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Abstract

Osteoarthritis (OA) of the knee is a major source of disability that has no known treatment or cure. 

Morphological and compositional MRI is commonly used for assessing the bone and soft tissues 

in the knee to enhance the understanding of OA pathophysiology. However, it is challenging to 

extend these imaging methods and their subsequent analysis techniques to study large population 

cohorts due to slow and inefficient imaging acquisition and postprocessing tools. This can create a 

bottle-neck in assessing early OA changes and evaluating the responses of novel therapeutics. The 

purpose of this review article is to highlight recent developments in tools for enhancing the 

efficiency of knee MRI methods useful to study OA. Advances in efficient MRI data acquisition 

and reconstruction tools for morphological and compositional imaging, efficient automated image 

analysis tools, and hardware improvements to further drive efficient imaging are discussed in this 

review. For each topic, we discuss the current challenges as well as potential future opportunities 

to alleviate these challenges.

MAGNETIC RESONANCE IMAGING (MRI) is pervasively utilized in musculoskeletal 

imaging.1 The knee is one of the most commonly imaged joints using MRI. Clinically, MRI 

is commonly used to assess internal derangement of the knee, especially in tissues such as 

cartilage, bone, menisci, and the ligaments. Beyond the clinic, knee MRI is used widely to 

study the degenerative disease of osteoarthritis (OA)—one of the leading causes of disability 

in elderly populations. Knee OA affects ~17 million adults in the US. Yet besides knee 

arthroplasty for endstage OA, there is no treatment or cure for the disease.2,3 Weight-bearing 

radiography to measure joint space loss and osteophyte incidence using the Kellgren-
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Lawrence grading system is the current gold-standard for diagnosing OA.4 However, this 

system is wholly insensitive to the soft tissues involved in this whole-joint multifactorial 

disease and it cannot depict early-stage changes at a point where they may be reversible.5

MRI enables assessment of OA as a whole-joint disease due to its ability to simultaneously 

interrogate multiple tissues in the joint using multicontrast morphological imaging. 

Advances in compositional imaging of tissues using quantitative MRI may also potentially 

provide noninvasive imaging biomarkers of OA. One of the primary objectives of imaging 

research studies in OA, morphological or compositional, is to develop tools to assess the 

early onset and progression of the disease for evaluating the efficacy of pharmacologic or 

lifestyle-based interventions. Given the multiplicity of OA risk factors (such as age, body 

mass index [BMI], gender, previous trauma, joint alignment, etc), such endeavors likely 

require a combination of morphological and compositional imaging in large populations that 

consist of healthy subjects with predispositions for OA as well as subjects with OA.2

The challenge in population-wide OA research is the lack of efficiency in current imaging 

and analysis techniques, which precludes systematic implementation of advanced imaging in 

large epidemiological studies. For example, knee MRI in the largest observational OA study, 

the Osteoarthritis Initiative (OAI), with ~5000 participants, required almost 1 hour of MRI 

scan time, where scan time constraints limited scanning both knees with the same sequences. 

By comparison, in the UK Biobank, an observational study of ~100,000 participants,6 the 

brain MRI protocol only requires 36 minutes, where every additional minute of MRI 

scanning was surmised to increase study costs by £1 million.7 Thus, there is a pressing need 

to develop time-efficient imaging tools that provide morphological and compositional 

imaging insights to improve understanding of OA pathophysiology and to screen the 

appropriate populations for inclusion in clinical trials.8 Moreover, large imaging datasets 

also present the challenge of developing techniques to interpret insights from images in a 

timely and efficient manner. Images from the OAI are still being manually analyzed, even 15 

years after the inclusion of the first subjects. Going forward, there is a need to pair efficient 

image analysis tools with efficient acquisition methods.

Given the current challenges of imaging OA, the goals of this review article are to present 

advances in: 1) efficient morphological imaging of the knee to evaluate structural 

abnormalities; 2) compositional imaging to determine prestructural soft-tissue changes; 3) 

automated image analysis techniques to gain salient insights from acquired images; and 4) 

imaging hardware to enable more efficient MRI sequences.

Morphological Imaging

Imaging the structure of the knee is essential to enhance the understanding of longitudinal 

and spatial structural degradation patterns induced in OA. The heterogeneous whole-organ 

nature of OA necessitates imaging protocols with adequate sensitivity for whole-joint 

structural analysis.9 The assessment of tissue structure is fundamental in semiquantitative 

scoring mechanisms of OA severity and progression.10 Traditional musculoskeletal imaging 

entails the use of 2D fast spin echo (FSE, also known as turbo spin echo, TSE) sequences 

that provide excellent in-plane resolution, but at the expense of thick slices and slice gaps 
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due to signal-to-noise ratio (SNR) efficiency limitations. This requires using multiple thick-

slice 2D sequences with the same contrast in different imaging planes, which may increase 

susceptibility to partial volume artifacts and preclude arbitrary plane reformations. 

Additionally, results from the OAI have demonstrated that cartilage and meniscus 

morphometry is predictive of OA progression.11,12 Such changes were measured using high-

resolution sequences with favorable segmentation contrasts for cartilage and menisci, such 

as the double-echo steady-state (DESS) or spoiled gradient recalled echo (SPGR).13 

However, in the OAI the DESS sequence required 11 minutes of scan time per knee. 

Consequently, increasing the speed of such protocols can directly minimize the costs of 

clinical trials and studies, and allow for larger enrollment cohorts. The following section 

includes recent advances in efficient 2D imaging techniques to lower the scan time of 

current protocols as well as novel 3D imaging techniques for rapid near-isotropic high-

resolution imaging. A summary of some of the different techniques developed recently is 

provided in Table 1.

Conventional MRI Acceleration Techniques

Conventional acceleration techniques may include parallel imaging (PI), compressed sensing 

(CS), or a combination of the two.14–17 In PI, k-space data are systematically undersampled 

and recovered subsequently (either in the image domain or the frequency domain) using 

spatial encoding patterns achieved from multiple phased-array coil elements. However, high 

PI accelerations can cause aliasing artifacts or noise amplification through increased g-

factors, placing a fundamental threshold on maximum accelerations. On the other hand, CS 

relies on the inherent compressibility (or sparsity) of the image data in a transform domain 

(total variation, wavelet, etc) for accelerating acquisitions.15 Such sparsity, which leads to 

incoherent or random noise-like aliasing artifacts, can be exploited to recover the unaliased 

image using sparse or low-rank models. However, CS reconstructions require hand-crafted 

regularization parameters, which can either lead to either overregularized (smoothed) or 

inadequately unaliased images. Moreover, the nonlinear iterative CS algorithms generally 

require long computation times, which has limited the pervasiveness of this method.

Accelerating 2D-FSE MRI

PI, routinely available on all major MRI vendor platforms, is the most common image 

acceleration technique. PI can typically achieve modest accelerations factors (R) of R = 2 

with common knee coils, while higher R = 3–4 may lead to image artifacts.18 CS has seen a 

limited role in accelerating 2D-FSE since optimal sparsifying transforms for enforcing 

incoherence are challenging to implement with undersampling only in one phase-encoding 

dimension.

Advances in deep learning and convolutional neural networks (CNNs) are providing 

additional methods for accelerating 2D-FSE acquisitions. Hammernik et al demonstrated a 

data-driven variational network (VN) for undersampled complex-reconstruction that 

embedded CS principles into a variational model.19 Such a VN network was trained with 

fully-sampled and undersampled images and their accompanying sensitivity maps, where all 

empirical free-parameters were learned in a fully data-driven manner using an unrolled 

gradient-descent scheme. This technique outperformed conventional reconstruction for 
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diagnostic knee MRI 2D FSE sequences by enabling accelerations of R = 4 for both uniform 

and variable density sampling while maintaining diagnostic image quality. Example images 

obtained with prospective VN undersampling are shown in Fig. 1.

Similarly, Liu et al demonstrated the concept of Sampling-Augmented Neural neTwork with 

Incoherent Structure (SANTIS) using a generative adversarial network (GAN).20,21 In this 

technique, a generator neural network reconstructs an image with sparse observations 

subject to specific undersampling operators. Additionally, a discriminator network evaluates 

whether the generator images resemble the ground-truth fully-sampled images and 

subsequently provides the generator this feedback through a separate loss function, known 

as adversarial loss. Such a paired generator-discriminator GAN approach has been shown to 

preserve perceptual image quality better than a generator network only.22 The SANTIS 

network demonstrated high-fidelity accelerations for R = 3 (Fig. 2); however, image 

sharpness was somewhat degraded for R = 5 acceleration.

OPPORTUNITIES AND CHALLENGES.—Compared to traditional protocols with R = 2 

accelerations, new promising reconstruction methods may provide additional 2-fold higher 

accelerations and have a high potential to capture internal derangement in the knee. These 

techniques could also be combined with novel acquisition strategies such as simultaneous 

multislice to further accelerate image acquisition.23 From a deep-learning standpoint, the 

large fully-sampled raw-data fastMRI dataset is an exciting resource to develop novel 

reconstruction methods.24 However, it is also important to simultaneously develop new 

techniques for evaluating the robustness of CNN reconstructions since, unlike PI or CS, it is 

challenging to evaluate network performance on phantoms since the algorithm is usually 

trained on in vivo datasets. Moreover, there is no convenient point spread function for 

interpreting the nonlinear network behavior outputs and generalizability. Thus, developing 

tools to understand CNN failure modes is essential prior to widespread implementation.

From 2D to 3D-FSE

Instead of multiple accelerated 2D-FSE sequences, there is a large interest in 3D sequences 

to acquire images with isotropic resolutions comparable to conventional 2D-FSE in-plane 

resolutions.25 3D steady-state imaging approaches have enabled rapid musculoskeletal MRI 

with a favorable contrast for cartilage.26,27 More recently, 3D-FSE sequences (common 

vendor names, GE [Milwaukee, WI]: CUBE; Siemens [Erlangen, Germany]: SPACE; 

Philips [Best, Netherlands]: VISTA) have also demonstrated promising diagnostic outcomes.
28 However, long scan times and the resultant tradeoffs are the fundamental challenges of 

practical 3D-FSE acquisitions. Increasing the echo train length (ETL) of the acquisitions 

(~10 for 2D imaging vs. ~30+ for 3D imaging) can decrease scan time but leads to 

modulation of the k-space data due to T2 decay over the readout, which results in image 

blurring or ringing artifacts, depending on the view ordering.29 Thus, even 2D and 3D-FSE 

scans prescribed with identical matrix sizes may have different perceptual resolutions.

CS is a natural choice to accelerate 3D-FSE acquisitions due to the flexibility to choose 

varying sampling patterns to promote sparsifying requirements. Kijowski et al showed that 

intermediate-weighted 3D-FSE, both with and without CS, provided comparable SNR and 
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diagnostic performance in assessing the cartilage, meniscus, and ligaments.30 Combining an 

R = 2 × 2 (phase and slice direction) PI approach with CS provided an additional 30% scan 

time reduction, resulting in 0.5 × 0.5 × 1.0 mm resolution scans in 3:16 minutes. 

Additionally, intermediate-weighted and T2-weighted 3D FSE sequences accelerated with 

CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) showed 

high image quality and high concordance with arthroscopic findings in a pediatric 

population.31–33 CAIPIRINHA enabled phase and slice direction undersampling (R = 2 × 2) 

to generate 0.5–0.6 mm isotropic resolution images in under 5 minutes, by optimizing the 

use of coil sensitivities, with example multiplanar images shown in Fig. 3.34

Moreover, Mardani et al showed promising results for reconstructing 3D-FSE images (R = 

3) using GANs to reconstruct undersampled images from a fully-sampled healthy dataset.35 

Additional evaluations in a diagnostic setting and potential synergistic combinations with 

conventional acceleration approaches, may be beneficial to evaluate the diagnostic potential 

of such techniques.

OPPORTUNITIES AND CHALLENGES.—3D-FSE techniques have a high potential to 

mitigate several limitations of 2D-FSE imaging, but remain limited by ETL-induced 

blurring. Using novel variable flip-angle methods or investigating wave-encoded variable 

density single-shot FSE may present new methods to reduce image blurring.36,37 An 

additional limitation for the method is intrinsic to the acquisition, since only a single contrast 

is acquired per sequence. Evaluating the diagnostic utility of the image contrasts that is 

essential for specific abnormalities will be necessary to determine the overall diagnostic 

utility. Future acceleration techniques could also utilize the data acquisition advances along 

with deep-learning reconstructions for achieving the maximal image accelerations.

Novel 3D MRI Approaches

T2-Shuffling is a promising new extension of 3D FSE that randomly shuffles the ordering of 

the echo trains to mitigate blurring induced by long echo trains, especially for tissues with 

shorter-T2 relaxation times (<100 msec).38 It also resamples similar positions in k-space at 

multiple echo times (TE) that enables a 4D acquisition, which consists of a 3D images that 

are reconstructed with different TEs (Fig. 4). A 7-minute T2-Shuffling sequence (with 0.55 × 

0.55 × 0.6 mm resolution) has been shown to have high concordance with conventional 

imaging for diagnostic pediatric knee MRI.39 This technique has shown promise for 

prospective targeted imaging protocols.40

Similarly, the quantitative double-echo steady-state (qDESS) is an alternative approach for 

rapid 3D morphological imaging. An extension of balanced steady-state free precession, 

qDESS generates two echoes. The first qDESS echo (S+) is a gradient echo with T2/T1 

weighting while the second echo (S−) is akin to a steady-state spin-echo formulated from 

previously spoiled echo pathways.41–43 Unlike the commercial DESS sequence used in the 

OAI, where the two echoes are combined using root sum-of-squares, qDESS echoes are kept 

separate. By analytically modeling the qDESS signal pathways using extended phase graphs 

(EPG),44 the separate echoes can be used for fluid nulling and to calculate quantitative T2 

relaxation times (Fig. 5).45,46 A 5-minute qDESS sequence with 0.3 × 0.4 × 1.5 mm 
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resolution has been shown to provide simultaneous T2-relaxation-time and morphometry 

estimates for cartilage and meniscus47 and has high concordance with conventional 

diagnostic 2D FSE for knee MRI.48 SNR-efficient extensions of qDESS that include 3D 

radial sampling with ultrashort TEs, with simultaneous fat and water separation, and with 

0.5 mm isotropic resolution in 8 minutes (Fig. 6) also offer a promising approach for rapid 

morphological and compositional imaging.49

OPPORTUNITIES AND CHALLENGES.—Both T2-Shuffling and qDESS have shown 

promising results in small cohorts; however, implementations across multiple sites and 

vendors will be necessary for pervasive adoption of these techniques. A primary challenge 

associated with T2-Shuffling is the computationally intensive reconstruction, even with 

advanced computational hardware. Reducing this duration will be essential for pervasive 

adoption. For qDESS, the primary challenges are unfamiliarity of contrasts and an 

underestimation of the size of bone marrow edema (BME).48 However, this could be 

addressed with abbreviated protocols where an accelerated 2D FSE sequence can be paired 

with qDESS to maintain familiarity with image contrasts and to garner the benefits of 

qDESS.48

Retrospective Image Quality Enhancement

Image super-resolution, the technique of enhancing image resolution using learned image 

priors, is an active area of research in computer vision. While super-resolution has had 

limited use for enhancing MRI previously, recent advances in deep learning (DL) have 

enabled considerable image quality enhancement with near real-time reconstructions.50,51 

Such super-resolution CNNs have been used for improving the slice resolution of DESS 

MRI scans from the OAI 3-fold, without biasing quantitative image quality or qualitative 

radiologist image quality metrics52 (Fig. 7). That study also demonstrated that CNN super-

resolution significantly outperformed Fourier interpolation (zero padding in k-space), which 

is commonly used directly on MRI scanners and in DICOM viewers. Additionally, these 

enhanced images also minimally biased subtle features such as osteophytes and cartilage.53 

Such techniques may be attractive for replacing Fourier interpolations. Combined with other 

DL techniques such as image denoising, super-resolution may be used to enhance MRI scans 

independent of sequence and contrast type and may be applied to all the rapid techniques 

described above.

OPPORTUNITIES AND CHALLENGES.—DL methods such as super-resolution and 

reconstruction are promising for accelerating MRI acquisitions. While super-resolution 

provides an image-space interpretation of enhancing MRI resolution, techniques such as VN 

and SANTIS provide a k-space interpretation of resolution enhancement and antialiasing. 

Both approaches provide promising results and may be used synergistically; however, to 

date no head-to-head study has systematically compared the relative efficacy of the two 

approaches. Additionally, with many DL-based acceleration tasks, GANs tend to generate 

images with sharper image features, likely due to the use of nonlocal losses compared to 

traditional losses such as L1-norm or L2-norm. Instead, GANs try to parametrize probability 

distribution functions of plausible high-quality images synthesized from lower-quality 

inputs. While this may provide sharpness, it may also lead to image hallucinations—the 
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existence of plausible image features incorrectly appearing in images. In the context of 

musculoskeletal MRI, where lesions in the cartilage and meniscus may only be a few pixels 

in size, such hallucinations are a large concern.

Moreover, most DL approaches have commonly been used with retrospectively 

undersampled data, which may not always account for image filtering following the 

acquisition of prospectively undersampled datasets, especially across the various MRI 

vendors. Evaluating the generalizability of such techniques on larger and clinically relevant 

datasets across vendors and field strengths will help identify optimal network architectures 

and loss functions. Overall, while DL approaches for accelerating image acquisition are 

promising, prospective use in clinical studies will ultimately define the true utility of the DL 

techniques.

Compositional (Quantitative) Imaging

Besides morphological imaging to assess tissue structure, MRI can generate compositional 

or quantitative measures that are representative of the biochemical tissue composition. Such 

techniques may provide indications of the early degenerative changes occurring in the tissue 

microstructure prior to the onset of irreversible morphological changes. Quantitative 

musculoskeletal MRI commonly assesses collagenous tissues, with a majority of techniques 

interrogating articular cartilage due to its central role in OA.54 In normal articular cartilage, 

water contributes ~80% of the wet weight, while collagen and proteoglycans contribute 

~60% and 15% of dry weight, respectively.55 Compositional imaging techniques exploit that 

the tissue signal is impacted by and can be modulated using the hydration level and the 

collagen and proteoglycan microstructure. Despite promising results for depicting early 

degenerative changes, they are hindered by long acquisition durations due to accuracy 

constraints induced by low SNR. While the biochemical and histological properties of 

articular cartilage were described in detail previously,55,56 the following sections will focus 

on increased efficiency for acquiring a multitude of compositional markers for knee MRI.

T2 Relaxation Time

T2, or the transverse relaxation time constant, is widely used technique to assess collagen 

microstructure and hydration levels, with the hypothesis that tissue ultrastructure 

degradation leads to increased hydration in the collagen and meniscus, thereby leading to 

increased T2 times.57–60 2D spin-echo with multiple TEs is the most common technique for 

acquiring T2 relaxation times.61 The simplicity of the acquisition and the subsequent 

monoexponential fitting has made this sequence attractive, despite shortcomings such as 

stimulated echoes, imperfect refocusing radiofrequency (RF) pulses, and magnetization 

transfer effects.62–64 Moreover, the long acquisition durations required for sampling multiple 

TEs (usually 4–8 separate echoes) and the relatively coarse resolutions limit the full utility 

of this method.65 In addition to monoexponential fitting, biexponential T2 fitting models 

have also been explored to differentiate bound and free water in cartilage; however, these 

models require more complex fitting techniques and data with short TEs (and high SNR) to 

accurately quantify the rapidly decaying T2 component.66
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The qDESS sequence can be used for accelerated and high-resolution T2 mapping.45,67 

While the multiple TEs in traditional T2 measurement sequences are required to develop 

robustness to noise, diffusion, T1 relaxation, and off-resonance, these effects can explicitly 

be modeled in the highly SNR-efficient qDESS sequence using extended-phase-graphs 

(EPG) analysis.44,46 Matzat et al demonstrated that qDESS generates accurate T2 relaxation 

time measurements with high dynamic range and high concordance to single-echo spin-echo 

measurements.68 Cartesian qDESS has been shown to have accurate T2 measurements of the 

cartilage and meniscus, while 3D-radial ultrashort TE qDESS (UTEDESS) has been shown 

to produce T2 measurements of the tendons, ligaments, and meniscus.47,49 DL-based super-

resolution can also enhance qDESS image quality without biasing quantitative T2 parameter 

maps.69 Compared to spin-echo-based T2 measurement methods, qDESS provides higher 

resolution, which may be used to investigate laminar differences in cartilage and menisci. 

However, with a dual-echo approach, qDESS may not have the sensitivity to generate 

multicomponent fits.

DL-based image reconstructions can also be used to accelerate parametric mapping. Liu et al 

demonstrated a model-augmented neural network with incoherent k-space sampling 

(MANTIS) method to generate T2 parameter maps from undersampled MRI data (Fig. 8).70 

MANTIS utilizes a cyclic loss with two loss terms. One loss tries to ensure that the T2 

parameter maps from the reconstruction produce synthetic undersampled k-space data 

consistent with the acquired k-space, while the other loss tries to ensure consistency between 

the undersampled and fully-sampled parameter maps. This method shows the potential for 

combining data-driven DL and MR physics signal modeling while utilizing the multiecho 

redundancies for ensuring additional data consistency.71

T1ρ Relaxation Times

T1ρ (or spin-lock) relaxation time studies spins relaxation in the influence of a constant RF 

field, which has shown sensitivity to cartilage proteoglycan depletion.72 In this method, 

spins are locked in the transverse plane with a constant RF following excitation. T1ρ 
relaxation times are calculated using exponential decay models of signal intensities when RF 

pulses with varying spin-lock durations are applied to the tissue of interest. Typically, T1ρ 
imaging is performed using a spin-lock preparatory pulse followed by a 3D segmented 

elliptic-centric spoiled gradient echo (SPGR) readout.73,74 Similar to parametric T2 

relaxation time measurements, T1ρ efficiency is hindered since it requires 3D image 

volumes with varying spin-lock durations. Recently, T1ρ acquisitions have been accelerated 

using PI and CS (Fig. 9) without considerably affecting the quantitative T1ρ values.75,76 

Such acquisitions have also been extended to provide biexponential models of T1ρ decay.77

Glycosaminoglycan Chemical Exchange Saturation Transfer (GagCEST)

Chemical exchange saturation transfer (CEST) is an MR contrast enhancement technique 

that enables the indirect detection of molecules with exchangeable protons. 

Glycosaminoglycans (GAGs) in cartilage exhibit a concentration-dependent CEST effect 

between their hydroxyl (−OH) and bulk water protons.78 CEST sensitizes MRI to GAG 

concentration and enables imaging GAG distributions with high spatial resolution.79 The 

high specificity to GAG without the need for special hardware or intravenous contrast makes 
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GagCEST a promising method for studying cartilage matrix composition.80 However, the 

exchange rate and proximity of resonance frequencies between GAG hydroxyl protons and 

bulk water protons make efficient and specific saturation of GAG hydroxyl protons 

challenging at 3T.81 At 7T, studies have shown a high correlation between GagCEST and 

sodium (23Na) imaging, which is a direct measure of mapping the negatively charged GAG 

using positively charged 23Na, but suffers from poor resolution, long scan times, and the 

need for specialized hardware.80 New multislice and 3D GagCEST methods have 

demonstrated the potential of volumetric GagCEST analysis in clinically feasible scan times.
82,83

Diffusion

Measurement of the diffusive properties of cartilage have been shown in limited studies, but 

with promising results.84,85 The random orientation of the proteoglycan molecules 

represents an isotropic restriction on water diffusivity, which can be probed using mean 

diffusivity, while highly organized collagen architecture of cartilage represents anisotropic 

water diffusion, which can be depicted using fractional anisotropy.84 Diffusion MRI is 

intrinsically limited by SNR, since increasing the diffusion sensitivity necessarily lowers 

tissue signal, which makes image acceleration challenging. However, including the diffusion 

signal model as a constraint in a model-based CS reconstruction can accelerate diffusion-

weighted echo planar imaging (EPI) sequences.86 Moreover, the qDESS sequence has 

previously been extended to also calculate T2 and apparent diffusion coefficients 

simultaneously by using two sequences with varying spoiler gradients for imparting a 

variable T2 and diffusion weighting on the resultant images.67,87

OPPORTUNITIES AND CHALLENGES.—Novel techniques such as stimulated-echo 

readout-segmented EPI readouts and intrinsic SNR-based regularizers for the quantitative 

measurements could further accelerate compositional imaging techniques.87,88 Combining 

acquisition and modeling approaches from different sequences may also help parametric 

mapping. For example, qDESS could be extended to generate multiple TEs, as demonstrated 

with the 8-echo UTEDESS, in order to generate rapid multicomponent relaxation models. 

There also exist several DL methods to accelerate image acquisition; however, many of them 

have primarily been applied for morphological imaging.19,20,35 Beyond musculoskeletal 

imaging, DL image reconstruction methods have been utilized in undersampled 

neuroimaging and dynamic cardiac MRI.89–91 By combining these methods to overcome 

temporal redundancy and using parametric constraints for quantitative accuracy (such as 

those described as in MANTIS and SNR-regularization), there is potential for further 

accelerating parametric mapping.

Combining such DL-based reconstruction methods with traditional approaches such as 

parallel imaging and compressed sensing,75,92 dynamic view sharing,93 and novel 4D or 

multiecho acquisitions as in T2-shuffling or qDESS38,47 could enhance rapid quantitative 

knee MRI. These techniques could be extended to additional promising biomarkers that 

require multiecho curve-fitting such as T2* relaxation time mapping. Imaging with a 3D 

cones UTE trajectory has shown quantitative T2* sensitivity to meniscal degeneration and 

has been used for morphological imaging of the calcified cartilage endplate in the spine.94,95 

Chaudhari et al. Page 9

J Magn Reson Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Furthermore, to depict GAG changes, DL-based methods may allow for lower gadolinium 

dosage in delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) or for DL-based 

denoising of sodium MRI.96–98 Advances in MR fingerprinting, primarily used in 

neuroimaging, may also provide a method to perform parametric mapping of various 

relaxation components in the knee.99

While accelerating parametric sequences is a necessary goal, it should not come at the 

expense of quantitative accuracy. Traditional acceleration approaches often reduce image 

SNR or introduce artifacts, which limits the utility of the quantitative parameters.14,100 

Characterizing the dependency of parametric accuracy on SNR and choosing appropriate 

accelerations is essential to develop optimal quantitative knee MRI protocols. Furthermore, 

evaluating the impact of different hardware (field strengths, coils, vendors, etc) on 

parametric accuracy is vital to assess method robustness. Although it may be ideal to 

generate the exact same quantitative parameters across various hardware setups, depending 

on the study design, even just maintaining high method repeatability for longitudinal 

analyses on the same scanner would also be beneficial. Such a perspective was used in the 

multiyear OAI study.

Rapid Biomarker Extraction

Automated Tissue Segmentation

The development of rapid imaging techniques enables scanning larger population cohorts in 

shorter time periods. Such an increase in the extent of imaging data available necessitates 

novel techniques to parse through the images and to generate potential biomarkers for early 

OA onset and progression. For example, loss in medial femorotibial cartilage thickness over 

24 months has been shown to be associated with radiographic and pain progression in the 

knee.101 Bone shape has also been associated with an increased risk of incident OA.102,103 

Meniscal tears and extrusion have also been investigated as possible OA biomarkers.104 The 

processing pipeline of extracting these quantitative morphological measurements includes a 

mandatory step of image segmentation, often performed with manual or semiautomatic 

procedures. An accurate automatic algorithm for segmentation could establish a 

standardized practice for identifying morphological imaging biomarkers and efficient data 

analysis. Due to the lack of a fully-automated method, there is limited information on 

relationships between knee morphological features and OA risk factors such as age, gender, 

and BMI in larger populations and there is a pressing need to establish the prognostic 

capability of such imaging biomarkers.

DL advances have enabled automated, rapid, and accurate musculoskeletal tissue 

segmentation. Prasoon et al first used DL for segmentation by posing segmentation as a 

classification problem by utilizing a triplanar patch-based approach where three CNNs were 

trained to classify the central voxel of each patch as background or foreground (tibial 

cartilage).105 However, posing segmentation as a classification problem, as was historically 

done in image analysis via classical machine learning, does not intrinsically capitalize on the 

full potential of hierarchical convolutional feature extraction. In deep CNNs, each layer 

aggregates information at increasing levels of abstraction, starting with simple image 

elements, such as edges or contrast, to more complex and semantic aggregations, for 
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uncovering latent patterns to accomplish pattern recognition tasks.106 The encouraging 

potential of CNNs is strictly related to their ability to aggregate local and global features, 

which is not fully optimized in approaches that leverage segmentation as a classification 

framework.

Shelhammer et al addressed the issue of incorporating spatial contextual cues by proposing a 

fully-convolutional architecture to output pixelwise predictions.107 A popular innovation in 

this fully-convolutional architecture that has produced accurate results is the “encoder-

decoder” architecture. This architecture features a symmetric network that first learns image 

encoding by downsampling with convolutions with increasing feature maps and 

subsequently learns to decode the encoded image into a segmentation mask by upsampling 

with “transposed convolutions” (note that transpose convolutions are often incorrectly 

referred to as “deconvolutions”; however, this operation typically first upsamples the input 

followed by a simple convolution). Liu et al combined 2D SegNet, a popular encoder-

decoder architecture, with deformable models to perform bone and cartilage segmentation to 

obtain performance superior to state-of-the-art image processing-based methods.108 SegNet 

uses an upsampling strategy using prestored upsampling indices in the downsampling max-

pooling steps and offers an efficient alternative to transposed convolutions for recovering 

high-resolution image features. A similar approach was used by the same group to expand to 

additional knee tissues by using a fully connected 3D conditional random field to fine-tune 

the 2D segmentation results to account for 3D through-plane contextual relationships.109

Norman et al also used a encoder-decoder architecture, U-Net, to solve a multitissue knee 

segmentation problem.110 Unlike SegNet, the U-Net architecture features deep skip 

connections and transfers entire feature maps via transposed convolutions between the 

encoder an decoder, to obtain upsampled feature maps to combine local and global features 

(Fig. 10). The importance of skip connections is widely explored in biomedical image 

segmentation, and it has been shown how the expanding path can better recover spatial 

information by merging features skipped from the various resolution levels on the 

contracting path.111 This method demonstrated a state-of-the-art performance in cartilage 

and meniscus segmentation, with limited differences between the automated and manual 

approaches (Fig. 11). Additionally, that study evaluated segmentation performance in the 

context of the specific clinical and research applications. The accuracy and repeatability of 

cartilage morphometry features of volume and thickness and compositional markers of T1ρ 
and T2 were also reported, showing high machine-human concordance.

Image Interpretation

In addition to global features such as cartilage or meniscal morphometry derived from 

segmentation models, local morphological abnormalities have been widely studied as 

manifestations of joint degeneration. Semiquantitative scoring systems, such as the MRI 

Osteoarthritis Knee Score (MOAKS)10 and the Whole-Organ Magnetic Resonance Imaging 

Score (WORMS)112 have been used to grade local morphological abnormalities in subjects 

with OA. Such lesion severity scores have been compared with other findings such as 

meniscal defects, the presence of BMEs, as well as radiographic and clinical scores.113,114 

Chaudhari et al. Page 11

J Magn Reson Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These soft-tissue abnormalities have also been considered as possible predictors of total 

knee replacement surgery.115

The pervasive application of semiquantitative scoring is currently hampered by the time and 

level of expertise necessary to perform reliable grading, the lack of a true gold standard, and 

the intra- and interobserver variability. Automating or expediting morphological grading 

could enable a multitissue analysis of large cohorts in research studies such as the OAI and 

may potentially enhance the routine radiologist workflow and reduce costs in a clinical 

setting. Several promising applications of DL to automate classification of cartilage, 

meniscal, and ligament lesions have been proposed recently.116–119 Despite being a nascent 

technology, automated interpretation of tissue health using DL is summarized in 

considerable detail as the subject of several recent review articles.120,121

OPPORTUNITIES AND CHALLENGES.—All the above DL-based segmentation studies 

utilized each 2D slice as a separate input. Moving to 3D approaches may help increase 

network performance; however, current GPU hardware constraints either necessitate using 

shallower 3D models or using 3D image patches instead of the entire volumes. Decreasing 

network complexity and limiting large-scale contextual information may hinder the 

performance of such networks.122 DL approaches will also benefit from larger training 

corpuses, since it is hypothesized that a power law relationship exists between the size of the 

training data and the network performance.122,123

Gaining an ability to interpret the results from DL algorithms is essential to improve 

network performance and to guard against biases in algorithm outcomes or the curation of 

training datasets. Developing uncertainty metrics in addition to output predictions would be 

useful in this regard.124 Moreover, most current segmentation and classification algorithms 

are trained using training datasets compiled by single readers, which may also introduce 

reader-specific biases. Extending studies to generate probabilistic outcomes based on 

multiple readers would be essential to use CNN methods with confidence.

While external validation for images obtained from multiple sites and vendors will be 

necessary for ensuring generalizability, only a few trained models are available publicly. 

Desai et al proposed the open-source musculoskeletal analysis (DOSMA) tool (Fig. 12) 

capable of automated segmentation, registration, and quantitative fitting for multiple 

sequences, which may be a promising method to evaluate generalizability.125 Furthermore, 

borrowing lessons from traditional computer vision, a major factor in the success of DL for 

natural image classification is the presence of ImageNet—a large, standardized, and 

publicly-available dataset.126 Researchers globally can access ImageNet to train their 

models and to compare the performance of varying algorithms. Creating such a knee MRI 

dataset representative of varying biomarkers (morphological and compositional) combined 

with tools to share image data and corresponding labels, neural network architectures and 

weights, and overall results will be paramount to improve the accuracy of generalizable 

automated tools.
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Hardware Improvements

MRI Hardware

Specialized RF coils offer the potential to greatly enhance SNR in musculoskeletal MRI, 

allowing for faster scanning, higher resolution, or improved diagnostic quality. Further, coils 

play a role in patient comfort and flexibility, which can be a determining factor in degraded 

image quality through patient motion. Phased-array coils that match the anatomy of interest 

have greatly improved MRI scanning by enabling parallel imaging while optimizing SNR.
127 Current clinical hardware for extremity MRI is built around various anatomy of interest 

and utilizes between 4 and 18 coil-array elements. These coils mostly utilize a hard-shell 

design and often function to both transmit and receive RF signals, which can reduce heating. 

However, this design is often rigid, which necessitates a one-size-fits-all approach. Flexible 

coil-arrays offer the ability to more closely customize the coil fit to not only the anatomy of 

interest, but also specifically to each patient.128 By placing coil elements closer to the body, 

these coils increase their sensitivity to tissue signal. Further, the reduced size and increased 

flexibility in these coils can improve patient comfort and permit simultaneous use of 

multiple coil-arrays for high-resolution bilateral knee MRI.128

More recently, screen printed MRI coils129,130 and adaptive image receive (AIR) coils131 

have been developed to further enhance the flexibility of coils to conform to multiple forms 

of anatomy while being inherently lightweight. In addition, new high-impedance 

detectors132 and stretchable RF conductors133 formed by liquid metal have been 

incorporated into wearable and even stretchable coils, which may not only optimize SNR for 

an anatomy of interest, but also optimize imaging during movement in order to assess tissue 

biomechanics.134 In combination with more efficient pulse sequences, improved hardware 

promises better access and flexibility for imaging bones and joints while improving scan 

times and patient comfort.

Bilateral Knee Imaging

OA is commonly a bilateral disease.135 While costs as well as long scan times have 

precluded separate scanning of both knees, simultaneous bilateral examinations can provide 

many benefits clinically, as well as in longitudinal studies.136 Clinically, the contralateral 

knee may serve as an internal control for evaluation of anatomy, joint injury, or sources of 

pain. In research exams, bilateral exams can provide an internal control of quantitative MRI 

values.137 Further, bilateral knee MRI can drastically reduce costs and patient motion, 

improve patient comfort and retention, and eliminate potential between scan sources of error 

in research studies that require scanning of both knees.

Flexible, phased-array coils offer the possibility to image both knees simultaneously, in 

similar scan times as unilateral exams, while retaining excellent image quality. These coil-

arrays have minimal coil element coupling between two coil-arrays, allowing both knee 

volumes to be imaged without affecting image SNR compared to single knee scans, simply 

by exciting and encoding both sides.138 Such a bilateral coil-array setup utilizing two 16-

channel flexible coil arrays can image both knees simultaneously (Fig. 13) in similar scan 

times to conventional unilateral knee scans, while maintaining image quality.128 
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Additionally, cartilage T2 relaxation times were maintained between single knee scans and 

simultaneous bilateral scans. This study was performed using commercially available coils 

and sequences demonstrating that these methods can already be utilized widely. While some 

challenges still remain for right–left acceleration of 2D sagittal scans and non-Cartesian k-

space trajectories, new imaging methods using SMS139 and optimized trajectories140 along 

with the localized sensitivities of the individual coils may offer solutions,14,16,17 

respectively.

Ultra-High Field MRI: 7T

Ultra-high field (UHF) imaging offers numerous opportunities for knee MRI and is one of 

the first FDA and CE approved applications for 7T clinical imaging. In particular, SNR 

increases linearly with field strength, allowing for a drastic increase in resolution while 

maintaining SNR at 7T compared with 3T and 1.5T.141 This high resolution may permit 

better visualization and characterization of anatomy and pathology of joint structures, many 

of which are thin, especially in advanced OA. Alternatively, the increased SNR can be 

utilized to decrease scan time by increasing parallel imaging factors and utilizing the 

increased SNR at 7T to overcome g-factor SNR losses.

OPPORTUNITIES AND CHALLENGES.—7T MRI may be utilized to increase SNR, 

and to reduce echo-train lengths in combination with parallel imaging, for reducing blurring 

in 3D-FSE sequences without added scan time. This may allow for isotropic acquisitions 

with clinical contrasts and subsequent multiplanar reformatting to reduce the time of 

research and clinical knee exams. 7T MRI also offers improved capabilities for quantitative 

imaging. In addition to the benefits of increased SNR for all quantitative imaging methods, 

including opportunities to reduce noise, increase resolution, and better visualize laminar 

differences, the increased chemical exchange shift at 7T offers an improvement in sensitivity 

and specificity to imaging proteoglycan changes that may precede structural changes. In 

GagCEST, this increased chemical shift offers more selective saturation of the GAG 

hydroxyl protons, resulting in reduced direct water saturation effects (more SNR) as well as 

increased saturation power for more efficient saturation of these exchanging protons.81,82 

For T1ρ relaxation time mapping, the relaxation component from GAG hydroxyl protons 

increases quadratically with static field (B0), offering increased sensitivity and specificity to 

GAG at 7T.

While 7T offers many benefits, it also has many technical challenges that must be 

understood and overcome for widespread application. Inhomogeneities in both static 

magnetic field (B0) and applied magnetic field (B1) are magnified at 7T. In particular, 

wavelength effects in tissue at 7T cause variations in the effective transmit B1 field, resulting 

in large variations in SNR and image contrast (shading). Field shimming, particularly with 

higher-order shim fields, offer the most basic methods to improve field variations. Parallel 

transmit, which offers creating uniform B1 fields and can minimize RF deposition, offers 

considerable promise but requires careful attention to RF power deposition and currently 

lacks clinical approval.142 Additionally, power deposition increases quadratically with 

increases in magnetic field.143 As a result, tissue heating is a major concern at UHF. This is 

especially true of FSE diagnostic sequences. However, since deposited RF power is a 
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function of tissue volume excited, this is a larger problem with large body areas such as the 

hips than smaller areas such as the knee when localized transmit coils are used.

Conclusion and Summary

In this article we reviewed recent advances for improving the efficiency of generating and 

analyzing morphological and compositional MRI. For image acquisition, T2-Shuffling and 

3D-FSE may be promising for accelerated morphological imaging, especially if the echo-

train blurring can be mitigated. Compositional imaging can be accelerated by incorporating 

relaxation models into novel DL-based image reconstruction methods. Quantitative 

measures such as T2 and T1ρ relaxometry present opportunities for use in large clinical trials 

due to demonstrated changes in OA and the potential for further acceleration. Sequences 

such as qDESS are promising for large-scale clinical trials, as they simultaneously produce 

morphological and compositional measures, and suitable segmentation contrasts in relatively 

short scan times. Advances in MRI hardware such as next-generation RF coils and UHF 

scanners will further accelerate image acquisition. Improvements in image analysis tools 

such as segmentation and classification will alleviate the burden of manual analysis and 

improve the repeatability of imaging studies. Together, such efficient imaging and analysis 

methods are essential to study large cohorts at varying stages of OA and with varying risk 

factors in order to improve our overall understanding of OA, particularly at an early stage of 

the disease where reversible changes may still be possible.
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FIGURE 1: 
An example tear of the medial meniscus is seen with associated cartilage thinning and 

subchondral marrow changes imaged with a proton-density weighted coronal sequence 

(a,b). Similarly, an example anterior cruciate ligament (ACL) tear imaged with a sagittal 

proton-density-weighted sequence is also shown (c,d). Images were acquired on a 3T system 

(Skyra, Siemens) using a 15-channel knee coil. Two variational networks models were 

trained, one for coronal and one for sagittal acquisitions, each with 10 fully sampled cases. 

For testing, prospective accelerations were performed with parallel imaging (GRAPPA, R = 

2) and the VN (R = 3). Images courtesy Dr. Florian Knoll, New York University, New York, 

NY.
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FIGURE 2: 
Representative examples of knee images (coronal proton-density weighted fast spin echo 

sequence, PD-FSE scanned on a GE 3T Premier) obtained using the different reconstruction 

methods at acceleration rate R = 3. Compared to the traditional method with a combination 

of compressed sensing and parallel imaging (CS-PI), the sampling-augmented neural 

network with incoherent structure (SANTIS) for MR image reconstruction provided 

improved removal of aliasing artifacts in the bone and cartilage and greater preservation of 

sharp tissue details. SANTIS reconstruction required 0.06 s/slice, compared to 2.2 s/slice for 

CS-PI. SSIM: structural similarity index; nRMSE: normalized root mean squared error. 

Images courtesy Dr. Fang Liu, University of Wisconsin, Madison, WI.
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FIGURE 3: 
A 16-year-old female teenager with a history of leukemia and long-term glucocorticoid 

treatment. Isotropic sagittal intermediate-weighted (a) and fat-suppressed T2-weighted (d) 
CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) SPACE 

TSE MR images with coronal and axial intermediate-weighted (c,d) and fat-suppressed T2-

weighted (e,f) reformation MR images show an osteonecrosis of the medial femoral condyle 

with separation of a large osteochondral fragment as indicated by intersecting joint fluid 

(white arrows). In addition, there is a medullary bone infarct (b,e; gray arrows) in the 

proximal tibial metaphysis. The intermediate-weighted 3D CAIPIRINHA SPACE TSE 

dataset was acquired with a 0.5 × 0.5 × 0.5 mm3 spatial resolution and a total acquisition 

time of 4 minute and 41 seconds. The fat-suppressed T2-weighted 3D CAIPIRINHA SPACE 

TSE dataset was acquired with a 0.6 × 0.6 × 0.6 mm3 spatial resolution and a total 

acquisition time of 4 minutes and 45 seconds. No interpolations techniques were used. 

Images courtesy Dr. Jan Fritz, Johns Hopkins University, Baltimore, MD.
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FIGURE 4: 
(a) An overview of the T2-Shuffling technique. A 3D FSE acquisition is modified to 

randomly shuffle the phase encode ordering of each echo train. Using prior knowledge of the 

signal relaxation curves for specific anatomy, a subspace-constraint incorporating 

compressed sensing was applied, leading to a 4D reconstruction along the signal relaxation 

curve. (b) T2-Shuffling images from a targeted pediatric knee MRI exam reformatted into 

(left) sagittal PD, (middle) coronal intermediate, and (right) axial T2 weighting. Clinical 

suspicion of lateral meniscal tear was confirmed with MRI (yellow arrows). Additional 

related findings were medial discoid meniscus (red arrow) and bone marrow edema (white 

arrow). Images courtesy Dr. Jon Tamir, University of California Berkeley, Berkeley, CA.
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FIGURE 5: 
Representative images from a quantitative double-echo steady-state (qDESS) sequence that 

can generate two novel contrasts. The first echo (S+) generates a T2/T1-weighted contrast (a) 
while the second echo (S–) has a higher T2 weighting (b). By performing a weighted 

subtraction of the two echoes, fluid nulling can be performed to enhance visualization of soft 

tissues (c). Analytical modeling of the two echoes can also be used to accurately 

characterize the T2 relaxation times of the cartilage and meniscus (d).
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FIGURE 6: 
Example multiplanar images from 3D radial ultra-short echo time qDESS (UTEDESS) 

sequence that can generate high-isotropic resolution images with high SNR from short-T2 

tissues such as the tendons (solid arrow), ligaments (dotted arrow), and the meniscus (dashed 

arrow).
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FIGURE 7: 
Example super-resolution images used for enhancing the slice resolution (left-right) of 

sagittal DESS sequences 3-fold. Comparisons between the tricubic interpolated images (a,d) 
show considerable blurring of the osteophytes and cartilage, as depicted by the arrows. 

Comparatively, the super-resolution images (b,e) show higher image sharpness and are more 

comparable to the original resolution images (c,f).
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FIGURE 8: 
Representative T2 maps estimated from different reconstruction methods at R = 5 using an 

eight-echo spin-echo T2 mapping sequence (GE 3T Signa Excite Hdx), respectively, for a 

symptomatic patient. The global low rank (GLR) reconstruction generated images with 

noticeable artifacts in bone and fatty tissues (white arrows). Although the local low rank 

(LLR) reconstruction improved overall image quality with reduced image artifacts, it led to 

noticeable smoothing due to the exploitation of local sparsity at high acceleration. In 

contrast, model-augmented neural network with incoherent k-space sampling (MANTIS) 

generated nearly artifact-free T2 maps with well-preserved sharpness and texture comparable 

to the reference T2 maps. This qualitative observation was also confirmed using the residual 

error maps (displayed with the same scale) and nRMSE values. Images courtesy Dr. Fang 

Liu, University of Wisconsin, Madison, WI.
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FIGURE 9: 
(a) A fully-sampled T1ρ map, with images reconstructed with SENSE (b) 4-fold accelerated 

T1ρ, with images reconstructed with SENSE (c) 4-fold accelerated T1ρ, with images 

reconstructed with CS and spatiotemporal finite difference (STFD) (d) 4-fold accelerated 

T1ρ, with images reconstructed with CS and low-rank plus sparse with spatial finite 

difference (L + S SFD). Images courtesy Dr. Marcelo Zibetti and Dr. Ravinder Regatte, New 

York University, New York NY.

Chaudhari et al. Page 31

J Magn Reson Imaging. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 10: 
The architecture for the 2D U-Net encoder-decoder convolutional neural network. An input 

image with pixel dimensions of 512 × 512 is successively downsampled (dimensions in gray 

box) using 2 × 2 max pooling layers, but with an increasing number of feature maps 

(dimensions under gray box) in the decoder. In the decoder, the image is similarly 

upsampled using transposed convolutions to produce a segmentation mask with the same 

dimensions as the input image, with labels for multiple tissues in the knee.
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FIGURE 11: 
Example 3D point-by-point distance error maps (in mm) between manual and automatic 

segmentation for cartilage and meniscus using a DESS scan from the OAI that has a 

resolution of 0.34 × 0.45 × 0.7 mm3. The errors in the weight-bearing regions are minimal, 

with a majority of the errors lying mostly on the edge slices, which are on the order of the 

image resolution.
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FIGURE 12: 
A sample analysis workflow using the fully-automated deep open source musculoskeletal 

analysis (DOSMA) framework. DOSMA automates tissue segmentation (red arrow), 

interscan registration (yellow arrow), quantitative fitting (green arrow), and visualization and 

region subdivision (orange arrow). In this example, qDESS scans (a) are used to 

automatically segment femoral and tibial cartilage (b) and analytically solve for T2 maps in 

each region (c,d). Corresponding CubeQuant scans for T1ρ relaxation time generation (e) 
are registered to the high-resolution qDESS scans (f) and used to fit T1ρ maps (g). 
Quantitative maps with 3D quantitative information are projected into 2D planes to visualize 

the femoral and tibial cartilage surfaces (d,h). Image courtesy Arjun Desai, Stanford 

University, Stanford, CA.
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FIGURE 13: 
A simultaneous bilateral knee MRI setup (a) with two 16-channel flexible phased-array coils 

(b) that can be tightly wrapped around each knee. This allows for high-resolution imaging 

(c) and T2 relaxation time mapping (d) of both knees with similar scan times and SNR to 

single knee acquisitions, and has been shown to maintain quantitative accuracy.
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