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Abstract 

Students who explore a new concept prior to receiving direct 
instruction often demonstrate better conceptual understanding 
compared to traditional tell-then-practice methods. Often, 
exploratory learning activities have students invent solutions 
to a novel problem targeting the new concept. However, 
exploring prior to instruction is working memory demanding, 
inducing high cognitive load. The current experiments varied 
the guidance provided during exploration and examined 
subsequent learning. In Experiment 1, participants explored 
the procedures and concept of statistical variance prior to 
receiving instruction in one of three conditions: invention, 
completion problem, or worked example. Exploring using a 
worked example led to the highest learning outcomes and the 
least cognitive load. In Experiment 2, students in an 
undergraduate statistics class completed invention or worked 
example problems either before or after instruction. Learning 
was greater when problem solving preceded instruction. 
However, exploring using a worked example did not improve 
learning over the more cognitively-demanding invention 
problem. These findings demonstrate the benefits of 
exploratory learning in the classroom compared to more 
traditional tell-then-practice approaches. However, more 
research is needed to determine when and how guidance will 
enhance exploration. 

Keywords: exploratory learning; completion problems; 
worked examples; cognitive load; education 

Introduction 

Typically, instructors directly teach mathematical problem-

solving procedures and concepts, followed by problem-

solving practice. An inverse approach, generally referred to 

as exploratory learning (DeCaro & Rittle-Johnson, 2012; 

Weaver, Chastain, DeCaro, & DeCaro, 2018), provides 

students an opportunity to explore a new concept prior to 

instruction. This approach has been shown to benefit 

conceptual understanding relative to traditional instruct-

then-practice approaches (see Kapur, 2016; Loibl, Roll, & 

Rummel, 2016; Schwartz, Lindgren, & Lewis, 2009).  

One specific method of exploratory learning is 

learning-by-inventing (LBI); students are asked to invent a 

method for solving a novel problem targeting the concept to 

be learned (Schwartz & Martin, 2004). Afterwards, students 

receive direct instruction. Importantly, exploratory learning 

methods such as LBI are not pure discovery learning, but 

combine aspects of both constructivist-inspired and direct 

instruction approaches. Previous studies have shown that 

LBI enhances students’ understanding of concepts such as 

statistical variance and standard deviation (e.g., Schwartz & 

Martin, 2004; Wiedmann, Leach, Rummel, & Wiley, 2012). 

Cognitive Mechanisms Supporting LBI 

LBI is thought to improve conceptual understanding 

through several key mechanisms. First, LBI helps students 

activate prior knowledge of relevant concepts (Kapur, 

2012). This process enables students to prepare preexisting 

schemas in long-term memory to integrate new information 

from instruction (Sweller, Jeroen, & Paas, 1998).  

Second, invention activities may improve metacognition, 

by helping students become aware of gaps between their 

current understanding and that required by the problem 

(Loibl & Rummel, 2014a). Awareness of knowledge gaps 

may increase interest and attention to subsequent 

instruction, by providing a “need to know” (Glogger-Frey et 

al., 2015; Loibl et al., 2016; Rotgans & Schmidt, 2014; 

Schwartz & Martin, 2004). In contrast, tell-then-practice 

methods lead students to perceive that they understand the 

material better than they actually do and decrease attention 

and effort (DeCaro & Rittle-Johnson, 2012; Renkl, 1999).  

Third, LBI may enable students to recognize deep 

structural features of the problem (Loibl, Roll, & Rummel, 

2016; Schwartz & Martin, 2004). Students must explore the 

problem space by testing hypotheses using a trial and error 

process (DeCaro & Rittle-Johnson, 2012). Students begin to 

determine which features are important for solving the 

problem, and which are not (Glogger-Frey et al., 2015; 

Loibl et al., 2016; Schwartz & Martin, 2004). This process 

supports deeper understanding.  

Rich Datasets 

Invention problems typically help to achieve these key 

learning mechanisms by incorporating rich datasets (Loibl et 

al., 2016). One such problem used by Weidmann et al. 

(2012) asks students to invent a formula to calculate 

consistency for three small datasets. Following, students 

learn the statistical concepts and procedures of variance and 

standard deviation. Such problems encourage students to 

explore previously learned methods for analyzing data (e.g., 

calculating the mean, drawing bar/line graphs), activating 

prior knowledge. Additionally, because the mean of each 

dataset is equal, students cannot simply calculate the mean. 

When students reach an impasse like this, they become 

aware of gaps in their knowledge. Structural features are 
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highlighted when students look further for similarities and 

differences between cases (Schwartz & Martin, 2004).  

The Case Against Invention 

Although exploring a problem prior to instruction helps 

students develop basic experience with a new concept, 

minimally guided learning activities such as LBI have been 

criticized. Kirschner, Sweller, and Clark (2006) argue that 

requiring students to explore a large problem space taxes 

working memory resources critical for schema development. 

In addition, students rarely develop optimal solution 

approaches (Kapur, 2012). If students do not receive 

feedback, they may continue to use their suboptimal 

solutions on posttests following instruction (Kirschner et al., 

2006; Sweller et al., 1998). In support of this critique, 

Glogger-Frey et al. (2015) and Likourezos & Kalyuga 

(2016) have shown that cognitive load is higher following 

LBI when compared with guided alternatives.  

An Alternative Approach to Invention 

In response to the above criticisms, researchers have 

explored alternatives to LBI (e.g., Glogger-Frey et al., 2015; 

Likourezos & Kalyuga, 2016; Loibl & Rummel, 2014b). 

One such approach is to have students explore worked 

examples prior to instruction. Worked examples are 

problems for which completely worked-out solutions are 

provided, usually supplemented with brief explanations (cf. 

Glogger-Frey et al., 2015). However, worked examples in 

this context are not entirely akin to direct instruction. 

Studying worked examples prior to instruction allows 

learners to explore the conceptual bases of appropriate 

solution approaches vicariously by studying someone else’s 

steps. Worked examples decrease working memory demand 

(i.e., cognitive load) by eliminating the problem space 

(Sweller et al., 1998). Previous research comparing worked 

examples with invention problems have reported mixed 

results, with some finding increased learning following 

worked examples (e.g., Glogger-Frey et al. 2015), and 

others showing comparable learning outcomes (e.g., 

Likourezos & Kalyuga, 2016). 

Experiment 1 

By requiring learners to navigate a large problem space 

during exploration, invention problems may induce high 

cognitive load, potentially reducing learning. In Experiment 

1, we examined the learning impact of providing more 

guidance during LBI. Using materials adapted from 

Weidmann et al. (2012), participants explored the concept 

of variance using a rich dataset, then received direct 

instruction. The level of guidance provided during 

exploration was manipulated in three conditions:  pure 

invention (no guidance), completion problem (partial 

guidance), and worked example (full guidance). Completion 

problems looked exactly like worked examples, except that 

some items were left blank for participants to fill in. In this 

way, completion problems are a middle-ground between 

worked examples and unguided problems, because they 

reduce the problem space while enabling learners to 

generate their own solutions (Sweller et al., 1998). 

Completion problems have yet to be explored in a LBI 

context. In addition to measuring learning, we assessed 

perceptions of cognitive load, knowledge gaps, and interest. 

We hypothesized that both completion problems and 

worked examples would reduce cognitive load and increase 

learning, compared to invention problems. We also explored 

whether completion problems would lead to better learning 

than worked examples. One possibility is that, by reducing 

cognitive load and eliciting generation of partial problem 

solutions, completion problems would lead to better 

learning than worked examples. Another possibility is that 

reducing cognitive load would be sufficient, and completion 

problems and worked examples would lead to comparable 

learning effects. We further hypothesized that perceived 

knowledge gaps and interest would be equal or higher in the 

invention condition (Glogger-Frey et al., 2015). 

Methods 

Participants 

Undergraduate students (N=123; age M=19.02, SD=2.04; 

63.6% female) participated for credit in an introductory 

psychology course. Participants were randomly assigned to 

one of three conditions: Invention (n=40), completion 

problem (n=42), or worked example (n=41). Four additional 

participants were excluded from analyses for failure to 

complete the posttest. 

Materials 

Pretest Two items measured prior knowledge of statistics. 

A central tendency problem asked participants to find the 

mean, median, and mode of an array of numbers (adapted 

from Paas, 1992). A variance problem provided a table of 

cinema attendance data and asked participants to determine 

mathematically which of two cinemas enjoys the most 

consistent attendance (adapted from Kapur, 2012). 

 

Problem-Solving Activity The problem-solving activity 

(adapted from Weidmann et al., 2012) asked participants to 

help a group of managers determine which of three tea 

growers produces tea with the most consistent levels of 

antioxidants. A table listed antioxidant levels for each tea 

grower over the past six years. Participants in the invention 

condition were instructed to invent a formula to calculate 

consistency for each tea grower to determine which grower 

produces the most consistent levels of antioxidants. 

Participants were instructed to complete the calculations and 

to decide on the most consistent tea grower. Participants in 

the worked example condition received the same problem 

with standard deviation completely worked out for each tea 

grower along with brief explanations for the calculations. 

The tea grower with the most consistent levels of 

antioxidants was circled, and participants were instructed to 

study the calculations. The completion problem condition 
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was the same as the worked example condition, with some 

blanks for participants to fill in. 

 

Questionnaire Cognitive load was measured with the 

Mental Effort Rating Scale (Paas, 1992; “In solving or 

studying the previous problem I invested…”). Participants 

responded on a scale from 1 (very, very low mental effort) 

to 9 (very, very high mental effort). Interest was measured 

with three items (McDonald’s ω=.88) adapted from Ryan’s 

(1982) Intrinsic Motivation Inventory (e.g., “I found this 

learning activity interesting.”) Perceived knowledge gaps 

were measured with four items (McDonald’s ω=.89) 

adapted from Flynn and Goldsmith (1999; e.g., “I do not 

feel very knowledgeable about calculating consistency.”) 

Interest and perceived knowledge gaps were rated on a 5-

point Likert scale (1= strongly disagree; 5=strongly agree). 

 

Instruction The direct instruction was provided in a text 

passage adapted from Weidmann et al. (2012). Participants 

were told that engineers were interested in comparing which 

trampoline (A or B) has the most consistent levels of 

bounciness. A table displaying data for inches of rebound 

for trampoline A was displayed followed by the canonical 

formula and step-by-step instructions for how to calculate 

standard deviation. Text-boxes explained concepts and 

defined mathematical calculations. A table displaying inches 

of rebound for Trampoline B was then presented, followed 

by three questions to help participants practice and further 

develop their understanding of standard deviation. 

 

Posttest The posttest measured procedural fluency (1 item), 

conceptual understanding (2 items), and transfer (1 item). 

Items were drawn from Weidmann et al. (2012) and a 

psychological statistics exam. All items were scored on a 

four-point scale. Twenty percent of the items were scored 

by a second observer (interrater reliability: r=.90). 

Procedure 

Participants were run in sessions of up to fifteen in a 

reserved classroom. After providing consent, participants 

were instructed that they would be learning about variance 

in statistics. Participants were provided with a standard 

calculator and completed an individual differences 

questionnaire and pretest (8 min). The questionnaire was 

administered as part of a larger study and will not be 

discussed further. 

Afterwards, participants worked individually the 

problem-solving activity (15 min). Packets were interleaved 

by condition, and participants were randomly assigned to 

condition based on which packet they received. Following, 

participants completed the questionnaire and instruction (15 

min). Then participants completed the posttest (30 min). 

Finally, participants were debriefed. 

Results 

Preliminary Analyses Pretest items were examined as a 

function of condition, revealing no effect on the central 

tendency item (invention: M=2.04, SD=0.92; completion 

problem: M=2.31, SD=0.87; worked example: M=2.50, 

SD=0.74), F(2,120)=1.52, p=.224. However, condition had 

a significant effect on the variance item, (invention: 

M=1.10, SD=0.65; completion problem: M=1.52, SD=0.67; 

worked example: M=1.02, SD=0.80), F(2,120)=5.75, 

p=.004. Despite random assignment, prior knowledge of 

variance was unequal across conditions. Thus, this variable 

was used as a covariate in all subsequent analyses. 

 

Learning Outcomes Posttest scores were examined using a 

3 (condition: invention, completion problem, worked 

example) × 3 (posttest subscale: procedural, conceptual, 

transfer) repeated measures ANCOVA, with condition as a 

between-subjects factor and posttest subscale as a within-

subjects factor. The assumption of sphericity was violated, 

p=.017. Therefore, the lower-bound statistic was used. A 

main effect of posttest subscale was found, F(1,119)=16.05, 

p<.001, ηp
2=.14. Post-hoc comparisons with Bonferroni 

correction (α=.016) revealed that students scored higher on 

procedural (M=3.30, SD=0.94) compared with conceptual 

(M=2.23, SD=1.10) and transfer (M=2.41, SD=1.03) 

subscales, p<.001. Conceptual and transfer subscales did not 

differ significantly, p=.094. A marginally-significant main 

effect of condition was found, F(2,119)=3.01, p=.053, 

ηp
2=.05 (see Figure 1). Planned comparisons revealed that 

the completion problem (M=2.71, SD=0.85) did not improve 

posttest performance compared to invention (M=2.40, 

SD=0.85), p=.098. However, the worked example (M=2.83, 

SD=0.73) led to significantly higher posttest performance 

than invention, p=.019. There was no interaction between 

condition and posttest subscale, F<1, indicating that the 

effects of condition occurred across the subscales.  

 

 
Figure 1: Posttest scores as a function of condition. Error 

bars represent 95% confidence intervals. 

 

Questionnaires A significant effect of condition was found 

for cognitive load, F(2,118)=3.20, p=.045, ηp
2=.05. Planned 

comparisons demonstrated that completion problems 

(M=4.98, SD=2.02) did not lead to significantly less 

cognitive load than invention (M=5.70, SD=0.99), p=.063. 

Worked examples (M=4.80, SD=1.86) led to significantly 

less cognitive load than invention, p=.019. 
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A significant effect of condition was found for perceived 

knowledge gaps, F(2,117)=13.83, p<.001, ηp
2=.19. Planned 

comparisons revealed that completion problems (M=2.79, 

SD=1.09) and worked examples (M=2.85, SD=0.93) led to 

significantly lower perceived knowledge gaps than 

invention (M=3.90, SD=0.80), ps<.001.  

Interest did not differ as a function of condition 

(Invention: M=3.13, SD=0.91; Completion problem: 

M=3.43, SD=0.84; Worked example: M=3.20, SD=.95), 

F(2,116)=1.62, p=.203, ηp
2=.02. 

Discussion 

Participants who studied a worked example prior to 

instruction outperformed their inventing counterparts on the 

posttest, replicating the effects found by Glogger-Frey et al. 

(2015). Additionally, studying a worked example led to 

significantly less cognitive load than inventing. In contrast, 

participants in the completion problem condition did not 

outperform those in the invention condition, and also rated 

similar cognitive load. These results suggest that, despite 

allowing for generation, completion problems may be a less 

viable alternative to inventing compared to studying a 

worked example prior to instruction. 

We did not find support for the notion that knowledge 

gaps experienced during minimally guided activities 

enhance learning from subsequent instruction. Although 

participants in the invention condition experienced the 

greatest knowledge gaps, they showed the poorest learning 

outcomes. Furthermore, we did not find support for the idea 

that the invention problem increases interest relative to the 

other exploratory learning conditions. Despite being more 

proscribed, worked examples did not reduce interest. 

Experiment 2 

Previous studies have only explored guided alternatives to 

inventing within an exploratory learning context (Glogger-

Frey et al., 2015; Likourezos & Kalyuga, 2016). Experiment 

2 utilized a 2 (activity: invention, worked example) × 2 

(order of instruction: explore-first, instruct-first) factorial 

design to compare the use of worked examples and 

invention problems both before and after instruction. 

Experiment 2 also attempted to replicate the findings from 

Experiment 1 in a psychological statistics course. 

We hypothesized that those in the explore-first conditions 

would outperform those in the instruct-first conditions on 

the posttest. We also hypothesized that those who explored 

using a worked example would outperform those who 

invented prior to instruction. We also hypothesized that 

cognitive load would be highest for those who invented 

prior to instruction, compared to the other conditions.  

Methods 

Participants 

Participants were 190 undergraduate students (Age 

M=20.67, SD=4.33; 72.9% female) enrolled in three 

sections of a psychological statistics course, across two 

semesters, with two different instructors of record. 

Participants were randomly assigned to one of four 

conditions: Explore-first/worked example (n=46), explore-

first/invention (n=48), instruct-first/worked example (n=47), 

or instruct-first/invention (n=49). Additional participants 

were excluded from analyses for failure to provide consent 

(n=3), failure to complete the posttest (n=11), absence on 

the day of the posttest or inability to link their posttest to 

their first session packet (e.g., no name on the packet; 

n=24), or for having participated in Experiment 1 (n=5). 

Materials 

The materials used in Experiment 2 were identical to those 

in Experiment 1, aside from three changes: (1) Because the 

variance problem on the pretest may serve as an invention 

activity itself (Kapur, 2016), the pretest was cut from the 

procedure; (2) A prompt in the worked example asked 

participants if they agreed with the chosen tea grower; (3) 

The consent form, problem-solving activity, questionnaire, 

and instruction were combined into one packet, with signals 

to stop and wait for instruction at the end of each section.  

There were four different packets—one per condition. 

Invention and worked example conditions were the same as 

in Experiment 1. These problem-solving activities were 

provided either before instruction (explore-first conditions) 

or afterwards (instruct-first conditions). As in Experiment 1, 

20% of posttests were scored by a second rater (interrater 

reliability: r=.90).  

Procedure 

Participants completed the study across two lab sessions of 

their psychological statistics course. Both sessions occurred 

at the beginning of the semester, prior to lectures covering 

standard deviation and variance, and were 1-2 weeks apart. 

The first session included the problem-solving activity, 

questionnaire, and direct instruction. The second session 

included the posttest. Participants were provided with 

standard calculators in both sessions. 

In the first session, participants were randomly assigned 

to condition based on the packet they received, which were 

interleaved. Following consent, participants completed the 

first section of the packet (problem-solving activity/ 

questionnaire or direct instruction, depending on condition; 

15 min). Participants then completed the second section 

(problem-solving activity/questionnaire or direct instruction, 

depending on condition; 15 min). In the second session, 

participants completed the posttest (30 min) and were 

debriefed. 

Results 

As described above, data were gathered from psychological 

statistics courses led by two different instructors. Because of 

possible differences between instructors, this variable was 

included as a covariate in all analyses.  
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Learning Outcomes Posttest performance was examined 

with a 3 (posttest subscale: procedural, conceptual, transfer) 

× 2 (order of instruction: explore-first, instruct-first) × 2 

(activity: invention, worked example) ANCOVA, with 

posttest subscale as a within-subjects factor and order of 

instruction and activity as between-subjects factors. The 

assumption of sphericity was violated, p<.001, so the lower-

bound statistic was used. A significant effect of posttest 

subscale was found F(1,185)=32.74, p<.001, ηp
2=.14. Post-

hoc comparisons with Bonferroni correction (α=.016) 

revealed that participants scored higher on procedural 

(M=3.03; SD=1.12) than conceptual (M=2.21; SD=1.21) and 

transfer subscales (M=2.53; SD=1.19), ps<.001. Transfer 

scores were higher than conceptual understanding, p<.001. 

Supporting our hypothesis, a main effect of order of 

instruction was found, with those in the explore-first 

condition outperforming their instruct-first counterparts, 

F(1,185)=4.29, p=.040, ηp
2=.02 (Figure 2). There was no 

main effect of activity or interaction, Fs<1. A planned 

comparison revealed similar posttest scores for those who 

explored a worked example (M=2.76; SD=1.10) or invented 

(M=2.73; SD=0.99) prior to instruction, in contrast to our 

hypothesis, p>.05. 

 

 
Figure 2: Posttest scores as a function of condition. Error 

bars represent 95% confidence intervals.  

 

Questionnaires An ANCOVA revealed a significant main 

effect of activity on cognitive load, with those in the worked 

example conditions reporting less cognitive load (M=4.91; 

SD=1.64) than those in the invention conditions (M=5.57; 

SD=1.49), F(1,175)=7.75, p=.006, ηp
2=.04. Order of 

instruction did not significantly affect cognitive load, 

F(1,175)=1.07, p=.302, ηp
2=.01. There was no interaction, 

F(1,175)=2.82, p=.095, ηp
2=.02. Supporting our hypothesis, 

planned comparisons showed that, in the explore-first 

conditions, those who studied a worked example (M=4.59, 

SD=1.61) reported less cognitive load than those who 

invented (M=5.65, SD=1.31), p=.001. In the instruct-first 

conditions, cognitive load ratings after a worked example 

(M=5.24; SD=1.64) were comparable to inventing (M=5.49; 

SD=1.69), p=.449. 

For perceived knowledge gaps, an ANCOVA revealed a 

significant main effect of order of instruction, with those in 

the explore-first conditions (M=3.36; SD=1.05) reporting 

greater knowledge gaps than those in the instruct-first 

conditions (M=2.76; SD=0.96), F(1,175)=16.99, p<.001, 

ηp
2=.09. There was also a main effect of activity, with those 

who invented (M=3.33; SD=1.06) reporting greater 

knowledge gaps than those who studied a worked example 

(M=2.83; SD=1.05), F(1,175)=9.07, p=.003, ηp
2=.05. These 

effects were qualified by a significant interaction, 

F(1,175)=20.46, p<.001, ηp
2=.11. Planned comparisons 

showed that those who invented prior to instruction 

(M=3.88; SD=0.84) perceived greater knowledge gaps than 

their worked example counterparts (M=2.82; SD=0.97), 

p<.001. Perceived knowledge gaps were similar for both 

activity groups that received instruction first, p=.351. 

For interest, an ANCOVA revealed a non-significant 

main effect of order of instruction on interest, with those in 

the instruct-first condition (M=3.50; SD=.88) tending to 

report higher interest than those in the explore-first 

condition (M=3.27; SD=.75), F(1,175)=3.38, p=.068, 

ηp
2=.02. No main effect of activity, F<1, or interaction, 

F(1,175)=1.25, p=.265, ηp
2=.01, were found. 

General Discussion 

In Experiment 1, learning outcomes were greatest for those 

who studied a worked example prior to receiving 

instruction. However, Experiment 2 did not replicate this 

finding, as both explore-first conditions showed comparable 

learning despite lower cognitive load in the worked example 

condition. There were two key differences between 

Experiments 1 and 2 that might account for these 

inconsistent findings. First, Experiment 1 was conducted 

with laboratory participants from an introductory 

psychology course, whereas Experiment 2 was conducted in 

the classroom, with more advanced students. Perhaps 

greater prior knowledge or motivation improved learning in 

the invention condition in the classroom sample.  

Related to this point, Experiment 2 did not include a 

pretest, whereas Experiment 1 did. Thus, prior knowledge 

could not be accounted for in Experiment 2. On the other 

hand, the pretest in Experiment 1 may have actually 

bolstered the effect of studying a worked example, by 

serving as an invention activity (Kapur, 2016). The pretest 

asked participants to find the mean, median, and mode of a 

dataset, thus activating relevant prior knowledge. 

Additionally, the pretest included a variance problem asking 

students to determine mathematically which cinema enjoys 

the most consistent attendance, an item similar to the 

invention problem. Thus, participants in Experiment 1 may 

have engaged in important exploratory learning processes 

during the pretest (e.g., activating relevant prior knowledge, 

and attending to knowledge gaps and key problem features). 

It is possible that worked examples are optimal when 

preceded by a pretest because the learner is exposed to 

unguided exploration prior to guided exploration, receiving 

unique benefits from both: Recognition of knowledge gaps 

during invention, followed by a less cognitively demanding 

(guided) exploratory activity using a rich dataset in which 
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optimal solutions are explored vicariously. Future research 

should explore the impact of using a pretest combined with 

varying levels of guidance during exploration. 

Across both experiments, invention led to greater 

knowledge gaps but did not enhance interest relative to 

worked examples. This finding is inconsistent with literature 

demonstrating a link between knowledge gaps and 

situational interest (e.g., Rotgans and Schmidt, 2014). One 

possibility is that interest items asked about interest in the 

problem-solving activity, whereas knowledge gaps may 

enhance interest in the instruction and the subject in general, 

which was not captured by our measures. Additionally, 

given the classroom context, students may have shown a 

greater interest in activities for which they felt the most 

confident and familiar.  

In conclusion, the current work replicates and extends 

previous research demonstrating the benefit of exploratory 

learning over traditional tell-then-practice methods in an 

undergraduate classroom context (Exp. 2). In addition, this 

research demonstrates that pure invention may not be 

necessary when designing exploratory learning materials. 

Using worked examples during exploration decreased 

cognitive load and resulted in equal (Exp. 2) or better (Exp. 

1) learning outcomes than invention. This work suggests 

that exploration does not have to be difficult to be beneficial 

(cf. Kapur, 2016). By further examining the cognitive 

mechanisms by which various exploratory learning 

materials impact learning, researchers and educators can 

better understand when and why this method supports 

conceptual understanding. 
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