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A General Identification Condition for Causal Effects

Jin Tian and Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024
fjtian, judeag@cs.ucla.edu

Abstract

This paper concerns the assessment of the effects of actions
or
policy interventions from a combination of: (i) nonexperi-
mental data, and (ii) substantive assumptions. The assump-
tions are encoded in the form of a directed acyclic graph, also
called “causal graph”, in which some variables are presumed
to be unobserved. The paper establishes a necessary and suf-
ficient criterion for the identifiability of the causal effects of
a singleton variable on all other variables in the model, and
a powerful sufficient criterion for the effects of a singleton
variable on any set of variables.

Introduction
This paper explores the feasibility of inferring cause ef-
fect relationships from various combinations of data and
theoretical assumptions. The assumptions considered will
be represented in the form of an acyclic causal diagram
which contains both arrows and bi-directed arcs (Pearl 1995;
2000). The arrows represent the potential existence of direct
causal relationships between the corresponding variables,
and the bi-directed arcs represent spurious dependencies due
to unmeasured confounders. Our main task will be to decide
whether the assumptions represented in any given diagram
are sufficient for assessing the strength of causal effects from
nonexperimental data and, if sufficiency is proven, to ex-
press the target causal effect in terms of estimable quantities.

It is well known that, in the absence of unmeasured
confounders, all causal effects are identifiable, that is, the
joint response of any set Y of variables to intervention
on a set T of treatment variables, denoted Pt�y�,1 can be
estimated consistently from nonexperimental data (Robins
1987; Spirtes, Glymour, & Scheines 1993; Pearl 1993).
If some confounders are not measured, then the question
of identifiability arises, and whether the desired quantity
can be estimated depends critically on the precise loca-
tions (in the diagram) of those confounders vis a vis the
sets T and Y . Sufficient graphical conditions for ensur-
ing the identification of Pt�y� were established by several

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1(Pearl 1995; 2000) used the notation P �yjset�t��,P �yjdo�t��,
or P �yj�t� for the post-intervention distribution, while (Lauritzen
2000) used P �yjjt�.

authors (Spirtes, Glymour, & Scheines 1993; Pearl 1993;
1995) and are summarized in (Pearl 2000, Chapters 3 and
4). For example, a criterion called “back-door” permits one
to determine whether a given causal effect Pt�y� can be ob-
tained by “adjustment”, that is, whether a set C of covariates
exists such that

Pt�y� �
X

c

P �yjc� t�P �c� (1)

When there exists no set of covariates that is sufficient for
adjustment, causal effects can sometimes be estimated by
invoking multi-stage adjustments, through a criterion called
“front-door” (Pearl 1995). More generally, identifiability
can be decided using do-calculus derivations (Pearl 1995),
that is, a sequence of syntactic transformations capable of
reducing expressions of the type Pt�y� to subscript-free ex-
pressions. Using do-calculus as a guide, (Galles & Pearl
1995) devised a graphical criterion for identifying Px�y�
(where X and Y are singletons) that combines and expands
the “front-door” and “back-door” criteria (see (Pearl 2000,
pp. 114-8)).

This paper develops new graphical identification criteria
that generalize and simplify existing criteria in several ways.
We show that Px�v�, where X is a singleton and V is the set
of all variables excluding X , is identifiable if and only if
there is no consecutive sequence of confounding arcs be-
tween X and X’s immediate successors in the diagram.2

When interest lies in the effect of X on a subset S of out-
come variables, not on the entire set V , it is possible that
Px�s� would be identifiable even though Px�v� is not. To
this end, the paper gives a sufficient criterion for identifying
Px�s�, which is an extension of the criterion for identifying
Px�v�. It says that Px�s� is identifiable if there is no con-
secutive sequence of confounding arcs between X and X’s
children in the subgraph composed of the ancestors of S.
Other than this requirement, the diagram may have an arbi-
trary structure, including any number of confounding arcs
between X and S. This simple criterion is shown to cover
all criteria reported in the literature (with X singleton), in-
cluding the “back-door”, “front-door”, and those developed
by (Galles & Pearl 1995).

2A variable Z is an “immediate successor” (or a “child”) of X
if there exists an arrow X � Z in the diagram.
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Notation, Definitions, and Problem
Formulation

The use of causal models for encoding distributional and
causal assumptions is now fairly standard (see, for ex-
ample, (Pearl 1988; Spirtes, Glymour, & Scheines 1993;
Greenland, Pearl, & Robins 1999; Lauritzen 2000; Pearl
2000)). The simplest such model, called Markovian, con-
sists of a directed acyclic graph (DAG) over a set V �
fV�� � � � � Vng of vertices, representing variables of inter-
est, and a set E of directed edges, or arrows, that con-
nect these vertices. The interpretation of such a graph has
two components, probabilistic and causal. The probabilis-
tic interpretation views the arrows as representing proba-
bilistic dependencies among the corresponding variables,
and the missing arrows as representing conditional indepen-
dence assertions: Each variable is independent of all its non-
descendants given its direct parents in the graph.3 These
assumptions amount to asserting that the joint probability
function P �v� � P �v�� � � � � vn� factorizes according to the
product

P �v� �
Y
i

P �vijpai� (2)

where pai are (values of) the parents of variable Vi in the
graph.4

The causal interpretation views the arrows as representing
causal influences between the corresponding variables. In
this interpretation, the factorization of (2) still holds, but the
factors are further assumed to represent autonomous data-
generation processes, that is, each conditional probability
P �vijpai� represents a stochastic process by which the val-
ues of Vi are chosen in response to the values pai (previ-
ously chosen for Vi’s parents), and the stochastic variation
of this assignment is assumed independent of the variations
in all other assignments. Moreover, each assignment pro-
cess remains invariant to possible changes in the assignment
processes that govern other variables in the system. This
modularity assumption enables us to predict the effects of in-
terventions, whenever interventions are described as specific
modifications of some factors in the product of (2). The sim-
plest such intervention involves fixing a set T of variables to
some constants T � t, which yields the post-intervention
distribution

Pt�v� �

� Q
fijVi ��Tg

P �vijpai� v consistent with t�
� v inconsistent with t.

(3)

Eq. (3) represents a truncated factorization of (2), with fac-
tors corresponding to the manipulated variables removed.
This truncation follows immediately from (2) since, assum-
ing modularity, the post-intervention probabilitiesP �vijpai�

3We use family relationships such as “parents,” “children,” “an-
cestors,” and “descendants,” to describe the obvious graphical rela-
tionships. For example, the parents PAi of node Vi are the set of
nodes that are directly connected to Vi via arrows pointing to Vi.

4We use uppercase letters to represent variables or sets of vari-
ables, and use corresponding lowercase letters to represent their
values (instantiations).

corresponding to variables in T are either 1 or 0, while
those corresponding to unmanipulated variables remain un-
altered.5 If T stands for a set of treatment variables and Y
for an outcome variable in V nT , then Eq. (3) permits us to
calculate the probability Pt�y� that event Y � y would oc-
cur if treatment condition T � t were enforced uniformly
over the population. This quantity, often called the causal
effect of T on Y , is what we normally assess in a controlled
experiment with T randomized, in which the distribution of
Y is estimated for each level t of T .

We see from Eq. (3) that the model needed for predicting
the effect of interventions requires the specification of three
elements

M � hV�G� P �vijpai�i

where (i) V � fV�� � � � � Vng is a set of variables, (ii) G is a
directed acyclic graph with nodes corresponding to the ele-
ments of V , and (iii) P �vijpai�� i � �� � � � � n, is the condi-
tional probability of variable Vi given its parents in G. Since
P �vijpai� is estimable from nonexperimental data whenever
V is observed, we see that, given the causal graph G, all
causal effects are estimable from the data as well.6

Our ability to estimate Pt�v� from nonexperimental data
is severely curtailed when some variables in a Markovian
model are unobserved, or, equivalently, if two or more vari-
ables in V are affected by unobserved confounders; the pres-
ence of such confounders would not permit the decompo-
sition in (2). Let V and U stand for the sets of observed
and unobserved variables, respectively. Assuming that no U
variable is a descendant of any V variable (called a semi-
Markovian model), the observed probability distribution,
P �v�, becomes a mixture of products:

P �v� �
X
u

Y
i

P �vijpai� u
i�P �u� (4)

where pai and ui stand for the sets of the observed and un-
observed parents of Vi, and the summation ranges over all
theU variables. The post-intervention distribution, likewise,
will be given as a mixture of truncated products

Pt�v�

�

� X
u

Y

fijVi ��Tg

P �vijpai� u
i�P �u� v consistent with t�

� v inconsistent with t.
(5)

and, the question of identifiability arises, i.e., whether it is
possible to express Pt�v� as a function of the observed dis-
tribution P �v�.

Formally, our semi-Markovian model consists of five ele-
ments

M � hV� U�GV U � P �vijpai� u
i�� P �u�i

5Eq. (3) was named “Manipulation Theorem” in (Spirtes, Gly-
mour, & Scheines 1993), and is also implicit in Robins’ (1987)
G-computation formula.

6It is in fact enough that the parents of each variable in T be
observed (Pearl 2000, p. 78).



where GV U is a causal graph consisting of variables in V �
U . Clearly, given M and any two sets T and S in V , Pt�s�
can be determined unambiguously using (5). The question
of identifiability is whether a given causal effect Pt�s� can
be determined uniquely from the distribution P �v� of the
observed variables, and is thus independent of the unknown
quantities, P �u� and P �vijpai� ui�, that involve elements of
U .

In order to analyze questions of identifiability, it is con-
venient to represent our modeling assumptions in the form
of a graph G that does not show the elements of U explic-
itly but, instead, represents the confounding effects of U us-
ing bidirected edges. A bidirected edge between nodes Vi
and Vj represents the presence (in GV U ) of a divergent path
Vi L�� Uk � � K Vj going strictly through elements of U .
The presence of such bidirected edges in G represents un-
measured factors (or confounders) that may influence two
variables in V ; we assume that substantive knowledge per-
mits us to decide if such confounders can be ruled out from
the model. See Figure 1 for an example graph with bidi-
rected edges.

Definition 1 (Causal-Effect Identifiability) The causal ef-
fect of a set of variables T on a disjoint set of variables
S is said to be identifiable from a graph G if the quantity
Pt�s� can be computed uniquely from any positive probabil-
ity of the observed variables—that is, if PM�

t �s� � PM�

t �s�
for every pair of models M� and M� with PM��v� �
PM��v� � � and G�M�� � G�M�� � G.

In other words, the quantity Pt�s� can be determined from
the observed distribution P �v� alone; the details of M are
irrelevant.

The Identification of Px�v�
Let X be a singleton variable. In this section we study
the problem of identifying the causal effect of X on V � �
V n fXg, (namely, on all other variables in V ), a quantity
denoted by Px�v�.

The easiest case
Theorem 1 If there is no bidirected edge connected to X ,
then Px�v� is identifiable and is given by

Px�v� � P �vjx� pax�P �pax� (6)

Proof: Since there is no bidirected edge connected to X ,
then the term P �xjpax� u

x� � P �xjpax� in Eq. (4) can be
moved ahead of the summation, giving

P �v� � P �xjpax�
X

u

Y

fijVi ��Xg

P �vijpai� u
i�P �u�

� P �xjpax�Px�v�� (7)

Hence,

Px�v� � P �v��P �xjpax� � P �vjx� pax�P �pax�� (8)

�

Theorem 1 also follows from Theorem 3.2.5 of (Pearl 2000)
which states that for any disjoint sets S and T in a Marko-
vian model M , if the parents of T are measured, then Pt�s�
is identifiable.

Z1

Z2X

Z3

Y

Figure 1:

A more interesting case

The case where there is no bidirected edge connected to any
child of X is also easy to handle. Letting Chx denote the
set of X’s children, we have the following theorem.

Theorem 2 If there is no bidirected edge connected to any
child of X , then Px�v� is identifiable and is given by

Px�v� �
� Y
fijVi�Chxg

P �vijpai�
�X

x

P �v�Q
fijVi�Chxg

P �vijpai�

(9)

Proof: Let S � V n �Chx � fXg� and A �Q
fijVi�Sg

P �vijpai� u
i�. Since there is no bidirected edge

connected to any child of X , the factors corresponding to
the variables in Chx can be moved ahead of the summation
in Eqs. (4) and (5). We have

P �v� �
� Y
fijVi�Chxg

P �vijpai�
�X

u

P �xjpax� u
x� � A � P �u��

(10)

and

Px�v� �
� Y

fijVi�Chxg

P �vijpai�
�X

u

A � P �u�� (11)

The variableX does not appear in the factors ofA, hence we
augment A with the term

P
x P �xjpax� u

x� � �, and write

X

u

A�P �u� �
X

x

X

u

P �xjpax� u
x� � A � P �u�

�
X

x

P �v�Q
fijVi�Chxg

P �vijpai�
� �by (10)� (12)

Substituting this expression into Eq. (11) leads to Eq. (9). �

The usefulness of Theorem 2 can be demonstrated in the
model of Figure 1. Although the diagram is quite compli-
cated, Theorem 2 is applicable, and readily gives

P x�z�� z�� z�� y� � P �z�jx� z��
X

x�

P �x�� z�� z�� z�� y�

P �z�jx�� z��

� P �z�jx� z��
X

x�

P �y� z�jx
�� z�� z��P �x

�� z��� (13)
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1

U

U

Z1

Z

Y

X

2

Figure 2:

The general case
When there are bidirected edges connected to the children
of X , it may still be possible to identify Px�v�. To illustrate,
consider the graph in Figure 2, for which we have

P �v� �
X

u�

P �xju��P �z�jz�� u��P �u��

�
X

u�

P �z�jx� u��P �yjx� z�� z�� u��P �u��� (14)

and

Px�v� �
X

u�

P �z�jz�� u��P �u��

�
X

u�

P �z�jx� u��P �yjx� z�� z�� u��P �u��� (15)

Let

Q� �
X

u�

P �xju��P �z�jz�� u��P �u��� (16)

and

Q� �
X

u�

P �z�jx� u��P �yjx� z�� z�� u��P �u��� (17)

Eq. (14) can then be written as

P �v� � Q� �Q�� (18)

and Eq. (15) as

Px�v� � Q�

X

x

Q�� (19)

Thus, if Q� andQ� can be computed from P �v�, then Px�v�
is identifiable and given by Eq. (19). In fact, it is enough to
show thatQ� can be computed from P �v� (i.e., identifiable);
Q� would then be given by P �v��Q�. To show that Q� can
indeed be obtained fromP �v�, we sum both sides of Eq. (14)
over y, and get

P �x� z�� z�� � Q� �
X

u�

P �z�jx� u��P �u��� (20)

Summing both sides of (20) over z�, we get

P �x� z�� � P �x�
X

u�

P �z�jx� u��P �u��� (21)

hence,
X

u�

P �z�jx� u��P �u�� � P �z�jx�� (22)

From Eqs. (22) and (20),

Q� � P �x� z�� z���P �z�jx� � P �z�jx� z��P �x�� (23)

and from Eq. (18),

Q� � P �v��Q� � P �yjx� z�� z��P �z�jx�� (24)

Finally, from Eq. (19), we obtain

Px�v� � P �yjx� z�� z��P �z�jx�
X

x�

P �z�jx
�� z��P �x

���

(25)

From the preceding example, we see that because the two
bidirected arcs in Figure 2 do not share a common node, the
set of factors (of P �v�) containing U� is disjoint of those
containing U�, and P �v� can be decomposed into a product
of two terms, each being a summation of products. This
decomposition, to be treated next, plays an important role in
the general identifiability problem.

C-components Let a path composed entirely of bidirected
edges be called a bidirected path. The set of variables V can
be partitioned into disjoint groups by assigning two variables
to the same group if and only if they are connected by a
bidirected path. Assume that V is thus partitioned into k
groups S�� � � � � Sk, and denote by Nj the set of U variables
that are parents of those variables in Sj . Clearly, the sets
N�� � � � � Nk form a partition of U . Define

Qj �
X

nj

Y

fijVi�Sjg

P �vijpai� u
i�P �nj�� j � �� � � � � k�

(26)

The disjointness of N�� � � � � Nk implies that P �v� can be
decomposed into a product of Qj’s:

P �v� �

kY

j��

Qj � (27)

We will call each Sj a c-component (abbreviating “con-
founded component”) of V in G or a c-component ofG, and
Qj the c-factor corresponding to the c-component Sj . For
example, in the model of Figure 2, V is partitioned into the
c-components S� � fX�Z�g and S� � fZ�� Y g, the corre-
sponding c-factors are given in equations (16) and (17), and
P �v� is decomposed into a product of c-factors as in (18).

Let Pa�S� denote the union of a set S and the set of par-
ents of S, that is, Pa�S� � S � ��Vi�SPAi�. We see that
Qj is a function of Pa�Sj�. Moreover, eachQj can be inter-
preted as the post-intervention distribution of the variables
in Sj , under an intervention that sets all other variables to
constants, or

Qj � Pvnsj �sj� (28)

The importance of the c-factors stems from that all c-
factors are identifiable, as shown in the following lemma.



Lemma 1 Let a topological order over V be V� � � � � �
Vn, and let V �i� � fV�� � � � � Vig, i � �� � � � � n, and V ��� �
�. For any set C, letGC denote the subgraph ofG composed
only of variables in C. Then

(i) Each c-factor Qj , j � �� � � � � k, is identifiable and is
given by

Qj �
Y

fijVi�Sjg

P �vijv
�i����� (29)

(ii) Each factor P �vijv�i���� can be expressed as

P �vijv
�i���� � P �vijpa�Ti� n fvig�� (30)

where Ti is the c-component of GV �i� that contains Vi.

Proof: We prove (i) and (ii) simultaneously by induction on
the number of variables n.

Base: n � �; we have one c-component Q� � P �v��,
which is identifiable and is given by Eq. (29), and Eq. (30)
is satisfied.

Hypothesis: When there are n variables, all c-factors are
identifiable and are given by Eq. (29), and Eq. (30) holds for
all Vi � V .

Induction step: When there are n � � vari-
ables in V , assuming that V is partitioned into c-
components S�� � � � � Sl� S

�, with corresponding c-factors
Q�� � � � � Ql� Q

�, and that Vn�� � S�, we have

P �v� � Q�
Y

i

Qi� (31)

Summing both sides of (31) over vn�� leads to

P �v�n�� � �
X

vn��

Q��
Y

i

Qi� (32)

It is clear that each Si� i � �� � � � � l, is a c-component of
GV �n� . By the induction hypothesis, each Qi� i � �� � � � � l,
is identifiable and is given by Eq. (29). From Eq. (31), Q� is
identifiable as well, and is given by

Q� �
P �v�Q
iQi

�
Y

fijVi�S�g

P �vijv
�i����� (33)

which is clear from Eq. (29) and the chain decomposition
P �v� �

Q
i P �vijv

�i����.
By the induction hypothesis, Eq. (30) holds for i from 1

to n. Next we prove that it holds for Vn��. In Eq. (33), Q�

is a function of Pa�S ��, and each term P �vijv�i����, Vi �
S� and Vi �� Vn��, is a function of Pa�Ti� by Eq. (30),
where Ti is a c-component of the graph GV �i� and therefore
is a subset of S�. Hence we obtain that P �vn��jv�n�� is a
function only of Pa�S �� and is independent of C � V n
Pa�S��, which leads to

P �vn��jpa�S
�� n fvn��g�

�
X

c

P �vn��jv
�n��P �cjpa�S�� n fvn��g�

� P �vn��jv
�n��
X

c

P �cjpa�S�� n fvn��g�

� P �vn��jv
�n�� (34)

X1 X2 X3 X4 Y

U1 U3

U2

Figure 3:

�

The proposition (ii) in Lemma 1 can also be proved by using
d-separation criterion (Pearl 1988) to show that Vi is inde-
pendent of V �i� n Pa�Ti� given Pa�Ti� n fVig.

We show the use of Lemma 1 by an example shown in
Figure 3, which has two c-components S� � fX�� X�g and
S� � fX�� X�� Y g. P �v� decomposes into

P �x�� x�� x�� x�� y� � Q�Q�� (35)

where

Q� �
X

u�

P �x�jx�� u��P �x�jx�� u��P �u��� (36)

Q� �
X

u��u�

P �x�ju��P �x�jx�� u�� u��P �yjx�� u��

� P �u��P �u��� (37)

By Lemma 1, both Q� and Q� are identifiable. The only
admissible order of variables is X� � X� � X� � X� � Y ,
and Eq. (29) gives

Q� � P �x�jx�� x�� x��P �x�jx��� (38)
Q� � P �yjx�� x�� x�� x��P �x�jx�� x��P �x��� (39)

We can also check that the expressions obtained in Eq.s (23)
and (24) for Figure 2 satisfy Lemma 1.

The identification criterion for Px�v� Let X belong to
the c-component SX with corresponding c-factor QX . Let
QX
x denote the c-factor QX with the term P �xjpax� ux� re-

moved, that is,

QX
x �
X

nX

Y

fijVi �	X�Vi�SXg

P �vijpai� u
i�P �nX�� (40)

We have

P �v� � QX
Y

i

Qi� (41)

Px�v� � QX
x

Y

i

Qi� (42)

Since all Qi’s are identifiable, Px�v� is identifiable if and
only if QX

x is identifiable, and we have the following theo-
rem.

Theorem 3 Px�v� is identifiable if and only if there is no
bidirected path connecting X to any of its children. When



Px�v� is identifiable, it is given by

Px�v� �
P �v�

QX

X

x

QX � (43)

where QX is the c-factor corresponding to the c-component
SX that contains X .

Proof: (ififif) If there is no bidirected path connectingX to any
of its children, then none of X’s children is in SX . Under
this condition, removing the term P �xjpax� u

x� from QX is
equivalent to summing QX over X , and we can write

QX

x �
X

x

QX � (44)

Hence from Eq.s (42) and (41), we obtain

Px�v� � �
X

x

QX�
Y

i

Qi � �
X

x

QX�
P �v�

QX
� (45)

which proves the identifiability of Px�v�.
(only ifonly ifonly if) Sketch: Assuming that there is a bidirected

path connecting X to a child of X , one can construct two
models (by specifying all conditional probabilities) such
that P �v� has the same values in both models while Px�v�
takes different values. The proof is lengthy and is given in
(Tian & Pearl 2002). �

We demonstrate the use of Theorem 3 by identifying
Px��x�� x�� x�� y� in Figure 3. The graph has two c-
components S� � fX�� X�g and S� � fX�� X�� Y g, with
corresponding c-factors given in (38) and (39). Since X� is
in S� and its child X� is not in S�, Theorem 3 ensures that
Px��x�� x�� x�� y� is identifiable and is given by

P x��x�� x�� x�� y� � Q�

X

x�

Q�

�P �x�jx�� x�� x��P �x�jx��X

x�

�

P �yjx�

�� x�� x�� x��P �x�jx
�

�� x��P �x
�

��� (46)

A Criterion for Identifying Px�s�
Let X be a singleton variable and S � V be any set of vari-
ables. Clearly, whenever Px�v� is identifiable, so is Px�s�.
However, there are obvious cases where Px�v� is not identi-
fiable and still Px�s� is identifiable for some subsets S of V .
In this section we give a criterion for identifying Px�s�.

Let An�S� denote the union of a set S and the set of
ancestors of the variables in S, and let GAn�S� denote the
subgraph of G composed only of variables in An�S�. Sum-
ming both sides of Eq. (4) over V n An�S�, we have that
the marginal distribution P �an�S�� decomposes exactly ac-
cording to the graph GAn�S�. Therefore, if Px�s� is identi-
fiable in GAn�S�, then it is computable from P �an�S��, and
thus is computable from P �v�. A direct extension of The-
orem 3 then leads to the following sufficient criterion for
identifying Px�s�.

Theorem 4 Px�s� is identifiable if there is no bidirected
path connecting X to any of its children in GAn�S�.

When the condition in Theorem 4 is satisfied, we can com-
pute Px�an�S�� by applying Theorem 3 in GAn�S�, and
Px�s� can be obtained by marginalizing over Px�an�S��.

This simple criterion can classify correctly all the exam-
ples treated in the literature with X singleton, including
those contrived by (Galles & Pearl 1995). In fact, for X and
S being singletons, it is shown in the Appendix that if there
is a bidirected path connecting X to one of its children such
that every node on the path is in An�S�, then none of the
“back-door”, “front-door”, and (Galles & Pearl 1995) crite-
ria is applicable. However, this criterion is not necessary for
identifying Px�s�. Examples exist in which Px�s� is iden-
tifiable but Theorem 4 is not applicable.7 An improved cri-
terion that covers those cases is described in (Tian & Pearl
2002).

Conclusion
We developed new graphical criteria for identifying the
causal effects of a singleton variable on a set of variables.
Theorem 4 has important ramifications to the theory and
practice of observational studies. It implies that the key to
identifiability lies not in blocking back-door paths between
X and S but, rather, in blocking back-door paths betweenX
and its immediate successors on the pathways to S. The po-
tential of finding and measuring intermediate variables that
satisfy this condition opens new vistas in experimental de-
sign.
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Appendix
In this appendix we show that Theorem 4 covers the crite-
rion in (Galles & Pearl 1995) (which will be called the G-P
criterion). The G-P criterion is for identifying Px�y� with
X and Y being singletons, and it includes the “front-door”
and “back-door” criteria as special cases (see (Pearl 2000,
pp. 114-8)). We will prove that if there is a bidirected path
connecting X to one of its children such that every node on
the path is an ancestor of Y , then the G-P criterion is not
applicable. There are four conditions in the G-P criterion,
among which Condition 1 is a special case of Condition 3,
and Condition 2 is trivial. Therefore we only need to con-
sider Condition 3 and 4.

Proof: Assume that there is a bidirected path p from X to
its child Y� such that every node on p is an ancestor of Y , and
that there is a directed path q from Y� to Y . We will show
by contradiction that neither Condition 3 nor Condition 4 is
applicable for identifying Px�y�. For any set Z, a node will
be called Z-active if it is in Z or any of its descendants is in
Z, otherwise it will be called Z-inactive.

(Condition 3Condition 3Condition 3) Assume that there exists a set Z that blocks
all back-door paths from X to Y so that Px�z� is identifi-

7This implies that, contrary to claims, the criterion developed
in (Galles & Pearl 1995) is not complete.
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able.8 If every internal node on p is an ancestor of X , or if
every nonancestor of X on p is Z-active, then let W� � Y�,
otherwise let W� be the Z-inactive non-ancestor of X that
is closest to X on p (see Figure 4). If every internal node on
the subpath p�W�� X� 9 is Z-active, then let W� � X , oth-
erwise let W� be the Z-inactive node that is closest to W�

on p�W�� X�. From the definition of W� and W�, W� must
be an ancestor of X (or be X itself), and let p� be any di-
rected path from W� to X . (i) If W� �� Y�, letting p� be any
directed path from W� to Y , then from the definition of W�

and W� the path p� � �p��X�W��� p�W��W��� p��W�� Y ��
is a back-door path from X to Y that is not blocked by Z
(see Figure 4) since W� is Z-inactive, all internal nodes
on p�W��W�� is Z-active, and W� is Z-inactive. (ii) If
W� � Y�, there are two situations:

(a) Z consists entirely of nondescendants of X . Then the
path p�� � �p��X�W��� p�W�� Y��� q�Y�� Y �� is a back-door
path from X to Y that is not blocked by Z.

(b) Z contains a variable Y � on q�Y�� Y � so that Px�z� is
identifiable. By the definition of W�, every node on p is an
ancestor of Z. Px�z� can not be identified by Theorem 4,
and the G-P criterion is not applicable for identifying Px�z�
if Z contains more than one variable. If Z contains only
one variable Y �, then every node on p is an ancestor of Y �.
If Px�y�� is identifiable by Condition 3 of the G-P criterion
(Condition 4 is not applicable as proved later), then from
the preceding analysis there is a Y �� on the path q�Y�� Y

��
such that every node on p is an ancestor of Y �� and Px�y���
is identifiable. By induction, in the end we have every node
on p is an ancestor of Y� and Px�y�� is identifiable, which
does not hold from the preceding analysis.

(Condition 4Condition 4Condition 4) Assume that there exist sets Z� and Z� that
satisfy all (i)–(iv) conditions in Condition 4. Since Z� has
to block the path ��X�Y��� q�Y�� Y ��, let V� be the variable
in Z� that is closest to Y� on the path q (see Figure 5(a)). If
none of the internal node on p is in An�V�� n An�X� (the
set of ancestors of V� that are not ancestors of X) or if every

8A path fromX to Y is said to be a back-door path if it contains
an arrow into X .

9We use p�W�� X� to represent the subpath of p fromW� to X .

variable inAn�V��nAn�X� on p isZ�-active, then letW� �
Y�, otherwise let W� be theZ�-inactive variable in An�V��n
An�X� that is closest to X on p. Let p� be any directed
path from W� to V�. If every internal node on the subpath
p�W�� X� is Z�-active, then let W� � X , otherwise let W�

be the Z�-inactive node that is closest to W� on p�W�� X�.
Since W� must be an ancestor of Y , from the definition of
W� and W�, there are two possible situations:

(a) W� is an ancestor of X or W� � X . Let p�
be any directed path from W� to X (see Figure 5(a)).
From the definition of W� and W�, the path p� �
�p��X�W��� p�W��W��� p��W�� V��� is a back-door path
from X to V� � Z� that is not blocked by Z� that does
not contain any descendant of X (see Figure 5(a)).

(b) W� is an ancestor of Y but not ancestor of V�
(W� � An�Y � nAn�V���. Let p� be any directed path from
W� to Y (see Figure 5(b)). From the definition of W� and
W�, the path p�� � �p��V��W��� p�W��W��� p��W�� Y �� is
a back-door path from V� � Z� to Y that is not blocked by
Z� (see Figure 5(b)). �
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