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Disease related changes in ATAC-seq of
iPSC-derived motor neuron lines from
ALS patients and controls

Stanislav Tsitkov1, Kelsey Valentine1, Velina Kozareva1, Aneesh Donde1,
Aaron Frank2, Susan Lei2, the Answer ALS Consortium*, Jennifer E. Van Eyk 3,
Steve Finkbeiner4,5,6, Jeffrey D. Rothstein7,8, Leslie M. Thompson9,10,11,12,
Dhruv Sareen 2,13, Clive N. Svendsen 13 & Ernest Fraenkel 1

Amyotrophic Lateral Sclerosis (ALS), like many other neurodegenerative dis-
eases, is highly heritable, but with only a small fraction of cases explained by
monogenic disease alleles. To better understand sporadic ALS, we report
epigenomic profiles, as measured by ATAC-seq, of motor neuron cultures
derived from a diverse group of 380 ALS patients and 80 healthy controls. We
find that chromatin accessibility is heavily influenced by sex, the iPSC cell type
of origin, ancestry, and the inherent variance arising from sequencing. Once
these covariates are corrected for, we are able to identify ALS-specific signals
in the data. Additionally, we find that the ATAC-seq data is able to predict ALS
disease progression rates with similar accuracy to methods based on bio-
markers and clinical status. These results suggest that iPSC-derived motor
neurons recapitulate important disease-relevant epigenomic changes.

Amyotrophic lateral sclerosis (ALS)1 is a neurodegenerative disorder
characterized bymotor neuron loss. Its heritability has been estimated
to be as high as 50%2, but the known genetic factors account for less
than 15% of cases. One possible explanation for the missing genetic
component is that many diverse genetic causes lead to similar dis-
ruptions in pathways that are then exacerbated by non-genetic factors.
Disease models based on induced pluripotent stem cell (iPSC) derived
motor neurons generated from a broad cross-section of ALS patients
may help identify such convergent, early effects. In this study, we
examine the epigenomic profiles of more than five hundred cell cul-
tures of iPSC-derived motor neurons (iMNs) generated from ALS

patients and healthy controls to test for the presence of genetically
driven, disease-relevant changes in chromatin accessibility and dys-
regulated transcriptional programs.

Epigenetics is an especially relevant level at which to look for
genetically encoded ALS-specific impact in these cells. Changes in
chromatin accessibility are generally attributed to the binding of pio-
neer transcription factors3, DNA methylation, chromatin remodeling
complexes, and histone post translational modifications (PTMs)4.
Previous research has implicated several of these mechanisms in ALS
pathology. For example, post-mortem spinal cord tissue from ALS
patients exhibited elevated levels of the DNA methyltransferases
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DNMT1 and DNMT3A compared to controls5. Motor neurons expres-
sing FUS and TDP43 mutants exhibited a loss of subunits of the neu-
ronal Brg1/Brm Associated Factor chromatin remodeling complex6.
Changes in the expression of the ALS genes FUS, TDP43, and C9orf72
were found to be associated with changes in histone PTMs7. Histone
deacetylase inhibitors have even been proposed as a potential ther-
apeutic for ALS8. The identification of other ALS-specific epigenetic
signatures will improve our understanding of early disease mechan-
isms and may suggest new therapeutic strategies. Because iPSCs
undergo epigenetic reprogramming9, the environmental contribu-
tions to ALS are likely to have been erased. As such, iPSC-derived cells
allow a direct examination of the impact of as yet uncharacterized
genetic factors on the epigenome.

The main problem in the identification of epigenetic signatures
associated with ALS pathology is the heterogeneity in the genetic and
clinical manifestations of the disease10, and the scarcity of ALS patient-
derived neuronal tissue. To address these problems, the Answer ALS
consortium (AALS) is generating iPSC lines from the peripheral blood
mononuclear cells (PBMCs) of over 800 ALS patients and 200 healthy
controls that have been whole genome sequenced11. The iPSC lines
generated by AALS are differentiated into motor neurons (iMNs) and
subjected to epigenomic, transcriptomic, and proteomic analysis. The
advantage of iPSCs is that they can be generated from patient blood
samples, grown in large quantities, and differentiated into disease-
affected cell types12. iPSC models of ALS have previously been used to
characterize phenotypic patterns of neurodegeneration in mid-size
cohorts of sporadic ALS patient iPSC-derived motor neurons derived
from a population of Japanese ALS and control subjects13, and to
construct disease-associated protein-protein interaction networks for
ALS cases associated with the mutant C9orf72 hexanucleotide repeat
expansion14. iPSCs are being used to model many other neurodegen-
erative diseases in smaller-scale studies and through large initiatives
such as FOUNDIN-PD15, iNDI12, among others12,16–25.

Important technical challenges arise in studies of this scale,
which necessarily have many sources of variation. The standard
approach for analyzing omics data uses differential analysis with case
status (ALS or healthy control) as the primary covariate. Such an
approach is inappropriate in this setting. For example, sex imbal-
ances in case/control groups can lead to false positive differential
signals associatedwith the sex chromosomes.While sex is a covariate
that can, in theory, be controlled for by meticulous study design or
adjusted for in analysis, other covariates cannot be handled in these
ways. Differentiated cell type composition, for example,was found to
be themain driver of variation in AALS iMN gene expression, and it is
not known until after the data are analyzed26. The identification of
robust ALS-associated signals requires a thorough understanding of
sources of variation associated with sequencing, differentiation and
clinical parameters.

In this study, we identify covariates that drive variation in the
epigenomic profiles of 533 iPSC-derived motor neurons from ALS
patients and healthy controls as measured by the Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq)27.
This is one of the largest bulk ATAC-seq datasets generated by a single
consortium (by bases sequenced), and the largest bulk ATAC-seq
dataset overall from cell cultures of different donors using a single
differentiation-protocol. The size of this dataset combined with the
consistency of the data generation protocols allows it to be used as a
tool to both investigate ALS-specific epigenomic signals, and establish
practices for analyzing other ATAC-seq datasets. Asmight be expected
from a study of a diverse population, conducted over several years,
parameters such as sex, cell type composition, and sequencing effi-
ciency drive much of the overall variance. Initially, we do not find any
changes in chromatin accessibility when comparing all familial and
sporadic ALS cases against controls – a finding that is also consistent
with the variable etiology and phenotypes of ALS and in line with our

previous study analyzing RNA-seq data in the identical patient groups.
However, once these factors are accounted for, a strong differential
signal is seen when stratifying by patients carrying the C9orf72mutant
hexanucleotide repeat expansion, a major risk factor for familial ALS.
Surprisingly, we also find that the ATAC-seq data can be used to pre-
dict ALS progression rates at levels similar to clinical and neurofila-
ment data. These results demonstrate that the chromatin accessibility
of iPSC-derived motor neurons can reflect both genetic and clinical
variation in ALS.

Results
ATAC-seq data were generated for 533 iPSC-derived motor
neuron lines
ATAC-seq was conducted on 533 differentiated motor neuron lines
from 460 unique donors (380 ALS patients and 80 healthy controls);
73 samples correspond to studydesign controls. Theproductionof the
motorneuron lines is described in detail in Baxi et al.11 and illustrated in
brief in Fig. 1a. Blood samples were collected from ALS patients and
healthy controls. PBMCs, classified as either T-cells or non-T-cells
(monocytes), were isolated from the blood samples and repro-
grammed into iPSCs. The iPSCs were differentiated into motor neu-
rons, and the resulting cell cultures were frozen and distributed across
sequencing facilities. Variation between differentiation and sequen-
cing batches was controlled for by including batch differentiation
controls (BDCs) and batch technical controls (BTCs), and staining
differentiated cell cultures with immunocytochemical (ICC) staining
markers (Fig. 1b, SI Section 1).

Evaluation of ATAC-seq data quality
Overall, ATAC-seq-specific alignment QC metrics satisfied ENCODE
guidelines (see Figures S1a–c, Methods)28. Annotations of peaksets of
individual samples did not exhibit significant heterogeneities (Fig-
ure S1d), and the consensus peak set contained 100,363 chromatin
regions, of which approximately 80% were intronic/intergenic, and
10% were promoters/5’ UTRs (Fig. 1c). To evaluate the quality of the
ATAC-seq data as it pertains to motor neurons, we examined the
chromatin accessibility of genes specific to motor neurons as done
previously by Sahinyan et al.29 Chromatin accessibility was assessed
for the housekeeping gene, GAPDH, a set of spinal motor neuron-
specific genes (LHX3, ISL1, ISL2, MNX1)30,31, and as a negative control,
the pluripotency marker POU5F129,32. As expected, out of the six genes
tested, only the promoter/TSS chromatin region for POU5F1 was
not accessible (Fig. 1d, e, S1e). Data reproducibility was confirmed
by the assessment of inter-sample correlations and comparisons to re-
differentiated samples (SI Section 2).

Variance in most variably-accessible regions is driven by three
sources of variation
To investigate the underlying factors contributing to variance in the
data, we conducted principal component analysis (PCA) (Fig. 2a, Fig-
ure S3a) and found three major sources of variance: sex, iPSC cell type
of origin (PBMC/T-cell or PBMC/non-T-cell), and sequencing instru-
ment (SI Section 3). In fact, we found that applying UMAP to the top
100 most variably-accessible regions separated samples into four dis-
tinct clusters defined by sex and PBMC type (Fig. 2b). We used this
UMAP representation to estimate the PBMC type for samples with
missing PBMC labels in downstream analyses. Additionally, we noted
that the BTC/BDC samples completely separated from the remainder
of the female samples (Fig. 2a) and found that the separation is par-
tially driven by genomic variants specific to the BTC/BDC samples; for
example, a genomic structural variant characterized by a 2 kb deletion
dramatically affects chromatin accessibility in BTC/BDC samples (SI
Section 4). Overall, motif enrichment analysis of the most variably
accessible regions revealed enrichment for neuronal transcription
factors (SI Section 5).
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Toexplore the effects of amore comprehensive set of covariates,
we additionallyfit the chromatin accessibility of each region to a set of
17 covariates using a linear mixed effects model (Fig. 2c). These cov-
ariates reflected the sequencing, differentiation, clinical, and demo-
graphic aspects of each sample. Differentiation batch explained the
second-most variance across all regions, but with few regions
explaining over 25% of the variance, indicating a small effect size. The
association of several regions with the sequencing-associated cov-
ariates, Fraction of Reads in Peaks (FRiP) score and sequencer, could
be explained by the normalization methods used and changes in raw
read length (SI Section 6). The ICC staining markers contributed to
the variation of the samples in a manner similar to that found in the
gene expression data, with the most variance driven by S100B and
Nestin; however, these markers had a small effect size overall,
explaining less than 25% of the variance for all but 32 and 16 regions,
respectively. As expected from the PCA analysis, the variability of

several regions was driven by sex, PBMC type, and sequencer. Inter-
estingly, we also found a dependence on ancestry, which was not
observed in gene expression26.

In order to account for the variance contribution of the identified
covariates and avoid false positive differential signals, we opted to
include FRiP score, sex, PBMC type, and sequencer as covariates in all
downstream differential analyses. Indeed, regressing out these cov-
ariates using a linear model removes the separations in plots of prin-
cipal components of themost variably accessible regions (SI Section 3,
Figures S3e, f). Notably, there was no global differential signal asso-
ciated with ALS case status at a strict significance threshold (Bonfer-
roni adj. p-value < 0.01), as might be expected for ALS, which is an
extremely heterogenous disease. However, there were extensive dif-
ferential signals associated with the remaining covariates (Supple-
mentary Data S1–5). As a final QC, we confirmed that motor neuron
identity of the cell lines was not compromised by sex (Supplementary
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Fig. 1 | Answer ALS ATAC-seq data. aOverview of AALS data generation protocol.
PBMCs from ALS patients and healthy controls are reprogrammed into iPSCs,
which are in turn differentiated into motor neurons and sent for sequencing.
b Overview of study design controls. Samples are divided into differentiation bat-
ches and sequencing batches. Each sequencing batch usually consists of three
differentiation batches. A BDC is redifferentiated with each differentiation batch,
and a BTC is resequenced with each sequencing batch. c Pie chart showing dis-
tribution of region annotations. d Normalized chromatin reads plotted for the

promoter/TSS for the housekeeping gene, GAPDH, the pluripotency marker,
POU5F1, and the spinal motor neuron-specific genes LHX3, ISL1, ISL2, and MNX1
(n = 533). Boxplot boxes indicate the 25th, 50th (median), and 75th quartiles;
boxplot whiskers extend 1.5 interquartile ranges from the median. e Raw read
coverage plots spanning the gene bodies of GAPDH, POU5F1, and ISL1. Dark blue
shading of the genome axis scale indicates the gene body location. All plots are
drawn on the same scale. Arrows point in the direction of transcription.
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Data S2) and PBMC type (Supplementary Data S3), as neither of these
covariates were significantly associated with changes in the accessi-
bility of the motor neuron-specific genes examined in Fig. 1d. Addi-
tionally, we searched for associations between the chromatin
accessibilities of ALS gene-associated promoter regions and sample
sex and PBMC type. Out of the 16 regions examined (Figure S6), only
the promoter for the X chromosomal gene UBQLN2 was significantly
associated with sex (B-H adj. p-value = 2e−8, Supplementary Data S2).

Covariates associated with differentiation
It was interesting that unsupervised clustering separated samples
alongPBMCtype (T-cell or non-T-cell; Fig. 2b); in theRNA-seqdata, this
was only observed when the gene set was constrained to four T-cell
receptor associated genes26. Examining DARs associated with PBMC
type, we found that regions located next to the T-cell receptor delta

anti-sense 1 (TRD-AS1) gene were dramatically less accessible in T-cell
derived cell lines as would be expected (Fig. 3a, b) due to T-cell
receptor rearrangements. Beyond the TRD-AS1 regions, there are 180
DARs associated with PBMC type (adj. p-value < 0.01, abs(log2FC) >
0.5); 25 of these regions are annotated as promoters. The top 5 sig-
nificant promoter regions, other than those that correspond to pseu-
dogenes or lincRNAs, are labeled in Fig. 3a. To confirm that the
differential signal was not a sequencing artifact, we compared the
accessibility of these regions to the gene expression for matched
samples, and found high correlations (Fig. 3c–f). The existence of
genes not associated with the T-Cell receptor loci whose promoter
accessibility and expression are dependent on PBMC type illustrates a
modest, but detectable, impact of epigenetic memory in our dataset:
the chromatin accessibility and gene expression profiles of differ-
entiated cell cultures depend on the initial PBMC type. To determine

ba

c

ALS
Healthy Control

BTC/BDC
Other

T-Cell
Non-T-Cell

Female
Male

Unknown

Fig. 2 | Drivers of variation in chromatin accessibility. a Biplot of PC1 and PC2
fromprincipal component analysis on the top 500most variably-accessible regions
including all samples. “Other” refers to samples from individuals with non-ALS
motor neuron disease and asymptomatic ALS. b UMAP applied to 100 most
variably-accessible regions separates samples into clusters by sex and PBMC type.
c Explained variance in chromatin accessibility by selected covariates across all

100,363 chromatin regions. Data was generated by fitting a linear mixed effects
model to normalized chromatin reads for each chromatin region (see Methods).
Percentages indicate median contribution to variance. Arrows indicate covariates
that were found to drive variation in the PCA of the 500 most variably-accessible
regions. Boxplot boxes indicate the 25th, 50th (median), and 75th quartiles; box-
plot whiskers extend 1.5 interquartile ranges from the median.
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whether the observed epigenetic memory could be attributed to dif-
ferentiation bias resulting in different cell type distributions, we
compared PBMC type to ICC staining data of the motor neuron cul-
tures. There were no significant associations (p < 0.01) between PBMC
type and the percent of cells that stained positive for S100B, Nestin,
ISL1, NKX6.1, TUJ1, or SMI32. In general, chromatin accessibility was
less correlated with ICC staining markers than gene expression (SI
Section 7). This indicated that the observed epigeneticmemory, which
influences a small set of genes, cannot be attributed to differentia-
tion bias.

Clinical and demographic covariates
The key question in the analysis of iPSC derived motor neurons is
whether omic profiles capture clinical information about the indivi-
duals fromwhomthe cells were derived. In Fig. 2c,we found thatout of
the four patient-specific covariates tested, only sex and ancestry drove
variance in chromatin accessibility; the contributions of case status
and age were negligible. The lack of an age-associated signal is not
surprising, as iPSC-reprogrammed cells exhibit elongated telomeres,
reduced oxidative stress, and a loss of senescence markers, all

hallmarks of younger cells33–35. The ancestry signal was confirmed with
differential analysis and revealed 47 DARs (adj. p-value < 0.01, Fig-
ure S7a), of which 16 were more accessible in individuals of African
ancestry. The topDARbyp-valuewas the promoter/TSSofRNF135 (adj.
p-value = 3e−14, log2FC =0.8) (Fig. 4a); despite the presence of six
mismatches to the reference genome in the aligned reads (Figure S7b),
subjects of African ancestry were found to have a higher accessibility
of this promoter region than subjects of European ancestry. These
mismatches are consistent with the genomics data (rsIDs: rs7221217,
rs7221238, rs7219775, rs7221473, rs7225888, rs7211440)11. Interestingly,
the promoter/TSS of RNF135 has previously been identified to exhibit
hypomethylation in subjects of African ancestry, which is consistent
with our observation of higher accessibility36. The remaining two
clinical covariates, sex and ALS status, are examined in the following
sections.

Sex-associated DARs are not limited to sex chromosomes and
reveal X-chromosome inactivation
Therewere 72 significant DARs associatedwith sex (adj. p-value < 0.01,
abs(log2FC) > 1); of these regions, 40 were Y-chromosomal, 22 were X-

Fig. 3 | Differentiation-associated covariates. aVolcanoplot for PBMC-associated
differential signal. The p-values are calculated using a two-sided Wald test as
implemented in DESeq2 and adjusted using a B-H correction. b Coverage plot
spanning T-cell receptor genomic region for two T-cell-derived samples and two
non-T-cell-derived samples. Dark blue region in genome axis scale spans the

regions in the box from a. c–f Plots of chromatin accessibility against gene
expression for selected genes from a. Samples colored according to PBMC type.
Pearson correlations between plotted chromatin accessibility and gene expression
are indicated in top left corner.
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chromosomal, and 10were autosomal (Figure S7c). The only promoter
in the 10 autosomal significant DARs was that of H2BC3, a histone
encoded on chromosome 6 (Fig. 4b). The most significant DAR on
chromosome X corresponded to the promoter of XIST, a gene
responsible for X chromosome inactivation (Fig. 4c). The most sig-
nificant DAR on chromosome Y corresponded to the promoter of ZFY
(Figure S7d). All of these genes were also differentially expressed; for
example, the XIST promoter accessibility had a correlation of 0.94 with
XIST gene expression, and the accessibility of the H2BC3 region was
most highly correlated with the expression of its corresponding gene
(0.89), the histone H3C3 (0.72), and the histone H4C9 (0.46). The
remaining autosomal regions were all most highly correlated with
the expression of genes on the Y chromosome.Motif enrichment of the
10 significant autosomal DARs using HOMER37 did not return any sig-
nificantly enriched motifs. The inactivation of the X chromosome was
confirmed by examining numbers of background reads (SI Section 8).

Identifying ALS-associated DARs
We conducted over two dozen differential analyses with the aim of
identifying differential signals associated with ALS case status; the
comparisons spanned metrics associated with disease progression,
ALS subtypes, andmedication intake (SI Section9). One of the signals
that emerged was the association of 1402 DARs with ALS case status
at a FDR < 0.1. We note that this signal is only marginally significant,
and there were no DARs associated with ALS case status at a FDR <
0.01, suggesting that even with the current sample size, it is difficult
to detect such signals given the diversity of ALS. However, this does
not mean that the ALS-associated signal should be overlooked; in
fact, motif enrichment analysis of the 1402 differentially accessible
regions against the remainder of the consensus peakset as a back-
ground revealed significant enrichment for the binding site of the
NFY transcription factor (p-value 1e−15). The disruption of NFY has
previously been shown to cause neurodegeneration with a ubiquitin/
p62 pathology38.

We additionally identified a robust, but weak, differential signal
associatedwith thenumber of years thatpassedbetweendiseaseonset
and PBMC sample collection, consisting of 2601 DARs (Supplementary
Data S6, adj. p-value < 0.1). Interestingly, when compared against the
GC content normalized consensus peakset, the genomic sequences for
these chromatin regions were enriched for the binding sequence of
Nrf1, a transcription factor involved in regulating cellular stress
responses39; its deletion in the mouse central nervous system has also
been shown to cause motor neuron dysfunction40. This observation
suggests that the accessibility of certain chromatin regions is asso-
ciated with a slower rate of disease progression. At the same time, it
also appears to be inconsistentwith the lack of a significant differential
signal associatedwith total disease length, asmeasured by the number
of years between death and onset. These two observations can be
reconciled bynoting that there are nearly twice asmany subjectswith a
recorded age of onset and age of PBMC sample collection (n = 337)
than those with a recorded age of onset and age of death (n = 144).

C9orf72 TSS is differentially accessible in ALS patients with
C9orf72 hexanucleotide repeat expansion
Wehypothesized that the heterogeneity of ALSmight obscuredisease-
relevant signals. To test this hypothesis, we compared ALS cases that
were known to harbor the mutant C9orf72 hexanucleotide repeat
expansion (n = 31: C9+) to verified C9- negative cases and healthy
controls (n = 116:HC). For both theC9+/C9− andC9+/HCcomparisons,
the C9orf72 TSS had significantly lower normalized chromatin reads
(adj. p-value = 1e−50) in C9 + ALS patients, with a consistent log2FC of
−0.6 (30% decrease in accessibility) (Fig. 5a). The differential signal
extends over 6 raw read lengths away from the repeat expansion,
indicating that the signal is not a mapping artifact (Figure S8a). Inter-
estingly, the inclusion of the FRiP score as a covariate in the differential
analysis improved the adjusted p-value from 1e-20 to 1e-50, but did not
influence the log2FC. The observation of lower chromatin reads is
consistent with the hypothesis of haploinsufficiency of the C9orf72
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Fig. 4 | Clinical covariates. a (Left) Normalized chromatin read counts and (right)
example coverage plot for individuals of African (AFR) and European (EUR)
ancestry for the promoter/TSS of RNF135 (adj. p-value = 3e-14, log2FC= −0.78,
nAFR = 20, nEUR = 340). b (Left) Normalized chromatin read counts and (right)
example coverage plot for H2BC3, a sex-associated autosomal DAR (adj. p-value =
3e-17, log2FC = −1.16, nFemale = 194, nMale = 262). c (Left) Normalized chromatin read
counts and (right) example coverage plot for XIST, a sex-associated DAR that

escapes X-inactivation (adj. p-value < 1e-278, log2FC= −4.00, nFemale = 194,
nMale = 262). d (Left) Normalized read counts and (right) example coverage plot for
G6PD, a housekeeping gene on chromosomeX (adj. p-value = 0.02, log2FC = −0.05,
nFemale = 194, nMale = 262). All boxplot boxes indicate the 25th, 50th (median), and
75th quartiles; boxplot whiskers extend 1.5 interquartile ranges from the median.
All p-values are calculated using a two-sided Wald test as implemented in DESeq2
and adjusted using a B-H correction.
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transcript contributing to neurodegeneration and agrees with our
previous report showing reduced C9orf72 transcript levels26,41. We did
not observe any significant dependence between C9 repeat length and
chromatin reads that could not be explained by C9 status.

ATAC-seq signals predict ALSFRS-R slope
Rates of disease progression in ALS are highly variable, with the time
from first symptoms until death ranging from months to decades.
One of the most widely used measures of the rate of disease pro-
gression is the linear slope of the ALSFRS-R score across time.
To explore whether chromatin accessibility contains information
related to progression, we sought to predict ALSFRS-R slopes from
ATAC-seq.

ALSFRS-R slope was not significantly associated with the accessi-
bility of any one chromatin region. This is not necessarily surprising, as
any genetic component to the rate of progression is likely to be mul-
tifactorial in nature. To take this into account, we used linear regres-
sion with a LASSO penalty to search for a small set of regions that were
the most predictive (see Methods, Figures S8b, c). LASSO linear
regression identifies a set of predictive features (predictors) in an
underdetermined system by penalizing the size of regression coeffi-
cients; the design of the penalty term allows for variable selection. The
features identified by this regression approach are not necessarily
exhaustive; only one of a set of highly correlated features may appear
in the final set of predictors.

To construct the predictor, we used a set of 156 filtered samples
(see Methods, Figures S8b, c, Supplementary Data S7) that were split
into a training data set (140 samples, Supplementary Data S7) and an
out-of-sample testing data set (16 samples, Supplementary Data S7).
We ran LASSO linear regression with ten-fold cross-validation on the
training set to select the regularization parameter (Figure S8d). As the
set of selected features (in this case, chromatin regions) depends on
how samples are split into validation folds, we reran the feature
selection step 1000 times, each time randomly reassigning the sam-
ples in the training data to different validation folds. The predictors fit
from each run were evaluated according to their performance on the
out of sample test data set (16 samples). At least one region was
returned in 889 of the 1000 runs and there were 24 regions that
appeared across over half of the runs (Supplementary Data S8). Across
these 889 runs, the predicted model consisted of 24.2+/− 0.3 (mean
+/− s.e.) regions and resulted in a mean training root mean squared
error (RMSE) of 0.239+/− 0.001 and R2 of 0.774+/− 0.003 (mean +/−
s.e.). The out of sample testing data set RMSE and R2 were 0.468+/−
0.001 and 0.244+/−0.003, respectively (mean +/− s.e.) (results for one
run in Fig. 5b). Surprisingly, performance on the held-out test data are
on par with themodels that have attempted to predict ALSFRS-R slope
from clinical data; a model using neurofilament concentrations
at diagnosis exhibited RMSEs of 0.4 and 0.9 in validation cohorts42,

and models based on clinical metadata returned root mean squared
deviations of 0.5443.

We examined the 24 regions that were returned in over half of the
1000cross validation reruns (SupplementaryData S8).While the genes
in these regions are not significantly enriched for any single biological
process (likely due to the limited size of the geneset), several are of
particular interest. For example, CHCHD2 is a mitochondrial protein
definitively associated with Parkinson’s disease and an interaction
partner of the ALS protein CHCHD1044. CHCHD2 gene expression has
also been found to be significantly reduced in post-mortem brains of
individuals with Parkinson’s disease, and mutations within the protein
have been reported to promote alpha-synuclein aggregation45,46. OTP
and LMX1A are both transcription factors required for the develop-
ment of dopaminergic neurons47; LMX1A is associatedwith Parkinson’s
disease, and previous experiments have shown that the reduction of
LMX1A and the closely related LMX1B negatively impacts dopaminer-
gic neuron survival by increasing oxidative stress and generating
mitochondrial DNA damage48. The protein encoded by FGF1, also
known as aFGF, is known to be a neuroprotective and neuror-
egenerative factor, and its application has been shown to protect
cortical neuron cultures against oxygen glucose deprivation-induced
cell damage49.

Another transcription factor in the feature set is ZNF300; it
appears that a subset of ALS cases with slower progression rates also
exhibit lower ZNF300 gene promoter/TSS chromatin accessibility
(Fig. 5c). Additionally, the chromatin accessibility of this gene has a
correlation of 0.89 with its gene expression. Previous work has shown
that ZNF300 is a transcription repressor that localizes to the nucleus
and is expressed in the heart, skeletal muscle, and brain50. It is also
associated with NF-κB pathway activation and MAPK/ERK signaling51.
Interestingly, two other genes appearing in the geneset, TRAF3IP2 and
IRF7, which are both involved in the inflammatory response, are closely
related to the NF-κB pathway; TRAF3IP2, which encodes the Act1 pro-
tein, activates NF-κB52 and IRF7 can form a transcriptional complex
enhanceosome with NF-κB53. The NF-κB pathway has been suggested
to play a role in ALS disease progression, suggesting that the lower
chromatin accessibility of the ZNF300 TSS potentially indicates a
protective mechanism against ALS progression54.

ATAC-RNA co-expression analysis reveals putative enhancers
for ALS genes
ATAC-seq data can be integrated with RNA-seq data to functionally
characterize chromatin regions and identify cis-regulatory elements55.
We found that the expression of 13,261 genes is significantly associated
with the accessibility of 24,810 chromatin regions (adj. p-value < 0.01)
located within 250kb of gene transcription start sites (Fig. 6a, b,
SupplementaryData S9) (windowwidth chosen tomatchCorces et al.55

and the default settings for integrative analysis in ArchR56). Peaks in
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significant peak-gene pairs were concentrated near gene transcription
start sites, but otherwise uniformly distributed across the examined
500 kb window (Fig. 6b). This geneset included 89 ALS associated
genes (from the ALSoD57), whose expression was significantly asso-
ciated with the accessibility of 422 chromatin regions, indicating the
utility of this dataset to study disease relevant pathways. For example,
EPHA4, a gene whose expression has been reported to modify ALS
disease progression58, was associated with the accessibility of a peak
20 kb upstream (adj. p-value 1e−42).

Most genes were associated with multiple peaks (Fig. 6c) and one
third of peak-gene pairs exhibited an inverse association between gene
expression and peak accessibility (Fig. 6d). As is true for all peak-gene
pairs, thepairswith inverse associations of accessibility andexpression
were also concentrated near transcription start sites. However, the
inversely correlated pairs had a noticeable dip in density extending
roughly 5 kb upstream and 15 kb downstream (Fig. 6e). We hypothe-
sized that these inverse associations could be attributed to binding
of transcriptional repressors. The genomic sequences of the peaks
in these associations that are also proximal to a TSS (<2.5 kb) were
enriched for the binding motifs of the YY1 (p-value 1e−12) and KLF14

(p-value 1e−10) transcription factors (see Methods), both of which
have been reported to exhibit repressive transcriptional activity59,60.
The most significant peak-gene pairs with such a negative effect size
involved the HOXB5 and HOXB4 genes, likely due to their regulatory
activity; in tumor samples from the Cancer Genome Atlas, similarly
strong correlations between accessibility and expression were found
at the HOXB locus as well55.

While many transcription factors are thought of as activators,
several are known to be capable of either activating or repressing
genes (citations includingDawson et al.61).We found that nearly 20%of
all significant peaks were associated with both increased expression of
some genes and decreased expression of others. In fact, this is the case
for over 20%of all significant peaks (Supplementary Data S10). The top
peaks that exhibit this behavior are located near promoters of genes
responsible for transcriptional regulation. For example, the promoter
for HOXB9 exhibited a highly significant positive effect size with the
expression of HOXB9 (adj. p-value 1e−121), but a highly significant
negative effect size with the expression of HOXB5 (adj. p-value 1e−88).
Other examples of peaks include the promoter for CHD462, a gene
encoding a member of a chromatin remodeling complex, and the
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promoter for PCDHA463, a gene which lies in the tightly regulated
protocadherin A gene cluster. We also find a similar behavior, albeit to
a less significant extent, whenwe examine ALS genes. For example, the
chromatin accessibility of the FUS TSS is positively correlatedwith FUS
expression (adj. p-value 1e−5), but negatively (and more significantly)
correlated with the expression of PRSS8 (Fig. 6f). Overall, it appears
that the behavior of this subset of peaks can be attributed to global
changes in transcription, of which the peaks in question are usually not
the root cause.

Another example demonstrating how global patterns in tran-
scription affect the results of epigenomic/transcriptomic integration
can be found by analyzing links between genes and their promoters.
In most cases, genes are most strongly correlated with the nearest
peak. But there is another pattern that is found in one quarter of the
genes. These genes are most strongly correlated with distal peaks,
while their promoter accessibility is most strongly correlated with an
entirely different gene. For example, the expression of the ALS gene
VCPwasmuch less significantly associatedwith the accessibility of its
promoter (adj. p-value 2e−3) than a distal element 42 kb upstream
(adj. p-value 7e−15) (Fig. 6g). At the same time, the accessibility of the
VCP promoter was significantly associated with the expression of
DNAJB5 (adj. p-value 2e−13) and UNC13B (adj. p-value 7e−8). These
phenomena highlight the complexity of the mechanisms involved in
regulating gene transcription. More broadly, these analyses repre-
sent a bridgehead, showing the utility of these data in integrating the
epigenomic and transcriptomic profiles of iPSC-derived motor neu-
rons to characterize gene regulatory networks active in ALS and
beyond.

Discussion
With over 5 trillion bases sequenced, the ATAC-seq data presented in
this work is the largest ATAC-seq dataset generated for iPSC-derived
motor neurons to date, and it is one of the largest ATAC-seq datasets
generated by a single consortium overall. The consistency of the bio-
logical sample being produced (i.e., motor neuron cultures from
hundreds of individuals rather than mixed tissues from the same
individual) makes this dataset amenable to revealing insights that
extend beyond ALS disease-associated signatures to other covariates,
such as sex and the iPSC tissue of origin.

To assemble a dataset of this size, it is necessary to conduct a
study which spans years. Over this period, the goal of maintaining
consistent data generation methods can come into conflict with
facility changes, instrumentation modernizations, and other una-
voidable events. This can in turn influence downstream processing
results. We showed an example of this in the analysis of the
sequencer-associated differential signal. In general, the best way to
monitor these changes is to examine batch-specific QC metrics. In
future studies, efforts should be focused not only on surpassing a
specific set of QCmetrics, such as those defined by ENCODE, but also
to ensure that the final quality control metrics haveminimal batch to
batch variance.

Chromatin read counts are susceptible to influence by genetic
variants and the resulting mismapping. The best example of this is the
apparent difference in chromatin accessibility between the line used as
a BTC/BDC and other control lines. We determined that the difference
is due to a 2 kb deletion, which we confirmed through comparisons
with the genomics data. This signal arises despite a readmapping rate
above 97.5% across almost all samples. We benefited from the fact that
full-genome sequences were available for each sample in our study.
In the future, we recommend that differential accessibility signals are
verified against genomic data of the same sample in inter-individual
comparisons, or that raw reads are aligned to individualized genomes
when those data are available. The latter approach has previously been
shown to alter peak calls in ChIP-seq data and alignment in RNA-seq
data64. When genomics data is not available, inspection of raw reads

aligned to differential peaks could reveal SNPs; genome coverage
visualization software such as Gviz65 provides a streamlined approach
for this.

Several studies have examined the question of which normal-
ization approach is superior for the analysis of ATAC-seq data. Our
analysis was based solely in the framework provided by DESeq2, and
we decided to use the default DESeq2 geometric median of ratios
algorithm to estimate normalization factors. We found that it per-
formed similarly to normalizing by reads in peaks (RiP). Notably, it
outperformednormalization by total reads, which failed to identify the
C9orf72 TSS DAR in C9+/C9− ALS comparisons and to generate
separation by PBMC type in PCA. However, RiP normalization alone is
imperfect; indeed, the covariates total reads, reads in peaks, and FRiP
score are closely related, and we observed a strong dependence of
certain chromatin regions on FRiP score even after RiP normalization.
These strong dependences are a concern as they will lead to false
positive results if co-accessibility analyses, such as WGCNA, are used.
Future work could focus on the analysis of alternative methods for
normalization, which could include data from other omics modalities
as validation.

The concept of epigenetic memory describes the phenomenon
wherein iPSC-derived cells retain epigenetic characteristics of the cell
type from which the iPSC clone was dedifferentiated66. In the analysis
of this data, we observed that the chromatin accessibility of several
regions was significantly associated with the PBMC type. A fraction of
the affected regions corresponded to T-cell receptor loci, where
genomic TCR rearrangements prevented reads from mapping. These
DARs are therefore not reflective of epigenetic memory67. At the same
time, the differential signal at several other chromatin regions could
not be explained by mapping artifacts. For example, the TSS for
FOXG1 is significantly more accessible in non-T-cell derived samples
than it is in T-cell derived samples, while the TSS for ANKRD30B
exhibits the opposite dependence on PBMC type. FOXG1 is a neuro-
developmental factor that functions as a transcriptional repressor,
promotes neurogenesis, and inhibits gliogenesis; mutations in the
gene are associated with Rett’s syndrome68. ANKRD30B is a gene that
is expressed in the brain; it has recently been found to be differen-
tiallymethylated in subsets of patients withAlzheimer’s disease69 and
Williams Syndrome70.

The ATAC-seq data exhibited significant correlations with ICC
stainingmarkers, but these signalswere not as strong as those found in
the RNA-seq data, and they mainly corresponded to intronic/inter-
genic chromatin regions. Thiswas surprisingbecause the epigenome is
responsible for establishing cellular phenotypes71. There are a few
possible explanations for the weaker signal compared to the RNA-seq
data. First, there is more biological noise in the transduction of an
epigenomic signal into a proteomic signal, as it requires both tran-
scription and translation. Another possible explanation for the dis-
crepancy is that the expression of ICC markers is a response to an
external stimulus, which could induce changes in the cellular popula-
tions of transcription factors. For example, S100B can be released
by damaged cells72. Finally, it is conceivable that the same ICC
stainingmarkers can stain multiple cell types, all of which have unique
epigenomic signatures, resulting in low correlations with chromatin
accessibility.

We identified both ancestry- and sex-associated differential sig-
nals in the ATAC-seq data. The observation of ancestry-specific dif-
ferential accessibility in iPSC-derived motor neurons highlights the
need to explore whether ancestry may play a role in motor neuron
function and survival.

The sex associated DARs spanned both the autosomal and sex
chromosomes, a finding which is consistent with previous work. For
example, sex has been found to influence autosomal chromatin
accessibility in immune cells in an age-dependent manner73. We
showed that the differential signal associated with chromosome Xwas

Article https://doi.org/10.1038/s41467-024-47758-8

Nature Communications |         (2024) 15:3606 9



mostly driven by background reads from the inactivated chromosome
X, with the exception of 22 DARs that clearly escaped inactivation and
include the promoter/TSS for XIST. It was important to establish X
chromosome dosage compensation in these iPSC lines, as its erosion
has been found to be a limitation in iPSC-based disease modeling74,75.
While lowpassage iPSCs retainX inactivation, longer culture times lead
to gradual re-activation of the inactivated X chromosome that is not
reversed by differentiation76. Hallmarks of eroded dosage compensa-
tion include decreased XIST gene expression and a loss of H3K27me3
marks, and can lead to the remodeling of the iPSC proteome76,77. It is
also interesting to note that in gene expression data, the number of
sex-associated differentially expressed genes (78 genes, abs(log2FC)
>1, adj. p-value < 0.01) was much higher than in the ATAC-seq data;
similar to the observations with ICC staining markers, this suggests
that there is an additional level of regulation governing the expression
of these genes that is not apparent at the epigenome level. Overall,
the fact that there is still sex-based variant gene expression and
chromatin accessibility at the level of themotor neuron cultures raises
questions regarding whether sex may impact motor neuron function
and survival.

The strongest ALS-specific signal revealed by the ATAC-seq data
was a difference in chromatin accessibility at the C9orf72 TSS for
C9+ALS cases. This finding is perhaps not surprising. There is strong
evidence thatALS is not one disease, but several different diseases that
culminate in the same clinical phenotype of upper and lower motor
neuron degeneration1. There are more than 25 known independent
genetic causes of ALS, which collectively explain less than 15% of cases.
Thus, it is likely that the variability among ALS patients may be greater
than any common “ALS signature.” In addition, due to epigenetic
reprogramming, iPSCs are likely to best represent early phases of
disease. Thus, these samplesmay reflect the diverse early causes of the
disease and not later stages of cell death thatmay be common tomore
patients. The iPSC data in this study, therefore, are best used to
explore how genomic factors beyond the known disease-causing loci
contribute to the high heritability of ALS.

Several studies have attempted to use clinical data and other
biomarkers to group ALS patients and predict ALS disease progres-
sion. The Prize4Life challenge crowdsourced machine learning
models to predict ALS disease progression from clinical data, iden-
tifying time from disease onset, ALSFRS, forced vital capacity, and
blood pressure among the top predictors43. Semi-supervised
machine learning models applied to clinical data of Italian ALS
patients was found to separate ALS patients according to the Chio
criteria78. The distribution of T cell populations in the CSF of ALS
patients was found to be associated with ALS disease progression79.
In this study, we show that the ATAC-seq data of iPSC-derived motor
neurons from ALS patients has a predictive power for disease pro-
gression rate that is on-par or better than predictions from clinical
data or blood-based biomarkers.

We seek to answer a different question than these prior studies.
We asked whether iPSC-basedmodels retain clinically relevant signals.
On the one hand, the high heritability of ALS suggests that they should.
On the other hand, iPSC-derived motor neurons are expected to
exhibit the characteristics of a ‘younger’ cell, with reversed senescence
due to reprogramming33. Are iPSC-derived neurons too ‘young’? Our
results suggest that ALS-relevant genomic influences emerge very
early in this system. It remains an open question how early such signals
might emerge in patients, but some studies of presymptomatic
C9orf72 mutant repeat expansion carriers suggest that some effects
may be detectable early in life80,81.

Much more work will be needed to identify how the genetic var-
iants influence disease progression. By their nature, the machine
learning models we used only return a subset of the relevant features
and cannot determinewhich correlated features are causal, onlywhich
have the strongest predictive value in a particular dataset. Batch

effects also hinder the interpretability of signals associated with dis-
ease progression, especially when already small batch sizes are further
halved by the study design requirements tomatch the numbers of ALS
cases and controls. Nevertheless, it is interesting that the chromatin
regions returned by the ALSFRS-R slope predictor are associated with
neurodegenerative diseases. For example, LMX1A and CHCHD2 have
been previously associated with Parkinson’s disease. We also identify
the potentially protective role of decreased accessibility at the ZNF300
promoter/TSS. Finally, it is likely that ALSFRS-R slope may not be the
best signal to try and predict, as it is a sum of scores reflecting deficits
in extremely diverse symptoms and may mask important variability
among patients with the same overall score. Future work will need to
use more sophisticated analyses of clinical states and will need to
integrate other omic signals. Overall, these results suggest that there is
value in initiating iPSC model-based efforts geared towards studying
disease progression rates, rather than case/control differences; these
models could serve as a complement to existing biomarkers to explore
the molecular basis of disease.

In this study, we examined the epigenomic profiles of one of the
largest sets of iPSC derived motor neurons generated to date.
Whereas these cell lines were generated to identify ALS-specific
disease signatures, we showed that the epigenomic analysis of the
iMN cultures could be used to gain insights that extend beyond
the disease. We found that chromatin accessibility measurements
were influenced by clinical covariates, such as sex and ancestry,
differentiation-associated covariates, such as the iPSC cell type of
origin, and sequencing-associated covariates, such as FRiP score and
the read length used. Importantly, as this data is used by a wider
audience, these covariates must be factored into any differential
and co-accessibility analyses to avoid false-positive signals that are
associated with ALS case status.

We described two ALS signals in this study. The first one was a
decrease in the chromatin accessibility of the C9orf72 promoter/TSS in
samples exhibiting the mutant hexanucleotide repeat expansion. This
supports the hypothesis of haploinsufficiency for the C9orf72 tran-
script contributing to disease41. Additionally, we found that the epi-
genomics data could be used to construct a predictor of ALSFRS-R
slope, and identified the downregulationof the ZNF300 gene as having
a potentially protective effect.

Overall, this paper underscores the value of conducting large-
scale investigations of iPSC-derived cells for the study of ALS. After
carefully compensating for sources of variance, these data reveal some
of the complex interplay between chromatin accessibility, genetics,
and disease subtypes, including, surprisingly, an association between
epigenomic signals and the rate of disease progression. The expanding
multi-omic data fromAnswer ALS and other efforts raises the prospect
that integration of these data with other omics modalities and ALS
omics datasets will uncover new directions in ALS research and help
identify novel therapies.

Methods
Generation of iPSC motor neuron cultures
The iPS cells were differentiated into motor neurons according to the
direct iPS cell-derived motor neuron (diMNs) protocol, which com-
prises three main stages (see Baxi et al.11 for detailed procedure).
Briefly, the Cedars-Sinai Biomanufacturing Center reprogramed
PBMCs using a non-integrating episomal plasmid method and differ-
entiated iPSCs into motor neurons using a directed differentiation
protocol comprising 3 stages. In Stage 1 iPSCs were plated in 6-well
plates at a density of 5E + 05 cells per well, and neural induction and
hindbrain specification of iPSCs was achieved by dual inhibition of the
SMAD and GSK3β pathways for 6 days. In Stage 2, precursors were
replated in fresh6-well plates at a density of 7.5E + 05cells perwell, and
specification of spinal motor neuron precursors weas achieved by
addition of Shh agonists and retinoic acid for an additional 6 days.

Article https://doi.org/10.1038/s41467-024-47758-8

Nature Communications |         (2024) 15:3606 10



Finally, in Stage 3 the precursors matured for recipe in Table. On Day
32 cells were collected and pelleted for subsequent shipping to ‘omics
sites. Representative wells of each cell line were fixed at the end of the
differentiation and immunostained for markers of motor neuron
identity (TUBB3, ISL1, SMI32, NKX6.1, s100B).

ATAC-seq experimental methods and quality control
As we wrote in Baxi et al.11, ATAC-seq sample prep, sequencing and
peak generation were carried out by Diagenode Inc. as further
described82. Briefly, cells were lysed in ATAC-seq resuspension buffer
(RSB; 10mMTris-HCl, pH 7.4, 10mMNaCl, 3mMMgCl2, andprotease
inhibitors) with a mixture of detergents (0.1% Tween-20, 0.1% NP-40,
and 0.01% digitonin) on ice for 5min. The lysis reaction was washed
out with additional ATAC–RSB containing 0.1% Tween-20 and
inverted to mix. Then 50,000 nuclei were collected and centrifuged
at 450 x g. for 5min at 4 °C. The pellet was resuspended in 50 μl of
transposition mixture (25μl of 2× Illumina Tagment DNA buffer,
2.5μl of Illumina Tagment DNA enzyme, 16.5 μl of phosphate-
buffered saline, 0.5μl of 1% digitonin, 0.5 μl of 10% Tween-20 and
5 μl of water). The transposition reaction was incubated at 37 °C for
30min followed byDNApurification. An initial PCR amplificationwas
performed on the tagmented DNA using Nextera indexing primers
(Illumina). Real-time (RT)-qPCR was run with a fraction of the tag-
mented DNA to determine the number of additional PCR cycles
needed, and a final PCR amplification was performed. Size selection
was done using AMPure XP beads (Beckman Coulter) to remove
small, unwanted fragments (<100 bp). The final libraries were
sequenced using the Illumina HiSeq 4000 (PE, 75-nt kit) and NextSeq
6000 (PE, 50-nt kit) platforms. All samples passed QC checks that
included morphological evaluation of nuclei, fluorescence-based
electrophoresis of libraries to assess size distribution andRT-qPCR to
assess the enrichment of open chromatin sites.

ATAC-seq read alignment and peak calling
ATAC-seq data was processed using the ENCODE-DCC ATAC-seq
pipeline v1.7.1. Reads were aligned to GRCh38 genome build using
Bowtie2. The quality of the sequencing was assessed using FastQC.
Samples had 62.0+/− 0.8 (s.e.) million total reads after mitochondrial
filtering and deduplication, with 90% of samples having over 40
million reads (Figure S1a). The average sample FRiP scorewas0.242+/
− 0.002 (s.e.), with 77% of samples having a FRiP score higher than
0.2 (Figure S1b). The average transcription start site enrichment
(TSSE) was 14.2+/− 0.1 (s.e.), with 99% of samples having a TSSE
greater than 7 (Figure S1c). All samples had a distinct nucleosome
free-region in fragment length distribution plots. We identified open
chromatin regions separately for each sample using the peak-calling
software MACS2 and determined differentially open sites using
DESeq2 (adj. p-value < 0.1).

Generation of consensus peakset and raw counts matrix
After peak calling, using the R package DiffBind83, a consensus peakset
was constructed by retaining peaks that were open in at least 10% of
samples; it consisted of 100,363 variable-width chromatin regions.
These regions were annotated using HOMER37. Chromatin read counts
from the consensus peakset were normalized using the DESeq284 vst
function. A parametric fit was used for the dispersion estimate, and the
default DESeq2 geometric median of ratios was used for the scaling
factor estimate.

Evaluation of processed data quality
Coverage plots and read pileups were generated using the R package
Gviz65 (Fig. 1e). Sample-wise Pearson correlations within the BTC, BDC,
and inter-individual groups (Figure S1d) were calculated using the
columns of the normalized counts matrix. Outlying samples were
identified using complete link hierarchical clustering with Euclidean

distance on the columns of the correlation matrix (heatmap for BDCs
shown in Figure S1f).

Replication cohort analysis
22 samples were redifferentiated, sequenced, and compared to the
initial cohort. To compare samples in the replication cohort to the
initial cohort, Diffbind83 was run on the 44 total samples from
the initial and replication cohorts to generate a new consensus
peakset and raw counts matrix. The raw counts matrix was normal-
ized using the DESeq2 vst function as before. After normalization,
an inter-sample correlation matrix was constructed by calculation
Pearson correlations between individual samples. Samples were
clustered by applying complete link hierarchical clustering on the
Euclidean distance between the columns of this correlation matrix.

PCA/UMAP analysis
PCA was conducted on the top 500 most variably accessible regions
using the R package PCAtools85. The UMAP representation on the 100
most variably accessible regions was generated using the R package
UMAP86. For downstream analysis, the UMAP representation was used
to estimate the PBMC-type identity of samples with missing data. PCA
in Fig. 2a was conductedwhile including BDC/BTC samples, and PCA in
Figures S2c-g excluded BDC/BTC samples.

Genomics data analysis
Genomics vcf files were obtained from Baxi et al.11 and analyzed using
Pysam87.

Fitting linear mixed model
Each row (chromatin region) of the normalized read countsmatrix was
fit to a set of 16 covariates with a linear mixed model using the R
package variancePartition88. Discrete variables (differentiation batch,
sequencer, sex, case status, PBMC type, ancestry) were modeled with
random effects, and continuous variables were modeled with fixed
effects.

Differential analysis for generating volcano plots
Differentially accessible regions (DARs) associated with covariates
were identified by running DESeq2 on the raw counts matrix using a
parametric dispersion fit and the default size parameter estimates
while including FRiP score, sequencer, sex, PBMC type, and ALS case
status as covariates. The p-values were adjusted for multiple
hypothesis testing (labeled throughout the manuscript as “adj.
p-value”) using the Benjamini-Hochberg (B-H) correction, unless
noted otherwise; notably, p-values in ATAC-RNA co-expression ana-
lyses were corrected for multiple tests using the Bonferroni method.
Adjusted p-values and log2FC values for each covariate were used for
volcano plots.

Motif enrichment analysis
All known motif enrichment analyses were conducted using the
HOMER findMotifsGenome.pl function with the ‘-nomotif’ flag. In all
analyses, target peaks were first narrowed to +/-100bp of the peak
summit. Background sequences normalized for GC content were
generated by HOMER unless otherwise specified. Motif enrichment
analysis of the promoter-proximal peaks with an inverse association
with gene expression (Fig. 6e) was conducted against a background of
all significant promoter-proximal peaks.

Simulations to identify the role of sequencer in influencing dif-
ferential accessibility results
The effect of raw read length on differential accessibility was eval-
uated on a subset of 20 samples (10with 75 bpHiSeq4000 reads, and
10 with 50 bp NovaSeq6000 reads). Raw reads were trimmed down
to 50 bp and 36 bp lengths, and realigned to the reference genome.
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To generate a consensus peakset and raw countsmatrix, Diffbindwas
run on a set of 50 samples: 10 75 bp HiSeq4000 samples, 10 trimmed
50 bpHiSeq4000 samples, 10 trimmed36 bpHiSeq4000 samples, 10
50 bp NovaSeq6000 samples, and 10 trimmed 36 bp NovaSeq6000
samples. The same set of samples were used for each trimming. The
raw counts were analyzed using DESeq2 vst normalization and dif-
ferential analysis.

The differential signal in this test set recapitulated the signal from
analyzing all samples, with 75 bpHiSeq4000 samples exhibiting higher
measured accessibility across most DARs (Figure S3a). Following this
confirmation, the 75 bp reads were trimmed down to 50bp, and the
analysis was repeated; the most significant DARs had lost their sig-
nificance (Figure S3b). We found that the measured chromatin acces-
sibility of the most significant DARs fell with decreasing read length
(Figure S3c).

Correlations with gene expression
There were 335 samples that had both gene expression and chromatin
accessibility reported. Generation of raw counts for gene expression as
described in Workman et al.26. Raw counts from gene expression data
were normalized using theDESeq2 vst function and the default DESeq2
parameters (parametric fit for the dispersion estimate, geometric
median of ratios for size factor estimate).

Estimating reads not in peaks in X chromosome
The total number of reads that mapped to the X chromosome was
estimated from the mitochondrial filtered, deduplicated BAM
files using Samtools89. The raw reads in peaks from the X chromo-
some was estimated using the Diffbind-output raw counts matrix.
The number of reads not in peaks (RniP) on the X chromosome were
estimated by subtracting these two quantities. The X chromosome
RniP were normalized by dividing by the total number of reads to
generate Figure S4e.

LASSO linear regression
The predictor was constructed on a set of filtered ALS cases. In total,
there were 242 ALS samples with a recorded ALSFRS-R slope. The
normalized chromatin read counts matrix was first subset to chro-
matin regions within 2 kb of a TSS and samples with a recorded
ALSFRS-R slope. An inter-sample correlation matrix was constructed
using this subset counts matrix. Euclidean distance complete-link
hierarchical clustering on this correlation matrix revealed a set of
12 samples that were poorly correlated with other samples; these
samples were excluded from further analysis (Figure S7b). In the
remaining sample set, six sampleswere identified ashaving anoutlying
ALSFRS-R slope and excluded as well (Figure S7c). Outliers were
defined in the traditional way as samples that exhibited an ALSFRS-R
slope that was more than 1.5 interquartile ranges away from the first
and third quartiles. To mitigate the effects of batch-to-batch variation,
samples that came frombatches with less than 4 representatives in the
sample setwere removed; this caused the removal of 68 samples. Next,
samples were randomly divided into a 90/10 split for a training set
(140 samples) and testing set (16 samples). LASSO linear regression
was conducted using the R package glmnet90. After each cross-
validation variable-selection run, final predictors were constructed by
fitting ALSFRS-R slopes of the training samples to the set of selected
regions using ordinary multiple linear regression. Training RMSE and
R2 values were calculated for this model. This fit model was then used
to predict the ALSFRS-R slopes of the out-of-sample testing data. The
performance of the fit was evaluated according to the RMSE and R2

values. In evaluating the reported R2 value, the total variation was
calculated relative to the mean of the training data. Otherwise, the
squared correlationbetweenpredicted and actual valueof theALSFRS-
R slope for the out of sample testing data is slightly higher: 0.275+/−
0.002 (mean +/− s.e.).

ATAC-seq and RNA-seq co-expression analyses
ATAC-seq andRNA-seq co-expressionwas conducted by repurposing
the tensorQTL package91, primarily due to its fast computations
enabled on a GPU and its ability to incorporate covariates into the
analysis. For matched samples, the FRiP score, sequencer, case sta-
tus, sex, and PBMC type were included as covariates. We regressed
gene expression on chromatin accessibility using the cis.map_nom-
inal function to get a list of nominal p-values for associations of each
gene to all chromatin regionswithin 250 kb of its TSS. The Bonferroni
method was used to correct for multiple hypothesis testing.

Ethical approval processes anddonor consent for the use of cells
The Answer ALS program11 collected the clinical data and derived all
the cell lines used in this study. Answer ALS was approved by local
institutional review boards, and all participants provided written
informed consent. Consent was uniform across all sites and included
an agreement to share data broadly for medical research. Subsequent
use of these cells by the authors was done in accordance with local
institutional review boards.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in the preparation of this article were obtained from the
ANSWER ALS Data Portal (AALS-01184). For up-to-date information on
the study, visit https://dataportal.answerals.org. All data is available
through the Answer ALS Data Portal following approval of a Data Use
Agreement (DUA) form. Sample IDs used in this analysis can be found
in Supplementary Data S11.
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