59 2.78 1.29 1.45

Mustard/Ketchup 44 134,800 1.32 1.06 0.78 1.10 0.74 0.80

Paper Towels 40 82,636 1.21 1.09 1.42 1.17 1.09 1.10

Peanut Butter 51 108,770 2.05 1.52 1.86 1.66 1.49 1.51

Photo 80 17,047 0.84 0.76 4.66 3.33 1.31 1.28

Salty Snacks 39 736,148 1.87 1.74 2.09 1.79 1.77 1.70

Shampoo 66 290,429 1.17 1.37 0.86 1.34 0.95 1.21

Soup 24 905,541 1.19 1.17 2.86 1.04 0.95 1.63

Spaghetti/Italian Sauce 38 276,860 3.38 3.26 4.44 2.89 3.37 2.88

Sugar Substitutes 64 53,834 0.83 0.76 0.79 0.93 0.77 0.88

Toilet Tissue 27 112,788 1.42 1.49 2.09 1.79 1.47 1.86

Toothbrush 114 197,676 1.53 1.28 0.60 1.23 0.99 1.19

Toothpaste 42 238,271 0.53 0.55 0.37 0.64 0.35 0.39

Yogurt 43 499,203 4.71 4.38 4.07 3.16 2.80 1.58

(Mean) – – 2.09 1.80 3.65 2.06 1.32 1.36

(Median) – – 1.63 1.50 1.53 1.72 1.08 1.30

(Maximum) – – 6.43 5.68 58.56 7.13 3.37 2.92

Table 3.2: Out-of-sample KL divergence (in units of 10−2) for each model over the thirty

product categories in the IRI data set, under assortment-based splitting.
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3.4.3 Experiment #2: Temporal Splitting

In addition to the assortment-based splitting schemes, we consider an additional splitting

scheme that we term temporal splitting. In this experimental approach, we use the first two

weeks of transactions in 2007 in the IRI data set as training data, and then use the following

four weeks as test data; this approach emulates how one would use the predictive models to

make predictions prospectively (i.e., for transactions occurring in the future). We note that

this type of splitting approach has been used previously in the literature; see, for example,

[3] and [6].

We compare the decision forest model (estimated using both the HCG and RTS ap-

proaches), the single-class MNL model, the LC-MNL model, the ranking-based model and

the HALO-MNL model. We use five-fold cross-validation to tune the models, where the folds

correspond to the five assortment folds used in Section 3.4.2. We use this cross-validation to

tune the values of the following hyperparameters: the depth limit d for the HCG approach

for the decision forest model; the depth d of the base forest for the RTS approach for the

decision forest model; the number of classes K for the latent-class MNL model; and the

consideration set size τ for the ranking-based model. We estimate all of the models using

the same methods as in Section 3.4.2. As in the earlier experiments, we set the number of

sampled trees K for the RTS method to 2000. Note that unlike the transaction-splitting ex-

periment in Section 3.4.2, there is only one form of cross-validation done in this experiment,

which is to tune the hyperparameters; the out-of-sample performance of the final model of

each class is then evaluated using the testing data for weeks 3 to 6, without any further

cross-validation.

Table 3.3 shows the out-of-sample KL divergence for each of the five models, on each of the

30 product categories. In addition, the table also summarizes the number of transactions and

unique assortments in the training data (|T1:2| and |S1:2|, respectively, where the subscript

1:2 indicates weeks 1 to 2); the number of transactions and unique assortments in the test

48



data (|T3:6| and |S3:6|, respectively, where the subscript 3:6 indicates weeks 3 to 6); and lastly,

how many new assortments exist in the test data (i.e., how many assortments in the test

data are not present in the training data; this is indicated by |S3:6 \ S1:2| ).

From this table, we can see that the decision forest model and the HALO-MNL model are

essentially tied for the best performance. The decision forest model, using either the HCG

or RTS methods, delivers the lowest KL divergence out of all of the models on 14 out of 30

product categories, while the HALO-MNL provides the lowest KL divergence out of all the

models on 16 out of 30 categories. At the same time, when comparing the average, median

and maximum out-of-sample KL divergence over the 30 product categories, we can see that

the decision forest model achieves the best performance, with the HALO-MNL model being

very slightly higher. Overall, this experiment indicates the potential of the decision forest

model to be used for making predictions prospectively.

3.4.4 Extracting Substitution and Complementarity Behavior

In addition to obtaining predictions, choice modeling is useful for obtaining insights on

the relationship between products, i.e., how the presence of one product will affect the

choice probability of another product. For parametric choice models, such as the LC-MNL

model, such insights can be easily obtained by examining the estimated utility parameters.

In contrast, for nonparametric models such as the ranking-based model or the decision

forest model, it is less straightforward to obtain a simple picture of the relationship between

products.

In this section, we propose a simple method for extracting substitution and complemen-

tarity effects between products for a given choice model, and use it to analyze the decision

forest model for a single product category in the IRI dataset. We note that our procedure

is not specific to the decision forest model and can be used for other choice models (such as

the ranking-based model, which we also analyze), and thus may be of independent interest.
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We first define a function ∆(j, k, S) of a product j, a product k 6= j, and an assortment

S that does not include product j and k, as

∆(j, k, S) =
P(j | S ∪ {j, k})−P(j | S ∪ {j})

P(j | S ∪ {j})
, (3.10)

which measures the relative change in the choice probability of product j when product k

is introduced to assortment S. For convenience, we define ∆(j, k, S) ≡ 0 if j = k. We say

that product k complements product j under assortment S when ∆(j, k, S) > 0. Similarly,

we say product k substitutes product j under S when ∆(j, k, S) < 0.

The substitution and complementarity relation depends on the existence of other prod-

ucts, i.e., on the assortment S. To quantify the overall impact of product k toward product

j, we consider the averaged version of ∆(j, k, S). That is, we consider ∆avg
j,k = (1/|S\jk|) ·∑

S∈S\jk ∆(j, k, S), where S\jk is the set of all assortments that do not include product j

and k. Similarly, we can also define ∆avg
0,k to measure the average impact of the addition of

product k on the no-purchase option. We use ∆avg = [∆avg
j,k ]j∈N+,k∈N to denote the matrix

of all such values.

Figure 3.9 illustrates two ∆avg matrices, one corresponding to the decision forest model

with depth d = 3 (top matrix) and the other corresponding to the ranking-based model

(down matrix), for the coffee product category. For each matrix, starting from the top-left

corner that corresponds to ∆avg
1,1 , the first 9-by-9 submatrix corresponds to [∆avg

j,k ]j,k=1,...,9

and the tenth row represents to [∆avg
0,k ]k=1,...,9, which captures the effects of the presence

of each brand on the choice probability of the no-purchase option. Each cell corresponds

to the effect of adding the brand on the corresponding column towards the brand on the

corresponding row. The color level of each cell in each matrix represents the numeric value of

∆avg in accordance with the color bar on the right hand side of the figure: green corresponds

to positive values and shows complementarity behavior, while red corresponds to negative

values and shows substitution behavior.

Figure 3.9 shows that the decision forest model and the ranking-based model capture
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Figure 3.9: Illustration of the substitution/complementarity matrices ∆avg on coffee brands,

corresponding to the decision forest (top) and the ranking-based model (down).
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similar substitution patterns. For example, both models show that, on average, the choice

probabilities of Millstone and Eight O’Clock decrease by about 60% and 40%, respectively,

when Private Label is added, as shown in elements (5,3) and (6,3) from the top-left corner.

However, since the ranking-based model satisfies the regularity property, all elements in

∆avg are forced to be non-positive. Thus, with the ranking-based model we are restricted

to understanding only the substitution behavior between products, and we cannot use it to

identify any complementarity behavior.

In contrast, the decision forest model is not constrained by the regularity property, and

thus we can use it to identify interesting complementarities between certain brands. For

example, Figure 3.9 shows that adding Seattle’s Best to the assortment increases the choice

probability of Starbucks by about 25% on average; the addition of Eight O’Clock provides a

similar boost of about 16% to the choice probability of Maxwell House.

Another way to identify substitution and complementarity effects between products is to

directly inspect the decision forest model. Figure 3.10 visualizes the top three trees by λt

value of the decision forest model used in the top matrix of Figure 3.9. From left to right,

the probability weights (λt values) of each tree are 4.1%, 2.5%, and 2.3%, respectively. The

second tree exhibits the decoy effect that is described in Section 3.1.4. This customer type

behaves in the following way: when Eight O’Clock exists in the assortment, the customer

will purchase Maxwell House if it is available; otherwise, if Eight O’Clock does not exist in

the assortment, the customer will purchase Private Label if it is available. This matches

the complementarity effect shown in Figure 3.9 (element (2,6) in the left-hand matrix). The

decision forest model is also capable of capturing effects that do not fit into well-studied

customer behaviors in the marketing literature. For example, the first tree in Figure 3.10

corresponds to customers who purchase Millstone only if Eight O’Clock is observed in the

assortment; otherwise, they do not make a purchase. Similarly, the third tree represents a

decoy-like effect, where a customer checks for the existence of Starbucks : if it exists, the

customer will purchase Starbucks if Seattle’s Best is available; if not, the customer will pur-
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chase Maxwell House if it is available. This highlights another benefit of our nonparametric

approach: since we do not impose any assumptions on how the data is generated, we are

able to discover interesting customer behaviors that fall outside of well-studied irrational

behaviors.

Eight
O’Clock

Millstone

Millstone No
Purchase

No
Purchase

yes no

Eight
O’Clock

Maxwell
House

Maxwell
House

No
Purchase

Private
Label

Private
Label

No
Purchase

yes no
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Figure 3.10: Top three decision trees on coffee brands with highest probability weights in

the decision forest model learned from data.
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CHAPTER 4

Assortment Optimization Under the Decision Forest

Model

In this chapter1, we study the problem of finding the assortment that maximizes expected

revenue under the decision forest model. We approach this problem from a mixed-integer

optimization perspective and propose three different formulations (Section 4.1) and theoret-

ically compare these formulations in strength. We propose a methodology for solving these

problems at a large-scale based on Benders decomposition (Section 4.2). Using synthetically

generated instances, we demonstrate the tractability of our proposed approach, and their

edge over heuristic approaches (Section 4.3). All proofs in this chapter are relegated to

Section B.2 in Appendix.

4.1 Optimization model

In this section, we define the decision forest assortment optimization problem (Section 4.1.1)

and subsequently develop our three formulations, LeafMIO (Section 4.1.2), SplitMIO

(Section 4.1.2) and ProductMIO (Section 4.1.4).

1This chapter is based on my doctoral research work “Assortment Optimization Under the Decision Forest
Model” [33].
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4.1.1 Problem definition

For completeness, let us first briefly re-introduce2 the decision forest model and then formally

state the corresponding assortment optimization problem. We assume that there are N

products, indexed from 1 to N , and let N = {1, . . . , N} denote the set of all products. An

assortment S is a subset of N . When offered S, a customer may choose to purchase one of

the products in S, or to not purchase anything at all; we use the index 0 to denote the latter

possibility, which we will also refer to as the no-purchase option. We denote S+ ≡ S ∪ {0}

and N+ ≡ N ∪ {0}.

Recall that the basic building block of the decision forest model is a purchase decision

tree. A purchase decision tree is a directed binary tree, with each leaf node corresponding

to an option in N+, and each non-leaf (or split) node corresponding to a product in N . We

use splits(t) to denote the set of split nodes of tree t, and leaves(t) to denote the set of

leaf nodes. We use c(t, `) to denote the purchase decision of leaf ` of tree t, i.e., the option

chosen by tree t if the assortment is mapped to leaf `. We use v(t, s) to denote the product

that is checked at split node s in tree t.

Each tree represents the purchasing behavior of one type of customer. Specifically, for

an assortment S, the customer behaves as follows: the customer starts at the root of the

tree. The customer checks whether the product corresponding to the root node is contained

in S; if it is, he proceeds to the left child, and if not, he proceeds to the right child. He then

checks again with the product at the new node, and the process repeats, until the customer

reaches a leaf; the option that is at the leaf represents the choice of that customer. Figure 4.1

shows an example of a purchase decision tree being used to map an assortment to a purchase

decision. In the figure, leaf nodes are enclosed in squares, while split nodes are not enclosed.

The number on each node corresponds either to v(t, s) for splits, or c(t, `) for leaves. The

path highlighted in red indicates how a customer following this tree maps the assortment

2The notation and figures in this chapter are slightly different with the ones in Chapter 3, due to the
need to incorporate the additional optimization procedure.
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Figure 4.1: Example of a purchase decision tree for n = 5 products.

S = {1, 3, 4, 5} to a leaf. For this assortment, the customer’s decision is to purchase product

5.

The decision forest model assumes that the customer population is represented by a

collection or forest F . Each tree t ∈ F corresponds to a different customer type. We use λt

to denote the probability associated with customer type/tree t, and λ = (λt)t∈F to denote

the probability distribution over the forest F . For each tree t, we use Â(t, S) to denote the

choice that a customer type following tree t will make when given the assortment S. For a

given assortment S ⊆ N and a given choice j ∈ S+, we use P(F,λ)(j | S) to denote the choice

probability, i.e., the probability of a random customer customer choosing j when offered the

assortment S. It is defined as

P(F,λ)(j | S) =
∑
t∈F

λt · I{Â(t, S) = j}. (4.1)

We now define the assortment optimization problem. We use r̄i to denote the marginal

revenue of product i; for convenience, we use r̄0 = 0 to denote the revenue of the no-purchase

option. The assortment optimization problem that we wish to solve is

maximize
S⊆N

∑
i∈S

r̄i ·P(F,λ)(i | S). (4.2)

This is a challenging problem because of the general nature of the choice model P(F,λ)(· | ·).

It turns out that problem (4.2) is theoretically intractable.
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Proposition 2 The decision forest assortment optimization problem (4.2) is NP-Hard.

The proof of this proposition follows by a reduction from the MAX 3SAT problem; see see

Section B.2.1. In the next three sections, we present different mixed-integer optimization

(MIO) formulations of this problem.

4.1.2 Formulation 1: LeafMIO

We now present our first formulation of the assortment optimization problem (4.2) as a

mixed-integer optimization (MIO) problem. To formulate the problem, we introduce some

additional notation. For notational convenience we let rt,` = r̄c(t,`) be the revenue of the

purchase option of leaf ` of tree t. We let left(s) denote the set of leaf nodes that are to the

left of split s (i.e., can only be reached by taking the left branch at split s), and similarly,

we let right(s) denote the leaf nodes that are to the right of s.

We introduce two sets of decision variables. For each i ∈ N , we let xi be a binary

decision variable that is 1 if product i is included in the assortment, and 0 otherwise. For

each tree t ∈ F and leaf ` ∈ leaves(t), we let yt,` be a binary decision variable that is 1 if

the assortment encoded by x is mapped to leaf ` of tree t, and 0 otherwise.

With these definitions, our first formulation, LeafMIO, is given below.

LeafMIO : maximize
x,y

∑
t∈F

λt ·

 ∑
`∈leaves(t)

rt,`yt,`

 (4.3a)

subject to
∑

`∈leaves(t)

yt,` = 1, ∀ t ∈ F, (4.3b)

yt,` ≤ xv(t,s), ∀ t ∈ F, s ∈ splits(t), ` ∈ left(s), (4.3c)

yt,` ≤ 1− xv(t,s), ∀ t ∈ F, s ∈ splits(t), ` ∈ right(s), (4.3d)

xi ∈ {0, 1}, ∀ i ∈ N , (4.3e)

yt,` ≥ 0, ∀ t ∈ F, ` ∈ leaves(t). (4.3f)
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In order of appearance, the constraints in this formulation have the following meaning.

Constraint (4.3b) requires that for each customer type t, the assortment encoded by x is

mapped to exactly one leaf. Constraint (4.3c) requires that for any split s and any leaf `

that is to the left of split s, the assortment can be mapped to leaf ` only if the assortment

includes the product v(t, s) (i.e., if product v(t, s) is not included in the assortment, then

yt,` is forced to zero). Similarly, constraint (4.3d) requires the same for each split s and each

leaf ` that is to the right of split s. The last two constraints require that x is binary and

y is nonnegative. Note that it is not necessary to require y to be binary, as the constraints

ensure that each yt,` automatically takes the correct value whenever x is binary. Finally, the

objective function corresponds to the expected per-customer revenue of the assortment.

To motivate our main result, let FLeafMIO denote the feasible region of the linear opti-

mization relaxation of problem (4.3). Our main result is that, even in the simple case when

the forest F consists of a single tree, FLeafMIO may fail to be integral. We leave the proof

to Section B.2.2.

Proposition 3 There exists a decision forest model (F,λ) with |F | = 1 such that FLeafMIO

is not integral, that is, there exists an extreme point (x,y) ∈ FLeafMIO such that x /∈ {0, 1}n.

The instance that we use to prove Proposition 3 is constructed so that each split cor-

responds to a distinct product, i.e., each product appears at most once in the splits of the

tree. The dichotomy between decision forests where a product appears at most once in the

splits of a given tree, and decision forests where a product may appear in two or more splits

of a given tree, is important: the next formulation that we will consider, SplitMIO, is

guaranteed to be integral in the former case when |F | = 1, but can be non-integral in the

latter case.
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4.1.3 Formulation 2: SplitMIO

While problem LeafMIO is one formulation of problem (4.2), it is not the strongest possible

formulation. In particular, for a fixed split s, the constraints (4.3c) and (4.3d) can be

aggregated over all leaves in left(s) and right(s), respectively, for a fixed split s. This leads

to our second formulation, SplitMIO, which is defined below.

SplitMIO : maximize
x,y

∑
t∈F

λt ·

 ∑
`∈leaves(t)

rt,`yt,`

 (4.4a)

subject to
∑

`∈leaves(t)

yt,` = 1, ∀ t ∈ F, (4.4b)

∑
`∈left(s)

yt,` ≤ xv(t,s), ∀ t ∈ F, s ∈ splits(t), (4.4c)

∑
`∈right(s)

yt,` ≤ 1− xv(t,s), ∀ t ∈ F, s ∈ splits(t), (4.4d)

xi ∈ {0, 1}, ∀ i ∈ N , (4.4e)

yt,` ≥ 0, ∀ t ∈ F, ` ∈ leaves(t). (4.4f)

Constraints (4.4b), (4.4e) and (4.4f) and the objective function are the same as in formu-

lation LeafMIO. Constraint (4.4c) is an aggregated version of constraint (4.3c): for a split

s in tree t, if product v(t, s) is not in the assortment, then the assortment cannot be mapped

to any of the leaves that are to the left of split s in tree t. Similarly, constraint (4.4d) is an

aggregated version of constraint (4.3d), requiring that if v(t, s) is included in the assortment,

then the assortment cannot be mapped to any leaf to the right of split s in tree t. As in

LeafMIO, y is modeled as nonnegative without affecting the validity of the formulation.

The above formulation we present here is related to two existing MIO formulations in the

literature. The formulation here can be viewed as a specialized case of the MIO formulation

in [89]. In that paper, the author develops a formulation for tree ensemble optimization, i.e.,
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the problem of setting the independent variables in a tree ensemble model (e.g., a random

forest or a gradient boosted tree model) to maximize the value predicted by that ensemble.

Since the decision forest model is a type of tree ensemble model, where the “independent

variables” are binary (i.e., product i is in the assortment or not), the formulation in [89]

naturally applies here, leading to problem (4.4).

In addition to [89], problem (4.4) also relates to another MIO formulation, specifically

that of [13]. In that paper, the authors develop a formulation for the product line design

problem under the ranking-based model. As discussed in Section 3.1.3, if we restrict each

tree in the forest to be a ranking, then the decision forest becomes a ranking-based choice

model. Therefore, one can be verified that the formulation (4.4) actually coincides with the

MIO formulation for product line design under ranking-based models presented in [13].

Before continuing to our other formulations, we establish a couple of important properties

of problem (4.4). Let FSplitMIO denote the feasible region of the linear optimization relaxation

of problem (4.4). Our first result, alluded to above, is that SplitMIO is at least as strong

as LeafMIO.

Proposition 4 For any decision forest model (F,λ), FSplitMIO ⊆ FLeafMIO.

This result follows straightforwardly from the definition of SplitMIO; we thus omit the

proof. Our second result concerns the behavior of SplitMIO when |F | = 1. When |F | = 1,

we can show that FSplitMIO is integral in a particular special case. (Note that in the statement

of the proposition below, we drop the index t to simplify notation.)

Proposition 5 Let (F,λ) be a decision forest model consisting of a single tree, i.e., |F | = 1.

In addition, assume that for every i ∈ N , v(s) = i for at most one s ∈ splits. Then FSplitMIO

is integral, i.e., every extreme point (x,y) of the polyhedron FSplitMIO satisfies x ∈ {0, 1}N .

The proof of this result (see Section B.2.3) follows by showing that the constraint matrix

defining FSplitMIO is totally unimodular. In addition to Proposition 5, we also have the

following proposition that sheds light on when SplitMIO is not integral.
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Proposition 6 There exists a decision forest model (F,λ) with |F | = 1 and for which

v(s1) = v(s2) = i for at least two s1, s2 ∈ splits, s1 6= s2 and at least one i ∈ N , such that

FSplitMIO is not integral.

The proof of this result is given in Section B.2.4. Proposition 6 is significant because it

implies that for |F | = 1, the distinction between trees where each product appears at most

once in any split and trees where a product may appear two or more times as a split is sharp.

This insight provides the motivation for our third formulation, ProductMIO, which we

present next.

4.1.4 Formulation 3: ProductMIO

The third formulation of problem (4.2) that we will present is motivated by the behavior of

SplitMIO when a product participates in two or more splits. In particular, observe that in

a given purchase decision tree, a product i may participate in two different splits s1 and s2 in

the same tree. In this case, constraint (4.4c) in problem (4.4) will result in two constraints:

∑
`∈left(s1)

yt,` ≤ xi, (4.5)

∑
`∈left(s2)

yt,` ≤ xi. (4.6)

In the above two constraints, observe that left(s1) and left(s2) are disjoint (this is a straight-

forward consequence of Requirement 3 in Definition 6 in Section 3.1.1). Given this and con-

straint (4.4b) that requires the yt,` variables to sum to 1, we can come up with a constraint

that strengthens constraints (4.5) and (4.6) by combining them:

∑
`∈left(s1)

yt,` +
∑

`∈left(s2)

yt,` ≤ xi. (4.7)

In general, one can aggregate all the yt,` variables that are to the left of all splits involving a

product i to produce a single left split constraint for product i. The same can also be done
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for the right split constraints. Generalizing this principle leads to the following alternate

formulation, which we refer to as ProductMIO:

ProductMIO : maximize
x,y

∑
t∈F

λt ·

 ∑
`∈leaves(t)

rt,`yt,`

 (4.8a)

subject to
∑

`∈leaves(t)

yt,` = 1, ∀ t ∈ F, (4.8b)

∑
s∈splits(t):
v(t,s)=i

∑
`∈left(s)

yt,` ≤ xi, ∀ t ∈ F, i ∈ N , (4.8c)

∑
s∈splits(t):
v(t,s)=i

∑
`∈right(s)

yt,` ≤ 1− xi, ∀ t ∈ F, i ∈ N , (4.8d)

xi ∈ {0, 1}, ∀ i ∈ N , (4.8e)

yt,` ≥ 0, ∀ t ∈ F, ` ∈ leaves(t). (4.8f)

Relative to SplitMIO, ProductMIO differs in several ways. First, note that while both

formulations have the same number of variables, formulation ProductMIO has a smaller

number of constraints. In particular, problem SplitMIO has one left and one right split

constraints for each split in each tree, whereas ProductMIO has one left and one right

split constraint for each product. When the trees involve a large number of splits, this can

lead to a sizable reduction in the number of constraints. Note also that when a product does

not appear in any splits of a tree, we can also safely omit constraints (4.8c) and (4.8d) for

that product.

The second difference with formulation SplitMIO, as we have already mentioned, is in

formulation strength. Let FProductMIO be the feasible region of the LO relaxation of Pro-

ductMIO. The following proposition formalizes the fact that formulation ProductMIO

is at least as strong as formulation SplitMIO.

Proposition 7 For any decision forest model (F,λ), FProductMIO ⊆ FSplitMIO.

The proof follows straightforwardly using the logic given above; we thus omit the proof.
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The last major difference is in how ProductMIO behaves when |F | = 1. We saw that

a sufficient condition for FSplitMIO to be integral when |F | = 1 is that each product appears

in at most one split in the tree. In contrast, formulation ProductMIO is always integral

when |F | = 1.

Proposition 8 For any decision forest model (F,λ) with |F | = 1, FProductMIO is integral.

The proof of this proposition, given in Section B.2.5, follows by recognizing the connection

between ProductMIO and another type of formulation in the literature. In particular, a

stream of papers in the mixed-integer optimization community [71, 122, 123] has considered

a general approach for deriving small and strong formulations of disjunctive constraints

using independent branching schemes; we briefly review the most general such approach

from [71]. In this approach, one has a finite ground set J , and is interested in optimizing

over a particular subset of the (|J | − 1)−dimensional unit simplex over J , ∆J = {λ ∈ RJ |∑
j∈J λj = 1;λ ≥ 0}. The specific subset that we are interested in is called a combinatorial

disjunctive constraint (CDC), and is given by

CDC(S) =
⋃
S∈S

Q(S), (4.9)

where S is a finite collection of subsets of J and Q(S) = {λ ∈ ∆ | λj ≤ 0 for j ∈ J \ S} for

any S ⊆ J . This approach is very general: for example, by associating each j with a point

xj in Rn, one can use CDC(S) to model an optimization problem over a union of polyhedra,

where each polyhedron is the convex hull of a collection of vertices in S ∈ S.

A k-way independent branching scheme of depth t is a representation of CDC(S) as a

sequence of t choices between k alternatives:

CDC(S) =
t⋂

m=1

k⋃
i=1

Q(Lmi ), (4.10)

where Lmi ⊆ J . In the special case that k = 2, we can write CDC(S) = ∩tm=1(Lm∪Rm) where

Lm, Rm ⊆ J . This representation is known as a pairwise independent branching scheme and
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the constraints of the corresponding MIO can be written simply as∑
j∈Lm

λj ≤ zm, ∀ m ∈ {1, . . . , k}, (4.11a)

∑
j∈Rm

λj ≤ 1− zm, ∀ m ∈ {1, . . . , k}, (4.11b)

zm ∈ {0, 1}, ∀ m ∈ {1, . . . , k}, (4.11c)∑
j∈J

λj = 1, (4.11d)

λj ≥ 0, ∀ j ∈ J. (4.11e)

This particular special case is important because it is always integral (see Theorem 1 of [122]).

Moreover, we can see that ProductMIO bears a strong resemblance to formulation (4.11).

Constraints (4.11a) and (4.11a) correspond to constraints (4.8c) and (4.8d), respectively. In

terms of variables, the λj and zm variables in formulation (4.11) correspond to the yt,` and

xi variables in ProductMIO, respectively.

One notable difference is that in practice, one would use formulation (4.11) in a modular

way; specifically, one would be faced with a problem where the feasible region can be written

as CDC(S1) ∩ CDC(S2) ∩ · · · ∩ CDC(SG), where each Sg is a collection of subsets of J . To

model this feasible region, one would introduce a set of zg,m variables for the gth CDC,

enforce constraints (4.11a) - (4.11c) for the gth CDC, and use only one set of λj variables

for the whole formulation. Thus, the λj variables are the “global” variables, while the zg,m

variables would be “local” and specific to each CDC. In contrast, in ProductMIO, the

xi variables (the analogues of zm) are the “global” variables, while the yt,` variables (the

analogues of λj) are the “local” variables.

4.2 Solution methodology based on Benders decomposition

While the formulations in Section 4.1 bring the assortment optimization problem under the

decision forest choice model closer to being solvable in practice, the effectiveness of these
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formulations can be limited in large-scale problems. In particular, consider the case where

there is a large number of trees in the decision forest model and each tree consists of a large

number of splits and leaves. In this setting, all three formulations – LeafMIO, SplitMIO

and ProductMIO– will have a large number of yt,` variables and a large number of con-

straints to link those variables with the xi variables, and may require significant computation

time.

At the same time, LeafMIO, SplitMIO and ProductMIO share a common problem

structure. In particular, all three formulations have two sets of variables: the x variables,

which determine the products that are to be included, and the (yt)t∈F variables, which model

the choice of each customer type. In addition, for any two trees t, t′ such that t 6= t′, the

yt variables and yt′ variables do not appear together in any constraints. Thus, one can

view each of the three formulations as a two-stage stochastic program, where each tree t

corresponds to a scenario; the variable x corresponds to the first-stage decision; and the

variable yt corresponds to the second-stage decision under scenario t, which is appropriately

constrained by the first-stage decision x.

Thus, we can apply Benders decomposition to solve the problem. At a high level, Benders

decomposition involves using linear optimization duality to represent the optimal value of

the second-stage problem for each tree t as a piecewise-linear concave function of x, and to

eliminate the (yt)t∈F variables. One can then re-write the optimization problem in epigraph

form, resulting in an optimization problem in terms of the x variable and an auxiliary

epigraph variable θt for each tree t, and a large family of constraints linking x and θt for

each tree t. Although the family of constraints for each tree t is too large to be enumerated,

one can solve the problem through constraint generation.

The main message of this section of the paper is that, in most cases, the primal and the

dual forms of the second-stage problem can be solved either in closed form (when x is binary)

or via a greedy algorithm (when x is fractional), thus allowing one to identify violated con-

straints for either the relaxation or the integer problem in a computationally efficient manner.
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In the remaining sections, we carefully analyze the second-stage problem for each of the three

formulations. For LeafMIO, we show that the second-stage problem can be solved by a

greedy algorithm when x is fractional (Section 4.2.1). For SplitMIO, we similarly show that

the second-stage problem can be solved by a slightly different greedy algorithm when x is

fractional (Section 4.2.2). For ProductMIO, we show that the same greedy approach does

not solve the second-stage problem in the fractional case (Section 4.2.3). For all three formu-

lations, when x is binary, we characterize the primal and dual solutions in closed form; due to

space considerations, we relegate these results to the appendix (LeafMIO in Section B.1.1,

SplitMIO in Section B.1.2 and ProductMIO in Section B.1.3). Lastly, in Section 4.2.4,

we briefly describe our overall algorithmic approach to solving the assortment optimization

problem, which involves solving the Benders reformulation of the relaxed problem, followed

by the Benders reformulation of the integer problem.

4.2.1 Benders reformulation of the LeafMIO relaxation

The Benders reformulation of the LO relaxation of LeafMIO can be written as

maximize
x,θ

∑
t∈F

λtθt (4.12a)

subject to θt ≤ Gt(x), ∀ t ∈ F, (4.12b)

x ∈ [0, 1]n, (4.12c)
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where the function Gt(x) is defined as the optimal value of the following subproblem corre-

sponding to tree t:

Gt(x) = maximize
yt

∑
`∈leaves(t)

rt,` · yt,` (4.13a)

subject to
∑

`∈leaves(t)

yt,` = 1, (4.13b)

yt,` ≤ xv(t,s), ∀ s ∈ splits(t), ` ∈ left(s), (4.13c)

yt,` ≤ 1− xv(t,s), ∀ s ∈ splits(t), ` ∈ right(s), (4.13d)

yt,` ≥ 0, ∀ ` ∈ leaves(t). (4.13e)

We now present a greedy algorithm for solving problem (4.13), which is presented below

as Algorithm 4. The algorithm requires a bijection τ : {1, . . . , |leaves(t)|} → leaves(t) such

that rt,τ(1) ≥ rt,τ(2) ≥ · · · ≥ rt,τ(|leaves(t)|, i.e., an ordering of leaves in nondecreasing revenue.

In addition, in the definition of Algorithm 4, we use LS(`) and RS(`) to denote the set of

left and right splits, respectively, of `, which are defined as

LS(`) = {s ∈ splits(t) | ` ∈ left(s)},

RS(`) = {s ∈ splits(t) | ` ∈ right(s)},

In words, LS(`) is the set of splits for which we must proceed to the left in order to be able

to reach `, and RS(`) is the set of splits for which we must proceed to the right to reach `. A

split s ∈ LS(`) if and only if ` ∈ left(s), and similarly, s ∈ RS(`) if and only if ` ∈ right(s).

Intuitively, this algorithm progresses through the leaves in order of their revenue rt,`,

and sets the yt,` variable of each leaf ` to the highest it can be set to without violating

constraints (4.13c) and (4.13d), while also ensuring that
∑

` yt,` ≤ 1. At each stage of the

algorithm, the algorithm keeps track of which constraints become tight through the event set

E . If the constraint (4.13c) becomes tight for a particular split-leaf pair (s, `), we say that

an As,` event has occurred, and we add As,` to E . Similarly, if constraint (4.13d) becomes

tight for (s, `), we say that a Bs,` event has occurred and add Bs,` to E . (In the case of a
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tie, that is, when there is more than one split s which attains the minimum on line 13 or 17,

we choose the split arbitrarily.) If the constraint (4.13b) holds, then we say that a C event

has occurred, and we terminate the algorithm, as all the remaining yt,` variables cannot be

set to anything other than zero. In addition to the events in E , we also keep track of which

yt,` variable was being modified when each event in E occurred; this is done through the

function f . We note that both E and f are not essential for the primal algorithm, but they

become important for the dual algorithm (to be defined as Algorithm 5 below), in order to

determine the corresponding dual solution.

It turns out that Algorithm 4 returns a feasible solution that is an extreme point of the

polyhedron defined in problem (4.13), which we establish as Theorem 5 below.

Theorem 5 Fix t ∈ F . Let yt be a solution to problem (4.13) produced by Algorithm 4.

Then:

a) yt is a feasible solution to problem (4.13).

b) yt is an extreme point of the feasible region of problem (4.13).

By Theorem 5, problem (4.13) is feasible; since the feasible region is additionally bounded,

it follows that problem (4.13) has a finite optimal value. Therefore, by strong duality, the

optimal objective value of problem (4.13) is equal to the optimal value of its dual. The dual

of problem (4.13) can be written as:

minimize
αt,βt,γt

∑
s∈splits(t)

∑
`∈left(s)

αt,s,`xv(t,s) +
∑

s∈splits(t)

∑
`∈right(s)

βt,s,`(1− xv(t,s)) + γt (4.14a)

subject to
∑

s:`∈left(s)

αt,s,` +
∑

s:`∈right(s)

βt,s,` + γt ≥ rt,`, ∀ ` ∈ leaves(t), (4.14b)

αt,s,` ≥ 0, ∀ s ∈ splits(t), ` ∈ left(s), (4.14c)

βt,s,` ≥ 0, ∀ s ∈ splits(t), ` ∈ right(s). (4.14d)
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Algorithm 4 Primal greedy algorithm for LeafMIO.

Require: Bijection τ : {1, . . . , |leaves(t)|} → leaves(t) such that rt,τ(1) ≥ rt,τ(2) ≥ · · · ≥

rt,τ(|leaves(t)|)

1: Initialize yt,` ← 0 for all ` ∈ leaves(t)

2: for i = 1, . . . , |leaves(t)| do

3: Set qA ← min{xv(t,s) | s ∈ LS(τ(i))}

4: Set qB ← min{1− xv(t,s) | s ∈ RS(τ(i))}

5: Set qC ← 1−
∑i−1

j=1 yt,τ(j)

6: Set q∗ ← min{qA, qB, qC}

7: Set yt,τ(i) ← q∗

8: if q∗ = qC then

9: Set E ← E ∪ {C}

10: Set f(C) = τ(j)

11: break

12: else if q∗ = qA then

13: Select s∗ ∈ arg mins∈LS(τ(i)) xv(t,s)

14: Set E ← E ∪ {As∗,τ(i)}

15: Set f(As∗,τ(i)) = τ(i)

16: else

17: Select s∗ ∈ arg mins∈RS(τ(i))[1− xv(t,s)]

18: Set E ← E ∪ {Bs∗,τ(i)}

19: Set f(Bs∗,τ(i)) = τ(i)
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Letting Dt,LeafMIO denote the set of feasible solutions (αt,βt, γt) to the dual subprob-

lem (4.14), we can re-write the master problem (4.12) as

maximize
x,θ

∑
t∈F

λtθt (4.15a)

subject to θt ≤
∑

s∈splits(t)

∑
`∈left(s)

αt,s,`xv(t,s) +
∑

s∈splits(t)

∑
`∈right(s)

βt,s,`(1− xv(t,s)) + γt,

∀ (αt,βt, γt) ∈ Dt,LeafMIO, (4.15b)

x ∈ [0, 1]n. (4.15c)

The value of this formulation, relative to the original formulation, is that we have replaced

the (yt)t∈F variables and the constraints that link them to the x variables, with a large

family of constraints in terms of x. Although this new formulation is still challenging, the

advantage of this formulation is that it is suited to constraint generation.

The constraint generation approach to solving problem (4.15) involves starting the prob-

lem with no constraints and then, for each t ∈ F , checking whether constraint (4.15b) is

violated. If constraint (4.15b) is not violated for any t ∈ F , then we conclude that the current

solution x is optimal. Otherwise, for any t ∈ F such that constraint (4.15b) is violated, we

add the constraint corresponding to the (αt,βt, γt) solution at which the violation occurred,

and solve the problem again to obtain a new x. The procedure then repeats at the new x

solution until no more violated constraints have been found.

The critical step in the constraint generation approach is the separation procedure for

constraint (4.15b): that is, for a fixed t ∈ F , either asserting that the current solution x

satisfies constraint (4.15b) or identifying a (αt,βt, γt) at which constraint (4.15b). This

amounts to solving the dual subproblem (4.14) and comparing its objective value to θt.

Fortunately, it turns out that we can solve the dual subproblem (4.14) using a spe-

cialized algorithm, in the same way that we can solve the primal subproblem (4.13) using

Algorithm 4. Using the event set E and the mapping f produced by Algorithm 4, we can

now consider a separate algorithm for solving the dual problem (4.14), which we present
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below as Algorithm 5.

Algorithm 5 Dual greedy algorithm for LeafMIO.

1: Initialize αt,s,` ← 0, βt,s,` ← 0 for all s ∈ splits(t), ` ∈ leaves(t), γt ← 0.

2: Set γt ← rt,f(C)

3: for ` ∈ leaves(t) do

4: Set αt,s,` = rt,f(As,`) − γt for any s such that As,` ∈ E

5: Set βt,s,` = rt,f(Bs,`) − γt for any s such that Bs,` ∈ E

As with Algorithm 4, we can show that the dual solution produced by Algorithm 5 is a

feasible extreme point solution of problem (4.14).

Theorem 6 Fix t ∈ F . Let (αt,βt, γt) be a solution to problem (4.14) produced by Algo-

rithm 5. Then:

a) (αt,βt, γt) is a feasible solution to problem (4.14).

b) (αt,βt, γt) is an extreme point of the feasible region of problem (4.14).

Lastly, given the two solutions yt and (αt,βt, γt), we now show that these solutions are

optimal for their respective problems.

Theorem 7 Fix t ∈ F . Let yt be a solution to problem (4.13) produced by Algorithm 4 and

let (αt,βt, γt) be a solution to problem (4.14) produced by Algorithm 5. Then:

a) yt is an optimal solution to problem (4.13).

b) (αt,βt, γt) is an optimal solution to problem (4.14).

Before continuing, we pause to make two important remarks on Theorem 7 and our results

in this section. First, the value of Theorem 7 is that it allows us to use Algorithms 4 and
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5 to solve the primal and dual subproblems (4.13) and (4.14). Thus, rather than invoking

a linear optimization solver, such as Gurobi, to solve problem (4.14), we can simply run

Algorithms 4 and 5.

Second, we note that the existence of a greedy algorithm is perhaps not too surpris-

ing, because of the connection between problem (4.13) and the 0-1 knapsack problem. In

particular, consider the following problem:

maximize
ỹt

∑
`∈leaves(t)

rt,` · wt,` · ỹt,` (4.16a)

subject to
∑

`∈leaves(t)

wt,` · ỹt,` ≤ 1, (4.16b)

0 ≤ ỹt,` ≤ 1, ∀ ` ∈ leaves(t). (4.16c)

where the coefficient wt,` is defined as

wt,` = min

{
min

s∈LS(`)
xv(t,s), min

s∈RS(`)
(1− xv(t,s))

}
,

and ỹt,` is a new decision variable defined for each ` ∈ leaves(t). Note that this prob-

lem is equivalent to problem (4.13) with the constraint
∑

`∈leaves(t) yt,` = 1 relaxed to∑
`∈leaves(t) yt,` ≤ 1. The coefficient wt,` has the interpretation of the tightest upper bound

on yt,` in problem (4.13). The variable ỹt,` can therefore be viewed as a re-scaling of yt,`

relative to this bound; in other words, we can recover yt,` from a solution by setting it

as yt,` = wt,` · ỹt,`. Problem (4.16) is special because it is exactly the linear optimization

relaxation of a 0-1 knapsack problem: each leaf ` correspond to an item; each wt,` value

corresponds to item `’s weight; and the coefficient rt,` ·wt,` corresponds to the profit of item

`. It is well-known that the optimal solution to the relaxation of a 0-1 knapsack problem can

be obtained via a greedy heuristic that sets the fractional amount of each item to the highest

it can be, in order of decreasing profit-to-weight ratio [83]. For problem (4.16) above, the

profit-to-weight ratio is exactly rt,` · wt,`/wt,` = rt,`, so the greedy algorithm coincides with

our greedy algorithm (Algorithm 4).
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4.2.2 Benders reformulation of the SplitMIO relaxation

We now turn our attention to the SplitMIO formulation. We can reformulate the relax-

ation of SplitMIO in the same way as LeafMIO; in particular, we have the same master

problem (4.12), where the function Gt(x) is now defined as the optimal value of the tree t

subproblem in SplitMIO:

Gt(x) = maximize
yt

∑
`∈leaves(t)

rt,` · yt,` (4.17a)

subject to
∑

`∈leaves(t)

yt,` = 1, (4.17b)

∑
`∈left(s)

yt,` ≤ xv(t,s), ∀ s ∈ splits(t), (4.17c)

∑
`∈right(s)

yt,` ≤ 1− xv(t,s), ∀ s ∈ splits(t), (4.17d)

yt,` ≥ 0, ∀ ` ∈ leaves(t). (4.17e)

As with LeafMIO, it turns out that the primal subproblem (4.17) can be solved us-

ing a greedy algorithm, which we present below as Algorithm 6. As with Algorithm 4,

this algorithm requires as input an ordering τ of the leaves in nondecreasing revenue. Like

Algorithm 4, this algorithm also progresses through the leaves from highest to lowest rev-

enue, and sets the yt,` variable of each leaf ` to the highest value it can be set to without

violating the left and right split constraints (4.17c) and (4.17d) and without violating the

constraint
∑

`∈leaves(t) yt,` ≤ 1. At each iteration, the algorithm additionally keeps track

of which constraint became tight through the event set E . An As event indicates that the

left split constraint (4.17c) for split s became tight; a Bs event indicates that the right

split constraint (4.17d) for split s became tight; and a C event indicates that the constraint∑
`∈leaves(t) yt,` ≤ 1 became tight. When a C event is not triggered, Algorithm 6 looks for

the split which has the least remaining capacity (line 17). In the case that the arg min is not

unique and there are two or more splits that are tied, we break ties by choosing the split s

74



with the lowest depth d(s) (i.e., the split closest to the root node of the tree).

The function f keeps track of which leaf ` was being checked when an As / Bs / C event

occurred. As with LeafMIO, E and f are not needed to find the primal solution, but they

are essential to determining the dual solution in the dual procedure (Algorithm 7, which we

will define shortly).

The following result establishes that Algorithm 6 produces a feasible, extreme point

solution of problem (4.17).

Theorem 8 Fix t ∈ F . Let yt be a solution to problem (4.17) produced by Algorithm 6.

Then:

a) yt is a feasible solution to problem (4.17); and

b) yt is an extreme point of the feasible region of problem (4.17).

As in our analysis of LeafMIO, a consequence of Theorem 8 is that problem (4.17) is

feasible, and since the problem is bounded, it has a finite optimal value. By strong duality,

the optimal value of problem (4.18) is equal to the optimal value of its dual:

minimize
αt,βt,γt

∑
s∈splits(t)

xv(t,s) · αt,s +
∑

s∈splits(t)

(1− xv(t,s))βt,s + γt (4.18a)

subject to
∑

s:`∈left(s)

αt,s +
∑

s:`∈right(s)

βt,s + γt ≥ rt,`, ∀ ` ∈ leaves(t), (4.18b)

αt,s ≥ 0, ∀ s ∈ splits(t), (4.18c)

βt,s ≥ 0, ∀ s ∈ splits(t). (4.18d)

Letting Dt,SplitMIO denote the set of feasible solutions to the dual subproblem (4.18), we can
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Algorithm 6 Primal greedy algorithm for SplitMIO.

Require: Bijection τ : {1, . . . , |leaves(t)|} → leaves(t) s.t. rt,τ(1) ≥ · · · ≥ rt,τ(|leaves(t)|)

1: Initialize yt,` ← 0 for each ` ∈ leaves(t).

2: for i = 1, . . . , |leaves(t)| do

3: Set qC ← 1−
∑i−1

j=1 yt,τ(j).

4: for s ∈ LS(τ(i)) do

5: Set qs ← xv(t,s) −
∑i−1

j=1:
τ(j)∈left(s)

yt,τ(j)

6: for s ∈ RS(τ(i)) do

7: Set qs ← 1− xv(t,s) −
∑i−1

j=1:
τ(j)∈right(s)

yt,τ(j)

8: Set qA,B ← mins∈LS(τ(i))∪RS(τ(i)) qs

9: Set q∗ ← min{qC , qA,B}

10: Set yt,τ(i) ← q∗

11: if q∗ = qC then

12: Set E ← E ∪ {C}.

13: Set f(C) = τ(i).

14: else

15: Set s∗ ← arg mins∈LS(τ(i))∪RS(τ(i)) qs

16: if s∗ ∈ LS(τ(i)) then

17: Set e = As

18: else

19: Set e = Bs

20: if e /∈ E then

21: Set E ← E ∪ {e}.

22: Set f(e) = τ(i).
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formulate the master problem (4.12) as

maximize
x,θ

∑
t∈F

λtθt (4.19a)

subject to θt ≤
∑

s∈splits(t)

xv(t,s) · αt,s +
∑

s∈splits(t)

(1− xv(t,s))βt,s + γt,

∀ (αt,βt, γt) ∈ Dt,SplitMIO, (4.19b)

x ∈ [0, 1]n. (4.19c)

As with the Benders approach to LeafMIO, the crucial step to solving this problem is being

able to solve the dual subproblem (4.18). Similarly to problem (4.17), we can also obtain a

solution to the dual problem (4.18) via an algorithm that is formalized as Algorithm 7 below.

Algorithm 7 uses auxiliary information obtained during the execution of Algorithm 6. In

the definition of Algorithm 7, we use d(s) to denote the depth of an arbitrary split, where

the root split corresponds to a depth of 1, and dmax = maxs∈splits(t) d(s) is the depth of the

deepest split in the tree. In addition, we use splits(t, d) = {s ∈ splits(t) | d(s) = d} to

denote the set of all splits at a particular depth d.

Algorithm 7 Dual greedy algorithm for SplitMIO.

1: Initialize αt,s ← 0, βt,s ← 0 for all s ∈ splits(t), γt ← 0

2: Set γ ← rf(C)

3: for d = 1, . . . , dmax do

4: for s ∈ splits(t, d) do

5: if As ∈ E then

6: Set αt,s ← rt,f(As) − γt −
∑

s′∈LS(f(As)):
As′∈E,
d(s′)<d

αt,s′ −
∑

s′∈RS(f(As)):
Bs′∈E,
d(s′)<d

βt,s′

7: if Bs ∈ E then

8: Set βt,s ← rt,f(Bs) − γt −
∑

s′∈LS(f(As)):
As′∈E,
d(s′)<d

αt,s′ −
∑

s′∈RS(f(As)):
Bs′∈E,
d(s′)<d

βt,s′

We provide a worked example of the execution of both Algorithms 6 and 7 in Sec-
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tion B.3.1.

Our next result, Theorem 9, establishes that Algorithm 7 returns a feasible, extreme

point solution of the dual subproblem (4.18).

Theorem 9 Fix t ∈ F . Let (αt,βt, γt) be a solution to problem (4.18) produced by Algo-

rithm 7. Then:

a) (αt,βt, γt) is a feasible solution to problem (4.18); and

b) (αt,βt, γt) is an extreme point of the feasible region of problem (4.18).

Lastly, and most importantly, we show that the solutions produced by Algorithms 6 and

7 are optimal for their respective problems. Thus, Algorithm 7 is a valid procedure for

identifying values of (αt,βt, γt) at which constraint (4.19b) is violated.

Theorem 10 Fix t ∈ F . Let yt be a solution to problem (4.17) produced by Algorithm 6

and (αt,βt, γt) be a solution to problem (4.18) produced by Algorithm 7. Then:

a) yt is an optimal solution to problem (4.17); and

b) (αt,βt, γt) is an optimal solution to problem (4.18).

The proof of this result follows by verifying that the two solutions satisfy complementary

slackness.

Before continuing, we note that Algorithms 6 and 7 can be viewed as the generalization

of the algorithms arising in the Benders decomposition approach to the ranking-based as-

sortment optimization problem in [13] (see Section 4 of that paper). The results of that

paper show that the primal subproblem of the MIO formulation in [13] can be solved via a

greedy algorithm (analogous to Algorithm 6) and the dual subproblem can be solved via an

algorithm that uses information from the primal algorithm (analogous to Algorithm 7). This
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generalization is not straightforward. The main challenge in this generalization is redesign-

ing the sequence of updates in the greedy algorithm according to the tree topology. For

the ranking-based assortment problem, one only needs to calculate the “capacities” (the qs

values in Algorithm 6) by subtracting the y values of the preceding products in the rank. In

contrast, in Algorithm 6, one considers all left/right splits and the y values of their left/right

leaves when constructing the lowest upper bound of y` for each leaf node `. Also, as shown

in Algorithm 7, the dual variables αt,s and βt,s have to be updated according to the tree

topology and the events As′ and Bs′ of the split s′ with smaller depth. For these reasons, the

primal and dual Benders subproblems for the decision forest assortment problem are more

challenging than that of the ranking-based assortment problem.

4.2.3 Benders reformulation of the ProductMIO relaxation

Lastly, we can consider a Benders reformulation of the relaxation of ProductMIO. The

Benders master problem is given by formulation (4.12) where the function Gt(x) is defined

as the optimal value of the ProductMIO subproblem for tree t. To aid in the definition

of the subproblem, let P (t) denote the set of products that appear in the splits of tree t:

P (t) = {i ∈ N | i = v(t, s) for some s ∈ splits(t)}.

With a slight abuse of notation, let left(i) denote the set of leaves for which product i

must be included in the assortment for those leaves to be reached, and similarly, let right(i)

denote the set of leaves for which product i must be excluded from the assortment for those

leaves to be reached; formally,

left(i) =
⋃

s∈splits(t):
v(t,s)=i

left(s),

right(i) =
⋃

s∈splits(t):
v(t,s)=i

right(s).

79



With these definitions, we can write down the ProductMIO subproblem as follows:

Gt(x) = maximize
yt

∑
`∈leaves(t)

rt,` · yt,` (4.20a)

subject to
∑

`∈leaves(t)

yt,` = 1, (4.20b)

∑
`∈left(i)

yt,` ≤ xi, ∀ i ∈ P (t), (4.20c)

∑
`∈right(i)

yt,` ≤ 1− xi, ∀ i ∈ P (t), (4.20d)

yt,` ≥ 0, ∀ ` ∈ leaves(t). (4.20e)

In the same way as LeafMIO and SplitMIO, one can consider solving problem (4.20) using

a greedy approach, where one iterates through the leaves from highest to lowest revenue,

and sets each leaf’s yt,` variable to the highest possible value without violating any of the

constraints. Unlike LeafMIO and SplitMIO, it unfortunately turns out that this greedy

approach is not always optimal, which is formalized in the following proposition.

Proposition 9 There exists an x ∈ [0, 1]n, a tree t and revenues r̄1, . . . , r̄n for which the

greedy solution to problem (4.20) is not optimal.

The proof of Proposition 9 involves an instance where a product appears in more than one

split. (Recall that ProductMIO and SplitMIO are equivalent when a product appears

at most once in each tree.)

4.2.4 Overall Benders algorithm

We conclude Section 4.2 by summarizing how the results are used. In our overall algorithmic

approach below, we focus on LeafMIO and SplitMIO, as the subproblem can be solved

for these two formulations when x is either fractional or binary (whereas for ProductMIO,

the subproblem can only be solved when x is binary).
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1. Relaxation phase. We first solve the relaxed problem (problem (4.15) for LeafMIO

or problem (4.19) for SplitMIO) using ordinary constraint generation. Given a so-

lution x ∈ [0, 1]n, we generate Benders cuts by running the primal-dual procedure

(either Algorithm 4 followed by Algorithm 5 for LeafMIO, or Algorithm 6 followed

by Algorithm 7 for SplitMIO).

2. Integer phase. In the integer phase, we add all of the Benders cuts generated in the

relaxation phase to the integer version of problem (4.15) (if solving LeafMIO) or

problem (4.19) (if solving SplitMIO). We then solve the problem as an integer opti-

mization problem, where we generate Benders cuts for integer solutions using the closed

form expressions in Section B.1 (Theorem 19 in Section B.1.1 if solving LeafMIO, or

Theorem 20 in Section B.1.2 if solving SplitMIO). In either case, we add these cuts

using lazy constraint generation. That is, we solve the master problem using a single

branch-and-bound tree, and we check whether the main constraint of the Benders for-

mulation (either constraint (4.15b) for LeafMIO or constraint (4.19b) for SplitMIO)

is violated at every integer solution generated in the branch-and-bound tree.

4.3 Numerical Experiments with Synthetic Data

In this section, we present the results from our numerical experiments involving synthetically-

generated problem instances. Section 4.3.1 describes how the instances were generated. Sec-

tion 4.3.2 presents results on the tightness of the LO relaxation of the three formulations.

Section 4.3.3 presents results on the tractability of the integer version of each formulation.

Finally, Section 4.3.4 compares the Benders approach for SplitMIO with the direct solution

approach and with a simple local search heuristic on a collection of large-scale instances. Our

experiments were implemented in the Julia programming language, version 0.6.2 [17] and ex-

ecuted on Amazon Elastic Compute Cloud (EC2) using a single instance of type r4.4xlarge

(Intel Xeon E5-2686 v4 processor with 16 virtual CPUs and 122 GB memory). All mixed-
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integer optimization formulations were solved using Gurobi version 8.1 and modeled using

the JuMP package [80].

We remark that our experiments here use synthetically generated decision forest models.

We focus on synthetically generated instances as we were not able to obtain a suitable real

transaction data set for estimating the decision forest that would lead to sufficiently large

instances of the assortment problem. The evaluation of our optimization methodology on

real decision forest instances is an important direction for future research.

4.3.1 Background

To test our method, we generate three different families of synthetic decision forest instances,

which differ in the topology of the trees and the products that appear in the splits:

1. T1 forest. A T1 forest consists of balanced trees of depth d (i.e., trees where all leaves

are at depth d + 1). For each tree, we sample d products i1, . . . , id uniformly without

replacement from N , the set of all products. Then, for every depth d′ ∈ {1, . . . , d}, we

set the split product v(t, s) as v(t, s) = id′ for every split s that is at depth d′.

2. T2 instances. A T2 forest consists of balanced trees of depth d. For each tree, we

set the split products at each split iteratively, starting at the root, in the following

manner:

(a) Initialize d′ = 1.

(b) For all splits s at depth d′, set v(s, t) = is where is is drawn uniformly at random

from the set N \∪s′∈A(s){v(t, s′)}, where A(s) is the set of ancestor splits to split

s (i.e., all splits appearing on the path from the root node to split s).

(c) Increment d′ ← d′ + 1.

(d) If d′ > d, stop; otherwise, return to Step (b).
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(c) T3 tree (L = 8).

Figure 4.2: Examples of T1, T2 and T3 trees.

3. T3 instances. A T3 forest consists of unbalanced trees with L leaves. Each tree is

generated according to the following iterative procedure:

(a) Initialize t to a tree consisting of a single leaf.

(b) Select a leaf ` uniformly at random from leaves(t), and replace it with a split s

and two child leaves `1, `2. For split s, set v(s, t) = is where is is drawn uniformly

at random from N \ ∪s′∈A(s){v(t, s′)}.

(c) If |leaves(t)| = L, terminate; otherwise, return to Step (b).

For all three types of forests, we generate the purchase decision c(t, `) for each leaf ` in

each tree t in the following way: for each leaf `, we uniformly at random choose a product

i ∈ ∪s∈LS(`){v(t, s)} ∪ {0}. In words, the purchase decision is chosen to be consistent with

the products that are known to be in the assortment if leaf ` is reached. Figure 4.2 shows

an example of each type of tree (T1, T2, and T3). Given a forest of any of the three types

above, we generate the customer type probability vector λ = (λt)t∈F by drawing it uniformly

from the (|F | − 1)−dimensional unit simplex.

In our experiments, we fix the number of products n = 100 and vary the number of
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trees |F | ∈ {50, 100, 200, 500}, and the number of leaves |leaves(t)| ∈ {8, 16, 32, 64}. (Note

that the chosen values for |leaves(t)| correspond to depths of {3, 4, 5, 6} for the T1 and T2

instances.) For each combination of n, |F | and |leaves(t)| and each type of instance (T1, T2

and T3) we randomly generate 20 problem instances, where a problem instance consists of

a decision forest model and the product marginal revenues r̄1, . . . , r̄n. For each instance, the

decision forest model is generated according to the process described above and the product

revenues are sampled uniformly with replacement from the set {1, . . . , 100}.

4.3.2 Experiment #1: Formulation Strength

Our first experiment is to simply understand how the three formulations – LeafMIO, Split-

MIO and ProductMIO– compare in terms of formulation strength. Recall from Propo-

sitions 4 and 7 that SplitMIO is at least as strong as LeafMIO, and ProductMIO is

at least as strong as SplitMIO. For a given instance and a given formulation M (one of

LeafMIO, SplitMIO and ProductMIO), we define the integrality gap GF as

GM = 100%× ZM − Z∗

Z∗
,

where Z∗ is the optimal objective value of the integer problem. We consider the T1, T2 and

T3 instances with n = 100, |F | ∈ {50, 100, 200, 500} and |leaves(t)| = 8. We restrict our

focus to instances with n = 100 and |leaves(t)| = 8, as the optimal value Z∗ of the integer

problem could be computed within one hour for these instances.

Table 4.1 displays the average integrality gap of each of the three formulations for each

combination of n and |F | and each instance type. From this table, we can see that in general

there is an appreciable difference in the integrality gap between LeafMIO, SplitMIO and

ProductMIO. In particular, the integrality gap of LeafMIO is in general about 2 to

44%; for SplitMIO, it ranges from 0.2 to 17%; and for ProductMIO, it ranges from 0 to

17%. Note that the difference between ProductMIO and SplitMIO is most pronounced

for the T1 instances, as the decision forests in these instances exhibit the highest degree of
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Type |F | GLeafMIO GSplitMIO GProductMIO

T1 50 2.4 0.9 0.0

T1 100 6.3 2.5 0.1

T1 200 13.0 5.6 0.2

T1 500 26.7 15.8 3.3

T2 50 2.1 0.2 0.2

T2 100 5.7 1.0 1.0

T2 200 14.8 5.4 5.3

T2 500 31.4 16.7 16.4

T3 50 5.4 0.2 0.2

T3 100 12.3 0.5 0.5

T3 200 23.8 4.1 3.9

T3 500 43.8 14.2 14.0

Table 4.1: Average integrality gap of LeafMIO, SplitMIO and ProductMIO for T1,

T2 and T3 instances with n = 100, |leaves(t)| = 8.

repetition of products within the splits of a tree. In contrast, the difference is smaller for the

T2 and T3 instances, where the trees are balanced but there is less repetition of products

within the splits of the tree (as the trees are not forced to have the same product appear on

all of the splits at a particular depth).

4.3.3 Experiment #2: Tractability

In our second experiment, we seek to understand the tractability of LeafMIO, SplitMIO

and ProductMIO when they are solved as integer problems (i.e., not as relaxations). For

a given instance and a given formulationM, we solve the integer version of formulationM.

Due to the large size of some of the problem instances, we impose a computation time limit of

1 hour for each formulation. We record TM, the computation time required for formulation
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M, and we record G̃M which is the final optimality gap, and is defined as

G̃M = 100%× ZUB,M − ZLB,M
ZUB,M

where ZUB,M and ZLB,M are the best upper and lower bounds, respectively, obtained at the

termination of formulation M for the instance. We test all of the T1, T2 and T3 instances

with n = 100, |F | ∈ {50, 100, 200, 500} and |leaves(t)| ∈ {8, 16, 32, 64}.

Table 4.2 displays the average computation time and average optimality gap of each for-

mulation for each combination of n, |F | and |leaves(t)|. Due to space considerations, we

focus on the T3 instances; results for the T1 and T2 instances are provided in Section B.3.2.

From this table, we can see that for the smaller instances, LeafMIO requires significantly

more time to solve than SplitMIO, which itself requires more time to solve than Product-

MIO. For larger instances, where the computation time limit is exhausted, the average gap

obtained by ProductMIO tends to be lower than that of SplitMIO, which is lower than

that of LeafMIO.

4.3.4 Experiment #3: Benders Decomposition for Large-Scale Problems

In this final experiment, we report on the performance of our Benders decomposition ap-

proach for solving large scale instances of SplitMIO. We focus on the SplitMIO for-

mulation, as this formulation is stronger than the LeafMIO formulation, but unlike the

ProductMIO formulation, we are able to efficiently generate Benders cuts for both frac-

tional and integral values of x.

We deviate from our previous experiments by generating a collection of T3 instances with

n ∈ {200, 500, 1000, 2000, 3000}, |F | = 500 trees and |leaves(t)| = 512 leaves. As before,

the marginal revenue r̄i of each product i is chosen uniformly at random from {1, . . . , 100}.

For each value of n, we generate 5 instances. For each instance, we solve the SplitMIO

problem subject to the constraint
∑n

i=1 xi = b, where b is set as b = ρn and we vary

ρ ∈ {0.02, 0.04, 0.06, 0.08}.
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Type |F | |leaves(t)| G̃LeafMIO G̃SplitMIO G̃ProductMIO TLeafMIO TSplitMIO TProductMIO

T3 50 8 0.0 0.0 0.0 0.1 0.0 0.0

T3 50 16 0.0 0.0 0.0 0.9 0.2 0.2

T3 50 32 0.0 0.0 0.0 13.3 0.8 0.8

T3 50 64 0.0 0.0 0.0 339.9 14.4 12.5

T3 100 8 0.0 0.0 0.0 0.4 0.1 0.1

T3 100 16 0.0 0.0 0.0 20.9 1.3 1.3

T3 100 32 0.0 0.0 0.0 1351.3 87.8 79.7

T3 100 64 8.2 4.2 3.5 3600.2 3512.8 3474.1

T3 200 8 0.0 0.0 0.0 2.8 0.5 0.5

T3 200 16 0.7 0.0 0.0 2031.9 210.5 184.8

T3 200 32 12.9 9.1 8.7 3600.2 3600.1 3600.1

T3 200 64 20.1 16.0 15.6 3600.3 3600.3 3600.1

T3 500 8 0.3 0.0 0.0 1834.0 307.5 245.0

T3 500 16 16.9 14.2 13.8 3600.2 3600.2 3600.1

T3 500 32 27.6 23.2 23.0 3600.6 3600.1 3600.1

T3 500 64 35.3 31.1 30.8 3600.8 3600.1 3600.1

Table 4.2: Comparison of final optimality gaps and computation times for LeafMIO, Split-

MIO and ProductMIO, for T3 instances.

We compare three different methods: the two-phase Benders method described in Sec-

tion 4.2.4, using the SplitMIO cut results (Section 4.2.2 and Section B.1.2); the divide-and-

conquer (D&C) heuristic; and the direct solution approach, where we attempt to directly

solve the full SplitMIO formulation using Gurobi. The D&C heuristic is a type of local

search heuristic proposed in the product line design literature (see [67]; see also [8]). In

this heuristic, one iterates through the b products currently in the assortment, and replaces

a single product with the product outside of the assortment that leads to the highest im-

provement in the expected revenue; this process repeats until the assortment can no longer

be improved. We choose the initial assortment uniformly at random from the collection of

assortments of size b. For each instance, we repeat the D&C heuristic 10 times, and retain
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the best solution. We do not impose a time limit on the D&C heuristic. For the Benders

approach, we do not impose a time limit on the LO phase, and impose a time limit of one

hour on the integer phase. For the direct solution approach, we impose a time limit of two

hours; this time limit was chosen as it exceeded the total solution time used by the Benders

approach across all of the instances.

Table 4.3 reports the performance of the three methods – the Benders approach, the D&C

heuristic and direct solution of SplitMIO– across all combinations of n and ρ. In this table,

ZB,LO indicates the objective value of the LO relaxation obtained after the Benders relaxation

phase; ZB,UB and ZB,LB indicate the best upper and lower bounds obtained from Gurobi

after the Benders integer phase; GB indicates the final optimality gap of the Benders integer

phase, defined as GB = (ZB,UB −ZB,LB)/ZB,UB × 100%; ZD&C indicates the objective value

of the D&C heuristic; RID&C indicates the relative improvement of the final Benders solution

over the D&C solution, defined as RID&C = (ZB,LB−ZD&C)/ZD&C×100%; ZDirect indicates

the best lower bound obtained from directly solving SplitMIO; and RIDirect indicates the

relative improvement of the final Benders solution over the final solution obtained from

directly solving SplitMIO. The value reported of each metric is the average over the five

replications corresponding to the particular (n, ρ) combination.

In addition to the comparison of the objective values obtained by the three methods, it is

also useful to compare the methods by computation time. Table 4.4 displays the computation

time required for all three methods. In this table, TB,LO indicates the time required by the LO

relaxation phase of the Benders approach; TB,IO indicates the time required by the integer

phase of the Benders approach; TB,Total indicates the total time of the Benders approach

(i.e., TB,LO + TB,IO); TD&C indicates the time required for the D&C heuristic; and TDirect

indicates the time required for the direct solution approach, i.e., solving SplitMIO directly

using Gurobi. For all of these metrics, we report the average over the five replications for

each combination of n and ρ. In addition, the table also reports the metric NUDirect, which

is the number of instances for which the direct solution approach terminated without an
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n ρ b ZB,LO ZB,UB ZB,LB GB ZD&C RID&C ZDirect RIDirect

200 0.02 4 13.10 12.69 12.69 0.00 12.69 0.00 12.69 0.00

200 0.04 8 24.98 21.95 21.95 0.00 21.95 0.00 21.95 0.00

200 0.06 12 36.71 32.43 29.27 9.83 29.23 0.13 29.27 0.00

200 0.08 16 48.00 43.67 35.90 17.85 35.87 0.10 35.82 0.22

500 0.02 10 16.55 16.38 16.38 0.00 16.35 0.18 16.38 0.00

500 0.04 20 29.61 28.37 28.11 0.93 28.07 0.15 28.11 0.00

500 0.06 30 42.00 40.90 37.46 8.42 37.24 0.58 37.32 0.38

500 0.08 40 53.61 52.65 45.03 14.46 44.67 0.81 44.56 1.06

1000 0.02 20 21.97 21.91 21.91 0.00 21.85 0.25 21.91 0.00

1000 0.04 40 37.43 37.03 36.46 1.55 35.94 1.45 36.44 0.05

1000 0.06 60 51.42 51.01 47.76 6.37 46.61 2.47 32.39 176.88

1000 0.08 80 63.60 63.28 56.61 10.55 55.32 2.33 29.82 208.25

2000 0.02 40 30.60 30.55 30.55 0.00 30.16 1.28 30.55 0.00

2000 0.04 80 48.74 48.45 48.31 0.30 46.29 4.34 48.31 0.00

2000 0.06 120 62.68 62.59 60.93 2.65 58.51 4.16 39.65 199.46

2000 0.08 160 73.81 73.77 69.76 5.43 67.05 4.05 34.66 294.00

3000 0.02 60 36.73 36.73 36.73 0.00 36.10 1.79 36.73 0.00

3000 0.04 120 57.13 56.98 56.88 0.18 54.52 4.35 56.88 0.00

3000 0.06 180 71.32 71.27 69.69 2.22 66.24 5.22 43.39 372.56

3000 0.08 240 81.46 81.44 74.76 8.20 74.43 0.43 10.52 620.54

Table 4.3: Comparison of the Benders decomposition approach, the D&C heuristic and direct

solution of SplitMIO in terms of solution quality.
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upper bound (in other words, the LO relaxation of SplitMIO was not solved within the

two hour time limit).

Comparing the performance of the Benders approach with the D&C heuristic, we can

see that in general, the Benders approach is able to find better solutions than the D&C

heuristic. The performance gap, as indicated by the RID&C metric, can be substantial:

with n = 3000 and ρ = 0.06, the Benders solution achieves an objective value that is on

average more than 5% higher than that of the D&C heuristic’s solution. In addition, from a

computation time standpoint, the Benders approach compares quite favorably to the D&C

heuristic. While the D&C heuristic is faster for small problems with low n and/or low ρ,

it can require a significant amount of time for n = 2000 or n = 3000. In addition to this

comparison against the D&C heuristic, in Section B.3.3 we also provide a comparison of the

MIO solutions for the smaller T1, T2 and T3 instances used in the previous two sections

against heuristic solutions; in those instances, we similarly find that solutions obtained from

our MIO formulations can be significantly better than heuristic solutions.

Comparing the performance of the Benders approach with the direct solution approach,

our results indicate two types of behavior. The first type of behavior corresponds to “easy”

instances. These are instances with ρ ∈ {0.02, 0.04} for which it is sometimes possible to

directly solve SplitMIO to optimality within the two hour time limit. For example, with

n = 2000 and ρ = 0.04, all five instances are solved to optimality by the direct approach.

For those instances, the Benders approach is either able to prove optimality (for example, for

n = 200 and ρ = 0.04, GB = 0%) or terminate with a low optimality gap (for example, for

n = 3000 and ρ = 0.04, GB = 0.18%); among all instances with ρ ∈ {0.02, 0.04}, the average

optimality gap is no more than about 1.6%. More importantly, the solution obtained by

the Benders approach is at least as good as the solution obtained after two hours of direct

solution of SplitMIO.

The second type of behavior corresponds to “hard” instances, which are the instances

with ρ ∈ {0.06, 0.08}. For these instances, when one applies the direct approach, Gurobi is
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n ρ b TB,LO TB,IO TB,Total TD&C TDirect NUDirect

200 0.02 4 25.42 3.77 29.19 2.60 4901.79 1

200 0.04 8 41.19 371.58 412.77 5.64 7200.49 5

200 0.06 12 44.92 3600.02 3644.95 12.09 7200.37 5

200 0.08 16 45.82 3600.03 3645.85 23.63 7200.35 5

500 0.02 10 24.50 9.21 33.71 20.43 460.86 0

500 0.04 20 62.17 3126.73 3188.89 71.65 7200.36 5

500 0.06 30 66.95 3600.03 3666.98 161.35 7200.91 5

500 0.08 40 65.81 3600.03 3665.84 256.14 7200.35 5

1000 0.02 20 28.01 17.44 45.46 134.31 184.89 0

1000 0.04 40 89.80 3600.04 3689.84 507.19 7200.26 5

1000 0.06 60 106.99 3600.04 3707.02 1016.84 7200.99 5

1000 0.08 80 118.63 3600.03 3718.66 1552.29 7200.20 5

2000 0.02 40 26.13 3.60 29.73 878.12 63.35 0

2000 0.04 80 67.69 2242.50 2310.19 2558.43 2614.88 0

2000 0.06 120 247.57 3600.03 3847.60 5310.77 7200.40 5

2000 0.08 160 445.68 3600.04 4045.72 9911.23 7201.26 5

3000 0.02 60 26.32 1.21 27.53 2616.82 39.38 0

3000 0.04 120 170.58 3392.88 3563.46 7890.45 2830.19 0

3000 0.06 180 675.41 3600.04 4275.45 15567.13 7200.52 5

3000 0.08 240 1518.77 3600.04 5118.81 28186.04 7200.44 5

Table 4.4: Comparison of the Benders decomposition approach, the D&C heuristic and direct

solution of SplitMIO in terms of solution time.
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not able to solve the LO relaxation of SplitMIO within the two hour time limit for any

instance (see the NUDirect column of Table 4.4). In those instances, the integer solution

returned by Gurobi is obtained from applying heuristics before solving the root node of the

branch-and-bound tree, which is often quite suboptimal. In contrast, the Benders approach

delivers significantly better solutions. In particular, as indicated by the RIDirect column, for

n ∈ {1000, 2000, 3000}, the Benders solution can achieve an objective value that is anywhere

from 177% to 621% better, on average, than the solution obtained by Gurobi. It is also

interesting to note that while Gurobi is not able to solve the LO relaxation within the two

hour time limit, our Benders method solves it quickly; in the largest case, the solution time

for the relaxation is no more than about 1500 seconds, or roughly 25 minutes. This highlights

another benefit of our Benders approach, which is that it is capable of solving problems that

are simply too large to be directly solved using a solver like Gurobi.

These results suggest that our Benders approach can solve large-scale instances of the

assortment optimization problem in a reasonable computational timeframe and return high

quality solutions that are at least as good, and often significantly better, than those obtained

by the D&C heuristic or those obtained by directly solving the problem using Gurobi.
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CHAPTER 5

Column-Randomized Linear Programs

In this chapter1, we generalize a model estimation procedure of decision forest model (Sec-

tion 3.3.2) as a solution method for large-scale linear optimization problems. Our contri-

bution is two-fold. First, we propose a computationally-efficient algorithm that is easy to

implement and can have a wide range of applications. Second, we provide a novel theoretical

result that upper bounds the optimality gap of column/constraint sampling method in linear

programming without structure assumptions.

5.1 Large-scale Linear Programs

We consider solving a linear program (LP) in standard form:

minimize
x∈Rn

cTx (5.1a)

such that Ax = b, (5.1b)

x ≥ 0, (5.1c)

where x ∈ Rn, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. In various applications of linear program-

ming, such as the cutting-stock problem [66] and the vehicle routing problem [46], it is often

the case that the number of variables n is much larger than the number of constraints m.

Given that there are many more columns than constraints and enumerating all of the columns

is impossible in most cases, a standard solution method is column generation (CG), which

1This chapter is based on my doctoral research work “Column-Randomized Linear Programs: Perfor-
mance Guarantees and Applications” [32]
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works as follows: (i) start with an initial set of columns from A; (ii) solve the corresponding

restricted linear program to optimality; (iii) solve a subproblem to find the column with the

lowest reduced cost; (iv) add the new column to the current set of columns; (v) go back to

step (i) until problem (5.1) is solved to optimality (i.e., the minimum reduced cost in step

(iii) is nonnegative). The subproblem that ones solves to introduce a new column is often

computationally challenging. For example, in the cutting-stock problem, the subproblem is

a knapsack problem, which is NP-hard [64]. In practice, the subproblem is often formulated

as an integer program, and can be difficult to solve at a large scale. In addition, CG is

a sequential method, that is, the subproblem that one solves to introduce the ith column

depends on the computational results of the previous i− 1 iterations. Such a structure pro-

hibits one from applying parallel computing techniques to implement the column generation

method.

Instead of searching for columns by a subproblem that is potentially NP-hard, we pro-

pose a randomized method, called column randomization. In this method, one first samples

a collection of columns according to a user-specified randomization scheme, and then solves

the corresponding restricted linear program. We refer to this restricted linear program that

consists of sampled columns as the column-randomized linear program. This approach is at-

tractive because computationally, it is often significantly easier to randomly sample columns

than it is to optimize over columns (as is the case in CG). In addition, while CG operates

sequentially, the sampling step in column randomization is well-suited to parallelization.

We note that similar sampling-based methods for large-scale LPs have been previously

considered in the operations research literature. In particular, there is a significant literature

on solving problems with large numbers of constraints by randomly sampling constraints [39,

26]. By strong duality of linear programs, sampling the columns of problem (5.1) is equivalent

to sampling the constraints of its dual problem. However, the behavior of the sampled LP in

terms of its optimality gap – the difference in objective value between the sampled problem

and the complete problem – has received scarce attention in the literature. In this paper,
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our main goal is to answer the following question: Given a user-specified randomization

scheme for sampling columns from a linear program, is it possible to probabilistically bound

the optimality gap of the column-randomized linear program?

We provide theoretical results to answer this question and demonstrate how these results

can be applied to common applications of large-scale linear programming. We make the

following specific contributions:

1. Theoretical Guarantees. We show that with high probability over the sample of

columns, the optimality gap of the column-randomized linear program is bounded by

the sum of two terms: the optimality gap of a linear program related to the sampling

distribution and a term that is of order 1/
√
K, where K is the number of sampled

columns. To best of our knowledge, this is the first theoretical result that addresses

the behavior of the optimality gap of the column/constraint sampling technique for

general linear programs without structural assumptions.

2. Problem-Specific Bounds. We apply the proposed method to several applications

of large-scale linear programming and derive problem-specific upper bounds for the

optimality gap. The problems include LPs with totally unimodular constraints, Markov

decision processes (MDP), covering problems and packing problems. We also extend

our approach to the portfolio optimization problem, in which the objective function is

only assumed to be Lipschitz continuous (and is not necessarily linear or convex).

3. Generalization to Non-I.I.D. Samples. While the literature has mainly focus on

independent and identically distributed (i.i.d.) samples, we generalize the randomiza-

tion scheme to the case where the sampled columns may be statistically dependent,

and develop a theoretical guarantee for this case. We apply our guarantee to a simple

non-independent randomization scheme, where one samples nr columns from each of

nG groups of columns, which applies to many LPs with columns that have a natural

group structure (such as MDPs).
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4. Numerical Results. We numerically demonstrate the effectiveness of the proposed

method on two optimization problems that are commonly solved by CG: the cutting-

stock problem, which is a classical application of linear programming; and the non-

parametric choice model estimation problem, which is a modern application of linear

programming. We compare the performance of the column randomization method to

that of the CG method and show that for a fixed optimality gap, the column random-

ization method can attain that optimality gap within a fraction of the time required

by CG. Thus, for some problems, the column randomization method can be a viable

alternative to CG or can otherwise be used to provide a good warm start solution for

CG.

We organize this chapter as follows. In Section 5.2, we state our theoretical results and

discuss their implications. In Section 5.3, we apply our method to several applications of

large-scale LP and derive problem-specific guarantees. In Section 5.4, we generalize our

approach to sampling non-i.i.d. columns. In Section 5.5, we present our numerical results.

Related Works

Before we present our main results, we first review three streams of literature.

Column Generation (CG). CG has been widely used to solve optimization problems

that have a huge number of columns compared to the number of constraints [37, 45, 59].

Applications include vehicle routing [46, 53], facility location problems [76], and choice model

estimation [88, 120]; we refer readers to [43] for a comprehensive review. By strong duality of

linear programs, CG is equivalent to constraint generation that solves linear programs with

a large number of constraints [14]. A key component of both methods is the subproblem

that one solves to iteratively introduce columns or constraints. Usually, this subproblem is

computationally challenging and is often solved by integer programming. For example, in

the cutting-stock problem, the CG subproblem is a knapsack problem, which is NP-hard
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[64, 66].

Sampling Columns/Constraints. Another approach to solving LPs with huge num-

bers of columns (or equivalently, with huge numbers of constraints), is by sampling [26, 27,

28, 29, 39]. Specifically, one first samples a set of columns (or constraints) according to a

given distribution then solves a linear program that consists of the sampled columns (or

constraints). The seminal paper of [39] proposed the constraint sampling method for linear

programs that arise in approximate dynamic programming (ADP). Given a distribution for

sampling the constraints, the paper showed that with high probability over the sampled set

of constraints, any feasible solution of the sampled problem is nearly feasible for the complete

problem (that is, there is a high probability of satisfying a new random constraint, sampled

according to the same distribution). Under the additional assumption that the constraint

sampling distribution is a Lyapunov function, the paper also develops a specific guarantee

on the error between the optimal value function and the approximate value function that

is obtained by solving the sampled problem, but does not relate the objective value of the

sampled and complete problems. In contrast, the results of our paper pertain specifically to

the objective value of the sampled problem, are free from any assumptions on the sampling

distribution and are applicable to general linear programs beyond those arising in ADP.

Around the same period, [26, 27] pioneered the sampling approach to robust convex op-

timization. With a different perspective from [39], [26, 27] also characterized the sample

complexity needed for the optimal solution (as opposed to an arbitrary feasible solution) of

the sampled problem to be nearly feasible for the original problem. However, the perfor-

mance of the sampled problem in terms of the objective value, and its dependence on the

number of samples, was not addressed.

Since the works of [26] and [39], there has been some work that has quantified the

dependence of the objective value on the number of sampled constraints. In particular, the

paper of [90] considers a convex program where the decision variable x satisfies a family of

convex constraints, which are later sampled, and is also constrained to lie in an ambient set
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X. The paper develops a probabilistic bound on the difference in objective value between the

complete problem and its sampled counterpart in terms of a uniform level-set bound (ULB),

which is a quantile function of the worst-case probability over all feasible solutions in set X.

Our work differs significantly from [90] in two aspects. First, in terms of the problem setting,

[90] assumes that even before any constraints are sampled, the decision variable is already

constrained in the convex compact (and thus bounded) set X, and the associated performance

guarantees also rely on properties of X. In our setting, this corresponds to the dual solutions

of problem (5.1) being bounded, which need not be the case in general. Moreover, we do not

assume that the linear program is initialized with a specific set of variables (or equivalently,

a set of constraints in the dual) before we sample columns. Consequently, the result of [90]

is not directly applicable to the research question discussed in this paper. Second, as noted

earlier, the performance bound in [90] relies on the ULB function of the sampling distribution.

While sufficient conditions for the existence of a ULB are provided in the paper, in general

a ULB cannot be represented explicitly and thus the resulting performance guarantee is less

interpretable. In contrast, our theoretical results do not require a ULB or other related

functions, and have a more interpretable dependence on the sampling distribution (via the

distributional counterpart; see problem (5.7) in Theorem 11). In addition, we also believe

our results are more straightforward technically: one only needs McDiarmid’s inequality and

standard linear programming results to prove them. As we will show in Section 5.3, our

theoretical results and proof technique can be applied to many common types of LPs to

derive application-specific guarantees.

Randomized Methods, Stochastic Optimization and Online Linear Program-

ming. Besides column/constraint sampling, many other randomized methods have been

proposed to solve large-scale optimization problems, including methods based on random

walks [15] and random projection [95, 124]. In addition to these randomized methods, there

is also a separate literature on optimization problems where stochasticity is part of the

problem definition; some examples include stochastic programming [18, 109], contextual op-
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timization [51], and online optimization [107]. Within this literature, the problem setting of

online linear programming, where columns of a linear program are revealed sequentially to

a decision maker, bears a resemblance to ours; some examples of papers in this area include

[1, 50, 78]. Despite this similarity, this problem setting differs significantly from ours in that

a decision maker is making irrevocable decisions in an online fashion: the decision maker

must decide how much to use of a variable/column at the time that it is revealed, and cannot

revise this decision in the future.

5.2 Theoretical Results

In this section, we first describe the basic notations and definitions that will be used through-

out the paper (Section 5.2.1). Then we formally define the column randomization method

and investigate its theoretical properties (Section 5.2.2). We end this section by discussing

implications and interpretations of the theoretical results (Section 5.2.3). Proofs of the

results are relegated to Section C.1.1.

5.2.1 Notation and Definitions

For any positive integer n, let [n] ≡ {1, 2, . . . , n}. Let ei be the ith standard basis vector for

Rn; that is, ei = (eij) where ei,j = 1 if j = i and ei,j = 0 if j 6= i. Thus, for any x ∈ Rn, we

can represent it as x =
∑

i∈[n] xiei.

We consider a linear program in standard form:

P : min{cTx | Ax = b, x ≥ 0}, (5.2)

where A is an m × n matrix and c ∈ Rn. We will refer to the problem P as the complete

problem throughout the paper, as it contains all of the columns of A.

We define the dual problem of problem (5.2) as

D : max{pTb | pTA ≤ cT}. (5.3)

99



For any optimization problem P ′, we denote its optimal objective value by v(P ′) and its

feasible region by F(P ′). By LP strong duality, we have v(P ) = v(D). Furthermore, for

any optimization problem P ′′ that shares same objective function as the complete problem

P and satisfies F(P ′′) ⊆ F(P ), we define ∆v(P ′′) ≡ v(P ′′)− v(P ), which is nonnegative and

can be interpreted as the optimality gap of solving P ′′ instead of P .

We make two assumptions on problem P . First, we assume that problem P is feasible and

bounded; this assumption is not too restrictive, since the cases where the complete problem

P is either unbounded or infeasible are not interesting to consider. The second assumption

we make is that rank(A) = m, i.e., the rows of A are linearly independent. This is also not

too restrictive, as one can remove any rows of A that are linear combinations of the other

rows without changing the problem.

For each i ∈ [m] and j ∈ [n], we use Ai and Aj to denote the ith row and jth column

of matrix A, respectively. For any collection of indices J ⊆ [n], we let AJ represent the

submatrix of A that consists of columns whose indices belong to J . In this paper, instead of

solving either the complete problem P or its dual D, we consider solving a linear program

whose columns are randomly selected. We call such a linear program a column-randomized

linear program, which we formally define below.

Definition 7 (Column-Randomized Linear Program) Let J be a finite collection of

random indices, i.e., J ≡ {j1, j2, . . . , jK} for an integer K, where jk ∈ [n] is a random

variable for k = 1, 2, . . . , K. Then the problem

PJ : min{cTJ x̃ | AJ x̃ = b, x̃ ≥ 0} (5.4)

is called a column-randomized linear program.

Clearly, PJ is equivalent to min
{
cTx | Ax = b, x ≥ 0, xj = 0 ∀j /∈ J.

}
. With this re-

formulation, any feasible solution of PJ can be represented as an element in F . We can

thus define ∆v(PJ) for the column-randomized LP PJ . We sample random indices in J by a
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randomization scheme ρ, which is a computational procedure that randomly selects indices

from [n], or equivalently, randomly generates columns from A. Let ξ be the probability

distribution over [n] that corresponds to ρ; that is, the jth component of ξ, denoted by ξj, is

the probability that index j is selected by ρ. Throughout this section, we assume ρ samples

each index independently and identically according to ξ. We will relax this assumption in

Section 5.4.

We use DJ to denote the dual of PJ , which is defined as

DJ : max{pTb | pTAJ ≤ cTJ }. (5.5)

We will also require the notions of a basis, basic solutions and reduced costs in our

theoretical results. A collection of indices B ⊆ [n] of size m is called a basis if the matrix

AB is nonsingular, i.e., the collection of m columns {Aj}j∈B is linearly independent. A basic

solution x of the primal problem P corresponding to the basis B is the solution x obtained

by setting xB = A−1
B b, where xB is the subvector corresponding to the columns in B, and

xN = 0, where xN is the subvector corresponding to the columns in [n] \ B. A solution x

is called a basic feasible solution of P if it is a basic solution for some basis B and satisfies

x ≥ 0. For the dual problem, a basic solution p corresponding to the basis B is the solution

p defined by setting pT = cTBA−1
B ; if it additionally satisfies pTA ≤ cT , then it is also a

basic feasible solution. Given a basis B, we define the reduced cost vector c̄ for that basis

as c̄ ≡ cT − cTBA−1
B A.

Finally, we use ‖ · ‖ to denote norms. For a vector v ∈ Rn, we let ‖v‖1 =
∑n

j=1 |vj|

be its `1 norm, ‖v‖2 =
√∑n

j=1 v
2
j be its Euclidean or `2 norm, and ‖v‖∞ = maxj=1,...,n |vj|

be its `∞ norm. For a matrix A, we let ‖A‖max = maxi,j |Ai,j|. Without loss of generality,

we assume that the cost vector c has unit Euclidean norm, i.e., ‖c‖2 = 1. This is not

a restrictive assumption, because by normalizing the cost vector c to have unit Euclidean

norm, the objectives of the complete problem P and the column-randomized problem PJ

are both scaled by 1/‖c‖2. Thus, the relative performance of problem PJ to the complete
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problem P , which is the main focus of our paper, remains the same.

5.2.2 Main Theoretical Results

We propose the column randomization method in Algorithm 8. We first sample K indices,

j1, j2, . . . , jK , by a randomization scheme ρ and let J = {j1, . . . , jK}. We then collect the

corresponding columns of A as matrix AJ and the corresponding components of c as vector

cJ . After forming AJ and cJ , we solve the LP (5.6) and return its optimal value v(PJ) and

optimal solution.

Algorithm 8 The Column Randomization Method

1: Sample K indices as J ≡ {j1, . . . , jK} by a randomization scheme ρ.

2: Define AJ = [Aj1 , . . . , AjK ] and cJ = [cj1 , . . . , cjK ].

3: Solve the column-randomized linear program, which only has K columns:

PJ : min
{
cTJ x̃ | AJ x̃ = b, x̃ ≥ 0

}
. (5.6)

return optimal objective value v(PJ) and an optimal solution x̃∗.

Notice that an optimal solution x̃∗ of problem PJ can be immediately converted to a

feasible solution for the complete problem P by enlarging x̃∗ to length n and setting x̃∗j = 0

for j ∈ [n] \ J .

We now present two theorems that bound the optimality gap ∆v(PJ) ≡ v(PJ)− v(P ) of

problem PJ ; we defer our discussion of these two theorems to Section 5.2.3 and relegate the

proofs of the theorems to Section C.1.1.

Theorem 11 Let C be a positive constant and define the linear program Pdistr as

Pdistr ≡ minimize
x∈Rn

cTx (5.7a)

such that Ax = b, (5.7b)

0 ≤ x ≤ C · ξ. (5.7c)
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Let PJ be the column-randomized LP solved by Algorithm 8, and AJ be the corresponding

constraint matrix. For any δ ∈ (0, 1), with probability at least 1 − δ over the sample J , the

following holds: if PJ is feasible and rank(AJ) = m, then

∆v(PJ) ≤ ∆v(Pdistr) +
C (1 +mγ‖A‖max)√

K

(
1 +

√
2 log

2

δ

)
, (5.8)

where γ is an upper bound on ‖p‖∞ for every basic solution p of the dual problem D and

‖A‖max = maxij |Aij|.

Theorem 11 shows that, with probability at least 1 − δ, the optimality gap ∆v(PJ) of

the column-randomized LP PJ is upper bounded by the sum of two terms. The first term

is the optimality gap ∆v(Pdistr) of the problem Pdistr, which we refer to as the distributional

counterpart. The second term involves ‖A‖max, the largest absolute value of elements in

the constraint matrix; γ, the upper bound of the `∞ norm of any basic solution of the

dual problem; δ, the confidence parameter; and K, the number of sampled columns. Most

importantly, the second term converges to zero with a rate 1/
√
K. In Section 5.3, we will

see how γ and ‖A‖max can be further bounded for certain special cases.

We now present our second theorem, which relates the optimality gap to the reduced

costs of the complete problem.

Theorem 12 Define C, Pdistr, PJ and AJ as in Theorem 11. For any δ ∈ (0, 1), with proba-

bility at least 1−δ over the sample J , the following holds: if PJ is feasible and rank(AJ) = m,

then

∆v(PJ) ≤ ∆v(Pdistr) +
C√
K
· χ ·

(
1 +

√
2 log

1

δ

)
(5.9)

where χ is an upper bound on ‖c̄‖2 for every basic solution of the complete problem P .

Theorem 12 has a similar structure to Theorem 11. Compared to Theorem 11, the upper

bound in Theorem 12 does not involve γ and ‖A‖max, but instead requires a bound on the

norm of the reduced cost vector for all the bases of P .
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5.2.3 Discussion on main theorems

Both Theorem 11 and 12 provide bounds on the optimality gap ∆v(PJ) of the following

form:

∆v(PJ) ≤ ∆v(Pdistr) +
C · CP · Cδ√

K
, (5.10)

where CP only depends on properties of the complete problem P and Cδ only depends on

the confidence parameter δ. In Theorem 11, CP = 1+mγ‖A‖max and Cδ = 1+
√

2 log(2/δ);

in Theorem 12, CP = χ and Cδ = 1+
√

2 log(1/δ). In the following discussion, we first focus

on the general structure of the upper bounds given in (5.10), and subsequently we address

the differences between Theorem 11 and Theorem 12.

Role of Problem Pdistr:

The distributional counterpart Pdistr is the restricted version of the complete problem P ,

which includes the additional constraint x ≤ Cξ. Thus, ∆v(Pdistr) ≥ 0. If there exists an

optimal solution x∗ of the complete problem P such that 0 ≤ x∗ ≤ Cξ, then ∆v(Pdistr) = 0.

Notice that neither Theorem 11 nor 12 implies that the optimality gap ∆v(PJ) of the column-

randomized linear program PJ can be arbitrarily small with large K. Indeed, if ξ is not

“comprehensive” enough – that is, its support is small, and does not include the complete

set of columns of any optimal basis for P – then one would not expect the column-randomized

program PJ to perform closely to the complete problem P , even if K is sufficiently large. In

other words, problem Pdistr reflects the “coverage” ability of the distribution ξ, or equiva-

lently, its randomization scheme ρ.

Role of Constant C:

Given a randomization scheme ρ and its corresponding distribution ξ, as the constant C in-

creases, the optimality gap ∆v(Pdistr) of problem Pdistr decreases since its feasible set F(Pdistr)
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is enlarged. On the other hand, the second term on the RHS of bound (5.10) increases since

it is proportional to C. To interpret this phenomenon, we can view bound (5.10) as a type of

bias-complexity/bias-variance tradeoff, which is common in statistical learning theory [108]:

∆v(PJ) ≤ ∆v(Pdistr)︸ ︷︷ ︸
Approximation Error

+
C · CP · Cδ√

K︸ ︷︷ ︸
Sampling Error

. (5.11)

When the constant C increases, the feasible set F(Pdistr) gradually becomes a better ap-

proximation of the feasible set F(P ), as more feasible solutions in F(P ) are included in

F(Pdistr). The optimality gap ∆v(Pdistr), which can be viewed as the approximation error,

is thus narrowed. On the other hand, as the set F(Pdistr) expands, one needs more samples

to ensure that the sampled feasible set F(PJ) can approximate F(Pdistr). In that sense, as

we increase C, the second term of the right-hand side of (5.11) also increases.

Feasibility of PJ :

We make several important remarks regarding the feasibility of PJ and how feasibility is

incorporated in our guarantee. First, note that in general, the sampled problem PJ need not

be feasible. As a simple example, consider the following complete problem:

P = PI ≡ min{1Tx | Ix = 1,x ≥ 0},

where I is the n-by-n identity matrix and m = n. In this problem, the only way that the

sampled problem PJ can be feasible is if the collection j1, . . . , jK includes every index in

[n]; if any column j ∈ [n] is not part of the sample J , then the sampled problem PJ is

automatically infeasible. Thus, when K < n, PJ is infeasible almost surely. When K ≥ n,

it is still possible that j1, . . . , jK does not include all indices in [n], and thus PJ is infeasible

with positive probability.

For this reason, our guarantee on the optimality gap is stated as a conditional guar-

antee: with high probability over the sample j1, . . . , jK , the optimality gap of PJ obeys a
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particular bound if the column-randomized LP is feasible. We note that this is distinct from

probabilistically conditioning on j1, . . . , jK , i.e., our guarantee is not the same as

Pr

[
∆v(PJ) ≤ ∆v(Pdistr) +

C√
K
· CP · Cδ PJ is feasible

]
≥ 1− δ,

because upon conditioning on the feasibility of PJ , the random variables j1, . . . , jK are in

general no longer an i.i.d. sample. As an example of this, consider again problem PI

above, with K = n and a randomization scheme ρ corresponding to the uniform distribution

ξ = (1/n, . . . , 1/n) over [n]. By conditioning on the event that PJ is feasible, the sample

J = {j1, . . . , jK} must then be exactly equal to [n], and we obtain that Pr[jk = t, jk′ = t] =

0 6= Pr[jk = t] ·Pr[jk′ = t] for any k, k′ ∈ [K] with k 6= k′ and t ∈ [n]. In this example, the

indices j1, . . . , jK are thus not independent.

With regard to the feasibility of column-randomized LPs, it appears to be difficult to

guarantee feasibility in general. However, one can use similar techniques as in the proofs of

our main results to characterize the near-feasibility of a column-randomized LP. Consider

the following complete problem, and its sampled and distributional counterparts:

P feas = min{‖Ax− b‖1 | x ≥ 0},

P feas
J = min{‖AJ x̃− b‖1 | x̃ ≥ 0},

P feas
distr = min{‖Ax− b‖1 | 0 ≤ x ≤ Cξ}.

The objective function in each problem measures how close Ax is to b for a given nonnegative

solution x, and the optimal value measures the minimum total infeasibility, as measured by

the lowest attainable `1 distance between Ax and b. Note that an optimal value of zero for

a given problem implies that the feasible region contains a solution x that satisfies Ax = b.

With a slight abuse of notation, let us use v(P feas), v(P feas
J ) and v(P feas

distr) to denote the

optimal objective value of each problem. We then have the following result.

Proposition 10 Let C be a nonnegative constant. For any δ ∈ (0, 1), with probability at
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least 1− δ over the sample J ,

v(P feas
J ) ≤ v(P feas

distr) +
C√
K
·m · ‖A‖max ·

(
1 +

√
2 log

1

δ

)
.

The proof of Proposition 10 (see Section C.1.2) follows using a similar but simpler procedure

than those used in the proofs of Theorems 11 and 12. The guarantee in Proposition 10 has a

similar interpretation to Theorems 11 and 12: the magnitude of the total infeasibility of the

columns J is bounded with high probability by the minimum infeasibility of the distributional

counterpart P feas
distr plus a O(1/

√
K) term.

Interpretation of γ and χ:

We first note that the technique of bounding the objective value of a linear program using the

`∞ norm of basic feasible solutions has been applied previously in the literature [128, 75]. The

presence of γ and χ in Theorem 11 and 12, respectively, arises due to the use of sensitivity

analysis results from linear programming with respect to the right-hand side vector b. As

shown in Section C.1.1, we show that any optimal solution x∗0 of problem Pdistr has a sparse

counterpart x′ in the space SJ ≡ {x | xj = 0 ∀j /∈ J} such that it is in the vicinity of x∗0

in terms of Euclidean distance. However, x′ does not necessarily belong to the feasible set

F(PJ) of the column-randomized linear program PJ , since F(PJ) is a subset of SJ . To relate

the optimal objective value v(PJ) of problem PJ to cTx′, which is close to cTx∗0, we use

sensitivity analysis arguments which involve either γ or χ.

Comparison of Theorems 11 and 12:

While both Theorem 11 and 12 provide valid bounds for the optimality gap ∆v(PJ), Theorem

11 is in general easier to apply; indeed, in Section 5.3 we discuss two notable examples where γ

can be easily computed (specifically, LPs with totally unimodular constraint matrices A and

infinite horizon discounted Markov decision processes). For problems that are not standard

form LPs, neither guarantee directly applies, but we can obtain specialized guarantees by
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carefully modifying a result (Proposition 17 in Section C.1.1) that leads to Theorem 11 and

designing bounds for the `∞ norm of feasible or optimal solutions of DJ (as opposed to basic

solutions of D). We will later showcase two examples of such guarantees, for covering LPs

(Section 5.3.3) and packing LPs (Section 5.3.4).

With regard to Theorem 12, we expect for most problems that Theorem 12 will be

difficult to apply, as it requires a universal bound for the norm of the reduced cost vector

for every basis, feasible or not, of problem P . Nevertheless, Theorem 12 is interesting

because it involves reduced costs, which are also of importance in column generation. For

a basic feasible solution, the reduced cost of a non-basic variable j can be thought of as

the rate at which the objective changes as one increases xj to move from the current basic

feasible solution to an adjacent/neighboring basic feasible solution in which j is part of the

basis. With this perspective of reduced costs, one can informally interpret the result in the

following way: if χ is small, then the rate at which the objective changes between adjacent

basic feasible solutions is small. In such a setting, it is reasonable to expect that there will

be many basic feasible solutions that are close to being optimal and that solving the sampled

problem PJ should return a solution that performs well. On the other hand, if there exist

non-optimal basic feasible solutions where the reduced cost vector has a very large magnitude

(which would imply a large χ), then this would suggest that the objective changes by a large

amount between certain adjacent basic feasible solutions, and that there are certain “good”

columns that are more important than others for achieving a low objective value. In this

setting, we would expect the sampled problem objective v(PJ) to only be close to v(P ) if J

includes the “good” columns, which would be unlikely to happen in general.

Design of Randomization Scheme ρ:

The quantity ξj, which is the probability that the jth column is drawn by the randomization

scheme ρ, can be interpreted as the relative importance of xj compared to other components

of x ∈ Rn in the complete problem P ; indeed, when the corresponding column is randomly
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chosen, xj is allowed to be nonzero, and can thus be utilized to solve the optimization

problem. For example, in a network flow optimization problem, xj represents the amount

of flow over edge j; a nonzero ξj can thus be interpreted as the belief that edge j should

be used for flow. As another example, consider the LP formulation of an MDP, where each

component of x corresponds to a state-action pair (s, a) (i.e., x(s,a) is the expected discounted

frequency of the system being in state s and action a being taken). In this setting, a nonzero

ξ(s,a) can be interpreted as the relative importance of (s, a) to other state-action pairs.

One can design the randomization scheme based on prior knowledge of the problem.

For example, one could use a heuristic solution to a network flow problem to design a

randomization scheme ρ resulting in a distribution ξ that is biased towards this heuristic

solution. Similarly, if one has access to a good heuristic policy for an MDP, one can design

a distribution ξ that is biased towards state-action pairs (s, a) that occur frequently for this

policy. If such prior knowledge is not available, a uniform or nearly-uniform distribution

over [n] is adequate. We provide two concrete examples on how to design randomization

schemes in our numerical experiments in Section 5.5. Finally, we note that the indices in J

have been assumed to be i.i.d. It turns out that this assumption can actually be relaxed: in

Section 5.4, we derive an upper bound on the optimality gap ∆v(PJ) for the case when the

indices are sampled non-independently.

Minor Remarks on the Upper Bound:

We remark on two other interesting properties of the bound (5.10). First, the second term in

(5.10) is independent of the distribution ξ; no matter how ξ is designed, the optimality gap

∆v(PJ) is guaranteed to converge with rate 1/
√
K. Second, the dependence of the bound on

the confidence parameter δ is via
√

2 log(2/δ) in Theorem 11 or
√

2 log(1/δ) in Theorem 12.

This implies that very small values of δ will not significantly increase the upper bound on

∆v(PJ).
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Computational Strengths and Weaknesses

We compare the column randomization method to the CG method from a computational

viewpoint. An obvious characteristic of the CG method is that it is a serial algorithm: to

introduce a new column, one needs the dual solution of the restricted problem that consists

of columns generated in previous iterations. This sequential nature unfortunately prevents

the CG method from being parallelized. In contrast, the column randomization method is

amenable to parallelization. Given a collection of processors, each processor can be used

to sample a column and compute the constraint and objective coefficients in parallel, until

K columns in total are sampled across all processors. This can be especially advantageous

in cases where the objective or constraint coefficients require significant effort compute,

such as solving a dynamic program or integer program. For example, [12] considers a set

partitioning model of a pickup and delivery problem arising in airlift operations, where each

decision variable xv,S corresponds to an aircraft v being assigned to a collection of shipments

S and the cost coefficient cv,S is the optimal value of a scheduling problem that determines

the sequence of pickups and dropoffs of the shipments in S.

An obvious disadvantage of the column randomization method is that it does not guar-

antee optimality. Even if there exists an optimal solution of the complete problem P that

belongs to the feasible set F(Pdistr) of problem Pdistr, the optimality gap still converges with

rate 1/
√
K, which implies that the “last-mile” shrinkage of the optimality gap requires an

increasing number of additional sampled columns. If optimality is a concern, instead of

solely using the column randomization method, one could use it as a warm-start for the CG

method. Specifically, let Jnz = {j | x̃∗j > 0}, where x̃∗ is the solution returned by Algo-

rithm 8. Then, the set of variables (xj)J∈Jnz and the columns AJnz can be used as the initial

solution for the CG method.
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5.3 Special Structures and Extensions

In this section, we demonstrate how the results of Sections 5.2 can be applied to LPs with spe-

cific problem structures, including LPs with totally unimodular constraints (Section 5.3.1),

Markov decision processes (Section 5.3.2), covering problems (Section 5.3.3) and packing

problems (Section 5.3.4). In Section 5.3.5, we consider the portfolio optimization problem,

which is in general not an LP, but is amenable to the same type of analysis.

5.3.1 LPs with Totally Unimodular Constraints

Consider a linear program with a totally unimodular constraint matrix, i.e., every square

submatrix of A has determinant 0, 1, or −1. Such LPs appear in various applications, such

as minimum cost network flow problems and assignment problems [11]. In such problems,

it is not uncommon to encounter the situation where the number of variables is much larger

than the number of constraints. For example, in a minimum cost network flow problem,

each constraint corresponds to a flow-balance constraint at a given node, while each variable

corresponds to the flow over an edge; in a graph of n nodes, one will therefore have n

constraints and as many as
(
n
2

)
decision variables. We can thus consider solving the problem

using the column randomization method. We obtain the following guarantee on the objective

value of the column randomization method when applied to linear programs with totally

unimodular constraints.

Proposition 11 Assume the constraint matrix of A of the complete problem P is totally

unimodular. Define C, Pdistr, PJ and AJ as in Theorem 11. For any δ ∈ (0, 1), with

probability at least 1− δ over the set J , the following holds: if PJ is feasible and rank(AJ) =

m, then

∆v(PJ) ≤ ∆v(Pdistr) +
C (1 +m2‖c‖∞)√

K

(
1 +

√
2 log

2

δ

)
. (5.12)

Proof: Any basic solution p to the dual problem D can be written as pT = cTBA−1
B ,
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where B is a basis. In addition, since A is totally unimodular, any element of A−1
B is either

1, −1, or 0. Therefore, the ith component of p satisfies pi =
∑m

j=1[A−1
B ]ji(cB)j ≤ m · ‖c‖∞

for all i ∈ [m]. Thus, we set γ = m‖c‖∞. Along with the fact ‖A‖max = 1 for any totally

unimodular matrix A, we finish the proof by invoking Theorem 11. �

5.3.2 Markov Decision Processes

Consider a discounted infinite horizon MDP, with ns states and na actions. The cost function

c(s, a) represents the immediate cost of taking action a in state s. The transition probability

Ps(s
′, a) represents the probability of being in state s′ after taking action a in state s. Let

θ ∈ (0, 1) be the discount factor. One can solve the MDP by formulating a linear program

[81]:

minimize
x1,...,xns∈Rna

cT1 x1 + . . .+ cTs xs + . . .+ cTns
xns

such that (E1 − θP1)x1 + . . .+ (Es − θPs)xj + . . .+ (Ens − θPns)xns = 1,

x1, . . . ,xs, . . . ,xns ≥ 0,

where Ej is a ns × na matrix such that the jth row is all ones and every other entry is zero.

The vector cs is of size na such that its ath component is equal to c(s, a). The matrix Ps is of

size ns×na such that its (s′, a)-th component represents Ps(s
′, a). Notice that matrix Ps is a

column stochastic matrix, i.e., 1TPs = 1T and Ps ≥ 0 for all s ∈ [ns]. The decision variable

vector xs is of size na, where the ath entry represents the expected discounted long-run

frequency of the system being in state s and action a being taken. If one sorts the decision

variables by actions [127], then the linear program can be re-written as:

minimize
x̃1,...,x̃na∈Rns

c̃T1 x̃1 + . . .+ c̃Ta x̃a + . . .+ c̃Tna
x̃na (5.13a)

such that (I− θP̃1)x̃1 + . . .+ (I− θP̃a)x̃a + . . .+ (I− θP̃na)x̃na = 1, (5.13b)

x̃1, . . . , x̃a, . . . , x̃na ≥ 0, (5.13c)
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where c̃a = [c(1, a); . . . ; c(s, a); . . . ; c(ns, a)] for a ∈ [na] and P̃a is a ns×ns matrix such that

its (s′, s)-th element is equal to Ps(s
′, a). Note that problem (5.13) is a standard form LP

and has more columns than rows. We can therefore apply the column randomization method

to solve problem (5.13), leading to the following proposition.

Theorem 13 Consider solving a discounted infinite horizon MDP with ns states and na

actions by the column randomization method. Define C, Pdistr, PJ and AJ as in Theorem 11.

For any δ ∈ (0, 1), with probability at least 1 − δ, the following holds: if PJ is feasible and

rank(AJ) = ns, then

∆v(PJ) ≤ ∆v(Pdistr) +
C√
K
·
(

1 +
ns‖c‖∞
1− θ

)
·

(
1 +

√
2 log

2

δ

)
. (5.14)

Proof : Similarly to Proposition 11, we prove Theorem 13 by bounding ‖A‖max and γ.

Obviously, ‖A‖max ≤ 1. Again, any basic solution p of the dual has the form pT = cTBA−1
B ,

where B is a basis of the linear program (5.13). Note that AB has the form AB = I − θP,

where P is an ns × ns matrix such that each of its columns is selected from the columns of

[P̃1, . . . , P̃na ] (see [127]). In addition, a standard property of A−1
B is that it can be written

as the following infinite series:

A−1
B = I + θP + θ2P2 + · · · = I +

∞∑
n=1

θn ·Pn.

Thus, we can bound ‖p‖∞ as ‖pT‖∞ ≤ ‖cTB‖∞ +
∑∞

n=1 θ
n · ‖cTBPn‖∞. Note that for any

n ∈ N and vector v ∈ Rns , we have

‖vTPn‖∞ = max
s∈[ns]

∣∣∣∣∣∣
∑
s′∈[ns]

vs′P
n
(s′,s)

∣∣∣∣∣∣ ≤ max
s∈[ns]

∑
s′∈[ns]

|vs′| ·Pn
(s′,s) ≤ ‖v‖∞ · max

s∈[ns]

∑
s′∈[ns]

Pn
(s′,s) = ‖v‖∞,

where Pn
(s′,s) is the (s′, s)th entry of Pn. Therefore, we obtain that

‖pT‖∞ = ‖cTBA−1
B ‖∞ ≤ ‖cB‖∞ +

∞∑
n=1

θn · ‖cTBPn‖∞ ≤ ‖cB‖∞/(1− θ) ≤ ‖c‖∞/(1− θ).

Since p was an arbitrary basic solution of the complete dual of problem (5.13), we can

therefore set γ = ‖c‖∞/(1−θ). The rest of the proof follows by an application of Theorem 11.

�
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5.3.3 Covering Problems

A covering linear program can be formulated as

P covering : minimize
x

cTx (5.15a)

subject to Ax ≥ b, (5.15b)

x ≥ 0, (5.15c)

where A, b and c are all nonnegative, and we additionally assume that for every i ∈ [m],

there exists a j ∈ [n] such that Ai,j > 0. This type of problem arises in numerous applications

such as facility location [94]. The column-randomized counterpart of this problem and its

dual can be written as

P covering
J : min{cTJ x̃ | AJ x̃ ≥ b, x̃ ≥ 0},

Dcovering
J : max{pTb | pTAJ ≤ cTJ ,p ≥ 0}.

Although P covering is not a standard form LP, it is straightforward to extend Proposition 17

to this problem, leading to the following result. We omit the proof for brevity.

Proposition 12 Let C be a nonnegative constant and define P covering
distr as

P covering
distr ≡ min{cTx | Ax ≥ b,0 ≤ x ≤ Cξ}.

For any δ ∈ (0, 1), with probability at least 1 − δ over the sample J , the following holds: if

P covering
J is feasible, then

∆v(P covering
J ) ≤ ∆v(P covering

distr ) +
C√
K
· (1 + ‖p‖∞ ·m · ‖A‖max) ·

(
1 +

√
2 log

2

δ

)
for any optimal solution p of Dcovering

J .

To now use this result, we need to be able to bound ‖p‖∞ for any solution p of any dual

Dcovering
J of the column-randomized problem. Let us define the quantity U covering as

U covering = max
i,j

{
cj
Ai,j

Ai,j > 0

}
.

We then have the following result.
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Theorem 14 Let C and P covering
distr be defined as in Proposition 12. For any δ ∈ (0, 1), with

probability at least 1− δ over the sample J , the following holds: if P covering
J is feasible, then

∆v(P covering
J ) ≤ ∆v(P covering

distr ) +
C√
K
· (1 + U covering ·m · ‖A‖max) ·

(
1 +

√
2 log

2

δ

)
.

The proof (see Section C.1.3) follows by showing that U covering is a bound on ‖p‖∞ for any

feasible solution p of the dual Dcovering
J , for any J such that P covering

J is feasible. (Note that the

bound applies to any feasible solution of Dcovering
J , not just the optimal solutions of Dcovering

J .)

5.3.4 Packing Problems

A packing linear program is defined as

P packing : maximize
x

cTx (5.16a)

subject to Ax ≤ b, (5.16b)

x ≥ 0, (5.16c)

where we assume that c ≥ 0, b > 0, and that A is such that for every column j ∈ [n], there

exists an i ∈ [m] such that Ai,j > 0. Packing problems have numerous applications, such as

network revenue management [114].

The column-randomized counterpart of this problem and its dual can be written as

P packing
J : max{cTJ x̃ | AJ x̃ ≤ b, x̃ ≥ 0},

Dpacking
J : min{pTb | pTAJ ≥ cTJ ,p ≥ 0}.

As with covering problems, the packing problem P packing is not a standard form LP, but we

can derive a counterpart of Proposition 17 for P packing. Note that in this guarantee, for a

problem P ′ with the same feasible region as P packing, the optimality gap ∆v(P ′) is defined as

∆v(P ′) = v(P packing)−v(P ′), since the complete problem P packing is a maximization problem.

As with Proposition 12, the proof is straightforward, and thus omitted.
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Proposition 13 Let C be a nonnegative constant and define P covering
distr as

P packing
distr ≡ max{cTx | Ax ≤ b,0 ≤ x ≤ Cξ}.

For any δ ∈ (0, 1), with probability at least 1 − δ over the sample J , the following holds: if

P packing
J is feasible, then

∆v(P packing
J ) ≤ ∆v(P packing

distr ) +
C√
K
· (1 + ‖p‖∞ ·m · ‖A‖max) ·

(
1 +

√
2 log

2

δ

)

for any optimal solution p of Dpacking
J .

To obtain a more specific guarantee, define for each i the following quantities:

ri = max

{
cj
Ai,j

Ai,j > 0

}
,

j∗i = arg max
j

{
cj
Ai,j

Ai,j > 0

}
.

These two quantities can be understood by interpreting each i as a resource constraint, and

bi as the available amount of resource i. The column j∗i is the column that has the best

rate of objective value garnered per unit of resource i consumed, and the quantity ri is that

corresponding rate. Define now W as

W =
m∑
i′=1

ri′bi′ ,

and Upacking as the maximum over i of W/bi, i.e.,

Upacking = max
i∈[m]

W

bi
=

∑m
i′=1 ri′bi′

mini∈[m] bi
.

We then have the following specific guarantee for packing LPs.

Theorem 15 Let C and P packing
distr be defined as in Proposition 13. For any δ ∈ (0, 1), with

probability at least 1− δ over the sample J , the following holds: if P packing
J is feasible, then

∆v(P packing
J ) ≤ ∆v(P packing

distr ) +
C√
K
· (1 + Upacking ·m · ‖A‖max) ·

(
1 +

√
2 log

2

δ

)
.
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The proof of this result (see Section C.1.4) follows by establishing that W is an upper bound

on v(P packing
J ), and then bounding each |pi| by solving a modified version of Dpacking

J which

is defined using W . We remark that our choice of W is special only in that it bounds

v(P packing
J ). For particular packing problems, if one has access to a problem-specific bound

W ′ on v(P packing
J ), one could define Upacking with W ′ instead to obtain a more refined bound.

5.3.5 Portfolio Optimization

In this last section, we deviate slightly from our previous examples by showing how our

approach can be applied to problems that are not linear programs. The specific problem

that we consider is the portfolio optimization problem, which is defined as

P portfolio : minimize
x∈Rn,r∈Rm

f(r1, . . . , rm) (5.17a)

such that
n∑
j=1

αijxj = ri, ∀i ∈ [m] (5.17b)

n∑
j=1

xj = 1, (5.17c)

x ≥ 0, (5.17d)

where both x and r are decision variables. Problem (5.17) can be interpreted as follows: a

decision maker seeks an optimal portfolio, which is a distribution over instruments, according

to some objectives. The decision variable xj represents the fraction of allocation committed

to instrument j, the constraint parameter αij represents the return of instrument j in scenario

i, and ri is the total return in ith scenario. The objective function f is a function measuring

the risk of the returns r1, . . . , rm. Unlike the optimization problems we discussed so far, we

assume that f is any Lipschitz continuous function with Lipschitz constant L, and is not

necessarily a linear function of r.

Although problem P portfolio is not in general a linear program, we can still apply the col-

umn randomization method to solve the problem. We describe the procedure in Algorithm 9.
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Notice that, unlike Algorithm 8 which samples columns associated with all variables, here

we only sample columns associated with x.

Algorithm 9 The Column Randomization Method - Portfolio Optimization

1: Sample K i.i.d. indices in [n] as J ≡ {J1, . . . , JK} according to ρ.

2: Solve the sampled optimization problem:

P portfolio
J : min

{
f(r)

∑
j∈J

αijx̃j = ri, ∀ i ∈ [m],
∑
j∈J

x̃j = 1, x̃ ≥ 0

}
(5.18)

return optimal solution (x̃∗, r∗) and optimal objective value f(r∗)

Proposition 14 Assume vectors αj = (αij)i∈[m] in problem P portfolio satisfying ‖αj‖2 ≤ H

for all j ∈ [n]. Let C ≥ 1 be an arbitrary constant and define the optimization problem

P portfolio
distr : min

x,r

f(r)
∑
j∈[n]

αjxj = r, 1Tx = 1, 0 ≤ x ≤ Cξ

 . (5.19)

Denote F , Fdistr, and FJ as optimal objective values of problems P portfolio, P portfolio
distr , and

P portfolio
J , respectively. Define ∆FJ ≡ FJ − F and ∆Fdistr = Fdistr − F . For any δ ∈ (0, 1),

with probability at least 1− δ, the following statement holds:

∆FJ ≤ ∆Fdistr +
CLH√
K

(
1 + 3

√
1

2
log

4

δ

)
. (5.20)

For brevity, the proof is relegated to the ecompanion (see Section C.1.5). While the proof

is similar to that of Proposition 17 in the construction of a random solution that is close to

the solution of the distributional counterpart problem P portfolio
distr , the main difference is that

it relies on Lipschitz continuity, rather than LP duality.

It is worthwhile to point out several aspects about this result and the portfolio opti-

mization problem. First, the portfolio optimization problem (5.17) is not required to be a

convex optimization problem; the objective function f can be non-convex, so long as it is

Lipschitz continuous. Second, this result is related to Theorem 4 in Section 3.3.2, where we
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consider the problem of estimating the decision forest choice model, which is a probability

distribution over a collection of decision trees. We show that by solving an optimization

problem over a random sample of trees, one can obtain a gap on the `1 training error of the

model that decays with rate 1/
√
K. Proposition 14 is a generalization of that result to more

general optimization problems outside of choice model estimation, and allows for objective

functions more general than those based on `1 distance.

5.4 Statistically-Dependent Columns

So far we have assumed that each column in the column-randomized linear program is

sampled independently. In this section, we show how this assumption can be relaxed. We

state our main performance guarantee in Section 5.4.1. In Section 5.4.2, we consider a specific

non-i.i.d. column sampling scheme – groupwise sampling – which has natural applications

in problems such as Markov decision processes, and apply our guarantee from Section 5.4.1

to this sampling scheme.

5.4.1 Guarantees via Dependency Graph and Forest Complexity

We begin by assuming that the randomization scheme ρ is such that j1, . . . , jK still follow

the distribution ξ, i.e., Pr[jk = t] = ξt for k ∈ [K] and t ∈ [n], but they are no longer

independent. Thus, the indices j1, . . . , jK are no longer an i.i.d. sample from ξ, and we

require a different set of tools to analyze Algorithm 8 and ∆v(PJ) in this setting.

To analyze the column randomization method, we will make use of a specific concentration

inequality from [79], which requires specifying the dependence structure of a collection of

random variables through a specific type of graph. We thus begin by briefly defining the

relevant graph-theoretic concepts.

Given an undirected graph G, we use V (G) to denote the vertices of G, and E(G) to

denote the edges of G. Given two vertices u, v ∈ V (G), the edge between u and v is denoted

119



by 〈u, v〉. We say that u and v are adjacent if 〈u, v〉 ∈ E(G). We say that u and v are

non-adjacent if they are not adjacent. For two sets of nodes U, V ⊆ V (G), we say that U

and V are non-adjacent if u and v are non-adjacent for every u ∈ U and v ∈ V . Lastly, a

graph G is a forest if it does not contain any cycles, and is a tree if it does not contain any

cycles and consists of a single connected component.

With this definitions, we now define the dependency graph, which is a representation of

the dependency structure within a collection of random variables.

Definition 8 (Dependency graph) An undirected graph G is called a dependency graph

of a set of random variables X1, X2, . . . , XK if it satisfies the following two properties:

1. V (G) = [K].

2. For every I, J ⊆ [K], I ∩ J = ∅ such that I and J are non-adjacent, {Xi}i∈I and

{Xj}j∈J are independent.

We now introduce the concept of a forest approximation from [79].

Definition 9 (Forest approximation, [79]) Given a graph G, a forest F , and a mapping

φ : V (G)→ V (F ), we say that (φ, F ) is a forest approximation of G if, for any u, v ∈ V (G)

such that 〈u, v〉 ∈ E(G), either φ(u) = φ(v) or 〈φ(u), φ(v)〉 ∈ E(F ).

In words, a forest approximation is a mapping of a general graph G to a smaller forest F that

is obtained by merging nodes in G. For a given node v ∈ V (F ), the set φ−1(v) corresponds

to the set of nodes in V (G) that were merged to obtain the node v. Using the notion of a

forest approximation, we can now define the forest complexity of a graph G.

Definition 10 (Forest complexity, [79]) Let Φ(G) denote the set of all forest approxi-

mations of G. Given a forest approximation (φ, F ), define λ(φ,F ) as

λ(φ,F ) =
∑

〈u,v〉∈E(F )

(
|φ−1(u)|+ |φ−1(v)|

)2
+

k∑
i=1

min
u∈V (Ti)

|φ−1(u)|2
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where T1, . . . , Tk is the collection of trees that comprise F . We call Λ(G) = min(φ,F )∈Φ(G) λ(φ,F )

the forest complexity of G.

The forest complexity Λ(G) quantifies how much the graph G looks like a forest. Notice

that Λ(G) ≥ |V (G)| for any graph G. In practice, we only need an upper bound on Λ(G),

rather than its exact value; we refer readers to [79] for several examples on how Λ(G) can

be bounded.

Given a dependency graph G for the random indices in the set J , we now bound the

optimality gap of the column-randomized linear program.

Theorem 16 Let C be a nonnegative constant, define Pdistr as in Theorem 11 and assume

the random indices in J follow the dependency graph G with forest complexity Λ(G). For

any δ ∈ (0, 1), with probability at least 1− δ over the sample J , the following holds: if PJ is

feasible and rank(AJ) = m, then

∆v(PJ) ≤ ∆v(Pdistr) + C · (1 +mγ‖A‖max) ·

(√
K + 2|E(G)|

K2
+

√
2Λ(G) log(2/δ)

K2

)
,

(5.21)

where γ and ‖A‖max are defined as in Theorem 11.

Under the same conditions, with probability at least 1−δ over the sample J , the following

holds: if PJ is feasible and rank(AJ) = m, then

∆v(PJ) ≤ ∆v(Pdistr) + C · χ ·

(√
K + 2|E(G)|

K2
+

√
2Λ(G) log(1/δ)

K2

)
, (5.22)

where χ is defined as in Theorem 12.

The proof (see Section C.1.6) follows by utilizing the McDiarmid inequality for dependent

random variables from [79]. We note that Theorem 16 is a generalization of Theorems 11

and 12. If j1, j2, . . . , jK are independent, then the dependency graph G has no edges, and

thus |E(G)| = 0 and Λ(G) = K. Therefore, when each column is generated independently,

the upper bounds in Theorem 16 are equivalent to the bounds in Theorem 11 and 12.
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5.4.2 Groupwise Column Sampling

In many linear programs, we can naturally rearrange and group related columns together.

For example, in the LP formulation of an MDP, one can collect columns associated with

state s into a set G(s); the collection of all columns is simply the disjoint union
⋃ns

s=1 G(s),

where ns is number of states in the MDP and each G(s) = {(s, a) | a ∈ [na]}. For such a

problem, sampling J = {j1, . . . , jK} independently from the complete collection of columns,

i.e., from [ns]× [na], may not be attractive. The reason for this is that we may sample the

columns in such a way that we do not sample any columns corresponding to a particular

state s̃; in such a scenario, the sampled problem PJ will automatically be infeasible.

In the presence of a natural group structure of the columns, rather than sampling columns

in total across all n columns, one could consider sampling nr columns from each group. In

the MDP example, this would correspond to sampling nr columns (which correspond to

state-action pairs) for each state s. The resulting column-randomized linear program PJ

corresponds to an MDP where there is a random set of nr actions out of the complete set of

na actions available in each state s. Most importantly, PJ is guaranteed to be feasible.

It turns out that our results for dependent columns can be used to study column-

randomized LPs where columns are sampled by groups. We refer to such a mechanism

as a groupwise randomization scheme and define it formally below.

Definition 11 (Groupwise Randomization Scheme) Assume the set of indices [n] can

be organized into nG groups, i.e., [n] is the disjoint union of sets Gg for g = 1, 2, . . . , nG.

Consider a randomization scheme ρ such that (i) it samples indices in nr rounds of sampling;

(ii) in each round, it samples nG indices as follows: for i = 1, . . . , nG, it first uniformly at

random chooses an index gi from [nG]\{gj | j ∈ [i−1]} then samples an index from group Ggi
according to a distribution ξgi. We refer to such a randomization scheme ρ as a groupwise

randomization scheme.

Note that the randomization scheme ρ samples K = nrnG indices in total, and samples
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nr columns in each group. By design, each random index j follows the distribution ξ, whose

probabilities are given by

ξt ≡ Pr [j = t] =
1

nG

∑
g∈[nG ]

I{t ∈ Gg} · ξgt =
1

nG
· ξG(t)

t

where G(t) is the group to which column t ∈ [n] belongs to.

By using our general result for dependent columns (Theorem 16), we obtain a specific

guarantee for column-randomized LPs obtained by groupwise randomization schemes.

Theorem 17 Let J be a sample of K = nrnG indices sampled according to a groupwise

randomization scheme ρ. Let C be a nonnegative constant and define Pdistr as in Theorem 11.

For any δ ∈ (0, 1), with probability at least 1 − δ, the following holds: if PJ is feasible and

rank(AJ) = m, then

∆v(PJ) ≤ ∆v(Pdistr) +
C (1 +mγ‖A‖max)

√
nr

(
1 +

√
2 log

2

δ

)
,

where γ and ‖A‖max are defined as in Theorem 11. Under the same assumption, with prob-

ability at least 1− δ, the following holds: if PJ is feasible and rank(AJ) = m, then

∆v(PJ) ≤ ∆v(Pdistr) +
C · χ
√
nr

(
1 +

√
2 log

1

δ

)
,

where χ is defined as in Theorem 12.

Proof: The dependency graph G of K = nrnG random indices that are sampled by ρ consists

of nr cliques of size nG; Figure 5.1 provides an example of the dependency graph for nr = 3

and nG = 4. Therefore, |E(G)| = nrnG(nG − 1)/2 and Λ(G) ≤ λ(φ, F ) = nrn
2
G for a forest

approximation (φ, F ) that maps each clique in G as a node in F . By upper bounding Λ(G)

by nrn
2
G in Theorem 16, and using the fact that K = nrnG, we complete the proof. �

Theorem 17 can be interpreted as a guarantee on the optimality gap as a function of

the number of columns sampled per group: for a groupwise randomization scheme, the
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j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12

Figure 5.1: Dependency graph of random indices sampled by the groupwise randomization

scheme with nG = 4 and nr = 3.

gap decreases at a rate of 1/
√
nr, where nr is the number of columns sampled per group.

Compared to Theorem 11 and 12, the rate of convergence in Theorem 17 in terms of the

total number of columns sampled, which is K = nrnG, is slower; Theorem 11 and 12 both

have a rate of 1/
√
K, while Theorem 17 has a rate of 1/

√
nr ≡

√
nG/K.

5.5 Numerical Experiments

In this section, we apply the column randomization method to two applications of large-scale

linear programs that are commonly solved by CG. We demonstrate the effectiveness of the

column randomization method by comparing its performance to that of the CG method. We

also use these two applications to show that how one can design a randomization scheme

based on the problem structure. All linear and mixed-integer programs in this section are

formulated in the Julia programming language [17] with the JuMP package [47] and solved

by Gurobi [93].

5.5.1 Cutting-Stock Problem

The first application we consider is the classic cutting-stock problem. We follow the notation

in [14] and for completeness, briefly review the problem. A paper company needs to satisfy

a demand of bi rolls of paper of width wi, for each i ∈ [m]. The company has supply of

large rolls of paper of width W such that W ≥ wi for i ∈ [m]. To meet the demand, the

company slices the large rolls into smaller rolls according to patterns. A pattern is a vector

of nonnegative integers (a1, a2, . . . , am) that satisfies
∑m

i=1 aiwi ≤ W , where each ai is the
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number of rolls of width wi to cut from the large roll. Let n be the number of all feasible

patterns and let (a1j, a2j, . . . , amj) be the jth pattern for j ∈ [n]. Let A be the matrix such

that Aij = aij for i ∈ [m] and j ∈ [n]. The cutting-stock problem is to minimize the number

of large rolls of papers used while satisfying the demand, which can be formulated as the

following covering LP:

PCS : minimize
x∈Rn

n∑
j=1

xj (5.23a)

such that
n∑
j=1

aijxj ≥ bi, ∀i ∈ [m], (5.23b)

xj ≥ 0, ∀j ∈ [n]. (5.23c)

Explicitly representing the constraint matrix A in full is usually impossible: the num-

ber of feasible patterns n can be huge even if the number of demanded widths m is small.

A typical solution method is column generation, in which each iteration proceeds as fol-

lows. Given a set of patterns J = {j1, j2, . . . , jK}, solve the restricted problem PCS(J) :

minimize
x̃∈RK

{∑K
k=1 x̃k |

∑K
k=1 Ajk x̃k ≥ b, x̃ ≥ 0

}
and let p be the optimal dual solution. Then

find a new pattern jK+1 such that the corresponding new column has the most negative

reduced cost 1 − pTAjK+1
. If the reduced cost is nonnegative, the current solution is opti-

mal and the procedure terminates; otherwise, we add jK+1 to the collection J and repeat

the procedure. The problem of finding the column with the most negative reduced cost is

equivalent to solving the following subproblem:

PCS-sub : maximize
a

m∑
i=1

p∗i ai (5.24a)

such that
m∑
i=1

wiai ≤ W, (5.24b)

ai ∈ N+, ∀i ∈ [m], (5.24c)

where N+ is the set of nonnegative integers; if the optimal value v(PCS-sub) is smaller than

1, then we terminate the column generation procedure; otherwise, we let pattern jK+1 cor-

respond to the optimal solution of PCS-sub and add it to J .

125



Instead of column generation, we can consider solving the cutting-stock problem by the

column randomization method. In our implementation of the column randomization method,

we consider the randomization scheme described in Algorithm 10. The randomization scheme

essentially starts with an empty pattern, i.e., (a1, . . . , am) = (0, . . . , 0) and at each iteration,

it increments ai for a randomly chosen i, while ensuring that it does not run out of unused

width. We note that Algorithm 10 is not the only way to sample columns of A, and one can

consider other randomization schemes that would lead to potentially better performance of

the column randomization method. Our intention here is to provide a simple example of

how one can design a randomization scheme based on problem structure.

Algorithm 10 Sampling a Column for the Cutting-Stock Problem

1: Column a is a zero vector of length m and ζ ← W .

2: while ζ > 0 do

3: I ← {i | wi ≤ ζ}.

4: if |I| ≥ 1 then

5: Sample an index i uniformly at random from I.

6: Update ai ← ai + 1 and ζ ← ζ − wi.

7: else

8: Break the while loop
return Column a.

In Figure 5.2, we illustrate the performance of column-randomized linear programs for

the cutting-stock problem with respect to number of columns K ∈ {2 × 104, 4 × 104, 6 ×

104, 8×104} and number of required widths m ∈ {1000, 2000, 4000}. We note that the value

of m significantly affects size and complexity of the problem: as m increases, there are more

possible patterns and thus n increases as well. For the CG approach, m defines the number

of integer variables in the subproblem (5.24); as it increases, the subproblem becomes more

challenging. We set W = 105; we draw each wi uniformly at random from {W/10,W/10 +

1, . . . ,W/4 − 1,W/4} without replacement; and we draw each bi independently uniformly
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at random from {1, . . . , 100}. We measure the performance of column-randomized linear

programs PCS
J , where each column is obtained by Algorithm 10, by its relative optimality

gap ∆v(PCS
J )/v(PCS). For each value of m and K, we run the column-randomized method

20 times and compute the average optimality gap, which is plotted in Figure 5.2. Before

continuing, we note here that there are many ways to randomly generate cutting-stock

instances. Our goal is not to exhaustively evaluate the numerical performance of the column

randomization method on every possible family of instances, but rather to understand its

performance on a reasonably general set of instances.

We first observe that the curves in Figure 5.2 approximately match the convergence rate

of 1/
√
K in Theorems 11 and 12. In addition, the speed of convergence significantly slows

down after the optimality is smaller than 2%; see the curve for m = 1000. Second, as the

problem size increases, we need more samples to return comparable performance in terms

of optimality gap. This is reflected by the fact that for a fixed number of columns K, the

optimality gap is larger for larger value of m.
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Figure 5.2: Performance of the column randomization method on the cutting-stock problem

with respect to number of columns K and number of required widths m.
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We further compare the runtime of the column randomization method to that of the CG

method in Table 5.1. The first column of the table indicates the value of m, which quantifies

the problem size and subproblem complexity. The second column indicates the number

of sampled columns K in the column-randomized linear program. The third and fourth

columns indicate relative optimality gap ∆v(PCS(J))/v(PCS) and runtime of the column

randomization method, respectively; for both of these metrics, we report the average over

20 runs of the column-randomized method. The fifth column shows the time required by

the CG method to reach the same (average) relative optimality gap. We also list the total

duration for CG (i.e., the time required for CG to reach a 0% optimality gap) in the fifth

column, and denote it by “(total)”.

Table 5.1 shows that, when the problem is small (m = 1000), the column randomiza-

tion method returns a high-quality solution with an optimality gap below 1%, within 30

seconds and with 2 × 104 sampled columns. Doubling or tripling the number of sampled

columns does not significantly improve the performance, as the optimality gap is already

small. Meanwhile, CG also works well when m = 1000, obtaining the optimal solution in

a reasonable time (within fifteen minutes). On the other hand, when the problem is large

(m = 4000), the runtime of CG dramatically increases, as it needs almost 5000 seconds (just

under 1.5 hours) to reach a 5% optimality gap. The computational limiting factor comes

from solving the subproblem, which becomes more difficult as m increases. On the other

hand, the column randomization method only needs ten minutes to reach a 1% optimality

gap. This demonstrates the value of solving linear programs by the column randomization

method in lieu of CG when the subproblem is intractable. If one requires perfectly optimal

solutions (gap of 0%), one can use the result of the column randomization method as an

initial warm-start solution for the column generation approach. In the case of m = 4000, if

one uses the result of column-randomization method with K = 4× 104 as a warm start, the

runtime of the column generation method could potentially be reduced by more than 50%.
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Demand Types (m) Columns (K) Optimality Gap (%) Runtime (s) CG Runtime (s)

1000 2× 104 0.78 28.4 365.5

4× 104 0.36 56.4 411.7

6× 104 0.20 89.3 456.4

8× 104 0.16 122.5 475.1

(total) 775.4

2000 2× 104 1.65 58.9 1330.6

4× 104 0.65 120.1 1622.8

6× 104 0.43 197.9 1732.2

8× 104 0.31 287.6 1805.0

(total) 2932.92

4000 2× 104 5.10 139.4 4979.8

4× 104 1.59 314.2 7175.2

6× 104 0.95 527.1 7670.1

8× 104 0.68 768.6 7940.0

(total) 13336.1

Table 5.1: Performance of the column randomization method on the cutting stock problem

for different problem sizes and numbers of sampled columns.
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5.5.2 Nonparametric Choice Model Estimation

The second problem we consider is nonparametric choice model estimation, which is a modern

application of large-scale linear programming and CG. In particular, we consider estimating

the ranking-based choice model from data [52, 88, 120]. In this model, we assume that a

retailer offers N different products, indexed from 1 to N . We use the index 0 to represent

the no-purchase alternative, which is always available to customer. Together, we refer to the

set [N ]+ ≡ {0, 1, 2, . . . , N} as the set of purchase options. A ranking-based choice model

(Σ,λ) consists of two components. The first component Σ is a collection of rankings over

options [N ]+, in which each ranking represents a customer type. We use σ(i) to indicate the

rank of option i, where σ(i) < σ(j) implies that i is more preferred to j under the ranking

σ. When a set of products S ⊆ [N ] is offered, a customer of type σ selects option i from the

set S ∪ {0} with the lowest rank, i.e., the option arg mini∈S∪{0} σ(i). The second component

λ is a probability distribution over rankings in the set Σ; the element λσ can be interpreted

as the probability that a random customer would make decisions according to ranking σ.

To estimate a ranking-based model, we utilize data in the form of past sales rate infor-

mation. Here we consider the type of data described in [52]; we refer readers to that paper

for more details. Assume that the retailer has provided M assortments S = {S1, S2, . . . , SM}

in the past, where each Sm ⊆ [N ]. For each assortment Sm, the retailer observes the choice

probability vi,m for assortment Sm and option i, which is the fraction of past transactions

in which a customer chose i, given that assortment Sm was offered. We let v(i,m) ≡ 0 if

i /∈ S ∪ {0}.

The estimation of a ranking-based choice model (Σ,λ) can be formulated in the form of

problem P portfolio (Section 5.3.5). We first notice that there are in total (N + 1)! rankings

over [N ]+, which we enumerate as σ1, σ2, . . . , σ(N+1)!. We let the kth column of the problem

correspond to ranking σk, for k ∈ [(N + 1)!]. We use α(i,m),k to indicate whether a customer

following ranking σk would choose option k when offered assortment Sm. The estimation
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problem can then be written as

PEST : minimize
λ,v̂

D(v̂,v) (5.25a)

such that

(N+1)!∑
k=1

α(i,m),k · λk = v̂(i,m), ∀m ∈ [M ], i ∈ [N ]+, (5.25b)

(N+1)!∑
k=1

λk = 1, (5.25c)

λ ≥ 0, (5.25d)

where v̂ and v are vectors of v̂(i,m) and v(i,m) values, respectively, for i ∈ [N ]+ and m ∈ [M ].

The function D measures the error between the predicted choice probabilities v̂ and the

actual choice probabilities v. We follow [88] and set D = ‖v̂ − v‖1, which has Lipschitz

constant
√
M(N + 1).

We notice that even if N is merely 10, problem PEST has nearly 4× 107 columns. Given

that problem PEST may have an intractable number of columns, [88] and [120] applied CG

to solve the problem. Alternatively, we can apply the column randomization method. We

consider the randomization scheme described in Algorithm 11, where we first randomly

generate a ranking (line 2) and then map its decision under each assortment to form a

column (lines 3-5). Before continuing, we pause to make three important remarks. First, we

note that sampling a ranking uniformly at random (line 2) requires minimal computational

effort, and can be done by a single function call in most programming languages. Second,

we also note that while in Algorithm 10 we directly sample the coefficients of a column, in

Algorithm 11 we instead first sample the underlying “structure” of the column (a ranking)

then obtain the corresponding coefficients; this illustrates the problem-specific nature of the

randomization scheme. Lastly, we note that the paper of [52] considered a linear program for

computing the worst-case revenue of an assortment, which is effectively the minimization of a

linear function of λ subject to constraints (5.25b)–(5.25d). The paper considered a solution

method for this problem based on sampling constraints in the dual (which is equivalent to

sampling columns in the primal), but did not compare this approach to column generation,
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which will do shortly.

Algorithm 11 Sampling a Column for the Ranking Estimation Problem

1: Initialize α(i,m) ← 0 for i ∈ [N ]+ and m ∈ [M ].

2: Sample a ranking/permutation σ : [N ]+ → [N ]+ uniformly at random.

3: for m ∈ [M ] do

4: i∗ ← arg mini∈Sm∪{0} σ(i).

5: α(i∗,m) ← 1
return Column α = (α(i,m))i∈[N ]+,m∈[M ].

We compare the performance of the column randomization method to that of CG with

the following experiment setup. We assume that customers follow multinomial logit (MNL)

model to make decision, that is, the choice probability vi,m follows

vi,m =
exp(ui)

1 +
∑

j∈Sm
exp(uj)

for a given assortment Sm, where each parameter ui represents the expected utility of product

i. We choose each ui ∼ U [0, 1], i.e., uniformly at random from interval [0, 1]. We also choose

the set of historical assortments S = {S1, . . . , SM} uniformly at randomly from all possible

2N assortments of N products. We examine the performance of the column randomization

method under various problem sizes, using different values of N and M . For the CG method,

we use the method in [88], and solve the subproblem as an IP using the formulation from

[120].

Table 5.2 shows the performance of the column randomization method. The first two

columns of the table indicate the problem size. The third column shows the number of

sampled columns. The fourth and fifth columns display the optimality gap and the runtime,

respectively; for both of these metrics, we report the average value of the metric over 20 runs

of the column randomization method. The sixth column denotes the duration of the CG

method to reach the same (average) optimality gap as the column randomization method.

We remark that the optimal objective value v(PEST) is always zero, since random utility

132



maximization models such as the MNL model can be represented as ranking-based models

[20]. Thus, instead of showing relative optimality gap as in Table 5.1, we directly show the

objective value of the column-randomized linear program in Table 5.2.

In all cases listed in Table 5.2, the column randomization method outperforms the CG

method by a large margin. It only requires a fraction of the runtime of the CG method

to reach the same optimality level. In particular, when (N,M) = (10, 150), the column

randomization method only needs three seconds to reach the optimal objective value, which

is zero, while the CG method needs over ten thousand seconds (almost three hours). In

real-world applications, the number of products N is usually significantly larger than 10.

In those cases, the advantage of column randomization will be even more pronounced. We

note that in the IP formulation of the CG subproblem, the number of binary variables scales

as O(N2 + NM). Thus, as N increases, the subproblem quickly becomes intractable. (We

additionally note that [120] showed this subproblem to be NP-hard.)
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N M Columns (K) Objective Runtime (s) CG Runtime (s)

6 50 500 0.05 0.03 20.58

1000 0.00 0.07 30.44

8 50 500 0.13 0.10 52.32

1000 0.00 0.12 88.25

8 100 500 0.92 0.21 120.14

1000 0.07 0.45 414.43

1500 0.00 0.66 632.23

10 50 500 0.27 0.17 11.93

1000 0.00 0.22 282.78

10 100 500 1.60 0.28 240.23

1000 0.40 0.53 774.66

1500 0.06 0.71 1423.71

2000 0.00 1.57 2234.52

10 150 500 2.91 0.69 507.63

1000 0.98 1.07 1399.22

1500 0.43 1.33 2635.36

2000 0.18 2.01 4524.72

2500 0.00 3.14 10143.93

Table 5.2: Performance of the column randomization method on the estimation problem

PEST under varying problem sizes and numbers of sampled columns.
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CHAPTER 6

Conclusion

In this thesis, we have studied following question: how can we model non-rational purchase

choice from a data-driven perspective to create value? We have attempted to answer this

question in the following, concrete settings:

1. We proposed the decision forest model, which can model any discrete choice behavior,

regardless of whether it belongs to the RUM class or not. Given data in the form of

a collection of historical assortments, we proved that simple trees, whose depth scales

logarithmically and leaf complexity scales linearly with the number of assortments,

are sufficient to fit the data. We further proposed two practical estimation methods

for learning the decision forest model from historical assortments. Through experi-

ments with real data, we showed that the decision forest model generally outperforms

other rational and non-rational models in out-of-sample prediction in the presence of

non-rational customer behavior, and can be used to generate insights on the comple-

mentarity/substitution behaviors between products.

2. We developed a mixed-integer optimization methodology for solving the assortment

optimization problem when the choice model is a decision forest model. This method-

ology allows a firm to find optimal or near optimal assortments given a decision forest

model, which is valuable due to the ability of the decision forest model to capture

non-rational customer behavior. We developed three different formulations of increas-

ing strength. We analyzed the solvability of the Benders decomposition subproblem

for each formulation under integral and fractional master solution. Using synthetic
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data, we showed that our formulations can be solved directly to optimality or near

optimality at a small to medium scale, and using our Benders approach, we show that

it is possible to solve large instances with up to 3000 products to a low optimality gap

within an operationally feasible timeframe.

3. We generalized an estimation method of decision forest model as a solution method

for large-scale linear programs. The method involves simply randomly sampling a

collection of K columns from the constraint matrix and then solving the corresponding

problem. We developed two performance guarantees for the solution one obtains from

this approach, one involving a bound on dual solution and one involving a bound

on reduced costs, and showed how these guarantees and the overall approach can be

applied to specific problems, such as LPs with totally unimodular constraints, Markov

decision processes and covering problems. In numerical experiments with the cutting

stock problem and the nonparametric choice model estimation problem, we showed

that the proposed approach can obtain near-optimal solutions in a fraction of the

computational time required by column generation.
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APPENDIX A

Appendix to Chapter 3

A.1 Omitted Proofs

A.1.1 Proof of Proposition 1

For each ranking σj, j = 1, 2, . . . ,m, we can write down its preference order explicitly as

σj = {p(j)
1 � p

(j)
2 � . . . � p

(j)
Kj
� 0}, where a � b denotes that a is preferred to b; for

this ranking, Kj products are preferred over the no-purchase option, and product p
(j)
1 is the

most preferred. Assume each ranking σj has probability weight λj. Now we construct the

forest F as follows: for j = 1, . . . ,m, we build a decision tree tj with the structure shown

in Figure A.1. Additionally, we associate tree tj with probability λj. Note that ranking

σj = {p(j)
1 � p

(j)
2 � . . . � p

(j)
Kj
� 0} and the decision tree in Figure A.1 give the same decision

process: if product p
(j)
1 is in the assortment, we buy it; otherwise, if product p

(j)
1 is not in

the assortment but p
(j)
2 is, we buy p

(j)
2 ; otherwise, if both p

(j)
1 and p

(j)
1 are not in assortment

but p
(j)
3 is, we buy p

(j)
3 ; and so on. Therefore, for any option o and any assortment S, we

have

P(F,λ)(o | S) =
m∑
j=1

λj · I{o = Â(S, tj)}

=
m∑
j=1

λj · I{ranking σj selects option o given S} = P(Σ,λ)(o | S),

where the second equality comes from the fact that ranking σi and tree ti makes same decision

given S, and the third equality is from the definition of the ranking-based model. �
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Figure A.1: Ranking σj = {p(j)
1 � p

(j)
2 � . . . � p

(j)
Kj
� 0} can be represented as a purchase

decision tree.

A.1.2 Proof of Theorem 1

We prove the theorem by constructing a forest F consisting of (N + 1)2N balanced trees. We

first define the common structure of each tree in the forest. Each tree t in the forest has

depth N + 1 and shares the following structure for first the N levels:

xs = 1, ∀ s ∈ splits(t) such that dist(r(t), s) = 0, (A.1)

xs = 2, ∀ s ∈ splits(t) such that dist(r(t), s) = 1, (A.2)

xs = 3, ∀ s ∈ splits(t) such that dist(r(t), s) = 2, (A.3)

...

xs = N, ∀ s ∈ splits(t) such that dist(r(t), s) = N − 1, (A.4)

In words, the root split node r(t) checks for the existence of product 1 in the assortment;

the split nodes in the second level of the tree (those with dist(r(t), s) = 1) check for product

2; the split nodes in the third level check for product 3; and so on, all the way to the Nth

level, at which all splits node check for product N . Figure A.2 provides an example of this

tree structure for N = 3. In this tree, the left-most leaf node corresponds to assortment

S = {1, 2, 3}, the second leaf node from the left corresponds to assortment S = {1, 2}, and

so on, until the right-most leaf which corresponds to the empty assortment (S = ∅).
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Figure A.2: An example of the structure of the trees in the forest needed for the proof of

Theorem 1 for N = 3.

In this tree structure, there are exactly 2N leaf nodes, which we will index from left to

right as l1, . . . , l2N . Note that each leaf node of a tree in F has a one-to-one correspondence

with one of the 2N possible assortments of the products.

To specify the leaves, we require some additional definitions. Let us denote the 2N

possible assortments of the N products by S1, S2, . . . , S2N , in correspondence with the leaf

nodes l1, . . . , l2N , respectively. For the leaves `1, . . . , `2N , we use o1, o2, . . . , o2N to denote

the purchase decisions associated with those leaves, and we use o = (o1, . . . , o2N ) to denote

the 2N -tuple of purchase decisions. Let o1, . . . ,o(N+1)2
N

be a complete enumeration of the

(N + 1)2N possible 2N -tuples of the purchase decisions from
∏2N

i=1N+.

With these definitions, we define our forest F as consisting of (N + 1)2N trees, where

each tree follows the structure in equations (A.1)–(A.4), each tree is indexed from t = 1 to

t = (N + 1)2N and the purchase decisions of the leaves in tree t are given by the tuple ot as

defined above. We define the probability distribution λ = (λ1, . . . , λ(N+1)2N ) by defining the

probability λt of each tree t as:

λt =
2N∏
j=1

P(otj | Sj). (A.5)

It is straightforward to verify that λ is nonnegative and sums to one. Before continuing, we

note that not all of the trees defined in this way will satisfy Requirement 2 from Definition 6,

which requires that the purchase decision in each leaf must be consistent with the products
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along the path of splits from the root node to the leaf; in other words, for some trees otj will

not be contained in Sj. However, for any tree where this is the case, by the definition in

equation (A.5), the corresponding λt will be zero because P(otj | Sj) is zero whenever otj /∈ Sj.

Thus, those trees can be safely removed from F without changing the overall model.

We now show that the decision forest model (F,λ) outputs the same choice probabilities

as the true model P(· | ·). For any assortment Si and option o, we have

P(F,λ)(o | Si) =

(N+1)2
N∑

t=1

λt · I{o = Â(Si, t)}

=
∑
t : oti=o

λt

=
∑
t : oti=o

2N∏
i′=1

P(oti′ | Si′)

= P(o | Si) ·
∑
o1

P(o1 | S1) · · ·
∑
oi−1

P(oi−1 | Si−1) ·
∑
oi+1

P(oi+1 | Si+1) · · ·
∑
o
2N

P(o2N | S2N )

= P(o | Si),

where the first equality follows from how choice probabilities under the decision forest model

are defined in equation (3.1); the second follows from how our forest is constructed and how

the ot tuples are defined; the third equality follows from the definition of λ; the forth by

algebra; and the last by recognizing that the choice probabilities for a given assortment must

sum to one. �

A.1.3 Proof of Theorem 2

Before we prove Theorem 2, we establish three useful lemmas. Some of the results will be

also used in the proof of Theorem 3 in Section A.1.4.

Lemma 1 For any decision tree t that satisfies Requirements 1 and 2 in Definition 6, there

exists a purchase decision tree t′ such that: (1)Tree t′ satisfies Requirement 1, 2 and 3; (2)
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Tree t and t′ have same purchase decision under any given assortment; and (3) Depth(t′) ≤

Depth(t) and |leaves(t′)| ≤ |leaves(t)|.

Proof of Lemma 1: Let t be a tree that does not satisfy Requirement 3, and consider the

following procedure:

1. Select any leaf ` ∈ leaves(t) for which Requirement 3 is violated. Let path(`) ≡

{s1, s2, . . . , sd−1} be the sequence of splits from root r(t) ≡ s1 to sd−1, which is the

parent node of `. Let i ∈ N be a product encountered at least two times as the

decision process traverses path(`). Let su1 , su2 , . . . , suei , where u1 < u2 < · · · < uei , be

the subsequence of split nodes associated with product i in path(`). (Note that ei ≥ 2.)

2. If su1 ∈ LS(`), then remove all right subtrees branched at su2 , . . . , suei from t. Oth-

erwise, if su1 ∈ RS(`), then remove all left subtrees branched at su2 , . . . , suei from

t.

3. Delete split nodes su2 , . . . , suei from tree t, and “glue” the remaining pieces by setting

suj−1 as the parent node of the remaining child node of suj for j = 2, . . . , ei.

Consider now applying steps 1-3 repeatedly to tree t, until all of the leaves in the tree

satisfy Requirement 3; let the resulting tree be denoted by t′. Note that we are guaranteed

to terminate with such a tree, because each time we apply steps 1-3, we delete at least one

subtree from the tree (and thus at least one leaf), and the tree contains finitely many leaves.

In addition to Requirement 3, steps 1-3 also preserve Requirements 1 and 2. Thus, tree t′

satisfies condition (1) of the lemma.

Note also that for a given tree, the tree we obtain after applying steps 1-3 is equivalent

to that initial tree, in that any assortment is mapped by the two trees to the same purchase

decision. This is true because the leaves within the subtrees that are removed are leaves

that are unreachable (i.e., there does not exist an assortment that can reach them). For
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example, if su1 ∈ LS(`), then any leaf in the right subtree branched at su2 , . . . , suei is such

that product i must be in the assortment and not in the assortment in order to reach the

leaf, which is impossible. Thus, tree t′ satisfies condition (2) of the lemma.

Lastly, since steps 1-3 involve deleting subtrees and splits and re-attaching the discon-

nected pieces, tree t′ is no deeper than tree t and has no more leaves than tree t, thus

verifying condition (3) of the lemma. �

Lemma 1 plays an important role in the proofs of Theorem 2 and 3. In fact, we prove

both theorems by directly constructing decision forest models. However, the trees in the

forest may violate Requirement 3 in Definition 6. If such violation happens on a tree t, we

will use Lemma 1 to find an equivalent tree t′ that satisfies Requirement 3 without increasing

either the depth or the number of leaves, and replace t by t′ in the forest. For convenience,

we summarize the procedure in Lemma 1 as the following algorithm.

Our next result, Lemma 2 states that a data set of a single assortment can be perfectly

fit by a depth 2 decision forest.

Lemma 2 For any dataset S consisting of only one assortment S, there exists a forest

F of depth 2 and of leaf complexity 2 and a probability distribution λ over F such that

P(F,λ)(o | S) = vo,S for every o ∈ N+.

Proof of Lemma 2: Consider a forest F of depth 2 such that F = {t1, t2, . . . , tN , t0},

where each tree is as shown in Figure A.3, and define the probability distribution λ so that

λto = vo,S for each o ∈ N+; by construction,
∑

t∈F λt = 1 and λt ≥ 0 for each t ∈ F . For

this forest, each option o ∈ N+ is chosen by exactly one tree, to, and the probability mass

of that tree is vo,S, which establishes that P(F,λ)(o | S) = vo,S for all o ∈ N+. �

Lemma 3 Consider two sets of assortments S1 and S2 satisfying the following two condi-

tions: (1) for i = 1, 2, there exists a forest Fi of depth at most di and of leaf complexity at
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Algorithm 12 Modifying a tree of Requirements 1-2 to satisfy Requirement 3 in Definition 6.

(Section 3.1.1).

1: procedure TreeModification(a tree t satisfying Requirement 1 and 2)

2: while there exists a leaf ` ∈ leaves(t) violates Requirement 3 do

3: Set path(`)← {s1, s2, . . . , sd−1} (see its definition in proof of Lemma 1).

4: Set i← arg maxk∈N
∑d−1

j=1 I{k = xsj}.

5: Set {u1 < u2 < . . . < uei} ← {j | xsj = i, j ∈ {1, 2, . . . , d− 1}}.

6: if su1 ∈ LS(`) then

7: Remove all right subtrees branched at su2 , . . . , suei from tree t.

8: else

9: Remove all left subtrees branched at su2 , . . . , suei from tree t.

10: for w = ei, ei − 1, . . . , 2 do

11: Delete split node sw from tree t.

12: Set remaining child node of sw as the child node of sw−1.

13: return t
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Figure A.3: Trees t1, t2, . . . , tN and t0 (shown from left to right) for the forest F described

in Lemma 2

most Li, and a probability distribution λ(i) such that P(Fi,λ
(i))(o | S) = vo,S for all S ∈ Si;

and (2)there exists a product p such that p ∈ S for all S ∈ S1 and p /∈ S for all S ∈ S2.

Then there exists a probability distribution λ and a forest F of depth at most 1 +

max{d1, d2} and of leaf complexity at most L1 + L2 such that P(F,λ)(o | S) = vo,S for all

S ∈ S1 ∪ S2.

Proof of Lemma 3: We prove the statement by constructing an appropriate forest F and a

probability distribution λ such that P(F,λ)(o | S) = vo,S for all S ∈ S1∪S2. For i = 1, 2, let us

denote the trees in forest Fi by t
(i)
1 , t

(i)
2 , . . . , t

(i)
ni and the corresponding probability distribution

by λ(i) = (λ
(i)
1 , . . . λ

(i)
ni ). Let us construct the forest F and probability distribution λ for S1∪S2

as follows. We define the forest F as

F = {tα,β | α ∈ {1, 2, . . . , n1}, β ∈ {1, 2, . . . , n2}},

where each tree tα,β is formed by placing product p at the root node, placing t
(1)
α as the left

subtree of the root node, and t
(2)
β as the right subtree of the root node. For the probability

distribution λ over F , we set the probability of each tree λα,β = λ
(1)
α · λ(2)

β . By construction,

λ is nonnegative, and adds up to 1, since

n1∑
α=1

n2∑
β=1

λα,β =

n1∑
α=1

n2∑
β=1

λ(1)
α · λ

(2)
β =

(
n1∑
α=1

λ(1)
α

)(
n2∑
β=1

λ
(2)
β

)
= 1.

We now show that (F,λ) ensures that P(F,λ)(o | S) = vo,S for all S ∈ S1 ∪ S2. For any

S ∈ S1, we know that p ∈ S, and thus each purchase decision tree tα,β ∈ F will immediately
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take the left branch at the root node. This implies that the purchase decision of tree tα,β will

be exactly the same as its left subtree t
(1)
α when any S ∈ S1 is given. Thus, for any S ∈ S1

and o ∈ N+:

P(F,λ)(o | S) =

n1∑
α=1

n2∑
β=1

λα,β · I{o = Â(S, tα,β)}

=

n1∑
α=1

n2∑
β=1

λ(1)
α · λ

(2)
β · I{o = Â(S, t(1)

α )}

=

n1∑
α=1

λ(1)
α · I{o = Â(S, t(1)

α )} = P(F1,λ
(1))(o | S) = vo,S,

where we recall that Â(S, t) is the option chosen by tree t when given assortment S.

Similarly, we can also establish that for any S ∈ S2 and o ∈ N+, each tree tα,β will

make the same purchase decision as t
(2)
β , and so P(F,λ)(o | S) = P(F2,λ

(2))(o | S) = vo,S. This

establishes that (F,λ) satisfies P(F,λ)(o | S) = vo,S for all S ∈ S1 ∪ S2.

With regard to the depth of F , we observe that each tree in F is built by adding one

level to trees from F1 and F2, and so the forest F will be of depth at most 1 + max{d1, d2}.

With regard to the leaf complexity of F , each tree in F is built by combining two subtrees,

where one has at most L1 leaves and the other has at most L2 leaves, so the forest F will

have at most L1 + L2 leaves. Finally, trees in F may violate Requirement 3 in Definition 6.

In that case, we apply the procedure in Lemma 1 (Algorithm 12) to find equivalent trees

without increasing either the depth or leaf complexity of the forest. �

Proof of Theorem 2: With regard to depth and leaf complexity, we prove the state-

ment by induction on the number of assortments M . The base case is established by

Lemma 2. Assume the statement holds for all integers k < M . With M historical assort-

ments S1, S2, . . . , SM , let p be a product included in at least one assortment and meanwhile

not included in all assortments. Such a p must exist, otherwise S1 = S2 = . . . = SM , which

violates the requirement of distinct assortments. Denote Sp = {S | S ∈ S, p ∈ S} as the
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collection of historical assortments that include product p, and Scp = {S | S ∈ S, p /∈ S} as

the collection of historical assortments that do not include product p. We further denote

their cardinalities as Mp = |Sp| and M c
p = |Scp|.

Note that 1 ≤Mp ≤M−1 and 1 ≤M c
p ≤M−1 by the definition of product p. To prove

the inductive step, we assume that there exists a forest Fp of depth at most Mp+1 and of leaf

complexity at most 2Mp, and a distribution λp such that P(Fp,λp)(o | S) = vo,S for all o ∈ N+

and S ∈ Sp. Similarly, we also assume there exists a forest F c
p of depth at most M c

p + 1 and

of leaf complexity at most 2M c
p , and a distribution λcp such that P(F c

p ,λ
c
p)(o | S) = vo,S for

all o ∈ N+ and S ∈ Scp. By Lemma 3, there exists a distribution λ and a forest F of depth

at most 1 + max{Mp + 1,M c
p + 1} ≤ 1 +M and leaf complexity at most 2Mp + 2M c

p = 2M

such that P(F,λ) = vo,S for S ∈ S.

Let (F,λ) be the corresponding forest model. We can further use the procedure described

in Lemma 1 to ensure that for any tree t ∈ F , any path from root to a leaf will not encounter

the same product twice on split nodes. Since applying the procedure described in Lemma 1

(Algorithm 12) would not increase depth and leaf complexity, the resulting trees will again

have depth at most min{M + 1, N + 1} and leaf complexity again at most 2M .

Let D∗ = min{M + 1, N + 1} and let FD∗,2M be the collection of all decision trees of

depth at most M + 1 and of at most 2M leaves. Obviously, FD∗,2M is a finite set. By the

above induction proof, we know that the following constraint system has a solution:∑
t∈FD∗,2M

At,Sλt = vS, ∀ S ∈ S, (A.6a)

1Tλ = 1, (A.6b)

λ ≥ 0. (A.6c)

The set defined by (A.6) is a polyhedron in standard form and is non-empty. Therefore,

by standard linear optimization results (e.g., Corollary 2.2 of Bertsimas and Tsitsiklis 1997)

there exists a basic feasible solution λ∗ to (A.6), which possesses the property that λ∗t ≥ 0

for M(N + 1) + 1 trees t ∈ FD∗,2M and λ∗t = 0 for all other trees, where M(N + 1) + 1 is
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the number of equality constraints in (A.6). Defining F as F = {t ∈ FD∗,2M | λ∗t > 0} and

λ = (λ∗t )t∈FD∗,2M , we obtain the required decision forest model. �

A.1.4 Proof of Theorem 3

Proof Strategy

Before diving into the proof, we first demonstrate the basic idea of the proof with a simple

example, and then provide an informal overview of the strategy of the proof.

Example 4 Suppose S is a collection of M = 128 assortments with sufficiently large N .

By Theorem 2, there exists a decision forest model of depth at most 129 that perfectly fits S.

Now, consider a product p and the two subsets of S consisting of assortments that contain

and do not contain p:

Sp = {S ∈ S | p ∈ S},

Scp = {S ∈ S | p /∈ S}.

Suppose that the product p is such that |Sp| = 64 and |Scp| = 64. By invoking Theorem 2,

we obtain separate decision forest models (F1,λ1) and (F2,λ2) that respectively fit Sp and Scp
that are of depth 65. By invoking Lemma 2, we can combine the two models into a single

decision forest model of depth at most 1+max{65, 65} = 66 that perfectly fits the assortment

collection S.

What the above example illustrates is that when we can find a product p that perfectly

divides the assortment collection S, we can actually fit a model where the depth is at most

roughly M/2, instead of roughly M . In this example, we stopped after finding one product

p that perfectly splits S. However, there is nothing preventing us from repeating the process

again with Sp and Scp. If we can repeat the same process again with each of Sp and Scp –

i.e., we find a product p′ that perfectly splits Sp, and a product p′′ (possibly different from
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p′) that perfectly splits Scp – then we would be able to obtain a forest of depth at most

1 + max{1 + max{33, 33}, 1 + max{33, 33}} = 35 (roughly M/4).

We can keep repeating the process to obtain a smaller and smaller decision forest model;

each time we can find such a splitting product, we reduce the size of the collections by half

and we obtain roughly a factor of two reduction in the depth of the forest. This procedure

naturally gives rise to a forest of depth O(log2M).

The above procedure assumes that we are always able to find a product that perfectly

splits a given subcollection of assortments, that is obtained after some rounds of splitting.

If the collection of assortments S is drawn randomly, then this will not always be possible.

In addition, this will also not be possible if a subcollection that we encounter contains an

odd number of assortments.

Instead of aiming to divide the collection of assortments S exactly in half by finding a

“perfect” splitting product p, what we can instead hope to do is to split S almost evenly by

finding a “good” splitting product p. To do this, we fix an ε ∈ (0, 1), and consider the factor

1/(2 − ε), which is a number in the interval (1/2, 1). The factor 1/(2 − ε) defines how big

the two subcollections, Sp and Scp, should be relative to S. In other words, we now look for

a product p such that |Sp| ≤ M/(2 − ε) and |Scp| ≤ M/(2 − ε). If we succeed in doing this,

then we will reduce the size of the collection of assortments by a factor of 1/(2 − ε) with

each splitting product we find, giving rise to a forest of depth O(log2−εM).

The parameter ε controls a trade-off between the depth of the ultimate forest and the

probability of being able to create that forest. When ε is small, the factor 1/(2− ε) will be

closer to 1/2, leading to a large reduction in the size of the subcollections and a small depth.

However, the probability of finding a product that results in this split will be small. When

we enlarge ε, then probability of existence of finding a “good” splitting product p increases,

but this comes with a price, because the depth scales like O(log2−εM), which is increasing

in ε.
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In the proof of Theorem 3, we essentially use this idea to obtain a bound on the probability

of finding a forest of depth at most log2−ε(M/M0) +M0 + 1, where M0 is an integer constant

that defines a limit on how small the size of a subcollection of assortments can be before

applying Theorem 2. Due to the recursive nature of how the splitting procedure is applied

to repeatedly divide the collection of assortments, the probability bound satisfies a recursive

inequality: for a given collection of assortments, the bound on the probability of finding

a forest of depth at most d that fits S̃ is bounded by a quantity that involves the same

probability bound but corresponds to a forest of depth at most d − 1 that fits a smaller

subcollection of assortments.

Notation

Before we are able to prove the theorem, we require some additional definitions. First, as

discussed above, we let ε ∈ (0, 1) be an arbitrary constant and let M0 > 1 be an arbitrary

fixed positive integer. As alluded to above in Proof Strategy, the integer M0 will later

serve as a stopping point for the partitioning process. That is, when the current collection

of assortments is of size M0 or lower, we stop partitioning assortments and apply the depth

bound provided by Theorem 2.

For convenience, we will also use the constant k to denote k = ε2/(2(2 − ε)2), and the

constant β to denote β = 1/(2− ε). Note that for all ε ∈ (0, 1), k > 0 and β ∈ (1/2, 1). The

constant k is a quantity that will appear later in our application of Hoeffding’s inequality

to bound the probability of finding a good splitting product. The constant β is simply the

reduction factor of 1/(2− ε) that we desire for the splitting product (described above under

Proof Strategy); in other words, when we split a collection of assortments, the cardinality

of each subcollection should be at most a factor of β of the parent collection. Both k and β

are introduced to make the mathematical expressions we encounter later less cumbersome.
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Given a number of assortments M > M0, we define the integer d̄ as

d̄(M,M0, ε) =

⌈
log2−ε

(
M

M0

)⌉
. (A.7)

To understand the meaning of d̄, observe that β < 1. The proof that we will present shortly

relies on repeatedly dividing a collection of assortments by selecting a product p such that the

subcollection of assortments with p and the subcollection that does not contain p both have

cardinality that is at most β of the parent collection. The minimum number of such divisions

needed to reach a collection of assortments of size M0 or lower, starting with a collection of

M assortments, is exactly d̄. For ease of exposition, we will suppress the arguments of d̄,

but it should be regarded as a function of the number of assortments in the data set M , as

well as the constants M0 and ε.

We define the integer function q(N,M,M0) as

q(N,M,M0) =
⌊
N/d̄

⌋
. (A.8)

The integer q(N,M,M0) is interpreted as the number of candidate splitting products that

are considered at each level of splitting. The rationale for q(N,M,M0) is as follows. Since we

assume that the M assortments are drawn independently and uniformly from the collection

of all 2N assortments, then for each product p′ ∈ N and each assortment m, the presence of

product p in assortment m, I{p ∈ Sm}, is an independent Bernoulli(1/2) random variable. As

described above in Proof Strategy, for a given collection of assortments, we need to find a

product p that splits that collection into two subcollections that are a factor of 1/(2−ε) (= β)

of the size of the parent collection. For a collection of M ′ independent random assortments,

where each product is included in each assortment independently with probability 1/2, the

probability that a single, fixed product p can split the collection in this way can be written as

a binomial probability (i.e., the number Xp of assortments in the collection of M ′ assortments

that contain product p is a Binomial(M ′, 1/2) random variable), and readily bounded using

Hoeffding’s inequality. If instead of considering a fixed product, we consider all N products,

then the probability of finding a product p that can split the collection in this way increases.
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However, if we condition on the event that there exists a good splitting product among

all N products, then we can no longer guarantee that the random variables I{p ∈ S} are

independent Bernoulli(1/2) random variables for any product p and any assortment S within

either subcollection that is generated. This is problematic, because if the random variables

I{p ∈ S} are no longer independent Bernoulli(1/2) variables within the subcollections, then

we cannot bound the probability of finding a product that splits each subcollection, and we

cannot succeed in constructing our bound.

Thus, when we search for a good splitting product, we do not search over all N products.

Instead, we search over only q(N,M,M0) products. In that sense, when we condition on

the existence of a good splitting product out of those q(N,M,M0) products, then we only

“contaminate” the q(N,M,M0) products that we searched over, and we can protect the

independent Bernoulli(1/2) nature of the remaining products. Since there are d̄ levels of

splitting, the size of the candidate splitting set should be such that we do not run out of

products, i.e., we need d̄ · q(N,M,M0) ≤ N . The choice of q(N,M,M0) as
⌊
N/d̄

⌋
gives us

the largest possible size for the set of candidate splitting products without running out of

products. As with d̄, for ease of exposition we will suppress the arguments of q, but again,

it is a quantity that depends on the number of assortments M , as well as M0 and ε.

Given ε and M0, we define the function g(d) as

g(d) = (2d−M0−1 − 1) · 2−q(kM0−1). (A.9)

The function g(d) will later serve as a upper bound of probability.

Main Proof

The event in the statement of the theorem is that there exists a forest of a particular depth

that fits a set of assortments that are sampled uniformly from the set of all assortments over

a fixed number of products. For an arbitrary number of assortments M ′ > 0 and an arbitrary

depth d′, let us define R(M ′, d′) to be the event that there exists a forest of depth at most d′
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over the universe of N products that fits a set of M ′ assortments. We now need to carefully

define the probability distribution with which we will measure the probability of this event

and its complement. We will use F to denote a distribution according to which a collection

of M ′ assortments are drawn. The probability PF (R(M ′, d′)c) is the probability that we do

not succeed in finding a decision forest of depth at most d′ that fits M ′ assortments sampled

from F . Define F(M ′, N ′) as the set of distributions over collections of M ′ assortments of the

N products, such that at least N ′ products are sampled independently with probability 1/2.

(To “sample a product p independently with probability 1/2” means to draw an independent

Bernoulli(1/2) random variable that is 1 if the product p is to be included, and 0 if it is not

to be included.) We then define the maximum failure probability as

Q(M ′, N ′, d′) = sup
F∈F(M ′,N ′)

PF (R(M ′, d′)c). (A.10)

Note that in the statement of Theorem 3, M assortments are sampled uniformly at

random from the set of all assortments, which is exactly the same as independently sampling

each of the N products with probability 1/2, i.e., each assortment is generated by drawing,

for each p ∈ {1, . . . , N}, a Bernoulli(1/2) variable that is 1 if product p is to be included,

and 0 if it is not included. The set of distributions F(M,N) is thus a singleton consisting

of exactly this distribution over M assortments.

To prove Theorem 3, we will prove a more general result concerning the maximum failure

probability Q. Once we prove this general result, we will show that for specific choices of

ε and M0, the forest depth and the corresponding probability of the forest fitting the data

will exhibit the asymptotic behavior stated in Theorem 3.

The general result we will prove is stated as follows:

Theorem 18 Let M > 0, N > 0. Let ε ∈ (0, 1) be a fixed constant and M0 be a positive

integer such that M0 < M , and let k, q, d̄ and g(d) be defined as above. We then have, for

any M ′ ≤M ,

Q(M ′, N, d̄+M0 + 1) ≤ g(d̄+M0 + 1) = (2d̄ − 1) · 2−q(kM0−1). (A.11)
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We will prove this result by induction. To set up the induction proof, we need to set up

two auxiliary results. The first result, Lemma 4, will serve to establish the base case for the

induction proof.

Lemma 4 For any positive integer M ′ ≤M0, N ′ ≥ 0, we have:

Q(M ′, N ′,M0 + 1) ≤ g(M0 + 1). (A.12)

Proof of Lemma 4: Let M ′′ ≤M ′ ≤M0 be the number of distinct assortments in the collec-

tion S ′ of M ′ assortments. Theorem 2 guarantees almost surely that there exists a forest of

depth at most M ′′+ 1 such that P(F,λ)(o | S) = vo,S for every o and S ∈ S ′. Since M ′′ ≤M0,

it immediately follows that the forest is of depth at most M0 +1. Thus, the maximum failure

probability Q(M ′, N ′,M0 +1) will be equal to zero for any M ′ ≤M0. Since the upper bound

g(M0 + 1) is exactly zero (by the definition of g in equation (A.9)), the lemma follows. �

The second auxiliary result, Lemma 5, will serve to establish the induction hypothesis.

Lemma 5 Let N ′ ≥ q, d ≥M0 + 2 and M ′ > 0. If the collection of inequalities

Q(M ′′, N ′ − q, d− 1) ≤ g(d− 1), ∀ M ′′ ≤ bM ′βc (A.13)

holds, then we have

Q(M ′, N ′, d) ≤ g(d). (A.14)

Proof of Lemma 5: First, let us handle the case when M ′ ≤ M0. Note that in this case, by

exactly the same reasoning as in Lemma 4, we automatically have Q(M ′, N ′, d) ≤ g(d): we
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apply Theorem 2 to obtain a forest of depth at most M ′+ 1, and since d ≥M0 + 2 ≥M ′+ 1,

this forest is automatically of depth at most d as well. This establishes that Q(M ′, N ′, d) = 0,

and since g(d) ≥ 0, the statement follows, without any use of the hypothesis (A.13). Thus,

in what follows, we will focus on the case when M ′ > M0.

Let F be any distribution from F(M ′, N ′). Let S be the set of M ′ assortments drawn

from F . Fix a set of products Ξ of size q from the set of products of size at least N ′ that

are known to be independent. Define the set Ξ∗ as

Ξ∗ =

p ∈ Ξ
M ′(1− β) ≤ |Sp| ≤M ′β,

M ′(1− β) ≤ |Scp| ≤M ′β

 , (A.15)

where the collections Sp and Scp are defined as in the proof of Theorem 2:

Sp = {S ∈ S p ∈ S}, (A.16)

Scp = {S ∈ S p /∈ S}. (A.17)

In words, Sp is the collection of assortments that include product p, while Scp is the collection

of assortments that do not include product p. The set Ξ∗ is the set of all products p that

essentially divide the collection of assortments S in a “balanced” way, such that the resulting

collections of assortments Sp and Scp contain at least (1− β) fraction of the assortments and

at most β fraction of the assortments. That is to say, such p ∈ Ξ∗ will be a “good” splitting

product, as described in Proof Strategy.

With Ξ∗ defined, let us define the product p∗ as

p∗ =

 minp∈Ξ p if Ξ∗ = ∅,

minp∈Ξ∗ p if Ξ∗ 6= ∅.

In words, the product p∗ is the lowest index product from Ξ∗ if the latter turns out to not

be empty, and otherwise it is the lowest index product from Ξ. Both p∗ and Ξ∗ are random.

Note that the definition of p∗ when Ξ∗ is empty is not important for the proof; it is just

needed to ensure that some events we will construct shortly are well-defined.

Having defined p∗, let us now define the following events:
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• A: the event that Ξ∗ 6= ∅.

• B1: the event that there exists a decision forest model (F1,λ1) of depth at most d− 1

such that P(F1,λ1)(o | S) = vo,S for all o and S ∈ Sp∗ .

• B2: the event that there exists a decision forest model (F2,λ2) of depth at most d− 1

such that P(F2,λ2)(o | S) = vo,S for all o and S ∈ Scp∗ .

Observe that if all three events hold, then Lemma 3 guarantees that there exists a decision

forest model (F,λ) of depth at most 1 + max{d− 1, d− 1} = d such that P(F,λ)(o | S) = vo,S

for all o and S ∈ S. In other words, if the events A, B1 and B2 occur, then the event

R(M ′, d) occurs.

By taking the contrapositive of the above statement, we can bound the probability

PF (R(M ′, d)c) as

PF (R(M ′, d)c) ≤ PF ( (A ∩B1 ∩B2)c )

= PF (Ac ∪Bc
1 ∪Bc

2)

= PF (Ac) + PF (A ∩ (Bc
1 ∪Bc

2))

≤ PF (Ac) + PF (Bc
1 ∪Bc

2 | A)

≤ PF (Ac) + PF (Bc
1 | A) + PF (Bc

2 | A), (A.18)

where the fourth step follows by the definition of conditional probability and the last step

follows by the union bound.

At this stage, we pause to comment on the utility of bounding PF (R(M ′, d′)c) using the

events A, B1 and B2, as in inequality (A.18). The event A is useful because it is defined in

terms of the product set Ξ. Each product p in Ξ is such that p exists in an assortment in

S with probability 1/2, independently across the M ′ assortments and independently of any

other product; we will see shortly that this allows us to conveniently bound the probability

of Ac. Second, the conditional events Bc
1 | A and Bc

2 | A are events that bear a resemblance
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to R(M ′, d)c: both Bc
1 | A and Bc

2 | A are events in which we fail to find a decision forest

model that fits the assortment sets Sp∗ and Scp∗ , respectively. The difference is that while the

distribution F is such that at least N ′ products are sampled independently with probability

1/2 to generate M ′ assortments, the distribution according to which Sp∗ and Scp∗ are sampled

conditional on A is such that at least N ′ − q products are sampled independently with

probability 1/2 to generate a random number of assortments that is at most βM ′. We

will later leverage this similarity to invoke the induction hypothesis and obtain a bound on

PF (Bc
1 | A) and PF (Bc

2 | A).

Our goal now will be to bound each of the three terms in the inequality (A.18). For

P(Ac), observe that we can write this event as

PF (Ac) = PF

(⋂
p∈Ξ

{|Sp| > M ′β or |Sp| < M ′(1− β)}

)
.

By the assumption that F ∈ F(M ′, N ′) and that Ξ is a subset of those products which

are sampled independently, the random variables I{p ∈ S} for each p ∈ Ξ and S ∈ S

are independent Bernoulli(1/2) random variables. The size of the subcollection Sp can be

written as |Sp| =
∑

S∈S I{p ∈ S}; thus, the random variables {|Sp|}p∈Ξ are distributed as

independent Binomial(M ′, 1/2) random variables. Letting Xp denote each such binomial

random variable, we can bound the probability PF (Ac) as

PF (Ac) = PF

(⋂
p∈Ξ

{Xp > M ′β or Xp < M ′(1− β)}

)

=
∏
p∈Ξ

P (Xp > M ′β or Xp < M ′(1− β))

≤
∏
p∈Ξ

(2e−M
′k)

= 2qe−M
′kq

≤ 2−q(M
′k−1)

≤ 2−q(M0k−1)
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where the second step follows by the independence of the Xp random variables; the third step

follows by Hoeffding’s inequality for a sum of M ′ Bernoulli random variables and recognizing

that M ′β −M/2 = M/2 −M ′(1 − β) = Mε/(2(2 − ε)); the fourth step follows by the fact

that |Ξ| = q; the fifth step follows by the fact that 2 < e and algebra; and the last step

by the fact that q > 0 and M0 < M ′. Before continuing, we draw the reader’s attention to

the dependence of this bound on q: the bound becomes exponentially smaller with q. In

words, when we search over a larger set of candidate splitting products, it becomes easier

to find a product that splits S in a balanced way. Ideally, we would search over all N ′

products, instead of only q products; however, as we discussed earlier under Notation when

defining the constant q, we have to limit the size of Ξ to ensure that we preserve independent

Bernoulli(1/2) products for later stages of splitting.

To bound PF (Bc
1 | A) and PF (Bc

2 | A), let us first define two conditional random variables,

Γ and Γc, as

Γ = |Sp∗| A, (A.19)

Γc = |Scp∗| A, (A.20)

i.e., Γ is the number of assortments containing p∗ given that A occurs, while Γc is the number

of assortments not containing p∗ given that A occurs. We can now write PF (Bc
1 | A) and

PF (Bc
2 | A) by conditioning and de-conditioning on Γ and Γc respectively:

PF (Bc
1 | A) = EΓ [PF (Bc

1 | A,Γ)] , (A.21)

PF (Bc
2 | A) = EΓc [PF (Bc

2 | A,Γc)] , (A.22)

where the expectations are taken with respect to the conditional random variables Γ and Γc

respectively.

To understand how we will next proceed, let us focus on PF (Bc
1 | A). Let M̃ be a given

realization of Γ and consider the conditional probability PF (Bc
1 | A,Γ = M̃). We now claim
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that:

PF (Bc
1 | A,Γ = M̃) = PF̃ (R(M̃, d− 1)c) (A.23)

≤ Q(M̃,N ′ − q, d− 1), (A.24)

where F̃ is the distribution over collections of M̃ assortments that is induced by conditioning

on the event A and the event Γ = M̃ . (To actually sample from such a distribution, one can

repeatedly sample M ′ assortments according to F , discard those draws of the M ′ assortments

that do not satisfy both A and |Sp∗| = M̃ , and return each collection Sp∗ for the remaining

draws.) The first step in the above follows from the definition of F̃ . The second step follows

by the fact that, by definition, F̃ is a member of F(M̃,N ′− q). To understand why, observe

that after conditioning on A, which is an event that involves a set of products of size q

from the set of at least N ′ products that are known to be independent with respect to

F , the distribution F̃ may be such that the independence of the q products is no longer

guaranteed. However, after conditioning in this way, we know that there still remain at least

N ′ − q products that are independent, because they have not yet been used in any way (we

have not conditioned on any event that involves these products). Thus, we obtain the upper

bound of Q(M̃,N ′−q, d−1). This observation is critical, because it is what ultimately allows

us to link Q(M ′, N ′, d) to Q(M ′′, N ′ − q, d − 1), and bound Q(M ′, N ′, d) via the induction

hypothesis.

With this insight in hand, let us continue with bounding PF (Bc
1 | A). We have

PF (Bc
1 | A) = EΓ [P(Bc

1 | A,Γ)] (A.25)

≤ EΓ [Q(Γ, N ′ − q, d− 1)] (A.26)

≤ g(d− 1) (A.27)

= (2d−M0−2 − 1)2−q(kM0−1), (A.28)

where the first inequality follows by our reasoning above; the second inequality follows by

our induction hypothesis (A.13), and the fact that the integer random variable Γ is almost

surely bounded by bM ′βc; and the last step follows by the definition of g.
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Applying the same steps for PF (Bc
2 | A), allows us to also conclude that

PF (Bc
2 | A) ≤ (2d−M0−2 − 1)2−q(kM0−1). (A.29)

Now that we have constructed a bound for PF (A), PF (Bc
1 | A) and PF (Bc

2 | A), we can

return to completing the bound in (A.18). We have:

PF (R(M ′, d)c) ≤ PF (Ac) + PF (Bc
1 | A) + PF (Bc

2 | A) (A.30)

≤ 2−q(kM0−1) + 2(2d−M0−2 − 1)2−q(kM0−1) (A.31)

=
(
1 + 2d−M0−1 − 2

)
· 2−q(kM0−1) (A.32)

= (2d−M0−1 − 1) · 2−q(kM0−1) (A.33)

= g(d). (A.34)

Since our choice of the starting distribution F was arbitrary, we have that PF (R(M ′, d)c) is

upper bounded by g(d) for any F in F(M ′, N ′); sinceQ(M ′, N ′, d) is defined as the supremum

of this probability over all distributions F in F(M ′, N ′), we thus have

Q(M ′, N ′, d) ≤ g(d), (A.35)

as required. �

Having established Lemmas 4 and 5, we put these two results together to establish

Theorem 18.

Proof of Theorem 18: For i = 0, 1, . . . , d̄, we define the quantity µi as follows:

µ0 = M,

µi = bβ · µi−1c, i = 1, . . . , d̄.

It is straightforward to see that µi ≤Mβi for i = 1, . . . , d̄.
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We now show that the following collection of inequalities holds:

Q(M ′, N − d̄q,M0 + 1) ≤ g(M0 + 1), ∀M ′ ≤ µd̄, (Q-0)

Q(M ′, N − (d̄− 1)q,M0 + 2) ≤ g(M0 + 2), ∀M ′ ≤ µd̄−1, (Q-1)

Q(M ′, N − (d̄− 2)q,M0 + 3) ≤ g(M0 + 3), ∀M ′ ≤ µd̄−2, (Q-2)

...

Q(M ′, N − (d̄− i+ 1)q,M0 + i) ≤ g(M0 + i), ∀M ′ ≤ µd̄−i+1, (Q-(i− 1))

Q(M ′, N − (d̄− i)q,M0 + i+ 1) ≤ g(M0 + i+ 1), ∀M ′ ≤ µd̄−i, (Q-i)

...

Q(M ′, N − q,M0 + d̄) ≤ g(M0 + d̄), ∀M ′ ≤ µ1, (Q-(d̄− 1))

Q(M ′, N,M0 + d̄+ 1) ≤ g(M0 + d̄+ 1), ∀M ′ ≤ µ0. (Q-d̄)

The first inequality (Q-0) holds because N−d̄q ≥ 0 by the definition of q, so we can invoke

Lemma 4 to guarantee that Q(M ′, N− d̄q,M0 +1) ≤ g(M0 +1) holds for any M ′ ≤M0. Note

that the inequality holds for the range M ′ ≤ µd̄, because µd̄ ≤ M0 (this is a consequence of

µd̄ ≤Mβ d̄ and the definition of d̄ as dlog2−ε(M/M0)e).

For i = 1, . . . , d̄, suppose that (Q-(i− 1)) holds. For any M ′ ≤ µd̄−i, observe that the

inequality of (Q-i) will hold for M ′ because bβM ′c ≤ bβµd̄−ic = µd̄−i+1 and because of

Lemma 5. Thus, (Q-(i− 1)) implies (Q-i).

Since (Q-0) holds and (Q-(i− 1)) implies (Q-i) for i = 1, . . . , d̄, it follows by induction

that (Q-d̄) holds. Theorem 18 follows because the desired inequality (A.11) is contained in

the inequalities of (Q-d̄). �

Having proved Theorem 18, we are now in a position to prove Theorem 3.

Proof of Theorem 3: The statement of Theorem 18 allows us to use any M0 and ε; let us

fix M0 = 20 and ε = 0.5.

With these choices for M0 and ε, we will now simplify the probability bound in (A.11).
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We define the constant ξ as ξ = log2−ε 2 = log1.5 2. We observe that

d̄ = dlog2−ε(M/M0)e

= dlog1.5M − log1.5M0e

≤ log1.5M

= ξ log2M, (A.36)

where the inequality follows because log1.5 20 > 1. Thus, the forest depth, which is at most

M0 + 1 + d̄, is of order O(log2M). In addition, we have that

(2d̄ − 1) ≤ 2ξ log2M = M ξ ≤M2, (A.37)

which follows because ξ ≤ 2. Lastly, we have

2−q(kM0−1) = 2−bN/d̄c·(0.111)

≤ 2−(N/d̄−1)(0.111)

≤ 2−(N/(ξ log2M)−1)(0.111)

= 20.111 · 2−(0.111/1.710)(N/ log2M)

= 20.111 · 2−0.065N/ log2M (A.38)

which is of order O(2−CN/ log2M), where C is a positive constant. Putting together (A.37) and

(A.38), we thus obtain a bound on Q(M,N, d̄+M0+1), which is of order O(M2 ·2−CN/ log2M).

The statement of the theorem thus follows. Finally, the forest may contain trees that violate

Requirement 3 in Definition 6. For any such tree, we apply the procedure in Lemma 1 (Al-

gorithm 12) to obtain an equivalent tree without increasing the depth and leaf complexity

of the overall forest. �

We note that the probability bound of Theorem 18 may not always be less than or equal

to 1; a necessary but not sufficient condition for the bound to be less than or equal to 1 is
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that ε and M0 are chosen so that kM0 > 1, ensuring that the coefficient of q in 2−q(kM0−1) is

negative.

To obtain the probability bound of Section 3.2.2 with N = 10000 and M = 2000, we set

M0 = 20 and ε = 0.5. We then obtain d̄ = dlog2−0.5(2000/20)e = 12 andQ(10000, 2000, 40) ≤

(2000)2 · 20.111 · 2−0.065×10000/ log2 2000 ≤ 6.2× 10−12. The forest depth is at most d̄+M0 + 1 =

12 + 20 + 1 = 33, as required. Using Theorem 18, we can actually obtain a tighter bound.

To set up the bound, note that q = bN/d̄c = 833 and kM0 − 1 = 1/9, and so we obtain

Q(10000, 2000, 40) ≤ (2d̄ − 1) · 2−q(kM0−1) ≤ 5.63 × 10−25. In Table A.1.4 below, we report

values of both the bound in the proof of Theorem 3 as well as the tighter bound of Theorem 18

for a collection of values of M and N . Note that in the table, “Failure Prob. Bound

(Theorem 3)” corresponds to the loose bound from the proof of Theorem 3 (the bound

M2 · 20.111 · 2−0.065N/ log2M). “Failure Prob. Bound (Theorem 18)” corresponds to the tighter

bound of Theorem 18 (the bound (2d̄−1) ·2−q(kM0−1), with M0 = 20 and ε = 0.5). “Depth” is

the bound on the depth of the forest that corresponds to the two probability bounds, which

in both cases is M0 + d̄+ 1. .
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N M Depth Failure Prob. Bound Failure Prob. Bound

(Theorem 3) (Theorem. 18)

2000 100 25 0.0139 2.83× 10−16

2000 200 27 0.328 4.58× 10−10

2000 500 29 11.7 1.11× 10−6

2000 1000 31 128 0.000209

2000 2000 33 1.17× 103 0.0115

2000 5000 35 1.77× 104 0.292

2000 10000 37 1.23× 105 4.32

2000 20000 39 7.88× 105 50.8

5000 100 25 2.04× 10−11 2.32× 10−41

5000 200 27 6.87× 10−9 8.66× 10−27

5000 500 29 3.31× 10−6 3.17× 10−19

5000 1000 31 0.000165 1.93× 10−14

5000 2000 33 0.00518 4.99× 10−11

5000 5000 35 0.295 1.88× 10−8

5000 10000 37 4.69 2.4× 10−6

5000 20000 39 61.4 0.000142

10000 100 25 3.84× 10−26 3.6× 10−83

10000 200 27 1.09× 10−21 1.19× 10−54

10000 500 29 4.06× 10−17 3.95× 10−40

10000 1000 31 2.52× 10−14 3.65× 10−31

10000 2000 33 6.21× 10−12 5.63× 10−25

10000 5000 35 3.22× 10−9 2.15× 10−20

10000 10000 37 2.04× 10−7 8.16× 10−17

10000 20000 39 8.74× 10−6 7.16× 10−14

Table A.1: Probability bound values and corresponding depths for different values of N and

M .

A.1.5 Proof of Theorem 4

Before diving into the main elements of the proof, we fix some additional notation. We use

At = (At,S)S∈S to denote the vector obtained by concatenating the vectors At,S over all the
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training assortments S ∈ S. Note that each vector At,S is a N + 1 dimensional “one-hot”

vector (i.e., exactly one entry of At,S is one, and the remaining entries are zero); therefore,

the vector At, being the concatenation of M one-hot vectors, will have L1 norm ‖At‖1 = M

and L2 norm ‖At‖2 =
√
M . We additionally define v = (vS)S∈S to be the concatenation of

the vS vectors.

For a collection of trees F and a nonnegative weight vector µ = (µt)t∈F corresponding

to F , we define ψ(F,µ) as

ψ(F,µ) =
∑
t∈F

Atµt. (A.39)

When µ sums up to 1, µ corresponds to a probability distribution over F , and (F,µ) is

a bona fide decision forest model. In that case, recall that
∑

t∈F At,Sµt is the vector of

predicted choice probabilities for assortment S given the decision forest model (F,λ); thus,

when µ is a probability distribution over the forest F , then ψ(F,µ) is the concatenation of

all such vectors of predicted choice probabilities, over all of the assortments in S. We refer

to a tuple (F,µ) where µ does not necessarily sum to one as an extended decision forest

model. Our definition of ψ is intentionally general as we will use it in conjunction with both

ordinary (non-extended) and extended decision forest models.

With these additional definitions, we now prove Theorem 4. Our proof relies on two

auxiliary results (Lemma 6 and Lemma 8), which we will establish after stating the proof of

Theorem 4.

Proof of Theorem 4: Recall that the randomized tree sampling method (Algorithm 3)

returns a decision forest model (F̂ , λ̂), where F̂ = {t1, . . . , tK} is a random sample of K

trees drawn i.i.d. from F according to the distribution ξ, and λ̂ is obtained by solving the

problem EstLO(S, F̂ ). Let λ∗ be a probability distribution over Λ(C, ξ) that minimizes the

empirical risk, that is,

λ∗ ∈ arg min
λ∈Λ(C,ξ)

R(F,λ). (A.40)
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By Lemma 8, with probability 1− δ over the collection of trees t1, . . . , tK , there exists a

forest model (F̂ ,λ′) such that

‖ψ(F̂ ,λ′)−ψ(F,λ∗)‖1 ≤
MC√
K
·
(√

N + 1 + 3
√

log(4/δ)
)
. (A.41)

In words, Lemma 8 allows us to assert that with high probability there exists a distribution

λ′ over F̂ such that the predicted choice probabilities under (F̂ ,λ′) are close to those under

(F,λ∗).

Thus, with probability at least 1− δ, we have the following bound:

R(F̂ , λ̂)− min
λ∈Λ(C,ξ)

R(F,λ) = R(F̂ , λ̂)−R(F,λ∗)

≤ R(F̂ ,λ′)−R(F,λ∗)

≤ 1

M
· ‖ψ(F̂ ,λ′)−ψ(F,λ∗)‖1

≤ 1

M
· MC√

K
·
(√

N + 1 + 3
√

log(4/δ)
)

=
C√
K
·
(√

N + 1 + 3
√

log(4/δ)
)
,

where the first equality follows by the definition of λ∗; the first inequality follows since

λ̂ minimizes R(F̂ ,λ) over all probability distributions λ; the second inequality follows

by Lemma 6; and the final inequality by Lemma 8. Re-arranging the inequality to place

minλ∈Λ(C,ξ) R(F,λ) to the right-hand side, we obtain the desired result. �

We now establish the auxiliary results used in the proof of Theorem 4. Our first auxiliary

result, Lemma 6, states that the difference in training error/empirical risk between two

decision forests (F,λ) and (F ′,λ′) can be bounded simply by the L1 distance between their

predicted choice probabilities.

Lemma 6 For any two forest models (F,λ) and (F ′,λ′),

R(F,λ)−R(F ′,λ′) ≤ ‖ψ(F,λ)−ψ(F ′,λ′)‖1

M
. (A.42)
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Proof of Lemma 6: By the triangle inequality, we have

‖ψ(F,λ)− v‖1 ≤ ‖ψ(F,λ)−ψ(F ′,λ′)‖1 + ‖ψ(F ′,λ′)− v‖1,

which we can re-arrange to obtain

R(F,λ)−R(F ′,λ′) =
‖ψ(F,λ)− v‖1

M
− ‖ψ(F ′,λ′)− v‖1

M
≤ ‖ψ(F,λ)−ψ(F ′,λ′)‖1

M
,

as required. �

We next turn our attention to Lemma 8. Before we can establish Lemma 8, it is helpful

to establish the following general-purpose lemma. For a collection of i.i.d. random vectors,

Lemma 7 provides a high probability bound on the L1 norm of the distance between the

average vector and the expectation of the average vector.

Lemma 7 Let z1, . . . , zK be i.i.d. random vectors of size (N + 1)M such that zk ≥ 0,

‖zk‖1 ≤ A and ‖zk‖2 ≤ B for k = 1, . . . , K, for some positive constants A and B. Let

z̄ = (1/K)
∑K

k=1 zk denote their average. Then, for any δ > 0, with probability at least 1− δ

over the draw of z1, . . . , zK, we have that

‖z̄− E[z̄]‖1 ≤
√

(N + 1)MB2

K
+

√
2A2

K
log

(
1

δ

)
(A.43)

Proof of Lemma 7: First, let us define the set Y from which z1, . . . , zK are drawn as

Y =
{
y ∈ R(N+1)M | y ≥ 0, ‖y‖1 ≤ A, ‖y‖2 ≤ B

}
.

Let us also define the scalar function f : YK → R as

f(y1, . . . ,yK) = ‖ 1

K

K∑
k=1

yk − E[z̄]‖1.

Observe that the random variable f(z1, . . . , zK) is equivalent to the random variable on the

left-hand side of inequality (A.43); our goal will be to show that f(z1, . . . , zK) satisfies this
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bound. We will show this by combining a bound on how much f(z1, . . . , zK) deviates from

its expected value (which we will obtain using McDiarmid’s inequality) and a bound on the

expected value of f(z1, . . . , zK).

To eventually use McDiarmid’s inequality, we first show that f possesses the bounded

differences property. For any y1, . . . ,yK ∈ Y , let ỹ1, . . . , ỹK be a collection of vectors in Y

such that yk = ỹk for all k 6= m, where the index m ∈ {1, . . . , K} is arbitrary. We then

have:

|f(y1, . . . ,yK)− f(ỹ1, . . . , ỹK)| =

∣∣∣∣∣‖ 1

K

K∑
k=1

yk − E[z̄]‖1 − ‖
1

K

K∑
k=1

ỹk − E[z̄]‖1

∣∣∣∣∣
≤ ‖ 1

K

K∑
k=1

yk −
1

K

K∑
k=1

ỹk‖1

=
1

K
‖ym − ỹm‖1

≤ 2A

K
,

where both inequalities follow by an application of the triangle inequality.

We next bound E[f(z1, . . . , zK)]. To do so, we first derive an auxiliary bound on E[‖z̄−

E[z̄]‖2
2] by

E[‖z̄− E[z̄]‖2
2] =

E[‖z̄‖2
2]− ‖E[z̄]‖2

2

K
≤ E[‖z̄‖2

2]

K
≤ B2

K
, (A.44)

where the first inequality follows since ‖E[z̄]‖2
2 ≥ 0 and the second follows because Y is

convex, so that ‖z̄‖2 is bounded by B almost surely.

Using this bound, we now derive a bound on E[f(z1, . . . , zK)]:

E[f(z1, . . . , zK)] = E[‖z̄− E[z̄]‖1]

≤
√

(N + 1)ME[‖z̄− E[z̄]‖2]

≤
√

(N + 1)M
√

E[‖z̄− E[z̄]‖2
2]

≤
√

(N + 1)MB2

K
, (A.45)
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where the first inequality follows by the basic properties of L1 and L2 norms, the second

inequality follows by using Jensen’s inequality and the concavity of the function h(x) =
√
x,

and the final inequality by using inequality (A.44).

We now have all the pieces necessary to establish the bound (A.43). For any ε > 0, we

have:

P

(
f(z1, . . . , zK)−

√
(N + 1)MB2

K
≥ ε

)
≤ P (f(z1, . . . , zK)− E[f(z1, . . . , zK)] ≥ ε)

≤ exp

(
−2ε2

K · 4A2

K2

)

= exp

(
−Kε

2

2A2

)
,

where the first inequality follows by our bound on the expected value (inequality (A.45))

and the second inequality follows by an application of McDiarmid’s inequality. Letting

ε =
√

(2A2/K) log(1/δ), we obtain that

f(z1, . . . , zK) ≤
√

(N + 1)MB2

K
+

√
2A2

K
log

(
1

δ

)
with probability at least 1− δ, which completes the proof. �

Equipped with Lemma 7, we can now turn to proving Lemma 8, which is at the heart

of the proof of Theorem 4. Lemma 8 states that for any decision forest model (F,λ) where

λ ∈ Λ(C, ξ), we can find a new distribution λ′ over the forest F ′, which is an i.i.d. sample

of K trees from ξ, such that the L1 distance between the predicted choice probabilities of

(F,λ) and (F ′,λ′) is bounded with high probability. The distribution λ′ is constructed by

first constructing an appropriate extended forest model (F ′,µ′), and then normalizing µ′

to sum to 1. The proof then involves two steps: (1) showing that (F,λ) and (F ′,µ′) are

close in their choice probabilities using Lemma 7; and (2) showing that (F ′,µ′) and (F ′,λ′)

are also close in their choice probabilities (using the fact that the normalization constant

of λ′ concentrates to 1). We note that our proof of step (1) resembles a technique used in

168



the machine learning literature on building classifiers as weighted sums of random feature

functions [100]. Specifically, we use a similar procedure as in [100] to construct our extended

forest model (F ′,µ′). However, unlike the weighted sum models in [100], a decision forest

model requires that the weight vector λ sum up to 1 as it corresponds to a probability

distribution; for this reason, we must also establish step (2).

Lemma 8 Consider a decision forest model (F,λ) where λ ∈ Λ(C, ξ). Suppose that ξt > 0

for all t ∈ F , and that t1, . . . , tK are drawn i.i.d. from F according to the distribution ξ. For

any δ > 0, with probability at least 1− δ over the draw of t1, . . . , tK, there exists a decision

forest model (F ′,λ′) such that F ′ = {t1, . . . , tK} and

‖ψ(F ′,λ′)−ψ(F,λ)‖1 ≤
MC√
K

(
√
N + 1 + 3

√
log

(
4

δ

))
. (A.46)

Proof of Lemma 8: Let F ′ = {t1, . . . , tK}. We first consider the extended forest model

(F ′,µ′), where µ′ is defined as

µ′tk =
1

K

(
λtk
ξtk

)
.

Note that µ′ is not necessarily a probability distribution because it need not add up to 1.

We thus define the distribution λ′ over F ′ by normalizing µ′:

λ′ =

(
1∑K

k=1 µ
′
tk

)
µ′ (A.47)

We claim that (F ′,λ′) satisfies the statement of the theorem. To see how, observe that we

can bound the quantity ‖ψ(F ′,λ′)−ψ(F,λ)‖1 as

‖ψ(F ′,λ′)−ψ(F,λ)‖1 ≤ ‖ψ(F,λ)−ψ(F ′,µ′)‖1︸ ︷︷ ︸
Term (a)

+ ‖ψ(F ′,µ′)−ψ(F ′,λ′)‖1︸ ︷︷ ︸
Term (b)

, (A.48)

which follows by applying the triangle inequality. We now show that each of the two terms

on the right hand side can be bounded with high probability.
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Bounding term (a): To bound ‖ψ(F,λ)−ψ(F ′,µ′)‖1, let us define the random vector zk

as

zk =

(
λtk
ξtk

)
Atk , (A.49)

where we recall that At is the concatenation of M one-hot vectors of size N+1 corresponding

to the choices that tree t makes on the M assortments in the data. Let us also define the

random vector z̄ = (1/K)
∑K

k=1 zk as the average of the K random vectors.

The vectors z1, . . . , zK have a couple of desirable properties. First, observe that

ψ(F ′,µ′) =
K∑
k=1

µ′tkAtk =
K∑
k=1

(
1

K

)(
λtk
ξtk

)
Atk =

1

K

K∑
k=1

zk,

i.e., the (random) vector of choice probabilities of the extended forest model (F ′,µ′) is equal

to the average of the random vectors z1, . . . , zK .

Second, observe that for any k ∈ {1, . . . , K}, we have

E[z̄] = E[zk] =
∑
t∈F

ξt ·
λt
ξt

At =
∑
t∈F

λtAt = ψ(F,λ),

i.e., the expected value of z̄ is exactly equal to the vector of choice probabilities of the

decision forest model (F,λ).

We can thus re-write the term ‖ψ(F,λ)−ψ(F ′,µ′)‖1 as

‖ψ(F,λ)−ψ(F ′,µ′)‖1 = ‖z̄− E[z̄]‖1, (A.50)

which is exactly in the form of the bound in Lemma 7. In order to apply the bound, we

only need to obtain bounds on the L1 and L2 norms of the random vectors z1, . . . , zK .

Since zk = (λtk/ξtk)Atk , we can use the fact that λt ≤ Cξt for every t ∈ F (recall that

λ ∈ Λ(C, ξ)) and the fact that At consists of M one-hot vectors concatenated together, to

obtain the following bounds:

‖zk‖1 =
λtk
ξtk
· ‖Atk‖1 ≤ C‖Atk‖1 = CM,
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‖zk‖2 =
λtk
ξtk
· ‖Atk‖2 ≤ C‖Atk‖2 = C

√
M.

With these bounds in hand, we can invoke Lemma 7 with δ/2 to obtain that

‖ψ(F,λ)−ψ(F ′,µ′)‖1 = ‖z̄− E[z̄]‖1

≤
√

(N + 1)M · C2M

K
+

√
2C2M2

K
log

(
1

δ/2

)

=
CM√
K

(
√
N + 1 +

√
2 log

(
2

δ

))
, (A.51)

with probability at least 1− δ/2.

Bounding term (b): To bound ‖ψ(F ′,µ′)−ψ(F ′,λ′)‖1, let us define the random variable

s as s =
∑K

k=1 µ
′
tk

, which is simply the normalization constant used to define λ′. Let us also

define the random variables β1, . . . , βK as βk = λtk/ξtk . Observe that s can then be written

as

s =
1

K

K∑
k=1

βk, (A.52)

i.e., s is the average of K i.i.d. random variables, β1, . . . , βK . Moreover, each random variable

βk is bounded between 0 (since λt is nonnegative and ξt is positive for every t ∈ F ) and C

(since λt ≤ Cξt, by definition of Λ(C, ξ)). Lastly, observe that for each k,

E[βk] = E[λtk/ξtk ] =
∑
t∈F

ξt ·
λt
ξt

=
∑
t∈F

λt = 1,

i.e., the expected value of each βk is 1, and thus, E[s] will also be 1. We can therefore apply

Hoeffding’s inequality to bound the deviation of s from 1. For any ε > 0, we have

P (|s− 1| ≥ ε) ≤ 2 exp

(
−2Kε2

C2

)
.

Set ε = C
√

log(4/δ)/2K. We then have, with probability at least 1− δ/2, that

|s− 1| ≤ C

√
1

2K
log

(
4

δ

)
.
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We can now use this to bound term (b); we have

‖ψ(F ′,λ′)−ψ(F ′,µ′)‖1 = ‖
K∑
k=1

λ′tkAtk −
K∑
k=1

µ′tkAtk‖1

= ‖
K∑
k=1

λ′tkAtk − s
K∑
k=1

λ′tkAtk‖1

= |s− 1| · ‖
K∑
k=1

λ′tkAtk‖1

= |s− 1| ·M

≤M · C

√
1

2K
log

(
4

δ

)
, (A.53)

with probability at least 1 − δ/2. (In the above, note that the second step follows by the

definition of λ′ in (A.47).)

Bounding ‖ψ(F,λ) − ψ(F ′,λ′)‖1: We now complete the proof. Using the bounds (A.51)

and (A.53) together with the inequality (A.48) and the union bound, we get:

‖ψ(F,λ)−ψ(F ′,λ′)‖1 ≤ ‖ψ(F,λ)−ψ(F ′,µ′)‖1 + ‖ψ(F ′,λ′)−ψ(F ′,µ′)‖1

≤ CM√
K

(
√
N + 1 +

√
2 log

(
2

δ

))
+
CM√
K

√
1

2
log

(
4

δ

)

≤ CM√
K

(
√
N + 1 + 3

√
log

(
4

δ

))
,

with probability at least 1− δ, as required. �

A.2 Additional Results to the Column Generation Method

A.2.1 An Exact Formulation of the Column Generation (CG) Subproblem

We follow the notation in Section 3.3. The subproblem for the column generation approach

is to find a decision tree t and the corresponding 0-1 vectors At,S for S ∈ S such that the
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reduced cost of the corresponding λt variable, given by −
∑

S∈S α
T
SAt,S − ν, is minimized.

To formulate the subproblem, we introduce a binary decision variable y`o for each leaf node

` ∈ leaves(t) and option o ∈ N+ that is 1 if the purchase decision of leaf ` is option

o, and 0 otherwise. Similarly, for each split node s ∈ splits(t) and product p ∈ N , we

define the binary decision variable ysp to be 1 if product p participates in split node s, and

0 otherwise. For each ` ∈ leaves(t), we define the binary decision variable w`S which is 1 if

assortment S is mapped to leaf node ` under the current purchase decision tree. For each

leaf ` ∈ leaves(t), option o ∈ N+ and assortment S, we define the binary decision variable

u`o,S to be 1 if assortment S is mapped to leaf node ` and option o is the resulting purchase

decision. Finally, we define the binary decision variable Ao,S to indicate whether the tree

chooses option o when given assortment S, for each historical assortment S ∈ S; the vector

of these decision variables for a given S is denoted by AS. With these definitions, we can
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formulate the subproblem as the following mixed-integer optimization problem:

minimize
A,u,w,y

−
∑
S∈S

αTSAS − ν (A.54a)

subject to
∑
p∈N

ysp = 1, ∀ s ∈ splits(t), (A.54b)

∑
o∈N+

y`o = 1, ∀ ` ∈ leaves(t), (A.54c)

∑
`∈leaves(t)

w`S = 1, ∀ m ∈ {1, . . . ,M}, (A.54d)

∑
`∈LL(s)

w`S ≤
∑
p∈S

ysp, ∀ s ∈ splits(t), S ∈ S, (A.54e)

∑
`∈RL(s)

w`S ≤ 1−
∑
p∈S

ysp, ∀ s ∈ splits(t), S ∈ S, (A.54f)

w`S =
∑
o∈N+

u`o,S, ∀ ` ∈ leaves(t), S ∈ S, (A.54g)

u`o,S ≤ y`o, ∀ ` ∈ leaves(t), o ∈ N+, S ∈ S, (A.54h)

y`o ≤
∑

s∈LS(`)

yso, ∀ ` ∈ leaves(t), o ∈ N , (A.54i)

Ao,S =
∑

`∈leaves(t)

u`o,S, ∀ o ∈ N+, S ∈ S, (A.54j)

w`S ∈ {0, 1}, ∀ ` ∈ leaves(t), S ∈ S, (A.54k)

Ao,S ∈ {0, 1}, ∀ o ∈ N+, S ∈ S, (A.54l)

y`o ∈ {0, 1}, ∀ ` ∈ leaves(t), o ∈ N+, (A.54m)

ysp ∈ {0, 1}, ∀ s ∈ splits(t), p ∈ N , (A.54n)

u`o,S ∈ {0, 1}, ∀ ` ∈ leaves(t), o ∈ N+, S ∈ S. (A.54o)

In order of appearance, the constraints have the following meaning. Constraint (A.54b)

requires that exactly one product is chosen for each split in the tree. Constraint (A.54c)

similarly requires exactly one option to be selected to serve as the purchase decision for

each leaf. Constraint (A.54d) ensures that each assortment is mapped to exactly one leaf.
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Constraints (A.54e) and (A.54f) model how the tree maps each of the assortments to a

leaf. To understand these constraints, observe that the expression
∑

p∈S y
s
p is 1 if any of the

products in S is chosen for split s, in other words, it is 1 if the purchase decision process

proceeds to the left child of split s, and 0 if it proceeds to the right child. If the expression

evaluates to 1, the decision process proceed to the left, and constraint (A.54f) forces all

the w`S variables of all leaves ` that are to the right of split s to zero. Similarly, if the

expression evaluates to 0, the decision process proceeds to the right, and constraint (A.54e)

forcess all w`S variables for leaves to the left of split s to zero. Constraints (A.54g) and

(A.54h) ensure that u`o,S is consistent with w`S and y`o. Constraint (A.54i) ensures that the

tree confirms to Requirement 2 in Section 3.1.1, i.e., a product o may only be set as the

purchase decision of a leaf ` if it participates in at least one split s for which ` is to the left

of. Constraint (A.54j) ensures that each value Ao,S of the tree is properly defined given u`o,S.

Lastly, constraints (A.54k) to (A.54o) ensure that all of the decision variables are binary.

In case that the resulting tree violates Requirement 3 in Definition 6 (Section 3.1.1), one

applies the procedure in Lemma 1 (Algorithm 12) to satisfy it.

A.2.2 Numerical Comparison on Solving the CG Subproblems

We now provide a simple numerical comparison of the heuristic column generation approach

(Algorithm 1 using Algorithm 2 to solve the subproblem) and the randomized tree sampling

approach (Algorithm 3) with the exact column generation approach (Algorithm 1 where

the subproblem is solved via the MIO formulation (A.54)). In this experiment, we consider

N ∈ {4, 6, 8}. For each value of N , we consider an MNL model where the product utilities

ui are defined as ui = 0.2i for i ∈ {1, . . . , N}. For N = 4, we randomly generate M = 10

distinct assortments; for N = 6, we randomly generate M = 10, 20, 50 distinct assortments;

and for N = 8, we randomly generate M = 10, 20, 50, 100, 200 distinct assortments. For

each assortment S, we compute the exact choice probability vector vS and consider the L1

estimation problem from Chapter 3.3.1. We consider values of the forest depth d in the set
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{3, 4, 5}.

For each combination of N , M and d, we execute both the heuristic column generation

approach and the exact column generation approach, with the average L1 error as the ob-

jective. For the exact column generation approach, we impose a time limit of 6 hours on

the whole procedure and a time limit of 30 minutes on each solve of the subproblem; the

latter time limit was necessary as in some larger cases, solving just a single instance of the

MIO problem (A.54) can exhaust the 6 hour time limit on the overall procedure. For the

heuristic column generation approach, we use d as the depth limit for the top-down induction

procedure (Algorithm 2). For the randomized tree sampling approach, we sample K = 5000

trees randomly from the uniform distribution over all balanced trees of depth d. For all three

approaches, we do not use any warm-starting, and initialize each with an empty collection

of trees.

Table A.2 compares the average L1 training error and the overall runtime for the heuristic

column generation, the exact column generation and randomized tree sampling approaches;

additionally, the table also reports the number of iterations for the two column generation

approaches. In terms of runtime, we can see that while the exact column generation approach

is manageable for smaller instances, it quickly becomes unmanageable when N , M or d

become large; for example, even with N = 6, M = 50 and d = 5, the exact approach does not

terminate within the 6 hour time limit. In contrast, the heuristic column generation approach

requires no more than 3 minutes to run even in the largest case, while the randomized tree

sampling approach requires no more than 6 seconds.

With regard to the training error, we can see that in some small cases where d = 3 and the

number of assortments M is small, the exact approach does deliver better performance (for

example, (N,M, d) = (4, 10, 3)). However, in cases involving more products and assortments

and/or deeper trees, the heuristic column generation approach is very close to the exact

approach (see for example (N,M, d) = (6, 50, 3)). In those cases where the exact approach

exhausts its time limit, the final forest produced by the exact approach typically achieves a
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N M d Training error (10−2) Runtime (s) Iterations

ECG HCG RTS ECG HCG RTS ECG HCG

4 10 3 5.289 15.577 5.289 8.7 2.2 0.2 16 11

4 10 4 0.000 0.000 0.000 12.7 2.2 0.3 21 22

4 10 5 0.000 0.000 0.000 12.2 2.2 0.6 21 22

6 10 3 2.109 6.489 2.109 21.5 2.2 0.3 37 24

6 10 4 0.000 0.266 0.000 24.8 2.2 0.4 32 29

6 10 5 0.000 0.000 0.000 30.4 2.3 0.7 33 33

6 20 3 13.814 14.111 13.814 38.0 2.2 0.4 31 27

6 20 4 0.000 0.000 0.000 224.2 2.5 0.5 63 84

6 20 5 0.000 0.000 0.000 529.7 2.6 0.8 63 63

6 50 3 20.395 20.690 20.395 125.5 2.3 0.5 37 39

6 50 4 4.717 4.826 4.717 12816.8 2.8 0.9 122 131

6 50 5 1.793 0.355 1.029 21948.6 4.4 1.2 41 209

8 10 3 5.018 11.574 5.634 49.2 2.3 0.2 56 35

8 10 4 0.000 0.000 0.000 69.2 2.4 1.2 46 50

8 10 5 0.000 0.000 0.000 29.7 2.5 0.8 46 45

8 20 3 11.089 13.521 11.089 101.1 2.3 0.4 53 46

8 20 4 0.000 0.000 0.340 1063.1 2.8 1.4 100 109

8 20 5 0.000 0.000 0.000 4476.3 3.1 2.2 97 95

8 50 3 21.680 22.826 21.680 367.1 2.3 0.5 64 41

8 50 4 5.211 5.659 8.105 21648.4 4.2 1.9 163 252

8 50 5 5.397 0.000 8.472 22302.4 7.5 1.3 21 249

8 100 3 29.439 30.161 29.439 973.5 2.4 1.0 58 44

8 100 4 9.799 10.538 12.163 21871.8 3.8 4.7 124 164

8 100 5 12.115 1.647 14.962 22250.8 109.9 3.1 16 1031

Table A.2: Comparison of exact and heuristic column generation approaches.
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significantly higher training error than the heuristic column generation approach. Comparing

the heuristic column generation and the randomized tree sampling approach, we can see that

when d is 3 or 4, the randomized tree sampling approach tends to achieve a lower training

error, while the heuristic column generation method tends to do better when d = 5. Overall,

these results suggest that exact approaches to solving the estimation problem (3.5) are

difficult to deploy in practice, and that it is necessary to consider heuristic approaches.

A.2.3 Leaf-Based Heuristic CG Method

As mentioned in Section 3.3.1, one can consider an alternate form of the top-down induction

heuristic in which the complexity control is formulated in terms of the number of leaves. In

this version of the top-down heuristic, the main termination criterion (beside the reduced

cost being locally optimal) is whether or not we reach a user-defined limit L on the number

of leaves. We formally define this version of the heuristic as Algorithm 13.

We evaluate the performance of our heuristic column generation approach using the leaf-

based top-down induction method (Algorithm 13 described in Section A.2.3), as opposed

to the depth-based top-down induction method (Algorithm 2 described in Section 3.3.1).

We run the heuristic column generation procedure with the leaf-based top-down induction

method, with values for the leaf limit L in {4, 8, 16, 32, 64}. We additionally run the heuristic

column generation procedure with the depth-based top-down induction method, with values

for the depth limit d in {3, 4, 5, 6, 7}. Note that the values for L are chosen to match the

maximum number of leaves for each depth limit d; for example, when d = 4, the maximum

number of leaves that a purchase decision tree may have is 8. We warm start both the

depth-based and the leaf-based procedures with the ranking-based model found using the

method of [119].

Table A.3 shows the KL divergence (in units of 10−2) of each decision forest model for each

product category, averaged over the five folds of each product category. Each column labeled

with d = ... corresponds to the depth-based heuristic column generation method, while
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Algorithm 13 Leaf-based top-down induction method for heuristically solving column gen-

eration subproblem (3.6).

1: procedure TopDownInduction-Leaf(α, ν, L)

2: Initialize t← t0

3: Initialize Zc ←
[
−
∑

S∈S α
T
SAt,S − ν

]
4: while |leaves(t)| < L do

5: Compute Zt,`,p,o1,o2 for all ` ∈ leaves(t), p ∈ N \ P (`),

o1 ∈ {p, 0} ∪ {xs | s ∈ LS(`)}, o2 ∈ {0} ∪ {xs | s ∈ LS(`)}

6: Set Z∗ ← min`,p,o1,o2 Zt,`,p,o1,o2

7: Set (`∗, p∗, o∗1, o
∗
2)← arg min(`,p,o1,o2) Zt,`,p,o1,o2

8: if Z∗ < Zc then

9: Set Zc ← Z∗

10: Set t← GrowTree(t, `∗, p∗, o∗1, o
∗
2)

11: else

12: break

13: return t, Zc
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each column labeled with L = ... corresponds to the leaf-based heuristic column generation

method. In general, for a fixed value of L, the leaf-based heuristic column generation method

attains roughly the same or slightly lower KL divergence than the depth d that corresponds

to that value of L. The reason for this difference is because the leaf-based procedure can

select from a larger set of trees: specifically, a tree of maximum depth d will have at most

2d−1 leaves, but a tree with at most 2d−1 leaves could have maximum depth greater than

d. (For example, a ranking with a consideration set of size 7 corresponds to a tree with 8

leaves and a depth of 8, which is deeper than a balanced tree of depth 4.) In some cases, we

observe that for higher values of L the performance of the leaf-based method can deteriorate

slightly relative to lower values of L. Overall, these results suggest that heuristic column

generation with the leaf-based top-down induction method of Section A.2.3 is also a viable

method for learning the decision forest model from data.

A.3 Additional Results on the IRI Dataset

A.3.1 Runtime and model size results

Table A.4 shows the average runtime over the five folds for each of the methods. To sim-

plify the exposition, we focus on the LC-MNL, ranking and decision forest models (see

Section 3.4.2 for the details of the estimation for each model); for the ordinary MNL and

HALO-MNL models, the average runtime over all product categories was less than 0.01 and

2 seconds, respectively. Note that for the LC-MNL, ranking and DF models, this time in-

cludes the time to perform k-fold cross-validation in order to tune the number of classes, the

maximum consideration set size and the depth, respectively. For the DF model, we also note

that the runtime includes the time required to estimate the ranking model as a warm start.

From this table, we can see that the ranking-based model requires the most amount of

time – on average 3128 seconds (almost one hour) – due to the use of k-fold cross-validation

to tune the maximum consideration set size and the use of integer programming to solve
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Product Category d = 3 L = 4 d = 4 L = 8 d = 5 L = 16 d = 6 L = 32 d = 7 L = 64

Beer 1.36 0.79 0.85 2.54 1.98 2.22 2.88 2.63 3.05 2.34

Blades 0.43 0.39 0.36 0.68 0.49 1.05 0.83 0.71 1.18 0.74

Carbonated Beverages 1.60 0.79 0.86 1.72 1.30 1.88 12.53 1.77 1.31 1.77

Cigarettes 1.37 0.72 0.78 0.89 1.06 1.35 0.86 1.58 2.15 1.79

Coffee 1.95 1.71 1.80 1.93 2.34 3.02 2.68 4.00 3.74 6.34

Cold Cereal 0.93 0.67 0.75 0.93 0.82 1.39 1.20 1.22 1.12 1.22

Deodorant 0.44 0.60 0.64 0.56 0.47 1.46 1.22 0.85 1.88 1.29

Diapers 0.82 1.36 1.37 1.58 1.22 1.69 1.40 1.70 1.63 1.70

Facial Tissue 0.78 0.73 0.75 0.84 0.76 0.98 1.05 1.16 0.96 1.15

Frozen Dinners 1.76 1.81 2.37 3.54 4.12 2.88 3.34 1.90 2.34 1.87

Frozen Pizza 1.15 1.01 0.93 1.17 1.05 1.53 1.47 1.66 1.55 1.94

Hotdogs 3.06 2.80 2.81 2.39 2.55 2.63 2.88 3.31 4.35 4.28

Household Cleaners 0.68 0.37 0.55 1.40 1.24 5.57 2.71 5.72 4.10 5.72

Laundry Detergent 2.13 2.27 2.27 2.25 2.54 2.27 3.00 2.74 3.21 3.10

Margarine/Butter 1.37 0.67 0.85 1.07 1.22 1.50 1.54 1.50 1.46 1.50

Mayonnaise 0.84 0.82 0.83 0.89 0.93 0.94 0.88 0.93 1.00 1.01

Milk 1.29 1.27 1.77 1.99 2.37 2.53 2.53 3.25 3.03 3.40

Mustard/Ketchup 0.72 0.81 0.68 0.67 0.62 0.84 0.88 0.99 1.05 0.91

Paper Towels 1.03 1.18 1.45 1.66 1.77 1.76 1.52 1.58 1.82 1.68

Peanut Butter 1.49 1.55 3.09 2.46 4.85 1.69 1.72 1.68 1.82 1.65

Photo 1.29 1.32 1.43 1.38 1.45 1.27 1.41 1.49 1.44 1.35

Salty Snacks 1.72 1.69 1.76 1.67 1.66 1.84 1.89 1.98 2.34 2.13

Shampoo 0.93 0.64 0.66 0.56 0.65 0.72 1.04 0.80 1.29 1.00

Soup 0.96 1.39 1.61 1.23 1.10 1.48 1.39 1.66 1.59 1.66

Spaghetti/Italian Sauce 2.69 3.12 3.93 3.02 2.40 3.32 3.44 2.86 3.88 3.09

Sugar Substitutes 0.77 0.80 0.78 0.72 0.72 0.85 0.66 0.84 0.95 0.93

Toilet Tissue 1.37 1.56 1.63 1.85 1.91 1.99 2.01 1.91 1.90 1.92

Toothbrush 1.00 0.64 0.68 1.01 1.19 1.67 1.66 1.44 1.97 3.67

Toothpaste 0.35 0.36 0.37 0.35 0.40 0.48 0.61 0.55 0.47 0.61

Yogurt 2.78 2.31 2.87 3.53 6.42 3.88 4.85 4.34 3.80 4.19

Table A.3: Comparison of leaf-based and depth-based heuristic column generation for the

IRI data set.
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Product Category |S| |T | LC-MNL RM DF DF

(HCG) (RTS)

Beer 55 380,932 577.8 4054.8 207.6 385.2

Blades 57 92,404 651.9 3725.8 112.5 531.5

Carbonated Beverages 31 721,506 680.6 1826.4 88.6 165.4

Cigarettes 68 249,668 1206.3 5188.8 211.5 544.1

Coffee 47 372,536 1365.3 2508.7 159.2 282.8

Cold Cereal 15 577,236 347.3 613.1 23.3 48.2

Deodorant 45 271,286 144.4 3366.2 124.4 204.3

Diapers 18 143,055 353.4 452.5 45.1 112.0

Facial Tissue 43 73,806 867.0 2155.8 107.6 547.8

Frozen Dinners 30 979,936 348.9 1765.3 88.0 128.1

Frozen Pizza 61 292,878 1648.3 4081.2 257.9 529.8

Hotdogs 100 101,624 2013.7 5733.0 361.0 640.6

Household Cleaners 19 282,981 286.5 684.2 32.8 52.6

Laundry Detergent 56 238,163 1500.3 5136.1 240.6 614.5

Margarine/Butter 18 140,969 585.2 1563.2 37.6 58.8

Mayonnaise 48 97,282 741.0 2308.6 111.3 367.3

Milk 49 240,691 1568.0 2570.2 139.8 258.9

Mustard/Ketchup 44 134,800 872.3 2565.3 116.1 295.8

Paper Towels 40 82,636 701.2 2605.3 130.0 284.1

Peanut Butter 51 108,770 1109.4 1839.3 109.1 392.3

Photo 80 17,047 999.6 3298.5 109.3 507.9

Salty Snacks 39 736,148 1047.4 2501.0 114.9 241.6

Shampoo 66 290,429 313.7 3638.0 200.9 363.2

Soup 24 905,541 337.7 1507.7 62.4 114.0

Spaghetti/Italian Sauce 38 276,860 1144.6 3581.3 188.5 273.6

Sugar Substitutes 64 53,834 841.3 3816.8 184.3 511.0

Toilet Tissue 27 112,788 534.7 2333.7 98.2 185.9

Toothbrush 114 197,676 1013.9 13652.5 670.2 850.9

Toothpaste 42 238,271 273.0 1516.2 40.2 173.1

Yogurt 43 499,203 1493.8 3274.7 145.0 310.7

(Mean) 852.3 3128.8 150.6 332.5

(Median) 791.2 2567.7 115.5 290.0

(Maximum) 2013.7 13652.5 670.2 850.9

Table A.4: Runtime (in seconds) for the estimation of each predictive model for each of the

thirty product categories in the IRI data set.
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the subproblem at each step of the algorithm of [119]. The LC-MNL model is the second

highest, requiring just under 15 minutes on average, due to the EM algorithm which requires

the estimation problem for MNL to be solved repeatedly and the use of k-fold cross validation.

The decision forest model requires on average 150 seconds using the HCG approach and on

average 333 seconds using the RTS approach. Note that as mentioned earlier, this includes

the time needed to estimate the ranking-based model and for the cross-validation to choose

the depth d for the decision forest model (the depth limit for the HCG approach, or the depth

of the base forest for the RTS approach). The main takeaway from these results is that the

estimation of the decision forest model can be accomplished with manageable computation

times.

Lastly, we also compare the size of the models. Table A.5 reports several metrics of model

size for the LC-MNL, ranking and decision forest models. For the LC-MNL model, we report

the average number of segments K chosen by cross-validation; for the ranking-based model,

we report the average number of rankings K and the average maximum consideration set

size chosen by cross-validation; and for the decision forest models, we report the average

number of trees K, the average cross-validated depth d (either the depth limit for HCG or

the depth of the base forest for RTS) and the average number of leaves per tree L. From

this table, we can see that the number of trees in the decision forest model obtained via

the heuristic column generation method is comparable to the number of rankings in the

ranking-based model. (For the randomized tree sampling method, the number of trees is

slightly over 2000, as this number includes the 2000 trees that are randomly sampled, and

the additional rankings that were used for warm-starting.) For the decision forest model, the

model size varies by product category. For the HCG-based decision forest model, the average

cross-validated depth can be as low as 3.0 and as high as 5.0, and the average number of

leaves per tree varies from 4.0 to 9.5. For the RTS-based decision forest model, the average

cross-validated depth similarly ranges between 3.0 and 4.4, while the average number of

leaves per tree varies from 4.1 to 18.2 (note that the number of leaves is generally larger
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than it is for HCG, as the base forest was specified as the collection of balanced trees of the

chosen depth, whereas the HCG method is allowed to estimate unbalanced trees).
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Product Category LC-MNL — RM — — DF (HCG) — — DF (RTS) —

K K τ K d L K d L

Beer 8.8 202.0 3.4 331.6 3.8 7.7 2208.0 3.8 8.1

Blades 8.4 139.2 4.4 218.6 4.2 8.6 2185.2 3.6 9.6

Carbonated Beverages 10.0 118.4 2.4 274.2 3.8 5.6 2123.2 4.2 11.7

Cigarettes 12.0 162.2 4.4 252.2 3.8 6.8 2169.8 3.6 6.5

Coffee 13.0 142.4 3.4 298.4 3.2 5.6 2145.4 4.2 9.5

Cold Cereal 4.0 70.0 2.8 149.2 3.2 5.7 2072.8 3.2 4.9

Deodorant 6.2 150.8 4.6 200.8 4.2 9.5 2148.0 3.0 4.4

Diapers 5.0 140.8 6.2 219.0 3.6 6.8 2148.2 3.0 4.3

Facial Tissue 13.0 258.4 4.2 319.2 3.4 7.8 2278.4 3.2 5.2

Frozen Dinners 5.4 110.0 2.4 230.4 3.8 7.3 2111.4 4.2 17.8

Frozen Pizza 14.0 210.0 5.4 351.4 3.6 7.0 2216.0 3.2 5.1

Household Cleaners 4.6 65.0 4.8 144.8 3.2 4.6 2065.0 3.2 4.8

Hotdogs 11.6 152.4 3.8 449.8 3.4 5.5 2145.4 4.4 18.2

Laundry Detergent 7.0 157.8 5.2 284.6 3.0 6.0 2156.4 3.6 9.4

Margarine/Butter 9.8 168.8 2.8 240.8 4.4 7.6 2173.8 3.2 5.0

Mayonnaise 9.4 191.0 4.4 263.0 3.0 6.6 2187.6 3.0 4.3

Milk 6.2 89.2 2.0 254.8 3.0 4.0 2116.8 3.2 4.8

Mustard/Ketchup 9.6 170.8 3.4 321.2 3.6 6.5 2176.8 3.4 5.8

Paper Towels 5.6 266.6 3.0 291.4 3.6 7.7 2244.8 3.0 4.4

Peanut Butter 9.4 134.0 5.0 204.4 3.0 6.5 2141.2 3.2 5.0

Photo 2.8 164.6 7.8 184.0 3.2 8.0 2159.8 3.4 5.8

Salty Snacks 7.8 125.8 3.2 276.2 4.0 6.6 2127.0 3.6 7.1

Shampoo 6.6 206.8 4.8 288.0 4.0 9.0 2208.4 4.0 11.0

Soup 8.2 102.2 5.8 223.0 3.6 6.7 2103.4 3.4 5.7

Spaghetti/Italian Sauce 6.2 213.4 3.6 414.4 3.4 6.4 2213.2 4.2 12.3

Sugar Substitutes 11.0 170.2 4.0 244.8 3.6 7.7 2190.6 3.4 5.8

Toilet Tissue 4.6 245.0 2.4 310.0 5.0 8.6 2231.4 3.0 4.4

Toothbrush 10.6 294.4 2.8 429.2 4.2 9.0 2303.6 3.8 10.1

Toothpaste 5.4 84.0 3.0 133.4 3.0 6.5 2083.0 3.0 4.2

Yogurt 14.0 167.2 4.8 267.6 3.2 5.4 2144.0 3.0 4.2

Table A.5: Model size metrics for the LC-MNL, ranking and decision forest models for each

of the thirty product categories in the IRI data set.
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APPENDIX B

Appendix to Chapter 4

B.1 Benders cuts for integer master solutions

In this section, we provide closed form expressions for the structure of the optimal primal and

dual Benders subproblem solutions for integer solutions x, for LeafMIO (Section B.1.1),

SplitMIO (Section B.1.2) and ProductMIO (Section B.1.3).

B.1.1 Benders cuts for integer solutions of LeafMIO

Our results in Section 4.2.1 for obtaining primal and dual solutions for the subproblem of

LeafMIO apply for any x ∈ [0, 1]n; in particular, they apply for fractional choices of x, thus

allowing us to solve the Benders reformulation of the relaxation of LeafMIO (presented as

problem (4.15)).

In the special case that x is integer, the optimal solutions to the primal and dual subprob-

lems can be obtained more directly than by applying Algorithms 4 and 5; more specifically,

they can be obtained in closed form. We formalize this as the following theorem.

Theorem 19 Fix t ∈ F , and let x ∈ {0, 1}n. Define the primal subproblem solution yt as

yt,` =

 1 if ` = `∗,

0 if ` 6= `∗,

where `∗ denotes the leaf of tree t that the assortment encoded by x is mapped to. Define the
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dual subproblem solution (αt,βt, γt) as

αt,s,` =

 max{0, rt,` − rt,`∗} if s ∈ RS(`∗), ` ∈ left(s),

0 otherwise,

βt,s,` =

 max{0, rt,` − rt,`∗} if s ∈ LS(`∗), ` ∈ right(s),

0 otherwise,

γt = rt,`∗ .

Then:

a) yt is a feasible solution to problem (4.13);

b) (αt,βt, γt) is a feasible solution to problem (4.14); and

c) yt and (αt,βt, γt) are optimal for problems (4.13) and (4.14), respectively.

The significance of Theorem 19 is that it provides a simpler means to checking for violated

constraints when x is binary than applying Algorithms 4 and 5. In particular, for the integer

version of LeafMIO, a similar derivation as in Section 4.2.1 leads us to the following Benders

reformulation of the integer problem for the LeafMIO formulation:

maximize
x,θ

∑
t∈F

λtθt (B.1a)

subject to θt ≤
∑

s∈splits(t)

∑
`∈left(s)

αt,s,`xv(t,s) +
∑

s∈splits(t)

∑
`∈right(s)

βt,s,`(1− xv(t,s)) + γt,

∀ (αt,βt, γt) ∈ Dt,LeafMIO, (B.1b)

x ∈ {0, 1}n. (B.1c)

To check whether constraint (B.1b) is violated for a particular x and a tree t, we can simply

use Theorem 19 to determine the optimal value of the subproblem, and compare it against

θt; if the constraint corresponding to the dual solution of Theorem 19 is violated, we add that

constraint to the problem. In our implementation of Benders decomposition, we embed the
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constraint generation process for the integer problem (B.1) within the branch-and-bound

tree, using a technique referred to as lazy constraint generation; we discuss this more in

Section 4.2.4.

B.1.2 Benders cuts for integer solutions of SplitMIO

We next turn our attention to SplitMIO. In the special case that x is a candidate integer

solution of SplitMIO, we can find optimal solutions to the primal and dual subproblems of

SplitMIO in closed form, analogously to Theorem 19 for the primal and dual subproblems

of LeafMIO.

Theorem 20 Fix t ∈ F , and let x ∈ {0, 1}n. Define the primal subproblem solution yt as

yt,` =

 1 if ` = `∗,

0 if ` 6= `∗,

where `∗ denotes the leaf that the assortment encoded by x is mapped to. Define the dual

subproblem solution (αt,βt, γt) as

αt,s =

 max{0,max`∈left(s) rt,` − rt,`∗} if s ∈ RS(`∗),

0 otherwise,

βt,s =

 max{0,max`∈right(s) rt,` − rt,`∗} if s ∈ LS(`∗),

0 otherwise,

γt = rt,`∗ .

Then:

a) yt is a feasible solution to problem (4.17);

b) (αt,βt, γt) is a feasible solution to problem (4.18); and

c) yt and (αt,βt, γt) are optimal for problems (4.17) and (4.18), respectively.
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As with Theorem 19, the significance of this theorem is that it provides an even simpler

approach than Algorithms 6 and 7 for identifying violated constraints when dealing with

integer solutions x.

B.1.3 Benders cuts for integer solutions of ProductMIO

We finally consider ProductMIO. We begin by writing down the dual of the subproblem,

for which we need to define several additional sets. We let LP(`) denote the set of “left

products” of leaf ` (those products that must be included in the assortment for leaf ` to be

reached), and let RP(`) denote the set of “right products” of leaf ` (those products that

must be excluded from the assortment for leaf ` to be reached). Note that ` ∈ left(i) if and

only if i ∈ LP(`), and similarly ` ∈ right(i) if and only if i ∈ RP(`).

With these definitions, the dual of the primal subproblem (4.20) is

minimize
αt,βt,γt

∑
i∈P (t)

αt,ixi +
∑
i∈P (t)

βt,i(1− xi) + γt (B.2a)

subject to
∑

i∈LP(`)

αt,i +
∑

i∈RP(`)

βt,i + γt ≥ r`, ∀ ` ∈ leaves(t), (B.2b)

αt,i ≥ 0, ∀ i ∈ P (t), (B.2c)

βt,i ≥ 0, ∀ i ∈ P (t). (B.2d)

In the case that x is integer, we can obtain optimal solutions to the primal subprob-

lem (4.20) and its dual (B.2) in closed form.

Theorem 21 Fix t ∈ F and let x ∈ {0, 1}n. Let yt be defined as

yt,` =

 1 if ` = `∗,

0 otherwise,
(B.3)
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and let (αt,βt, γt) be defined as

αt,i =

 max{0,max`∈left(i) rt,` − rt,`∗}, if i ∈ RP(`∗),

0 otherwise,
(B.4)

βt,i =

 max{0,max`∈right(i) rt,` − rt,`∗}, if i ∈ LP(`∗),

0 otherwise,
(B.5)

γt = rt,`∗ . (B.6)

Then:

a) yt is a feasible solution for problem (4.20);

b) (αt,βt, γt) is a feasible solution for problem (B.2); and

c) yt and (αt,βt, γt) are optimal for problems (4.20) and (B.2), respectively.

B.2 Omitted Proofs

B.2.1 Proof of Proposition 2

We prove this by showing that MAX 3SAT problem reduces to the decision forest assortment

optimization problem. In the MAX 3SAT problem, one has K binary variables, x1, . . . , xK ,

and is given a Boolean formula of the form c1 ∧ c2 ∧ · · · ∧ cM , where ∧ denotes “and”. Each

clause is a disjunction involving three literals, where a literal is either one of the binary

variables or its negation, and the literals involve distinct binary variables. For example, a

clause could be x5 ∨ ¬x7 ∨ x8, where ∨ denotes “or”. The MAX 3SAT problem is to find

the assignment of the variables x1, . . . , xK so as to maximize the number of clauses c1, . . . cT

that are true.

Given an instance of the MAX 3SAT problem, we show how the problem can be trans-

formed into an instance of the decision forest assortment optimization problem (4.2).
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Consider an instance of problem (4.2) with N = K+1 products. Each of the first K prod-

ucts corresponds to one of the binary variables; the last (K + 1)-th product is necessary to

ensure that the revenue of the assortment can correspond to the number of satisfied clauses.

Assume that the marginal revenues of the products are set so that r̄1 = · · · = r̄K = 0, and

r̄K+1 = 1. For each clause m ∈ {1, . . . ,M}, introduce a tree tm which is constructed by the

following procedure:

1. Set the root node of the tree to be a split node involving product K + 1. The right

child of the root node is a leaf node with 0 (the no-purchase option) as the purchase

decision. (The left child node will be defined in the next step.)

2. For the first literal, create a split at the left child node of the root, with the corre-

sponding binary variable’s index as the product (e.g., if the literal is x7 or ¬x7, the

split node has product 7). If the literal is the binary variable itself (i.e., xk), we set

the left child node of the split to be a leaf node with product K + 1 as the purchase

decision. Otherwise, if the literal is the negation of the binary variable (i.e., ¬xk),

we set the right child node of the split to be a leaf node with product K + 1 as the

purchase decision.

3. For the other child node of the split created in Step 2, repeat Step 2 with the second

literal.

4. For the other child node of the split created in Step 3, repeat Step 2 with the third

literal.

5. Lastly, for the other child node of the third split node in Step 4 corresponding to the

third literal, set the purchase decision to be 0.

Figure B.1 visualizes the structure of the tree for the example clause x5∨¬x7∨x8. Applying
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Figure B.1: Example of tree that corresponds to the clause x5 ∨ ¬x7 ∨ x8.

the above procedure for each clause results in a forest F consisting of M trees. Lastly, we

set the probability distribution λ by setting λt = 1/M for each tree t ∈ F .

We note that in the resulting instance of problem (4.2), any optimal assortment must

include produce K+1: due to the structure of the trees, the expected revenue is exactly equal

to 0 if K+1 is not included in the assortment, but by including K+1 and including/excluding

products from {1, . . . , K} in accordance with one of the clauses, one can obtain an expected

revenue of at least 1/M . (For example, if the set of clauses includes the clause x5 ∨¬x7 ∨ x8

shown in Figure B.1, then any assortment S that includes products 5 and 8 and does not

include product 7 automatically has an expected revenue of at least 1/M .)

Note that given an optimal assortment S ⊆ N = {1, . . . , K + 1}, we immediately obtain

an assignment x for the MAX 3SAT problem by setting xi = I{i ∈ S}. The revenue obtained

from each tree tm corresponding to clause m, which is given by
∑K+1

j=1 r̄jI{Â(tm, S) = j}, is

exactly 1 if the assignment x that corresponds to S satisfies clause m, and 0 otherwise; this

holds because the optimal assortment must include product K + 1. Since each tree tm has a

probability of 1/M , the expected revenue of the assortment S therefore corresponds to the
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Figure B.2: Purchase decision tree for proof of Proposition 3.

fraction of the M clauses that are satisfied by the assignment x. Thus, it follows that an

assignment x that corresponds to an optimal assortment S is an optimal solution of MAX

3SAT. Since the MAX 3SAT problem is NP-Complete [65], it follows that problem (4.2) is

NP-Hard. �

B.2.2 Proof of Proposition 3

Consider a decision forest consisting of only one tree, of the form shown in Figure B.2. The

numbers inside the split nodes indicate the split product (i.e., v(t, s)). The numbers inside

the leaf nodes (enclosed in squares) index the leaves (i.e., the leaves are numbered from

1 to 4). The feasible region of the LO relaxation of problem (4.3) is the set of solutions
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(x,y) ∈ R2 × R4 given by the following family of constraints:

y1 ≤ x1, (B.7a)

y1 ≤ x2, (B.7b)

y2 ≤ x1, (B.7c)

y2 ≤ 1− x2, (B.7d)

y3 ≤ 1− x1, (B.7e)

y3 ≤ x3, (B.7f)

y4 ≤ 1− x1, (B.7g)

y4 ≤ 1− x3, (B.7h)

y1 + y2 + y3 + y4 = 1, (B.7i)

x1 ≤ 1, (B.7j)

x2 ≤ 1, (B.7k)

x3 ≤ 1, (B.7l)

x1, x2, x3, y1, y2, y3, y4 ≥ 0. (B.7m)

(Note that for simplicity, we drop the subscript t from all of the y variables.)

It can be verified that the following solution is an extreme point of this polyhedron:

x1 = 0.5, (B.8a)

x2 = 0.5, (B.8b)

x3 = 0, (B.8c)

y1 = 0.5, (B.8d)

y2 = 0.5, (B.8e)

y3 = 0, (B.8f)

y4 = 0. (B.8g)
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Since this extreme point (x,y) does not satisfy x ∈ {0, 1}3, we conclude that FLeafMIO is

not integral in general. �

B.2.3 Proof of Proposition 5

The feasible region FSplitMIO of the LO relaxation of problem (4.4) is the set of (x,y)

solutions to the following system of inequalities:

∑
`∈leaves

y` ≤ 1, (B.9a)

∑
`∈leaves

−y` ≤ −1, (B.9b)

∑
`∈left(s)

y` − xv(s) ≤ 0, ∀ s ∈ splits, (B.9c)

∑
`∈right(s)

y` + xv(s) ≤ 1, ∀ s ∈ splits, (B.9d)

xi ≤ 1, ∀ i ∈ N , (B.9e)

xi ≥ 0, ∀ i ∈ N , (B.9f)

y` ≥ 0, ∀ ` ∈ leaves. (B.9g)

(Since |F | = 1, we drop the index t to simplify the notation.) In the above, note that the

unit sum constraint on y has been re-written as a pair of inequalities, and that all constraints

from problem (4.4) have been re-arranged to have the variables on one side. This system of

inequalities can be further written compactly as

A

 x

y

 ≤ b, (B.10)

x,y ≥ 0. (B.11)

To show that FSplitMIO is integral, we will prove that the matrix A is totally unimodular.

We do so using the following standard characterization of total unimodularity (see [16]):
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Proposition 15 (Corollary 3.2 of [16]) A matrix A is totally unimodular if and only if

each collection Q of rows of A can be partitioned into two parts so that the sum of the rows

in one part minus the sum of the rows in the other part is a vector with entries only 0, +1,

and -1.

To simplify our notation, we will work with algebraic expressions in terms of x and y rather

than rows of the matrix A. We have the following four primitive expressions:

A(s), s ∈ splits :
∑

`∈left(s)

y` − xv(s), (B.12)

B(s), s ∈ splits :
∑

`∈right(s)

y` + xv(s), (B.13)

C(i), i ∈ N : xi, (B.14)

D(1) :
∑

`∈leaves

y`, (B.15)

D(2) :
∑

`∈leaves

−y`. (B.16)

Thus, a collection of rows Q of the matrix A can be viewed as a collection of each of the

four types of expressions above:

SA ⊆ splits, (B.17)

SB ⊆ splits, (B.18)

SC ⊆ N , (B.19)

SD ⊆ {1, 2}. (B.20)

To establish the condition in Proposition 15, we need to show that given SA, SB, SC , SD, we

can partition these expressions into two groups R+ and R− such that the difference of the

two groups, ∑
e∈R+

e−
∑
e∈R−

e =
∑
i∈N

vixi +
∑

`∈leaves

w`y`, (B.21)

is such that each vi ∈ {−1, 0,+1} and each w` ∈ {−1, 0,+1}. We proceed in several steps.
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Step 1. We begin by assigning the A and B expressions. Before doing so, we require some

additional notation. Define d∗ = maxs∈SA∪SB
d(s), where d(s) is the depth of split s and we

assume the depth of the root node is 1. Let us define the sets SA(d) and SB(d) as

SA(d) = {s ∈ SA | d(s) = d}, (B.22)

SB(d) = {s ∈ SB | d(s) = d}, (B.23)

for each depth d ∈ {1, . . . , d∗}. These are the sets of splits in SA and SB, respectively, that are

at a particular depth. Let us also define LD(s) and RD(s) to be the sets of splits in SA∪SB

that are to the left and right, respectively, of split s ∈ SA ∪ SB. (The splits in LD(s) are all

those that can be reached by proceeding to the left child of split s; similarly, RD(s) is the set

of splits reachable by going to the right of split s.) Finally, define σ : SA ∪ SB → {−1,+1}

to be a mapping that is specified according to the following procedure:

for d = 1, . . . , d∗ do

for s ∈ SA(d) do

Set σ(s′) = (−1)σ(s) for s′ ∈ LD(s)

for s ∈ SB(d) do

Set σ(s′) = (−1)σ(s) for s′ ∈ RD(s)

Now, assign the A and B expressions as follows:

• Assign A(s) to R+ for each s ∈ SA with σ(s) = +1;

• Assign A(s) to R− for each s ∈ SA with σ(s) = −1;

• Assign B(s) to R+ for each s ∈ SB with σ(s) = +1;

• Assign B(s) to R− for each s ∈ SB with σ(s) = −1.

For this assignment of the expressions in SA and SB, every y` coefficient in
∑

e∈R+
e−
∑

e∈R− e

will be either 0 or +1. This follows because the sets of left and right leaves left(s) and
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right(s) are nested. In particular, if s′ ∈ LD(s), then we will have that left(s′) ⊆ left(s)

and right(s′) ⊆ left(s). Similarly, if s′ ∈ RD(s), then we will have that left(s′) ⊆ right(s)

and right(s′) ⊆ right(s).

In addition, by the assumption that there is at most one split s in splits such that

v(s) = i, we are also guaranteed that the coefficient of every xi in
∑

e∈R+
e −

∑
e∈R− e will

be {−1, 0,+1}. In particular, if s is in both SA and SB (i.e., we were given the expression

A(s) and B(s)), then observe that by the procedure for setting σ above, we are guaranteed

to assign both A(s) and B(s) to the same set (they cannot be assigned to different sets).

This means that the coefficients of xv(s) in A(s) and B(s) will cancel out, leaving xv(s) with

a coefficient of 0.

Step 2. We next assign the C expressions. After Step 1, we are guaranteed that the

coefficient of each xi in
∑

e∈R+
e −

∑
e∈R− e is 0, -1 or +1. Since each C(i) expression

involves only one variable (xi), it is straightforward to assign these expressions to R+ and

R− to ensure that every variable’s coefficient in
∑

e∈R+
e −

∑
e∈R− e is 0, -1 or +1. For

completeness, we give the procedure below – for each i ∈ SC :

• If v(s) 6= i for all splits s ∈ splits, then xi does not appear in any A or B expressions

and its coefficient after Step 1 is just 0; thus, C(i) can be arbitrarily assigned to R+

or R−.

• If there exists an s ∈ SA ∪ SB such that v(s) = i, then:

– If s ∈ SA ∪SB, then A(s) and B(s) were both assigned to R+ and R−, and so the

coefficient of xi will be 0 due to cancellation; thus, C(i) can again be arbitrarily

assigned to R+ or R−.

– If s ∈ SA, s /∈ SB, and σ(s) = +1, then the coefficient of xi is -1 after Step 1;

thus, C(i) should be assigned to R+.
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– If s ∈ SA, s /∈ SB, and σ(s) = −1, then the coefficient of xi is +1 after Step 1;

thus, C(i) should be assigned to R−.

– If s /∈ SA, s ∈ SB, and σ(s) = +1, then the coefficient of xi is +1 after Step 1;

thus, C(i) should be assigned to R−.

– If s /∈ SA, s ∈ SB, and σ(s) = −1, then the coefficient of xi is -1 after Step 1;

thus, C(i) should be assigned to R+.

Step 3. Lastly, we assign the D expressions. This step is also straightforward:

• If SD = {1, 2}, then assign D(1) and D(2) to R+; since D(1) is just the negative of

D(2), the two expressions will cancel out, and the expression
∑

e∈R+
e−

∑
e∈R− e will

remain unchanged.

• If SD = {1}, then assign D(1) to R−; since the coefficient of each y` is 0 or +1 after

Step 2, this will ensure that the coefficient of each y` is either -1 or 0.

• If SD = {2}, then assign D(2) to R−; since the coefficient of each y` is 0 or +1 after

Step 2, this will ensure that the coefficient of each y` is either -1 or 0.

After completing Step 3, we have assigned all of the expressions in SA, SB, SC , SD to the sets

R+ and R− in a way that each expression is assigned to exactly one of the two sets, and no

expression is unassigned. Moreover, the difference of the two expressions,
∑

e∈R+
e−
∑

e∈R− e,

is such that the coefficient of every xi and y` variable is in {0,−1,+1}. By Proposition 15,

this establishes that the matrix A is totally unimodular. We now employ another standard

result:

Proposition 16 (Theorem 3.1(b) of [16]) Let A be an integer matrix. The matrix A is

totally unimodular if and only if the polyhedron P (b) = {x ∈ Rn
+ | Ax ≤ b} is integral for

all b ∈ Zm for which P (b) 6= ∅.
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Figure B.3: Purchase decision tree for proof of Proposition 6.

To use this result, we simply have to establish that the feasible region of the polyhedron

defined in (B.9) is nonempty.

To do so, we explicitly construct a feasible solution to (B.9). Let r be the root node of

the tree. Set xi = 0.5 for all i ∈ N . Fix any leaf `′ ∈ left(r) and any leaf `′′ ∈ right(r),

and set y`′ = 0.5, y`′′ = 0.5, and y` = 0 for all ` ∈ leaves \ {`′, `′′}. It is straightforward

to verify that this solution satisfies the system of inequalities (B.9): the y`’s sum to 1 and

are nonnegative by construction, and each xi ∈ [0, 1] by construction. For constraints (B.9c)

and (B.9d), note that since `′ and `′′ are on opposite sides of the root node, it is impossible

for `′ and `′′ to both belong to left(s) and right(s) for any split s; armed with this fact, it

is straightforward to establish the two constraints.

Since we have established that A is totally unimodular and that the set FSplitMIO is

nonempty, invoking Proposition 16 concludes the proof. �

B.2.4 Proof of Proposition 6

Consider a decision forest consisting of only |F | = 1 tree, of the form shown in Figure B.3.

The numbers on the split nodes correspond to products that are used for splitting (i.e.,

v(t, s)). The numbers inside the leaf nodes (enclosed in squares) index the leaves (i.e., the

leaves are indexed from 1 to 4). The feasible region of the LO relaxation of problem (4.4) is

the set of solutions (x,y) ∈ R2 × R4 given by the following family of constraints (where we
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again drop the subscript t for simplicity):

y1 ≤ x2, (B.24a)

y2 ≤ 1− x2, (B.24b)

y3 ≤ x2, (B.24c)

y4 ≤ 1− x2, (B.24d)

y1 + y2 ≤ x1, (B.24e)

y3 + y4 ≤ 1− x1, (B.24f)

y1 + y2 + y3 + y4 = 1, (B.24g)

x1 ≤ 1, (B.24h)

x2 ≤ 1, (B.24i)

x1, x2, y1, y2, y3, y4 ≥ 0. (B.24j)

It can be verified that the following solution is an extreme point of this polyhedron:

x1 = 0.5, (B.25a)

x2 = 0.5, (B.25b)

y1 = 0.5, (B.25c)

y2 = 0, (B.25d)

y3 = 0, (B.25e)

y4 = 0.5. (B.25f)

Since this extreme point is not integer, this establishes that even when |F | = 1, FSplitMIO

can be non-integral when a product appears in more than one split. �
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B.2.5 Proof of Proposition 8

Define ∆leaves to be the (|leaves| − 1)-dimensional unit simplex:

∆leaves = {y ∈ R|leaves| |
∑

`∈leaves

y` = 1; y` ≥ 0,∀ ` ∈ leaves}. (B.26)

In addition, for any S ⊆ leaves, define Q(S) = {y ∈ ∆leaves | y` ≤ 0 for ` ∈ leaves \ S}.

We write the combinatorial disjunctive constraint over the ground set leaves as

CDC(leaves) =
⋃

`∈leaves

Q({`}). (B.27)

Consider now the optimization problem

maximize
y

∑
`∈leaves

r`y` (B.28a)

subject to y ∈ CDC(leaves). (B.28b)

We will re-formulate this problem into a mixed-integer optimization problem. To do this,

we claim that CDC(leaves) can be written as the following pairwise independent branching

scheme: ⋃
`∈leaves

Q({`}) =
n⋃
i=1

(Q(Li) ∪Q(Ri)) , (B.29)

where

Li = {` ∈ leaves | ` ∈ left(s) for some s with v(s) = i}, (B.30)

Ri = {` ∈ leaves | ` ∈ right(s) for some s with v(s) = i}. (B.31)

Note that (B.29) is equivalent to the statement⋃
`∈leaves

{`} =
n⋃
i=1

((leaves \ Li) ∪ (leaves \Ri)) . (B.32)

To establish (B.32), it is sufficient to prove the following equivalence:

{`} =
⋂
i∈I(`)

(leaves \Ri) ∩
⋂

i∈E(`)

(leaves \ Li) ∩
⋂
i∈N :

i/∈I(`)∪E(`)

(leaves \ Li), (B.33)
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where I(`) and E(`) are defined as

I(`) = {i ∈ N | ` ∈
⋃

s:v(s)=i

left(s)}, (B.34)

E(`) = {i ∈ N | ` ∈
⋃

s:v(s)=i

right(s)}. (B.35)

We now prove (B.33).

Equation (B.33), ⊆ direction: For i ∈ I(`), we have that ` ∈
⋃
s:v(s)=i left(s). This means

that there exists s̄ such that ` ∈ left(s̄) and v(s̄) = i. Since ` ∈ left(s̄), this means that

` /∈ right(s̄) (a leaf cannot be to the left and to the right of any split). Moreover, ` cannot

be in right(s) for any other s with v(s) = i, because this would mean that product i appears

more than once along the path to leaf `, violating Requirement 3 in Definition 6. Therefore,

` ∈ leaves \Ri for any i ∈ I(`).

For i ∈ E(`), we have that ` ∈
⋃
s:v(s)=i right(s). This means that there exists a split

s̄ such that ` ∈ right(s̄) and v(s̄) = i. Since ` ∈ right(s̄), we have that ` /∈ left(s̄). In

addition, ` cannot be in left(s) for any other s with v(s) = i. Therefore, ` ∈ leaves \ Li for

any i ∈ E(`).

Lastly, for any i /∈ I(`)∪E(`), note that product i does not appear in any split along the

path from the root of the tree to leaf `. Therefore, for any s with v(s) = i, it will follow that

either left(s) ⊆ left(s′) for some s′ for which ` ∈ right(s′), or left(s) ⊆ right(s′) for some

s′ for which ` ∈ left(s′) – in other words, there is a split s′ such that every leaf in left(s) is

to one side of s′ and ` is on the other side of s′. This means that `′ cannot be in left(s) for

any s with v(s) = i, or equivalently, ` ∈ leaves \ Li for any i /∈ I(`) ∪ E(`).

Equation (B.33), ⊇ direction: To prove this, we will prove the contrapositive, which is

{`′ ∈ leaves | `′ 6= `} ⊆
⋃
i∈I(`)

Ri ∪
⋃

i∈E(`)

Li ∪
⋃
i∈N :

i/∈I(`)∪E(`)

Li.
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A straightforward result (see Lemma EC.1 from [89]) is that

{`′ ∈ leaves | `′ 6= `} =
⋃

s:`∈left(s)

right(s) ∪
⋃

s:`∈right(s)

left(s).

Thus, if `′ 6= `, then we have that `′ ∈ right(s) for some s such that ` ∈ left(s), or `′ ∈ left(s)

for some s such that ` ∈ right(s). Let i∗ = v(s). In the first case, since ` ∈ left(s), we have

that i∗ ∈ I(`), and we thus have

right(s) ⊆
⋃

s′:v(s′)=i∗

right(s′)

= Ri∗

⊆
⋃
i∈I(`)

Ri ∪
⋃

i∈E(`)

Li ∪
⋃
i′∈N :

i′ /∈I(`)∪E(`)

Li.

In the second case, since ` ∈ right(s), we have that i∗ ∈ E(`), and thus we have

left(s) ⊆
⋃

s′:v(s′)=i∗

left(s′)

= Li∗

⊆
⋃
i∈I(`)

Ri ∪
⋃

i∈E(`)

Li ∪
⋃
i′∈N :

i′ /∈I(`)∪E(`)

Li.

This establishes the validity of the pairwise independent branching scheme (B.32). Thus,

a valid formulation for problem (B.28) (see formulation (9) in [122], formulation (14) in [123]
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and formulation (13) in [71]) is

maximize
x,y

∑
`∈leaves

r`y` (B.36a)

subject to
∑

`∈leaves

y` = 1, (B.36b)

∑
`∈Li

y` ≤ xi, ∀ i ∈ N , (B.36c)

∑
`∈Ri

y` ≤ 1− xi, ∀ i ∈ N , (B.36d)

y` ≥ 0, ∀ ` ∈ leaves, (B.36e)

xi ∈ {0, 1}, ∀ i ∈ N . (B.36f)

Observe that, by the definition of Li and Ri, formulation (B.36) is identical to Product-

MIO when |F | = 1. By invoking Theorem 1 from [122] with appropriate modifications, we

can assert that formulation (B.36) is integral. Therefore, in the special case that |F | = 1,

formulation ProductMIO is always integral. �

B.2.6 Proof of Theorem 5

Proof of part (a) (feasibility): By definition, the solution produced by Algorithm 4 produces

a solution yt that never violates constraints (4.13c) and (4.13d). In addition, at each stage of

Algorithm (4), the quantities xv(t,s) and 1− xv(t,s) are always nonnegative, and the quantity

1−
∑

`∈leaves(t) yt,` is never allowed to become negative; thus, the solution yt that is produced

will satisfy the nonnegativity constraint (4.13e). The only constraint that needs to be verified

is the unit sum constraint (4.13b).

Notice that by the definition of Algorithm 4, yt will satisfy the unit sum constraint if and

only if a C event occurs in Algorithm 4. To show that the unit sum constraint is satisfied,

let us assume that it is not. This means that in the execution of Algorithm 4, a C event

never occurs, and for every leaf, either a A`,s or a B`,s event occurs for some s.
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For any split node j of a tree t, let leftchild(j) and rightchild(j) denote its left and

right child nodes respectively, and let root(t) denote the root node of the tree. Consider the

leaf `∗ that is obtained by the following procedure:

Procedure 1:

1. Set j ← root(t).

2. If j ∈ leaves(t), return `∗ = j. Otherwise, go to Step 3.

3. If xv(t,j) ≥ 0.5, then set j ← leftchild(j), and return to

Step 2.

Otherwise, set j ← rightchild(j), and return to Step 2.

The leaf `∗ that is produced by Procedure 1 is useful for the following reason. Upon

termination of Algorithm 4, the hypothesis that a C event never occurs means that we will

have

yt,`∗ = min

{
min

s:`∗∈left(s)
xv(t,s), min

s:`∗∈right(s)
(1− xv(t,s))

}
. (B.37)

Note that in the above, the minimum will be equal to xv(t,s) for some s satisfying `∗ ∈ left(s),

or it will be equal to 1 − xv(t,s) for some s satisfying `∗ ∈ right(s). We now consider these

two cases separately.

Case 1: yt,`∗ = xv(t,s∗) for some s∗ for which `∗ ∈ left(s∗). In this case, consider the following

procedure for identifying another leaf `′:
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Procedure 2.A:

1. Set j ← root(t).

2. If j ∈ leaves(t), terminate with `′ = j. Otherwise, go to Step 3.

3. If j = s∗, set j ← rightchild(j), and return to Step 2. Otherwise, go to

Step 4.

4. If xv(t,j) ≥ 0.5, then set j ← leftchild(j), and return to Step 2.

Otherwise, set j ← rightchild(j), and return to Step 2.

Procedure 2.A will return a leaf `′ for which the following will be true after the termination

of Algorithm 4:

yt,`′ = min

 min
s 6=s∗:`′∈left(s∗)

xv(t,s)︸ ︷︷ ︸
(a)

, min
s:`′∈right(s∗)

(1− xv(t,s))︸ ︷︷ ︸
(b)

, 1− xv(t,s∗)︸ ︷︷ ︸
(c)

 (B.38)

= 1− xv(t,s∗) (B.39)

where the second equality follows because, by the definition of Procedure 1, we know that

xv(t,s) ≥ 0.5 for s such that `∗ ∈ left(s), and xv(t,s) < 0.5 or equivalently, 1− xv(t,s) ≥ 0.5 for

s such that `∗ ∈ right(s). Thus, in the above, terms (a) and (b) will both be at least 0.5,

while term (c) is strictly less than 0.5. For this reason, yt,`′ must be equal to 1− xv(t,s∗).

Observe that yt,`∗ = xv(t,s∗) and yt,`′ = 1 − xv(t,s∗), which means that yt,`∗ + yt,`′ = 1.

Thus, if Algorithm 4 had encountered leaf `∗ followed by leaf `′, then by the definition of

Algorithm 4, a C event should have been triggered at `′, contradicting our assumption that

a C event never occurs. Similarly, if `′ was encountered before `∗, then a C event should

have occurred at `∗, again resulting in a contradiction.
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Figure B.4: Example of Procedure 1 and Procedure 2.A for a tree, where x =

(x1, x2, x3, x4) = (0.6, 0.3, 0.7, 0.1).

Figure B.4 provides an example of Procedure 1 and Procedure 2.A applied to a tree. In

this example, x = (x1, x2, x3, x4) = (0.6, 0.3, 0.7, 0.1). In this example, the sequence of red

nodes is the path traversed by Procedure 1. This results in the leaf `∗, which is the red leaf

in the figure, whose value is yt,`∗ = min{0.6, 1 − 0.3, 0.7} = 0.6. This value is exactly equal

to xv(t,s) when s is equal to the root node, so we have that s∗ is equal to the root node.

We now apply Procedure 2.A, which traverses the sequence of nodes indicated in blue, and

returns the blue leaf as `′, for which yt,`′ = min{1− 0.6, 0.7, 1− 0.1} = 0.4.

Case 2: yt,`∗ = 1 − xv(t,s∗) for some s∗ for which `∗ ∈ right(s∗). In this case, consider the

following procedure that is similar to Procedure 2.A above:
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Procedure 2.B:

1. Set j ← root(t).

2. If j ∈ leaves(t), terminate with `′ = j. Otherwise, go to Step 3.

3. If j = s∗, set j ← leftchild(j), and return to Step 2. Otherwise, go to

Step 4.

4. If xv(t,j) ≥ 0.5, then set j ← leftchild(j), and return to Step 2.

Otherwise, set j ← rightchild(j), and return to Step 2.

In the same way as for Case 1, we can show that

yt,`′ = min

 min
s:`′∈left(s∗)

xv(t,s)︸ ︷︷ ︸
(a)

, min
s 6=s∗:`′∈right(s∗)

(1− xv(t,s))︸ ︷︷ ︸
(b)

, xv(t,s∗)︸ ︷︷ ︸
(c)


= xv(t,s∗)

Similarly to Case 1, we can again see that yt,`∗+yt,`′ = 1−xv(t,s∗) +xv(t,s∗) = 1, which implies

that a C event must have occurred when either `′ or `∗ was checked. Thus, we again reach

a contradiction.

These two cases establish that yt must satisfy the unit sum constraint and therefore, that

yt is a feasible solution of problem (4.13).

Proof of part (b) (extreme point): To show that yt is an extreme point, let us assume that

yt is not an extreme point. Then, there exist solutions y1
t and y2

t different from yt and a

weight θ ∈ (0, 1) such that yt = θy1
t + (1− θ)y2

t .

Let `∗ be the first leaf checked by Algorithm 4 at which yt,`∗ 6= y1
t,`∗ and yt,`∗ 6= y2

t,`∗ . Such
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a leaf must exist because yt 6= y1
t and yt 6= y2

t , and because yt is the convex combination of

y1
t and y2

t . Without loss of generality, let us further assume that

y1
t,`∗ < yt,`∗ < y2

t,`∗ .

By definition, Algorithm 4 sets each yt,` to the largest it can be without violating the left

split constraints (4.4c) and the right split constraints (4.4d), and ensuring that
∑

`∈leaves(t) yt,`

does not exceed 1. Since y2
t,`∗ > yt,`∗ , and since y2

t and yt are equal for all leaves checked

before `∗, this implies that y2
t either violates constraint (4.3c), violates constraint (4.3d), or

is such that
∑

`∈leaves(t) yt,` > 1. This implies that y2
t cannot be a feasible solution, which

contradicts the assumption that y2
t is a feasible solution, and ultimately contradicts yt not

being an extreme point. �

B.2.7 Proof of Theorem 6

Proof of part (a) (feasibility): We first establish constraint (4.14c). First, observe that when

for any split s and leaf ` such that As,` /∈ E , then αt,s,` = 0, which automatically satisfies the

constraint. For any (s, `) such that At,s,` ∈ E , observe that it must be the case that the leaf

f(As,`) that is checked when As,` occurs was checked before the leaf f(C) that is checked

when the C event occurs; this is because Algorithm 4 terminates when the C event occurs.

As a result, it must be that rt,f(As,`) ≥ rt,f(C), since the leaves are checked in decreasing

order of revenue. As a result, αt,s,` = rt,f(As,`) − γt = rt,f(As,`) − rt,f(C) ≥ 0, which establishes

constraint (4.14c).

Constraint (4.14d) (that each βt,s,` is nonnegative) follows by similar reasoning as con-

straint (4.14c); for brevity, we omit the steps.

This leaves constraint (4.14b). Let ` be a leaf. There are three collectively exhaustive

cases to consider: (1) ` is a leaf such that As,` ∈ E for some s ∈ splits(t); (2) ` is a leaf

such that Bs,` ∈ E for some s ∈ splits(t); and (3) ` is a leaf such that rt,` ≤ rt,f(C). Note

that these are collectively exhaustive because every leaf ` with rt,` > rt,f(C) is a leaf that is
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checked before the final leaf f(C), and thus by the definition of Algorithm 4, either an As,`

or a Bs,` event occurs for some split s.

In the first case, if ` is a leaf such that As,` ∈ E for some s ∈ splits(t), then let sA,` be

that split. We then have

∑
s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt ≥ αt,sA,`,` + γt = rt,` − γt + γt = rt,`

where the first step follows by the nonnegativity of αt and βt and the fact that sA,` ∈ LS(`);

and the second step follows by how the dual procedure (Algorithm 5) sets αt,s,` when As,` ∈ E .

Similarly, in the second case, if ` is a leaf such that Bs,` ∈ E for some s ∈ splits(t), then

letting sB,` be that split, we similarly have

∑
s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt ≥ βt,sB,`,` + γt = rt,` − γt + γt = rt,`.

Finally, in the third case, if ` is such that rt,` ≤ rt,f(C), then the nonnegativity of αt and

βt immediately gives us that

∑
s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt ≥ γt = rt,f(C) ≥ rt,`.

This establishes that (αt,βt, γt) is a feasible solution to problem (4.14).

Proof of part (b) (basic feasible solution): To establish this, we will use the equivalence

between extreme points and basic feasible solutions. A feasible solution z in a polyhedron

P = {z ∈ Rm | Az ≤ b} is a basic feasible solution if there are m linearly independent

active constraints at z.

First, let us define the sets LA and LB as follows:

LA = {` ∈ leaves(t) | As,` ∈ E for some s ∈ splits(t)},

LB = {` ∈ leaves(t) | Bs,` ∈ E for some s ∈ splits(t)}.
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Additionally, let us define sA,` to be the split for which an As,` event occurs for leaf ` ∈ LA,

and sB,` to be the split for which an Bs,` event occurs for leaf ` ∈ LB. We note that for each

leaf `, by the definition of Algorithm 4, there is at most one event of the form As,`, Bs,` or

C that can occur. Thus, an immediate identity is

|LA|+ |LB|+ 1 = |E|,

where on the left hand side, the first term counts the number of As,` events, the second

counts the number of Bs,` events that have occurred, and the 1 corresponds to the single C

event that must occur.

Now, consider the following system of equations:

∑
s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt = rt,`, ∀` ∈ LA, (B.40)

∑
s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt = rt,`, ∀` ∈ LB, (B.41)

∑
s∈LS(f(C))

αt,s,f(C) +
∑

s∈RS(f(C))

βt,s,f(C) + γt = rt,f(C), (B.42)

αt,s,` = 0, ∀s ∈ splits(t), ` ∈ left(s) such that As,` /∈ E , (B.43)

βt,s,` = 0, ∀s ∈ splits(t), ` ∈ right(t) such that Bs,` /∈ E . (B.44)

Observe that each equation corresponds to one of the constraints of problem (4.14) being

made to hold at equality. Observe that there are in total

∑
s∈splits(t)

|left(s)|+
∑

s∈splits(t)

|right(s)|+ 1

variables. There are

|LA|+ |LB|+ 1 +

 ∑
s∈splits(t)

|left(s)| − |LA|

+

 ∑
s∈splits(t)

|right(s)| − |LB|


=

∑
s∈splits(t)

|left(s)|+
∑

s∈splits(t)

|right(s)|+ 1
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equations. We now show that the only solution to this system of equations is exactly the

solution produced by Algorithm 5.

First, observe that by the property that at most one event of the form As,`, Bs,` or C can

occur for the leaf ` = f(C), equations (B.42) - (B.44) imply that

∑
s∈LS(f(C))

αt,s,f(C) +
∑

s∈RS(f(C))

βt,s,f(C) + γt = 0 + 0 + γt = γt = rt,f(C),

which is exactly how Algorithm 5 sets γt.

Second, observe again that by the property that at most one event of the form As,`, Bs,`

or C can occur for a leaf ` ∈ LA, equations (B.40), (B.43) and (B.44) imply that for any leaf

` ∈ LA,

∑
s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt = αt,sA,`,` + γt = rt,`,

or equivalently, that αt,sA,`,` = rt,` − γt, which is exactly how Algorithm 5 sets αt,sA,`,`.

Similarly, for any leaf ` ∈ LB, equations (B.41), (B.43) and (B.44) imply

∑
s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt = βt,sB,`,` + γt = rt,`,

or equivalently, βt,sB,`,` = rt,` − γt, which again exactly agrees with Algorithm 5.

Finally, for any s, ` such that As,` /∈ E , equation (B.43) exactly matches how Algo-

rithm 5 sets αt,s,` for such (s, `) combinations. Similarly, equation (B.44) exactly matches

how Algorithm 5 sets βt,s,` for (s, `) pairs for which Bs,` /∈ E .

Since the solution (αt,βt, γt) that is completely determined by equations (B.40) - (B.44)

is identical to the one produced by Algorithm (5), it follows that this solution is an extreme

point. �
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B.2.8 Proof of Theorem 7

We will prove this by showing that the two solutions yt and (αt,βt, γt) satisfy complementary

slackness. The complementary slackness conditions for this problem are

(xv(t,s) − yt,`) · αt,s,` = 0, ∀ s ∈ splits(t), ` ∈ left(s), (B.45)

(1− xv(t,s) − yt,`) · βt,s,` = 0, ∀ s ∈ splits(t), ` ∈ right(s), (B.46)

yt,` · (
∑

s∈LS(`)

αt,s,` +
∑

s∈RS(`)

βt,s,` + γt − rt,`) = 0, ∀ ` ∈ leaves(t). (B.47)

We now verify each of these conditions.

Condition (B.45): For this condition, observe that if As,` /∈ E , then by the definition

of Algorithm 5, αt,s,` will be equal to the default value of zero, and the condition will auto-

matically hold. If As,` ∈ E , then by the definition of the primal procedure (Algorithm 4) yt,`

will be set to q∗ which is equal to xv(t,s). Thus, we will have that xv(t,s) − yt,` = 0 and the

condition is again satisfied.

Condition (B.46): This condition follows by analogous reasoning as condition (B.45).

Condition (B.47): For this condition, we can see that if yt,` = 0, then the condition is

immediately satisfied; thus, let us assume that yt,` > 0. In this case, it must be that when `

was checked by Algorithm 4, that either an As,` event occurred for some split s, a Bs,` event

occurred for some split s or a C event occurred. As shown in the proof of Theorem B.2.7 (see

equations (B.40) - (B.42)), for any leaf for which such an event occurs, the constraint (4.14b)

is satisfied at equality and thus condition (B.47) must hold as well.

Since all three conditions hold, it follows that the solutions yt and (αt,βt, γt) produced

by Algorithms 4 and 5 are optimal for their respective problems. �
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B.2.9 Proof of Theorem 19

We prove that LeafMIO closed form for integer x.

Proof of part (a) (primal feasibility): Observe that by construction, yt automatically

satisfies the nonnegativity constraint (4.13e) and the unit sum constraint (4.13b). For con-

straints (4.13c) and (4.13d), observe that for any ` 6= `∗, these constraints are automatically

satisfied because yt,` = 0 whereas xv(t,s) and 1−xv(t,s) can only be either 0 or 1. For the case

that ` = `∗, observe that if `∗ ∈ left(s) for some split s, then it must be that xv(t,s) = 1, so

the constraint yt,`∗ ≤ xv(t,s) is satisfied. Similarly, if `∗ ∈ right(s) for some split s, then it

must be that xv(t,s) = 0, so the constraint yt,`∗ ≤ 1− xv(t,s) is satisfied. Thus, yt is a feasible

solution of problem (4.13).

Proof of part (b) (dual feasibility): First, observe that by the definition of αt and βt,

they are automatically nonnegative, and so constraints (4.14c) and (4.14d) are satisfied. To

verify constraint (4.14b), observe that for any ` 6= `∗, it is either the case that ` ∈ right(s′)

for some s′ ∈ LS(`∗), or ` ∈ left(s′) for some s′ ∈ RS(`∗). In the first case, we have:

∑
s:`∈left(s)

αt,s,` +
∑

s:`∈right(s)

βt,s,` + γt ≥ βt,s,` + γt ≥ rt,` − rt,`∗ + rt,`∗ = rt,`

where the first inequality follows by the nonnegativity of αt and βt and the fact that ` ∈

right(s′), and the second inequality follows by the definition of βt and the fact that s′ ∈

LS(`∗). In the second case, where ` ∈ left(s′) for some s′ ∈ RS(`∗), similar logic lets us

establish that

∑
s:`∈left(s)

αt,s,` +
∑

s:`∈right(s)

βt,s,` + γt ≥ αt,s′,` + γt ≥ rt,` − rt,`∗ + rt,`∗ = rt,`.

This establishes that constraint (4.14b) holds for any leaf ` other than `∗. When ` = `∗, we
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very simply have

∑
s:`∗∈left(s)

αt,s,`∗ +
∑

s:`∗∈right(s)

βt,s,` + γt = 0 + 0 + γt = rt,`∗ ,

where the first step follows from the definition of αt,s,` and βt,s,` (note that from the state-

ment of Theorem 19, αt,s,`∗ will be zero for any s ∈ LS(`∗), or equivalently, any s such that

`∗ ∈ left(s), and similarly, βt,s,`∗ will be zero for any s ∈ RS(`∗)). Thus, this establishes

that constraint (4.14b) holds for every leaf `, and thus, that (αt,βt, γt) is a feasible solution

of the dual subproblem (4.14).

Proof of part (c) (optimality): To establish optimality, we simply need to check that the

primal and dual solutions obtain the same objective; by weak duality, we will thus establish

that the two solutions are optimal for their respective problems. For the primal solution yt,

it is immediately clear that its objective is rt,`∗ . For the dual solution, we have

∑
s∈splits(t)

∑
`∈left(s)

αt,s,`xv(t,s) +
∑

s∈splits(t)

∑
`∈right(s)

βt,s,`(1− xv(t,s)) + γt

=
∑

s∈RS(`∗)

∑
`∈left(s)

αt,s,`xv(t,s) +
∑

s∈RS(`∗)

∑
`∈right(s)

βt,s,`(1− xv(t,s)) + γt

= 0 + 0 + γt

= rt,`∗ ,

where the first step follows because αt,s,` is automatically zero for any s /∈ RS(`∗) and βt,s,`

is automatically zero for any s /∈ LS(`∗); the second step follows because for any s ∈ RS(`∗),

xv(t,s) will be 0 (recall that xv(t,s) = 0 means that the product is not in the assortment, which

implies that we must proceed to the right of any split s ∈ RS(`∗)), and similarly, for any

s ∈ LS(`∗), xv(t,s) will be 1; and the final step follows by the definition of γt. This establishes

that yt and (αt,βt, γt) are optimal for problems (4.13) and (4.14) respectively. �
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B.2.10 Proof of Theorem 8

Proof of part (a) (feasibility): By definition, the solution produced by Algorithm 6 produces

a solution yt that satisfies the left and right split constraints (4.17c) and (4.17d). With

regard to the nonnegativity constraint (4.17e), we can see that at each stage of Algorithm 6,

the quantities xv(t,s)−
∑

`∈left(s) yt,`, 1− xv(t,s)−
∑

`∈right(s) yt,` and 1−
∑

`∈leaves(t) yt,` never

become negative; thus, the solution yt produced upon termination satisfies the nonnegativity

constraint (4.17e).

The only constraint that remains to be verified is constraint (4.17b), which requires that

yt adds up to 1. Observe that it is sufficient for a C event to occur during the execution of

Algorithm 6 to ensure that constraint (4.17b) is satisfied. We will show that a C event must

occur during the execution of Algorithm 6.

We proceed by contradiction. For the sake of a contradiction, let us suppose that a C

event does not occur during the execution of the algorithm. Note that under this assumption,

for any split s, it is impossible that the solution yt produced by Algorithm 6 satisfies

xv(t,s) =
∑

`∈left(s)

yt,`,

1− xv(t,s) =
∑

`∈right(s)

yt,`,

as this would imply that

∑
`∈left(s)

yt,` +
∑

`∈right(s)

yt,` = xv(t,s) + 1− xv(t,s) = 1;

by the definition of Algorithm 6, this would have triggered a C event at one of the leaves in

left(s) ∪ right(s).

Thus, this means that at every split, either
∑

`∈left(s) yt,` < xv(t,s) or
∑

`∈right(s) <

1− xv(t,s). Using this property, let us identify a leaf `∗ using the following procedure:
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Procedure 3:

1. Set j ← root(t).

2. If j ∈ leaves(t), terminate with `∗ = j.

Otherwise, proceed to Step 3.

3. If
∑

`∈left(j) yt,` < xv(t,j), set j ← leftchild(j).

Otherwise, set j ← rightchild(j).

4. Repeat Step 2.

Note that by our observation that at most one of the left or right split constraints can

be satisfied at equality for any split s, Procedure 3 above is guaranteed to terminate with a

leaf `∗ such that:

yt,`∗ ≤
∑

`∈left(s)

yt,` < xv(t,s), ∀ s ∈ splits(t) such that `∗ ∈ left(s),

yt,`∗ ≤
∑

`∈right(s)

yt,` < 1− xv(t,s), ∀ s ∈ splits(t) such that `∗ ∈ right(s).

However, this is impossible, because Algorithm 6 always sets each leaf yt,` to the highest

value it can be without violating any of the left or right split constraints; the above con-

ditions imply that yt,`∗ could have been set higher, which is not possible. We thus have a

contradiction, and it must be the case that a C event occurs.

Proof of part (b) (extreme point): To show that yt is an extreme point, let us assume that

yt is not an extreme point. Then, there exist feasible solutions y1
t and y2

t different from yt

and a weight θ ∈ (0, 1) such that yt = θy1
t + (1− θ)y2

t .

Let `∗ be the first leaf checked by Algorithm 6 at which yt,`∗ 6= y1
t,`∗ and yt,`∗ 6= y2

t,`∗ . Such
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a leaf must exist because yt 6= y1
t and yt 6= y2

t , and because yt is the convex combination of

y1
t and y2

t . Without loss of generality, let us further assume that

y1
t,`∗ < yt,`∗ < y2

t,`∗ .

By definition, Algorithm 6 sets yt,` at each iteration to the largest it can be without

violating the left split constraints (4.17c) and the right split constraints (4.17d), and ensuring

that
∑

`∈leaves(t) yt,` does not exceed 1. Since y2
t,`∗ > yt,`∗ , and since y2

t and yt are equal for

all leaves checked before `∗, this implies that y2
t either violates constraint (4.17c), violates

constraint (4.17d), or is such that
∑

`∈leaves(t) yt,` > 1. This implies that y2
t cannot be a

feasible solution, which contradicts the assumption that y2
t is a feasible solution. �

B.2.11 Proof of Theorem 9

We prove that SplitMIO dual is BFS.

Proof of part (a) (feasibility): Before we prove the result, we first establish a helpful

property of the events that are triggered during the execution of Algorithm 6.

Lemma 9 Let s1, s2 ∈ splits(t), s1 6= s2, such that s2 is a descendant of s1. Suppose that

e1 = As1 or e1 = Bs1, and that e2 = As2 or e2 = Bs2. If e1 and e2 occur during the execution

of Algorithm 6, then rt,f(e1) ≤ rt,f(e2).

Proof: We will prove this by contradiction. Suppose that we have two splits s1 and s2 and

events e1 and e2 as in the statement of the lemma, and that rt,f(e2) < rt,f(e1). This implies

that leaf f(e1) is checked before leaf f(e2). When leaf f(e1) is checked, the event e1 occurs,

which implies that either the left split constraint (4.17c) becomes tight (if e1 = As1) or the

right split constraint (4.17d) becomes tight (if e1 = Bs1) at s1. In either case, since s2 is a

descendant of s1, the leaf f(e2) must be contained in the left leaves of split s1 (if e = As1)

or the right leaves of split s1 (if e1 = Bs1). Thus, when leaf f(e2) is checked, the event e2
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cannot occur, because qs1 in Algorithm 6 will be zero (implying that qA,B = 0), and so s∗

cannot be equal to s2 because s1 is a shallower split that attains the minimum of qA,B = 0. �

To establish that (αt,βt, γt) is feasible for the SplitMIO dual subproblem (4.18), we

will first show that the αt,s variables are nonnegative.

Fix s ∈ splits(t). If As /∈ E , then αt,s = 0, and constraint (4.18c) is satisfied. If As ∈ E ,

then consider the split s̃ defined as follows: let Set 1 = {s′ | LS(f(As)), d(s′) < d, As′ ∈ E}

and Set 2 = {s′ | RS(f(As)), d(s′) < d, Bs′ ∈ E}, and

s̃ = arg min
s′
{d(s′) | s′ ∈ Set 1 ∪ Set 2}

where we recall that d = d(s) is the depth of split s. In words, s̃ is the shallowest split (i.e.,

closest to the root) along the path of splits from the root node to split s such that either

an As̃ event occurs or a Bs̃ event occurs for split s̃. There are three possible cases that can

occur here, which we now handle.
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Case 1: s̃ ∈ LS(f(As)). In this case, As̃ ∈ E , and we have

αt,s = rt,f(As) −


∑

s′∈LS(f(As)):
d(s′)<d,
As′∈E

αt,s′ +
∑

s′∈RS(f(As)):
d(s′)<d,
Bs′∈E

βt,s′ + γt



= rt,f(As) −

αt,s̃ +
∑

s′∈LS(f(As)):
d(s′)<d(s̃),
As′∈E

αt,s′ +
∑

s′∈RS(f(As)):
d(s′)<d(s̃),
Bs′∈E

βt,s′ + γt



= rt,f(As) −

αt,s̃ +
∑

s′∈LS(f(As̃)):
d(s′)<d(s̃),
As′∈E

αt,s′ +
∑

s′∈RS(f(As̃)):
d(s′)<d(s̃),
Bs′∈E

βt,s′ + γt


= rt,f(As) − rt,f(As̃)

≥ 0,

where the first step follows by the definition of αt,s in Algorithm 7; the second step follows

by the definition of αt,s̃ as the deepest split for which an A or B event occurs that is at a

depth lower than s; the third step by the fact that the left splits and right splits of f(As̃) at

a depth below d(s̃) are the same as the left and right splits of f(As) at a depth below d(s̃);

and the fourth step follows from the definition of αt,s̃ in Algorithm 7. The inequality follows

by Lemma 9.
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Case 2: s̃ ∈ RS(f(As)). In this case, Bs̃ ∈ E , and analogously to Case 1, we have:

αt,s = rt,f(As) −


∑

s′∈LS(f(As)):
d(s′)<d,
As′∈E

αt,s′ +
∑

s′∈RS(f(As)):
d(s′)<d,Bs′∈E

βt,s′ + γt



= rt,f(As) −

βt,s̃ +
∑

s′∈LS(f(As)):
d(s′)<d(s̃),
As′∈E

αt,s′ +
∑

s′∈RS(f(As)):
d(s′)<d(s̃),
Bs′∈E

βt,s′ + γt



= rt,f(As) −

βt,s̃ +
∑

s′∈LS(f(Bs̃)):
d(s′)<d(s̃),
As′∈E

αt,s′ +
∑

s′∈RS(f(Bs̃)):
d(s′)<d(s̃),
Bs′∈E

βt,s′ + γt


= rt,f(As) − rt,f(Bs̃)

≥ 0.

Case 3: s̃ is undefined because the underlying sets are empty. In this case, αt,s = rt,f(As)−γt.

In this case, we have

αt,s = rt,f(As) − γt = rt,f(As) − rt,f(C) ≥ 0,

where the inequality follows because f(C) is the last leaf to be checked before Algorithm 6

terminates, and thus it must be that rt,f(As) ≥ rt,f(C).

This establishes that (αt,βt, γt) satisfy constraint (4.18c). Constraint (4.18d) can be

shown in an almost identical fashion; for brevity, we omit the steps.

We thus only need to verify constraint (4.18b). Let ` ∈ leaves(t). Here, there are four
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mutually exclusive and collectively exhaustive cases to consider.

Case 1: rt,` ≤ rt,f(C). In this case we have

∑
s∈LS(`)

αt,s +
∑

s∈RS(`)

βt,s + γt ≥ γt = rt,f(C) ≥ rt,`.

Case 2: rt,` > rt,f(C) and ` = f(As) for some s ∈ splits(t). In this case, we have

∑
s′∈LS(`)

αt,s′ +
∑

s′∈RS(`)

βt,s′ + γt ≥ αt,s +
∑

s′∈LS(`):
d(s′)<d(s),
As′∈E

αt,s′ +
∑

s′∈RS(`):
d(s′)<d(s),
Bs′∈E

βt,s′ + γt = rt,f(As) = rt,`,

where the first step follows by the nonnegativity of αt,s′ and βt,s′ for all s′, and the second

step by the definition of αt,s in Algorithm 7.

Case 3: rt,` > rt,f(C) and ` = f(Bs) for some s ∈ splits(t). By similar logic as case 2, we

have

∑
s′∈LS(`)

αt,s′ +
∑

s′∈RS(`)

βt,s′ + γt ≥ βt,s +
∑

s′∈LS(`):
d(s′)<d(s),
As′∈E

αt,s′ +
∑

s′∈RS(`):
d(s′)<d(s),
Bs′∈E

βt,s′ + γt = rt,f(Bs) = rt,`.

Case 4: rt,` > rt,f(C) and ` is not equal to f(As) or f(Bs) for any split s. In this case, when

leaf ` is checked by Algorithm 6, the algorithm reaches line 17 where s∗ is determined and

e is set to either As∗ or Bs∗ , and it turns out that e is already in E . If e = As∗ , then this
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means that leaf f(As∗) was checked before leaf `, and that rt,` ≤ rt,f(As∗ ). We thus have

∑
s∈LS(`)

αt,s +
∑

s∈RS(`)

βt,s + γt

≥ αt,s∗ +
∑

s∈LS(`):
d(s)<d(s∗),
As∈E

αt,s +
∑

s∈RS(`):
d(s)<d(s∗),
Bs∈E

βt,s + γt

= αt,s∗ +
∑

s∈LS(f(As∗ )):
d(s)<d(s∗),
As∈E

αt,s +
∑

s∈RS(f(As∗ )):
d(s)<d(s∗),
Bs∈E

βt,s + γt

= rt,f(As∗ )

≥ rt,`,

where the first equality follows because ` and f(As∗), by virtue of being to the left of s∗,

share the same left and right splits at depths lower than d(s∗). Similarly, if e = Bs∗ , then

the leaf f(Bs∗) was checked before `, which means that rt,` ≤ rt,f(Bs∗ ); in this case, we have

∑
s∈LS(`)

αt,s +
∑

s∈RS(`)

βt,s + γt

≥ βt,s∗ +
∑

s∈LS(`):
d(s)<d(s∗),
As∈E

αt,s +
∑

s∈RS(`):
d(s)<d(s∗),
Bs∈E

βt,s + γt

≥ βt,s∗ +
∑

s∈LS(f(Bs∗ )):
d(s)<d(s∗),
As∈E

αt,s +
∑

s∈RS(f(Bs∗ )):
d(s)<d(s∗),
Bs∈E

βt,s + γt

= rt,f(Bs∗ )

≥ rt,`.

We have thus shown that (αt,βt, γt) is a feasible solution to the SplitMIO dual sub-

problem (4.18).

Proof of part (b) (extreme point): To prove this, we will use the equivalence between
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extreme points and basic feasible solutions, and show that (αt,βt, γt) is a basic feasible

solution of problem (4.18).

Define the sets LA and LB as

LA = {` ∈ leaves(t) | ` = f(As) for some s ∈ splits(t)},

LB = {` ∈ leaves(t) | ` = f(Bs) for some s ∈ splits(t)}.

Consider the following system of equations:∑
s∈LS(`)

αt,s +
∑

s∈RS(`)

βt,s + γt = rt,`, ∀` ∈ LA, (B.48)

∑
s∈LS(`)

αt,s +
∑

s∈RS(`)

βt,s + γt = rt,`, ∀` ∈ LB, (B.49)

∑
s∈LS(f(C))

αt,s +
∑

s∈RS(f(C))

βt,s + γt = rt,f(C), (B.50)

αt,s = 0, ∀ s such that As /∈ E , (B.51)

βt,s = 0, ∀ s such that Bs /∈ E . (B.52)

Observe that each equation corresponds to a constraint from problem (4.18) made to hold

at equality. In addition, we note that there are |LA| + |LB| + 1 + (|splits(t)| − |LA|) +

(|splits(t)| − |LB|) = 2|splits(t)| + 1 equations, which is exactly the number of variables.

We will show that the unique solution implied by this system of equations is exactly the

solution (αt,βt, γt) that is produced by Algorithm 7.

In order to establish this, we first establish a couple of useful results.

Lemma 10 Suppose that e ∈ E, ` = f(e) and e = As or e = Bs for some s ∈ splits(t).

Then:

a) As′ /∈ E for all s′ ∈ LS(`) such that d(s′) > d(s); and

b) Bs′ /∈ E for all s′ ∈ RS(`) such that d(s′) > d(s).
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Proof of Lemma 10: We will prove this by contradiction. Without loss of generality, let

us suppose that there exists an As′ event in E where s′ ∈ LS(`) and d(s′) > d(s). (The case

where there exists an Bs′ event in E where s′ ∈ RS(`) and d(s′) > d(s) can be shown almost

identically.)

Since As′ ∈ E , consider the leaf `′ = f(As′). There are now two possibilities for when

Algorithm 6 checks leaf `′:

1. Case 1: Leaf `′ is checked after leaf `. In this case, in the iteration of Algorithm 6

corresponding to leaf `′, it will be the case that qs = 0 because the left constraint (4.17c)

at split s (if e = As) or the right constraint (4.17d) at split s (if e = Bs) became tight

when leaf ` was checked. As a result, qA,B = 0 in the iteration for leaf `′. This implies

that s′ cannot be the lowest depth split that attains the minimum qs value of qA,B,

because qs = 0, and s has a depth lower than s′, which contradicts the fact that the

As′ event occurred.

2. Case 2: Leaf `′ is checked before leaf `. In this case, consider the value of qs when

leaf ` is checked in Algorithm 6.

If qs > 0, then there is immediately a contradiction, because qs′ = 0 when leaf ` is

checked (this is true because the left split constraint (4.17c) at s′ became tight after

leaf `′ was checked), and thus it is impossible that s∗ = s.

If qs = 0, then this implies that xv(t,s) = 0. This would imply that qs = 0 when leaf `′

was checked, which would imply that s∗ cannot be s′ when leaf `′ is checked because s

is at a lower depth than s′.

Thus, in either case, we arrive at a contradiction, which completes the proof. �

Lemma 11 Suppose that ` = f(C). Then:
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a) As′ /∈ E for all s′ ∈ LS(`); and

b) Bs′ /∈ E for all s′ ∈ RS(`).

Proof of Lemma 11: We proceed by contradiction. Suppose that As occurs for some s ∈

LS(`) or that Bs occurs for some s ∈ LS(`); in the former case, let e = As, and in the

latter case, let e = Bs. Let `′ = f(e). Then `′ must be checked before ` by Algorithm 6,

since the algorithm always terminates after a C event occurs. Consider what happens when

Algorithm 6 checks leaf `:

1. Case 1: qC > 0. This is impossible, because if e occurs, then qs when leaf ` is checked

would have to be 0, which would imply that qA,B < qC and that a C event could not

have occurred when ` was checked.

2. Case 2: qC = 0. This is also impossible, because it implies that the unit sum con-

straint (4.17b) was satisfied at an earlier iteration, which would have triggered the C

event at a leaf that was checked before `.

We thus have that As′ does not occur for any s′ ∈ LS(`) and Bs′ does not occur for any

s′ ∈ RS(`), as required. �

With these two lemmas in hand, we now return to the proof of Theorem B.2.11 (b).

Observe now that by using Lemmas 10 and 11 and using equations (B.56) and (B.57), the
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system of equations (B.48)-(B.52) is equivalent to

αt,s +
∑

s′∈LS(f(As):
d(s′)<d(s),
As′∈E

αt,s′ +
∑

s′∈RS(`):
d(s′)<d(s),
Bs′∈E

βt,s′ + γt = rt,f(As), ∀s such that As ∈ E , (B.53)

βt,s +
∑

s′∈LS(`):
d(s′)<d(s),
As′∈E

αt,s′ +
∑

s′∈RS(`):
d(s′)<d(s),
Bs′∈E

βt,s′ + γt = rt,f(Bs), ∀s such that Bs ∈ E , (B.54)

γt = rt,f(C), (B.55)

αt,s = 0, ∀ s such that As /∈ E , (B.56)

βt,s = 0, ∀ s such that Bs /∈ E .. (B.57)

We now observe that the solution implied by this system of equations is exactly the solution

produced by Algorithm 7. We thus establish that (αt,βt, γt) is a basic feasible solution of

problem (4.18), and thus an extreme point. �

B.2.12 Proof of Theorem 10

To prove that the yt and (αt,βt, γt) produced by Algorithms 6 and 7 are optimal for their re-

spective problems, we show that they satisfy complementary slackness. The complementary

slackness conditions for problems (4.17) and (4.18) are

αt,s ·

xv(t,s) −
∑

`∈left(s)

yt,`

 = 0, ∀ s ∈ splits(t), (B.58)

βt,s ·

1− xv(t,s) −
∑

`∈right(s)

yt,`

 = 0, ∀ s ∈ splits(t), (B.59)

yt,` ·

 ∑
s∈LS(`)

αt,s +
∑

s∈RS(`)

βt,s + γt − rt,`

 = 0, ∀ ` ∈ leaves(t). (B.60)

Condition (B.58): If αt,s = 0, then the condition is trivially satisfied. If αt,s > 0, then

this implies that As ∈ E . This means that the left split constraint (4.17c) at s became tight
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after leaves f(As) was checked, which implies that
∑

`∈left(s) yt,` = xv(t,s) or equivalently, that

xv(t,s) −
∑

`∈left(s) yt,` = 0, which again implies that the condition is satisfied.

Condition (B.59): This follows along similar logic to condition (B.58), only that we

use the fact that βt,s > 0 implies that a Bs event occurred and that the right split con-

straint (4.17d) at s became tight.

Condition (B.60): If yt,` = 0, then the condition is trivially satisfied. If yt,` > 0,

then either ` = f(C), or ` = f(As) for some split s ∈ LS(`), or ` = f(Bs) for some split

s ∈ RS(`). In any of these three cases, as shown in the proof of part (b) of Theorem 9,

the dual constraint (4.18b) holds with equality for any such leaf `. Thus, we have that∑
s∈LS(`) αt,s +

∑
s∈RS(`) βt,s + γt − rt,` = 0, and the condition is again satisfied.

Since complementary slackness holds, yt is feasible for the primal problem (4.17) (by

Theorem B.2.10), and (αt,βt, γt) is feasible for the dual problem (4.18) (by Theorem 9, it

follows that yt and (αt,βt, γt) are optimal for their respective problems. �

B.2.13 Proof of Theorem 20

We prove that SplitMIO primal and dual are closed form solvable for binary x

Proof of part (a): Observe that by construction, yt automatically satisfies the unit sum

constraint (4.17b) and the nonnegativity constraint (4.17e). We thus need to verify con-

straints (4.17c) and (4.17d).

For constraint (4.17c), observe that for any split s /∈ LS(`∗), it must be that `∗ /∈ left(s).

Thus, we will have ∑
`∈left(s)

yt,` = 0,

which means that constraint (4.17c) is automatically satisfied, because the right hand side

xv(t,s) is always at least 0. On the other hand, for any split s ∈ LS(`∗), we will have that
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xv(t,s) = 1, and that ∑
`∈left(s)

yt,` =
∑

`∈left(s):`6=`∗
yt,` + yt,`∗ = 1,

which implies that constraint (4.17c) is satisfied. Similar reasoning can be used to establish

that constraint (4.17d) holds. This establishes that yt is indeed a feasible solution of prob-

lem (4.17).

Proof of part (b): By construction, αt,s ≥ 0 and βt,s ≥ 0 for all s ∈ splits(t), so

constraints (4.18c) and (4.18d) are satisfied. To verify constraint (4.18b), fix a leaf ` ∈

leaves(t). If ` 6= `∗, then either ` ∈ left(s′) for some s′ ∈ RS(`∗) or ` ∈ right(s′) for some

s′ ∈ LS(`∗). If ` ∈ left(s′) for some s′ ∈ RS(`∗), then

∑
s:`∈left(s)

αt,s +
∑

s:`∈right(s)

βt,s + γt ≥ αt,s′ + γt ≥ max
`′∈left(s′)

rt,`′ − rt,`∗ + rt,`∗ ≥ rt,`

where the first inequality follows because ` ∈ left(s′) and the fact that all αt,s and βt,s

variables are nonnegative; the second follows by how the dual solution is defined in the

statement of the theorem; and the third by the definition of the maximum. Similarly, if

` ∈ right(s′) for some s′ ∈ LS(`∗), then by similar reasoning we have

∑
s:`∈left(s)

αt,s +
∑

s:`∈right(s)

βt,s + γt ≥ βt,s′ + γt ≥ max
`′∈right(s′)

rt,`′ − rt,`∗ + rt,`∗ ≥ r` − rt,`∗ + rt,`∗ = rt,`.

Lastly, if ` = `∗, then we automatically have

∑
s:`∗∈left(s)

αt,s +
∑

s:`∗∈right(s)

βt,s + γt ≥ γt = rt,`∗ .

Thus, we have established that constraint (4.18b) is satisfied for all leaves `, and thus

(αt,βt, γt) as defined in the statement of the theorem is a feasible solution of the dual (4.18).

Proof of part (c): To establish that the two solutions are optimal, by weak duality it is

sufficient to show that the two solutions attain the same objective values in their respective
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problems. For the primal solution yt, it is immediately clear that its objective is rt,`∗ . For

the dual solution (αt,βt, γt), we have

∑
s∈splits(t)

αt,sxv(t,s) +
∑

s∈splits(t)

βt,s(1− xv(t,s)) + γt

=
∑

s∈RS(`∗)

αt,sxv(t,s) +
∑

s∈LS(`∗)

βt,s(1− xv(t,s)) + γt

= 0 + 0 + γt

= rt,`∗

where the first step follows because αt,s = 0 for s /∈ RS(`∗) and βt,s = 0 for s /∈ LS(`∗); the

second step follows by the fact that xv(t,s) = 0 for s ∈ RS(`∗) and xv(t,s) = 1 for s ∈ LS(`∗);

and the final step follows just by the definition of γt. This establishes that yt and (αt,βt, γt)

are optimal for their respective problems, which concludes the proof. �

B.2.14 Proof of Proposition 9

To see that the ProductMIO primal subproblem (4.20) is not greedy solvable, consider an

instance where N = {1, 2, 3}, and the revenues of these products are r̄1 = 20, r̄2 = 19 and

r̄3 = 18. Consider the tree shown in Figure B.5. Labeling the leaves as 1, 2, 3, 4, 5 and 6
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Figure B.5: Structure of tree for which the ProductMIO primal subproblem is not solvable

via a greedy algorithm.

from left to right, the primal subproblem (4.20) can be explicitly written as

maximize
y

20y1 + 19y2 + 18y3 + 18y5 (B.61a)

subject to y1 + y2 + y3 + y4 ≤ 0.5 (= x1) (B.61b)

y5 + y6 ≤ 0.5 (= 1− x1) (B.61c)

y1 + y2 ≤ 0.5 (= x2) (B.61d)

y3 + y4 ≤ 0.5 (= 1− x2) (B.61e)

y1 + y3 + y5 ≤ 0.5 (= x3) (B.61f)

y2 + y4 + y6 ≤ 0.5 (= 1− x3) (B.61g)

y1, . . . , y6 ≥ 0, (B.61h)

where we omit the subscript t to simplify notation. When we apply the greedy algorithm to

solve this LO problem, we can see that there are multiple orderings of the leaves in decreasing
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revenue:

1, 2, 3, 5, 4, 6

1, 2, 5, 3, 4, 6

1, 2, 3, 5, 6, 4

1, 2, 5, 3, 6, 4

For any of these orderings, the greedy solution will turn out to be

y1 = 0.5,

y2 = 0,

y3 = 0,

y4 = 0,

y5 = 0,

y6 = 0.5,

resulting in an objective value of y1 × r̄1 + y6 × 0 = (0.5)(20) = 10. However, the actual

optimal solution of problem (B.61) turns out to be

y∗1 = 0,

y∗2 = 0.5,

y∗3 = 0,

y∗4 = 0,

y∗5 = 0.5,

y∗6 = 0,

for which the objective value is y∗2 × r̄2 + y∗5 × r̄3 = (0.5)(19) + (0.5)(18) = 18.5. This shows

that in general, the ProductMIO primal subproblem cannot be solved to optimality via

the same type of greedy algorithm as for LeafMIO and SplitMIO. �
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B.2.15 Proof of Theorem 21

We prove that ProductMIO primal and dual are closed form solvable for binary x.

Proof of part (a) (primal feasibility): The solution yt clearly satisfies the unit sum con-

straint (4.20b). For i ∈ LP(`∗), we know that xi = 1, and by the definition of `∗, we have

that ∑
`∈left(i)

yt,` = yt,`∗ +
∑

`∈left(i):`6=`∗
yt,` = 1,

which implies that the left split constraint (4.20c) is satisfied for product i. Similarly, for

i ∈ RP(`∗), we know that xi = 0 (or equivalently, 1 − xi = 1, and we again have that∑
`∈right(i) yt,` = 1, which implies that the right split constraint (4.20d) is satisfied at product

i.

For i /∈ LP(`∗), we know that `∗ /∈ left(i), and thus
∑

`∈left(i) yt,` = 0, which implies that

constraint (4.20c) is automatically satisfied (the right hand side is xi which can only be 0 or

1). Similarly, for i /∈ RP(`∗), we know that `∗ /∈ right(i) and that
∑

`∈right(i) yt,` = 0, which

similarly implies that constraint (4.20d) is satisfied (the right hand side is 1− xi, which can

only be 0 or 1). This establishes that yt is a feasible solution of problem (4.20).

Proof of part (b) (dual feasibility): By construction, αt,i ≥ 0 and βt,i ≥ 0 for all products

i. Thus, we only need to verify the dual constraint (B.2b). If ` = `∗, then the constraint

is immediately satisfied, because γt = rt,`∗ and αt and βt are nonnegative. If ` 6= `∗, then

either ` ∈ left(i′) for some i′ ∈ RP(`∗) or ` ∈ right(i′) for some i′ ∈ LP(`∗). In the former

case, using the definition of αt and βt and the nonnegativity of αt and βt, we have∑
i∈LP(`)

αt,i +
∑

i∈RP(`)

βt,i + γt ≥ αt,i′ + γt ≥ max
`′∈left(i′)

rt,`′ − r`∗ + r`∗ ≥ rt,`

In the latter case, we similarly have∑
i∈LP(`)

αt,i +
∑

i∈RP(`)

βt,i + γt ≥ βt,i′ + γt ≥ max
`′∈right(i′)

rt,`′ − r`∗ + r`∗ ≥ rt,`.
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This establishes that (αt,βt, γt) is a feasible solution of problem (B.2).

Proof of part (c) (optimality): We prove this by showing that the two solutions have the

same objective value. For the primal solution, it is clear that its objective value is rt,`∗ . For

the dual solution, we have:

∑
i∈P (t)

αt,ixi +
∑
i∈P (t)

βt,i(1− xi) + γt =
∑

i∈RP(`∗)

αt,ixi +
∑

i∈LP(`∗)

βt,i(1− xi) + γt = rt,`∗ ,

where the first step follows because αt,i is defined to be zero when i /∈ RP(`∗) and βt,i

is defined to be zero when i /∈ LP(`∗); and the second step follows because xi = 0 when

i ∈ RP(`∗) and xi = 1 when i ∈ LP(`∗). This establishes that yt and (αt,βt, γt) are optimal

for their respective problems. �

B.3 Additional Numerical Results

B.3.1 Example of Benders algorithms for SplitMIO

In this section, we provide a small example of the primal-dual procedure (Algorithms 6 and

7) for solving the SplitMIO subproblem.

Suppose that n = 6, and that x = (x1, . . . , x6) = (0.62, 0.45, 0.32, 0.86, 0.05, 0.35). Sup-

pose that r̄ = (r̄1, . . . , r̄6) = (97, 72, 89, 50, 100, 68). Suppose that the purchase decision tree t

has the form given in Figure B.6a; in addition, suppose that the splits and leaves are indexed

as in Figure B.6b. Note that the top figure shows the purchase decision tree, in terms of

the products at each split, and the purchase decision at each leaf. The bottom figure shows

the indexing of nodes (for example, 8 corresponds to the split node that is furthest to the

bottom and to the left, while 30 corresponds to the second leaf from the right).

We first run Algorithm 6 on the problem, which carries out the steps shown below in

Table B.1. For this execution of the procedure, we assume that the following ordering of
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(a) Purchase decision tree.
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(b) Indexing of nodes in tree.

Figure B.6: Tree used in example of SplitMIO primal-dual algorithms.
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leaves (encoded by τ) is used:

20, 22, 30, 24, 25, 28, 29, 17, 19, 21, 23, 26, 27, 16, 18, 31.

Iteration Values of qC and qA,B Steps

` = 20 qC = 1.0, qA,B = 0.05 Set y20 ← 0.05

A10 event

` = 22 qC = 0.95, qA,B = 0.05 Set y22 ← 0.05

A11 event

` = 30 qC = 0.90, qA,B = 0.05 Set y30 ← 0.05

A15 event

` = 24 qC = 0.85, qA,B = 0.35 Set y24 ← 0.35

A3 event

` = 25 qC = 0.5, qA,B = 0.0 Set y25 ← 0.0

` = 28 qC = 0.5, qA,B = 0.15 Set y28 ← 0.15

B1 event

` = 29 qC = 0.35, qA,B = 0.0 Set y29 ← 0.0

` = 17 qC = 0.35, qA,B = 0.35 Set y17 ← 0.35

C event

break

Table B.1: Steps of primal procedure (Algorithm 6).

237



After running the procedure, the primal solution y is

y16 = 0.0 y17 = 0.35

y18 = 0.0 y19 = 0.0

y20 = 0.05 y21 = 0.0

y22 = 0.05 y23 = 0.0

y24 = 0.35 y25 = 0.0

y26 = 0.0 y27 = 0.0

y28 = 0.15 y29 = 0.0

y30 = 0.05 y31 = 0.0

The event set is E = {A10, A11, A15, A3, B1, C}, and the function f : E → leaves is

defined as

f(A10) = 20,

f(A11) = 22,

f(A15) = 30,

f(A3) = 24,

f(B1) = 28,

f(C) = 17.

We now run Algorithm 7, which carries out the steps shown below in Table B.2.
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Phase Calculation

Initialization αs ← 0, βs ← 0 for all s

Set γ γ ← r17 = 72

Loop: d = 1 β1 ← r28 − γ = 89− 72 = 17

Loop: d = 2 α3 ← r24 − γ − β1 = 97− 72− 17 = 8

Loop: d = 4 α10 ← r20 − γ = 100− 72 = 28

α11 ← r22 − γ = 100− 72 = 28

α15 ← r30 − γ − β1 = 100− 72− 17 = 11

Table B.2: Steps of dual procedure (Algorithm 7).

After running the procedure, the dual solution (α,β, γ) is

γ = 72

α1 = 0 β1 = 17

α2 = 0 β2 = 0

α3 = 8 β3 = 0

α4 = 0 β4 = 0

α5 = 0 β5 = 0

α6 = 0 β6 = 0

α7 = 0 β7 = 0

α8 = 0 β8 = 0

α9 = 0 β9 = 0

α10 = 28 β10 = 0

α11 = 28 β11 = 0

α12 = 0 β12 = 0

α13 = 0 β13 = 0

α14 = 0 β14 = 0

α15 = 11 β15 = 0
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Figure B.7: Visualization of feasibility of dual solution in SplitMIO algorithm example.

The feasibility of the dual solution is visualized in Figure B.7. The colored bars corre-

spond to the different dual variables; a colored bar appears multiple times when the variable

participates in multiple dual constraints. The height of the black lines for each leaf indicates

the value of r`, while the total height of the colored bars at a leaf corresponds to the value

γ +
∑

s∈LS(`) αs +
∑

s∈RS(`) βs (the left hand side of the dual constraint (4.18b). For each

leaf, the total height of the colored bars exceeds the black line, which indicates that all dual

constraints are satisfied.

The objective value of the primal solution is

r20 × y20 + r22 × y22 + r30 × y30 + r24 × y24 + r28 × y28 + r17 × y17

= 100× 0.05 + 100× 0.05 + 100× 0.05 + 97× 0.35 + 89× 0.15 + 72× 0.35

= 87.5
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The objective value of the dual solution is

γ + (1− x2)× β1 + x6 × α3 + x5 × α10 + x5 × α11 + x5 × α15

= 72.0 + 0.55× 17 + 0.35× 8 + 0.05× 28 + 0.05× 28 + 0.05× 11

= 87.5

B.3.2 Additional Results for Section 4.3.3

Table B.3 provides the same results as Table 4.2 for the T1 and T2 instances.

B.3.3 Comparison to Heuristic Approaches

In this experiment, we compare the performance of the three formulations to heuristic ap-

proaches. We will consider three different heuristic approaches:

1. LS: A local search heuristic, which starts from the empty assortment, and in each

iteration moves to the neighboring assortment which improves the expected revenue

the most. The neighborhood of assortments consists of those assortments obtained

by adding a new product to the current assortment, or removing one of the existing

products from the assortment. The heuristic terminates when there is no assortment

in the neighborhood of the current one that provides an improvement.

2. LS10: This heuristic involves running LS from ten randomly chosen starting assort-

ments. Each assortment is chosen uniformly at random from the set of 2n possible

assortments. After the ten repetitions, the assortment with the best expected revenue

is retained.

3. ROA: This heuristic involves finding the optimal revenue ordered assortment. More

formally, we define Sk = {i1, . . . , ik}, where i1, . . . , in corresponds to an ordering of the

products so that ri1 ≥ ri2 ≥ · · · ≥ rin , and we find arg maxS∈{S1,...,Sn}R
(F,λ)(S).
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We compare these heuristics against the best integer solution obtained by each of our

three MIO formulations, leading to a total of six methods for each instance. We measure

the performance of the solution corresponding to approach M using the metric ḠM, which

is defined as

ḠM = 100%× ZBestUB − ZM
ZBestUB

,

where ZBestUB is the best (lowest) upper bound obtained from among the three MIO formu-

lations, and ZM is the objective value of the solution returned by approach M.

Table B.4 shows the performance of the six approaches – LeafMIO, SplitMIO, Pro-

ductMIO, LS, LS10 and ROA – for each family of instances. The gaps are averaged

over the twenty instances for each combination of instance type, |F | and |leaves(t)|. We

can see from this table that in general, for the small instances, the solutions obtained by

the MIO formulations are either optimal or near optimal, while the solutions produced by

the heuristic approaches are quite suboptimal. For cases where the gap is zero for the MIO

formulations, the gap of LS ranges from 1.5% to 14.4%; the LS10 heuristic improves on

this, due to its use of restarting and randomization, but still does not perform as well as the

MIO solutions (gaps ranging from 0.5 to 7.4%). For the larger instances, where the gap of

the MIO solutions is larger, LS and LS10 still tend to perform worse. Across all of the in-

stances, ROA achieves much higher gaps than all of the other approaches (ranging from 14.6

to 40.6%). Overall, these results suggest that the very general structure of the decision forest

model poses significant difficulty to standard heuristic approaches, and highlight the value

of using exact approaches over inexact/heuristic approaches to the assortment optimization

problem.
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Type |F | |leaves(t)| G̃LeafMIO G̃SplitMIO G̃ProductMIO TLeafMIO TSplitMIO TProductMIO

T1 50 8 0.0 0.0 0.0 0.1 0.0 0.0

T1 50 16 0.0 0.0 0.0 0.4 0.2 0.0

T1 50 32 0.0 0.0 0.0 2.4 0.8 0.2

T1 50 64 0.0 0.0 0.0 40.9 7.5 1.4

T1 100 8 0.0 0.0 0.0 0.3 0.1 0.0

T1 100 16 0.0 0.0 0.0 3.7 1.5 0.3

T1 100 32 0.0 0.0 0.0 158.1 61.8 5.9

T1 100 64 1.8 0.4 0.0 3071.6 2700.6 178.7

T1 200 8 0.0 0.0 0.0 1.2 0.6 0.1

T1 200 16 0.0 0.0 0.0 334.2 380.5 13.8

T1 200 32 4.4 4.9 0.2 3600.1 3600.1 2093.5

T1 200 64 11.7 10.8 7.7 3600.1 3600.1 3600.0

T1 500 8 0.0 0.0 0.0 130.9 241.9 6.3

T1 500 16 8.1 12.0 5.0 3600.1 3600.2 3600.1

T1 500 32 17.9 19.6 14.7 3602.5 3600.1 3600.0

T1 500 64 22.9 22.6 19.8 3600.6 3601.4 3600.1

T2 50 8 0.0 0.0 0.0 0.1 0.0 0.0

T2 50 16 0.0 0.0 0.0 0.5 0.2 0.2

T2 50 32 0.0 0.0 0.0 5.4 0.8 0.8

T2 50 64 0.0 0.0 0.0 859.9 84.7 56.8

T2 100 8 0.0 0.0 0.0 0.3 0.1 0.1

T2 100 16 0.0 0.0 0.0 23.4 3.0 3.3

T2 100 32 2.9 0.0 0.0 3334.3 1436.0 767.4

T2 100 64 9.1 6.9 6.6 3600.3 3600.1 3600.0

T2 200 8 0.0 0.0 0.0 3.4 0.6 0.6

T2 200 16 6.1 1.8 1.4 3566.4 2683.8 2347.2

T2 200 32 15.0 12.9 12.6 3600.2 3600.1 3600.1

T2 200 64 20.5 18.5 18.5 3600.2 3600.2 3600.1

T2 500 8 1.9 0.0 0.0 3000.0 981.1 591.6

T2 500 16 20.8 19.1 18.8 3600.1 3600.3 3600.1

T2 500 32 27.9 25.4 25.0 3600.2 3600.1 3600.1

T2 500 64 33.5 30.7 30.4 3601.4 3600.1 3600.1

Table B.3: Comparison of final optimality gaps and computation times for LeafMIO,

SplitMIO and ProductMIO, for T1 and T2 instances.
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Type |F | |leaves(t)| ḠLeafMIO ḠSplitMIO ḠProductMIO ḠLS ḠLS10 ḠROA

T1 50 8 0.0 0.0 0.0 8.1 2.3 26.8
T1 50 16 0.0 0.0 0.0 9.8 4.0 31.2
T1 50 32 0.0 0.0 0.0 9.0 4.8 27.5
T1 50 64 0.0 0.0 0.0 10.0 6.4 28.6
T1 100 8 0.0 0.0 0.0 3.9 2.2 26.0
T1 100 16 0.0 0.0 0.0 6.6 3.5 26.2
T1 100 32 0.0 0.0 0.0 8.5 6.2 25.6
T1 100 64 0.0 0.0 0.0 9.9 6.8 24.5
T1 200 8 0.0 0.0 0.0 3.5 1.2 19.9
T1 200 16 0.0 0.0 0.0 5.5 2.7 21.7
T1 200 32 0.2 0.2 0.2 7.9 5.1 22.4
T1 200 64 8.2 7.8 7.7 14.6 13.7 25.6
T1 500 8 0.0 0.0 0.0 1.5 0.5 14.6
T1 500 16 5.0 5.2 5.0 8.5 6.6 19.5
T1 500 32 15.1 15.0 14.7 19.0 17.1 28.0
T1 500 64 20.3 20.3 19.8 23.3 22.2 30.4

T2 50 8 0.0 0.0 0.0 13.8 2.7 31.5
T2 50 16 0.0 0.0 0.0 11.6 4.3 32.2
T2 50 32 0.0 0.0 0.0 10.0 4.9 31.1
T2 50 64 0.0 0.0 0.0 11.6 6.8 30.4
T2 100 8 0.0 0.0 0.0 5.5 1.6 28.1
T2 100 16 0.0 0.0 0.0 8.2 3.6 30.8
T2 100 32 0.0 0.0 0.0 8.9 5.7 31.3
T2 100 64 7.1 6.6 6.6 17.3 12.2 31.8
T2 200 8 0.0 0.0 0.0 3.8 1.0 23.1
T2 200 16 1.4 1.4 1.4 6.8 3.9 25.3
T2 200 32 12.9 12.6 12.5 18.5 16.3 34.0
T2 200 64 19.3 18.3 18.5 24.4 21.2 37.0
T2 500 8 0.0 0.0 0.0 2.0 0.5 15.6
T2 500 16 18.9 18.8 18.7 21.5 19.6 31.7
T2 500 32 26.3 25.2 25.0 28.2 25.8 35.9
T2 500 64 32.4 30.5 30.4 31.4 29.5 38.4

T3 50 8 0.0 0.0 0.0 13.2 3.3 33.1
T3 50 16 0.0 0.0 0.0 14.4 5.9 34.9
T3 50 32 0.0 0.0 0.0 12.6 6.1 33.7
T3 50 64 0.0 0.0 0.0 13.9 7.4 33.0
T3 100 8 0.0 0.0 0.0 8.0 1.4 30.2
T3 100 16 0.0 0.0 0.0 10.0 3.4 32.6
T3 100 32 0.0 0.0 0.0 10.4 3.9 32.0
T3 100 64 3.6 3.5 3.5 13.1 8.9 33.4
T3 200 8 0.0 0.0 0.0 4.0 0.8 25.8
T3 200 16 0.0 0.0 0.0 6.5 2.2 26.5
T3 200 32 8.7 8.6 8.6 15.4 11.1 33.1
T3 200 64 16.0 15.7 15.6 23.0 18.3 35.6
T3 500 8 0.0 0.0 0.0 2.6 0.5 15.8
T3 500 16 13.7 13.7 13.8 17.4 14.4 27.9
T3 500 32 23.7 22.9 23.0 26.5 23.4 34.8
T3 500 64 31.7 30.9 30.8 33.0 30.2 40.6

Table B.4: Comparison of integer solutions from LeafMIO, SplitMIO and ProductMIO

against heuristic solutions from LS, LS10 and ROA.
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APPENDIX C

Appendix to Chapter 5

C.1 Omitted Proofs

C.1.1 Proof of Theorem 11 and 12

C.1.1.1 Preliminary Results and Lemmas

Lemma 12 and 13 bound the distance between the sample mean and the expected value of

a collection of i.i.d. vectors, in terms of `2 norm and `1 norm, respectively. Lemma 12 is

Lemma 4 from [100], which utilizes McDiarmid’s inequality to show that the scalar function

‖w̄−E [w̄] ‖2, where w̄ is the mean of K i.i.d. vectors w1, . . . ,wK , concentrates to zero with

rate O
(

1/
√
K
)

.

Lemma 12 [100] Let w1,w2, . . . ,wK be i.i.d. random vectors such that ‖wk‖2 ≤ C for

k = 1, . . . , K. Let w̄ = (1/K) ·
∑K

k=1 wk. Then for any δ ∈ (0, 1), we have, with probability

at least 1− δ,

‖w̄ − E [w̄] ‖2 ≤
C√
K
·

(
1 +

√
2 log

1

δ

)
.

Lemma 13 Let w1,w2, . . . ,wK be i.i.d. random vectors of size m such that ‖wk‖∞ ≤ C for

k = 1, . . . , K. Let w̄ = (1/K) ·
∑K

k=1 wk. Then for any δ ∈ (0, 1), we have, with probability

at least 1− δ,

‖w̄ − E [w̄] ‖1 ≤
mC√
K
·

(
1 +

√
2 log

1

δ

)
.
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Proof: Since ‖wk‖2 ≤
√
m‖wk‖∞ ≤

√
mC, we apply Lemma 12 and obtain that with

probability 1 − δ, ‖w̄ − E [w̄] ‖2 ≤
√
m · C/

√
K ·

(
1 +

√
2 log 1

δ

)
. Combining this with the

fact that ‖w̄ − E [w̄] ‖1 ≤
√
m · ‖w̄ − E [w̄] ‖2, we obtain the desired result. �

Lemma 14 is a standard result of sensitivity analysis of linear programming; see Chapter

5 of [14]. In fact, one can view the optimal objective value of problem P as a convex function

in b and show that the dual solution p is a subgradient at b.

Lemma 14 Let z(b) = min
{
cT0 y | A0y = b,y ≥ 0

}
and z(b′) = min

{
cT0 y | A0y = b′,y ≥ 0

}
.

Then z(b)− z(b′) ≤ pT (b−b′), where p is an optimal dual solution of the former problem.

C.1.1.2 Proofs of Main Theorems

We first establish a useful result.

Proposition 17 Let C be a nonnegative constant and define the linear program Pdistr as

in Theorem 11, i.e., Pdistr : min
{
cTx | Ax = b,0 ≤ x ≤ Cξ

}
. Let PJ be the column-

randomized LP solved by Algorithm 8. For any δ ∈ (0, 1), with probability at least 1 − δ

over the sample J , the following holds: if PJ is feasible, then

∆v(PJ) ≤ ∆v(Pdistr) +
C√
K
· (1 + ‖p‖∞ ·m · ‖A‖max) ·

(
1 +

√
2 log

2

δ

)

for any optimal solution p of problem DJ (the dual of problem PJ).

Proof: Let j1, . . . , jK be the set of indices sampled according to the distribution ξ by the

randomization scheme ρ. Let x∗0 be an optimal solution of the distributional counterpart

problem Pdistr. Consider the solution x′ that is defined as

x′ ≡ 1

K

K∑
k=1

x∗0jk
ξjk
· ejk ,
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where we use ej to denote the jth standard basis vector for Rn. In addition, define the vector

b′ as

b′ ≡ Ax′.

To prove our result, we proceed in three steps. In the first step, we show how we can prob-

abilistically bound ‖x′ − x∗0‖2. In the second step, we show how we can probabilistically

bound ‖b′ − b‖1. In the last step, we use the results of our first two steps, together with

sensitivity results for linear programs, to derive the required bound. In what follows, we use

I+ to denote the support of ξ, that is, I+ = {j ∈ [n] | ξj > 0}.

Step 1: Bounding ‖x′ − x∗0‖2. To show that x′ will be close to x∗0, let us first define

the vector wk as

wk =
x∗0jk
ξjk
· ejk

for each k ∈ [K]. The vectors w1, . . . ,wK constitute an i.i.d. collection of vectors, and

possess three special properties. First, observe that x′ is just the sample mean of w1, . . . ,wK .

Second, observe that the expected value of each wk can be calculated as

E[w] =
∑
j∈I+

ξj ·
x∗0j
ξj
· ej =

∑
j∈I+

x∗0j ej =
∑
j∈[n]

x∗0j ej = x∗0

where we use w to denote a random vector following the same distribution as each wk. In

the above, we note that the third step follows because the distributional counterpart Pdistr

includes the constraint x ≤ Cξ, so j /∈ I+ automatically implies that x∗0j = 0.

Finally, observe that the `2 norm of each wk can be bounded as

‖wk‖2 =

∣∣∣∣x∗0jkξjk
∣∣∣∣ · ‖ejk‖2 ≤ C · 1 = C,

where the inequality follows because x∗0 satisfies the constraint 0 ≤ x ≤ Cξ. With these

three properties in hand, and recognizing that ‖x′ − x∗0‖2 = ‖(1/K)
∑K

k=1 wk − E[w]‖2, we

can invoke Lemma 12 to assert that, with probability at least 1− δ/2,

‖x′ − x∗0‖2 ≤
C√
K
·

(
1 +

√
2 log

2

δ

)
. (C.1)
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Step 2: Bounding ‖b′ − b‖1. To show that b′ will be close b, we proceed similarly to

Step 1. In particular, we define bk for each k ∈ [K] as

bk ≡ Awk =
x∗0jk
ξjk
·Aejk =

x∗0jk
ξjk

Ajk .

Observe that by definition of bk, we have that the sample mean of b1, . . . ,bK is equal to b′:

1

K

K∑
k=1

bk =
1

K

K∑
k=1

Awk = A

(
1

K

K∑
k=1

wk

)
= Ax′ ≡ b′. (C.2)

In addition, the expected value of each bk can be calculated; letting b̃ denote a random

variable with the same distribution as each bk, we have

E[b̃] = AE[wk] = Ax∗0 = b.

Lastly, we can bound the `∞ norm of each vector bk as

‖bk‖∞ =

∥∥∥∥x∗0jkξjk Ajk

∥∥∥∥
∞

=

∣∣∣∣x∗0jkξjk
∣∣∣∣ · ‖Ajk‖∞ ≤ C‖A‖max,

where the inequality follows by the definition of ‖A‖max and the fact that x∗0 satisfies

0 ≤ x ≤ Cξ.

With these observations in hand, we now recognize that ‖b′ − b‖1 = ‖(1/K)
∑K

k=1 bk −

E[b̃]‖1, i.e., ‖b′ − b‖1 is just the `1 norm of the deviation of a sample mean from its true

expectation; we can therefore invoke Lemma 13 to assert that, with probability at least

1− δ/2,

‖b′ − b‖1 ≤
m · C · ‖A‖max√

K
·

(
1 +

√
2 log

2

δ

)
. (C.3)

Step 3: Completing the proof. With Steps 1 and 2 complete, we are now ready to

bound the optimality gap. For any vector b′′ ∈ Rm, we define the linear program PJ(b′′) as

PJ(b′′) : min
{
cTx | Ax = b′′,x ≥ 0, xj = 0 ∀j /∈ J

}
. (C.4)

Then v(PJ(b′)) ≤ cTx′; this follows because Ax′ = b′ and x′ ≥ 0, which means that x′ is a

feasible solution to problem PJ(b′). In addition, since cTx∗0 = v(Pdistr), we have

v(PJ(b′)) ≤ cTx′ = cT
(
x∗0 + (x′ − x∗0)

)
= v(Pdistr) + cT (x′ − x∗0). (C.5)
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If the column-randomized problem PJ is feasible, then by letting p be any optimal solution

of the dual of PJ and applying Lemma 14, we have

v(PJ) = v(PJ(b)) ≤ v(PJ(b′)) + pT (b− b′) (C.6)

≤ v(Pdistr) + cT (x′ − x∗0) + pT (b− b′) (C.7)

≤ v(Pdistr) + ‖c‖2 · ‖x′ − x∗0‖+ ‖p‖∞ · ‖b′ − b‖1 (C.8)

= v(Pdistr) + ‖x′ − x∗0‖2 + ‖p‖∞ · ‖b′ − b‖1, (C.9)

where the first inequality comes from Lemma 14, the second inequality comes from (C.5),

the third inequality comes from the Cauchy-Schwarz inequality and Hölder’s inequality, and

the last equality comes from the assumption that ‖c‖2 = 1.

We now bound expression (C.9) by applying the inequalities (C.1) and (C.3), each of

which hold with probability at least 1 − δ/2, and combining them using the union bound.

We thus obtain that, with probability at least 1− δ,

v(PJ) ≤ v(Pdistr) +
C√
K
· (1 + ‖p‖∞ ·m ·Amax) ·

(
1 +

√
2 log

2

δ

)
. (C.10)

Subtracting v(P ) from both sides gives us the required inequality. �

With Proposition 17, we can smoothly prove Theorem 11 as follows.

Proof of Theorem 11:

By invoking Proposition 17, we obtain that with probability at least 1−δ, if PJ is feasible,

then

∆v(PJ) ≤ ∆v(Pdistr) +
C√
K
· (1 + ‖p‖∞ ·m ·Amax) ·

(
1 +

√
2 log

2

δ

)
,

for any dual optimal solution p of DJ . To prove the theorem, let us set p to an optimal basic

feasible solution of the problem DJ . Note that such a dual optimal solution is guaranteed

to exist by the assumption that rank(AJ) = m. Since p is a basic feasible solution of DJ , it
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is automatically a basic (but not necessarily feasible) solution of the complete dual problem

D. By the definition of γ in the theorem, we have that ‖p‖∞ ≤ γ, and the theorem follows.

�

To prove Theorem 12, we prove a complementary result to Proposition 17.

Proposition 18 Let C, PJ and Pdistr be defined as in the statement of Proposition 17. For

any δ ∈ (0, 1), with probability at least 1− δ over the sample J , the following holds: if PJ is

feasible, then

∆v(PJ) ≤ ∆v(Pdistr) +
C√
K
· ‖cT − pTA‖2 ·

(
1 +

√
2 log

1

δ

)

for any optimal solution p of problem DJ (the dual of problem PJ).

Proof: We follow the proof of Proposition 17 until inequality (C.7) and continue as

follows:

v(PJ) = v(PJ(b)) ≤ v(PJ(b′)) + pT (b− b′)

≤ v(Pdistr) + cT (x′ − x∗0) + pT (b− b′)

= v(Pdistr) + cT (x′ − x∗0) + pTA(x∗0 − x′)

= v(Pdistr) +
(
cT − pTA

)
(x′ − x∗0)

≤ v(Pdistr) + ‖cT − pTA‖2 · ‖x′ − x∗0‖2,

(C.11)

where the bound holds for any optimal solution p of the sampled dual problem DJ . By

invoking Lemma 12 with δ to bound ‖x′ − x∗0‖2, and subtracting v(P ) from both sides, we

obtain the desired result. �

Using Proposition 18, we now prove Theorem 12.

Proof of Theorem 12: We invoke Proposition 18 and set p to be an optimal basic feasible

solution of the sampled dual problem DJ ; then pT = cTBA−1
B for some set of basic variables

B ⊂ [n]. In this case, we observe that the dual slack vector cT−pTA becomes cT−cTBA−1
B A,
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which is exactly the reduced cost vector c̄ associated with the basis B within the full problem

P . By using the hypothesis that any such reduced cost vector satisfies ‖c̄‖2 ≤ χ, we obtain

the desired result. �

C.1.2 Proof of Proposition 10

Let x∗0 be an optimal solution of P feas
distr. Define the solution x′ as

x′ =
1

K

K∑
k=1

x∗0jk
ξjk
· ejk .

With x′, we can bound the objective value of P feas
J as follows:

v(P feas
J ) ≤ ‖Ax′ − b‖1

= ‖Ax′ −Ax∗0 + Ax∗0 − b‖1

≤ ‖Ax′ −Ax∗0‖1 + ‖Ax∗0 − b‖1

= ‖Ax′ −Ax∗0‖1 + v(P feas
distr) (C.12)

where the first step follows by the fact that x′, when restricted to the indices in J , is a

feasible solution of P feas
J ; the third step follows by the triangle inequality; and the fourth

follows by the definition of x∗0 as an optimal solution of P feas
distr.

The only remaining step is to bound ‖Ax′−Ax∗0‖1. To do this, let us define the vector

vk as

vk =
x∗0jk
ξjk

Ajk

for each k ∈ [K]. The vectors v1, . . . ,vK are special for three reasons. First, their sample

mean is exactly

1

K

K∑
k=1

vk =
1

K

K∑
k=1

x∗0jk
ξjk

Ajk =
1

K

K∑
k=1

x∗0jk
ξjk

Aejk = Ax′.

Second, letting v denote a random variable following the same distribution as each vk, the
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expected value of each vk is

E[v] =
∑
j∈I+

ξj ·
x∗0j
ξj

Aj =
∑
j∈I+

x∗0j Aj =
∑
j∈[n]

x∗0jAj = Ax∗0

where I+ is the subset of indices in [n] such that ξj > 0. Note that the third step is justified

by observing that ξ∗0j = 0 whenever j /∈ I+ (this is because of the constraint 0 ≤ x ≤ Cξ in

the definition of P feas
distr).

Lastly, observe that each vk is bounded as

‖vk‖∞ =
x∗0jk
ξjk
· ‖Ajk‖∞ ≤ C ·H,

where we use the hypothesis that ‖Aj‖∞ ≤ ‖A‖max and the fact that x∗0 satisfies 0 ≤ x∗0 ≤

Cξ.

With all of these properties, the quantity ‖Ax′−Ax∗0‖1 can be re-written as ‖(1/K)
∑K

k=1 vk−

E[v]‖1, which we can bound using Lemma 13 (see Section C.1.1). Invoking Lemma 13, we

get that

‖Ax′ −Ax∗0‖1 = ‖ 1

K

K∑
k=1

vk − E[v]‖1

≤ mC‖A‖max√
K

(
1 +

√
2 log

1

δ

)
.

with probability at least 1− δ. Using this within the bound (C.12), we obtain that

v(P feas
J ) ≤ v(P feas

distr) + ‖Ax′ −Ax∗0‖1

≤ v(P feas
distr) +

C√
K
·m · ‖A‖max ·

(
1 +

√
2 log

1

δ

)
holds with probability at least 1− δ, which completes the proof. �

C.1.3 Proof of Theorem 14

We prove the result by showing that the bound U covering is a valid bound on ‖p‖∞ for any

feasible solution of the dual Dcovering
J , no matter what the sample of columns J is, and then
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invoking Proposition 12. Fix an i ∈ [m], and consider the LP

DB−covering
J : max{pi | pTAJ ≤ cTJ , p ≥ 0}. (C.13)

The optimal objective value of this problem, v(DB−covering
J ), is an upper bound on pi for any

feasible solution p of Dcovering
J (and thus, it is an upper bound on pi for any optimal solution

p of Dcovering
J ). Consider the dual of this problem:

PB−covering
J : min{cTJ x̃ | AJ x̃ ≥ ei, x̃ ≥ 0}, (C.14)

where ei is the ith standard basis vector for Rm. By weak duality, the objective value of any

feasible solution of PB−covering
J is an upper bound on v(DB−covering

J ).

We now construct a particular feasible solution. Let j′ be any column in J such that

Ai,j′ > 0; such a column is guaranteed to exist by our assumption on the matrix A. Define

a solution x̃ as

x̃j =

 1/Ai,j′ if j = j′,

0 otherwise.

It is easy to see that x̃ is a feasible solution of PB−covering
J , and that its objective value is

cTJ x̃ = cj′/Ai,j′ . Since this objective value is bounded by U covering, it follows that U covering ≥

max{pi | pTAJ ≤ cTJ , p ≥ 0}.

Since our choice of i was arbitrary, it follows that ‖p‖∞ ≤ U covering for any feasible

solution of Dcovering
J . The result then follows by invoking Proposition 12. �

C.1.4 Proof of Theorem 15

As with Theorem 14, we will prove the result by showing that Upacking is a valid upper bound

on ‖p‖∞ for any optimal solution of the dual problem Dpacking
J , no matter what J is, and

then invoking Proposition 13.

We first establish a useful property of W : the quantity W is actually an upper bound on
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v(P ). To see this, define the solution x̃(i) for each i as

x̃(i) =
bi
Ai,j∗i

· ej∗i ,

and define x̃ =
∑m

i=1 x̃(i). Let x be any feasible solution of the complete problem P packing.

Note that for each x̃(i), we have:

cT x̃(i) =
cj∗i bi

Ai,j∗i

≥
cj∗i
Ai,j∗i

[
n∑
j=1

Ai,jxj

]

=
cj∗i
Ai,j∗i

 ∑
j:Ai,j>0

Ai,jxj


≥

∑
j:Ai,j>0

Ai,j ·
cj
Ai,j
· xj

=
∑

j:Ai,j>0

cjxj.

where the first inequality follows because x satisfies Ax ≤ b, and the second follows by the

definition of j∗i . Using this bound, we have

cT x̃ =
m∑
i=1

cT x̃(i)

≥
m∑
i=1

 ∑
j:Ai,j>0

cjxj


≥

n∑
j=1

cjxj

= cTx,

where the second inequality follows by our assumption that for each j, there exists an i such

that Ai,j > 0.

Now, let us fix an i ∈ [m]. We wish to bound |pi| for an optimal solution p of Dpacking
J .

We can compute a bound on |pi| by solving the following LP:

DB−packing
J : max{pi | pTb ≤ v(P packing

J ), pTAJ ≥ cTJ , p ≥ 0}.
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Note that by weak duality, the feasible region of DB−covering
J is exactly the set of all optimal

solutions to the sampled dual problem, Dpacking
J . Observe that for any J , v(P packing

J ) ≤

v(P packing) ≤ W . Thus, a valid upper bound on v(DB−packing
J ) can be obtained by solving

the following relaxation of DB−packing
J :

DB−packing−rlx
J : max{pi | pTb ≤ W, p ≥ 0}.

This problem is a valid relaxation, because we have simply removed the constraint pTAJ ≥

cTJ , and we have replaced the value v(P packing
J ) with the larger value of W . The optimal

objective value of this relaxation is simply W/bi. Therefore, we obtain that for any dual

optimal solution p of Dpacking
J , |pi| ≤ W/bi. It follows that ‖p‖∞ ≤ maxi∈[m](W/bi) ≡

Upacking, for any optimal solution p of Dpacking
J . Invoking Proposition 13 with this bound

gives the desired result. �

C.1.5 Proof of Proposition 14

Let (x∗0, r∗0) be an optimal solution of P portfolio
distr . Consider the solution (x′, r′) defined relative

to the sample J :

x′ =
1

K

K∑
k=1

x∗0jk
ξjk

ejk , (C.15)

r′ =
∑
j∈[n]

αjx
′
j =

1

K

K∑
k=1

(x∗0jk/ξjk)αjk . (C.16)

The significance of (x′, r′) is that we will be able to show that r′ will be close to r∗0, and that

f(r′) will be close to f(r∗0) = Fdistr. However, (x′, r′) is not necessarily a feasible solution

to problem P portfolio, because x′ will in general not satisfy the unit sum constraint. To turn

it into a feasible solution for problem P portfolio, we consider the solution (x′′, r′′) obtained by

normalizing x′ by its sum:

x′′ =
x′

1Tx′
, (C.17)

r′′ =
r′

1Tx′
. (C.18)
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Note that (x′′, r′′) is a feasible solution of P portfolio
J .

To understand why we consider (x′, r′) and (x′′, r′′), we show how these two solutions can

be used to bound the difference between FJ and Fdistr. Let (x, r) be an optimal solution of

P portfolio
J . We now bound FJ − Fdistr as follows:

FJ − Fdistr = f(r)− f(r∗0)

≤ f(r′′)− f(r∗0)

= f(r′′)− f(r′) + f(r′)− f(r∗0)

≤ |f(r′′)− f(r′)|+ |f(r′)− f(r∗0)|

≤ L‖r′′ − r′‖2 + L‖r′ − r∗0‖2 (C.19)

where the first step follows by the definitions of (x, r) and (x∗0, r∗0); the second step follows

because (x′′, r′′) is a feasible solution of P portfolio
J ; the third and fourth step follow by algebra

and basic properties of absolute values; and the last step follows by the fact that f is Lipschitz

continuous with constant L.

We now proceed to show that ‖r′− r∗0‖2 and ‖r′′− r′‖2 can be bounded with high prob-

ability.

Bounding ‖r′−r∗0‖2: To bound this term, let us define for each k ∈ [K] the random vector

rjk as

rjk =
x∗0jk
ξjk
αjk .

We make three important observations about rj1 , . . . , rjK . First, for each k, the norm of rjk

is bounded as

‖rjk‖2 =

∥∥∥∥x∗0jkξjk αjk
∥∥∥∥

2

≤
x∗0jk
ξjk
· ‖αjk‖2 ≤

Cξjk
ξjk
·H = CH.

Second, observe that r′ is just the sample mean of rj1 , . . . , rjK , i.e., r′ = (1/K)
∑K

k=1 rjk .
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Lastly, we observe that the expected value of each rjk is

E[rjk ] =
∑

j∈[n]:ξj>0

ξj ·
x∗0j
ξj
αj =

∑
j∈[n]:ξj>0

x∗0j αj =
∑
j∈[n]

x∗0j αj = r∗0,

where the third step uses the fact that x∗0j = 0 when ξj = 0 (by virtue of the constraint

0 ≤ x ≤ Cξ). Therefore, the term ‖r′ − r∗0‖2 is just the distance between the sample mean

of an i.i.d. collection of random vectors from its expected value, where the `2 norm of each

random vector is bounded. We can therefore invoke Lemma 12 to assert that

‖r′ − r∗0‖2 ≤
CH√
K

(
1 +

√
2 log

2

δ

)
(C.20)

with probability at least 1− δ/2.

Bounding ‖r′′ − r′‖2: For this term, observe first that since r′′ = r′/(1Tx′), we can re-

arrange this to obtain that r′ = (1Tx′)r′′. Let us use s to denote the normalization constant,

i.e., s = 1Tx′. We can now bound ‖r′′ − r′‖2 in the following way:

‖r′′ − r′‖2 = ‖r′′ − sr′′‖2 = |s− 1| · ‖r′′‖2 .

We now bound |s− 1|. Note that s can be written as

s = 1Tx′ =
1

K

K∑
k=1

x∗0jk
ξjk

1Tejk =
1

K

K∑
k=1

x∗0jk
ξjk

.

Letting wk = (x∗0jk/ξjk), we obtain s = (1/K)
∑K

k=1wk; in other words, s is the average

of K i.i.d. random variables, w1, . . . , wK . Note that each wk has expected value E[wk] =∑
j∈[n]:ξj>0(x∗0j /ξj) · ξj =

∑
j∈[n] x

∗0
j = 1; therefore, the term |s − 1| represents how much

the sample mean s deviates from its expected value of 1. We also observe that each wk is

contained in the interval [0, C]. Therefore, using Hoeffding’s inequality, we obtain that

Pr[|s− 1| > ε] = Pr[|s− E[s]| > ε] ≤ 2 · exp

(
−2Kε2

C2

)
, (C.21)
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for any ε > 0; by setting ε = C
√

log(4/δ)/(2K), we obtain that

|s− 1| ≤ C

√
1

2K
log

4

δ
, (C.22)

with probability at least 1− δ/2.

With this bound in hand, let us now bound ‖r′′‖2. Observe that

‖r′‖2 ≤
1

K
·
K∑
k=1

(
x∗0jk
ξjk

)
· ‖αjk‖2 ≤

1

K
·
K∑
k=1

(
x∗0jk
ξjk

)
·H = s ·H,

so it follows that ‖r′′‖2 = (1/s)‖r′‖2 ≤ H. We therefore have that ‖r′′ − r′‖2 satisfies

‖r′′ − r′‖2 ≤
CH√
K

√
1

2
log

4

δ
,

with probability at least 1− δ/2.

Completing the proof : We now put these two bounds together to complete the bound in

(C.19). Combining inequalities (C.1.5) and (C.20) together using the union bound, we have

that with probability at least 1− δ,

FJ − Fdistr ≤ L‖r′′ − r′‖2 + L‖r′ − r∗0‖2

≤ L · CH√
K

√
1

2
log

4

δ
+ L · CH√

K

(
1 +

√
2 log

2

δ

)

≤ CHL√
K

(
1 + 3

√
log

4

δ

)
.

By moving Fdistr to the right hand side, and subtracting F from both sides, we obtain the

desired inequality. �

C.1.6 Proof of Theorem 16

Before we can prove Theorem 16, we need to establish two auxiliary results. The first result is

the analog of Lemma 12 for a collection of possibly dependent random variables, formulated

in terms of forest complexity.
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Lemma 15 Let w1,w2, . . . ,wK be K random vectors with same distribution. Let G be the

dependency graph of w1,w2, . . . ,wK. In addition, assume ‖wk‖2 ≤ C for k = 1, . . . , K. Let

w̄ = (1/K) ·
∑K

k=1 wk. Then for any δ ∈ (0, 1), we have, with probability at least 1− δ,

‖w̄ − Ew̄‖2 ≤ C ·

(√
K + 2 · |E(G)|

K2
+

√
2 · Λ(G)

K2
· log

1

δ

)
.

Proof of Lemma 15: Define a space W ≡ {z | ‖z‖2 ≤ C}. Consider a scalar function f :

WK → R defined as

f(z1, z2, . . . , zK) =

∥∥∥∥ 1

K
(z1 + z2 + . . .+ zK)− Ew̄

∥∥∥∥
2

For any k ∈ [K] and any z1, . . . , zk, . . . , zK , z
′
k ∈ W , we have

|f(z1, . . . , zk, . . . , zK)− f(z1, . . . , z
′
k, . . . , zK)| ≤ ‖zk − z′k‖

K
≤ 2C

K
.

Therefore, f has the bounded differences property (note that in [79], this is referred to as

the c-Lipschitz property; see Definition 2.1 of that paper). By Theorem 3.6 of [79], for any

ε > 0, we have

Pr [f(w1, . . . ,wK)− Ef(w1, . . . ,wK) ≥ ε] ≤ exp

(
− K2ε2

2C2 · Λ(G)

)
On the other hand, define ui = wi − Ewi. Then

E
[
uTi uj

]
=

E
[
wT
i wj

]
− ‖Ewi‖2

2 ≤ E [‖wi‖2‖wj‖2] ≤ C2, if i = j or 〈i, j〉 ∈ E(G),

0, otherwise.

Therefore,

E
[
f(w1, . . . ,wK)2

]
=

∥∥∥∥ 1

K
(w1 + . . .+ wK)− Ew̄

∥∥∥∥2

2

=
1

K2

 ∑
i,j∈[K]

E
[
uTi uj

]
=

1

K2

∑
i∈[K]

E
[
uTi ui

]
+

∑
〈i,j〉∈E(G)

E
[
uTi uj

]
≤ C2 · K + 2|E(G)|

K2
.
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As a result,

Ef(w1, . . . ,wK) ≤
√

Ef(w1, . . . ,wK)2 ≤ C ·
√
K + 2|E(G)|

K2
,

where the first inequality comes from the concavity of square root function. With all the

results above, we have

P

[
f(w1, . . . ,wK)− C ·

√
K + 2|E(G)|

K2
≥ ε

]
≤ P [f(w1, . . . ,wK)− Ef(w1, . . . ,wK) ≥ ε]

≤ exp

(
− K2ε2

2C2 · Λ(G)

)
Let ε =

√
2C2Λ(G) log(1/δ)/K2. Then with probability at least 1− δ, we have

f(w1, . . . ,wK) ≤ C ·
√
K + 2|E(G)|

K2
+ C

√
2 · Λ(G)

K2
log

(
1

δ

)
.

We thus prove the statement. �

From Lemma 15, we can also straightforwardly prove the following result, which is the

analog of Lemma 13 for possibly dependent random variables.

Corollary 1 Let w1,w2, . . . ,wK be K random vectors of size m and with same distribution.

Let G be the dependency graph of w1,w2, . . . ,wK. In addition, assume ‖wk‖∞ ≤ C for

k = 1, . . . , K. Let w̄ = (1/K) ·
∑K

k=1 wk. Then for any δ ∈ (0, 1), we have, with probability

at least 1− δ,

‖w̄ − Ew̄‖1 ≤
√
m · C ·

(√
K + 2 · |E(G)|

K2
+

√
2 · Λ(G)

K2
· log

1

δ

)
.

With these two results, we can now proceed with proving Theorem 16. We define x∗0

and construct random vectors wj1 , . . . ,wjK , bj1 , . . . ,bjK as in the proof of Proposition 17;

we note that this construction is valid even if there exists dependency between the indices j1,
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. . ., and jK . We further define x′ as the sample mean of wj1 , . . . ,wjK and b′ as the sample

mean of bj1 , . . . ,bjK . By Proposition 17 and Expression (C.9), we have

∆v(PJ) ≤ ∆v(Pdistr) + ‖x′ − x∗0‖2 + ‖p∗J‖∞ · ‖b′ − b‖1. (C.23)

By invoking Lemma 15, with probability at least 1− δ,

‖x′ − x∗0‖2 ≤ C ·

(√
K + 2 · |E(G)|

K2
+

√
2 · Λ(G)

K2
· log

1

δ

)
. (C.24)

Similarly, by Corollary 1, with probability at least 1− δ,

‖b′ − b‖1 ≤
√
m · C · ‖A‖max ·

(√
K + 2 · |E(G)|

K2
+

√
2 · Λ(G)

K2
· log

1

δ

)
. (C.25)

Combining inequalities (C.23), (C.24), and (C.25) and applying the union bound, we con-

clude that, with probability at least 1−δ, the following holds: if PJ is feasible and rank(AJ) =

m,

∆v(PJ) ≤ ∆v(Pdistr) + C · (1 +mγ‖A‖max) ·

(√
K + 2|E(G)|

K2
+

√
2Λ(G) log(2/δ)

K2

)
.

(C.26)

Similarly, by Proposition 17 and inequality (C.11), we have

∆v(PJ) ≤ ∆v(Pdistr) + χ · ‖x′ − x∗0‖2. (C.27)

Combining with inequality (C.24), we conclude that, with probability 1 − δ, the following

holds: if PJ is feasible and rank(AJ) = m,

∆v(PJ) ≤ ∆v(Pdistr) + C · χ ·

(√
K + 2|E(G)|

K2
+

√
2Λ(G) log(1/δ)

K2

)
, (C.28)

which completes the proof. �
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[34] Y.-C. Chen and V. V. Mǐsić. Decision forest: A nonparametric approach to modeling
irrational choice. Management Science, 2022.

[35] I. Contreras, J.-F. Cordeau, and G. Laporte. Benders decomposition for large-scale
uncapacitated hub location. Operations Research, 59(6):1477–1490, 2011.

[36] J.-F. Cordeau, F. Furini, and I. Ljubić. Benders decomposition for very large scale
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