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Highlights Impact and implications
� Primary sclerosing cholangitis is associated with intesti-
nal dysbiosis.

� Fecal deoxycholic acid is decreased in primary scle-
rosing cholangitis.

� Increasing fecal deoxycholic acid associates with lower to-
tal bilirubin.

� Blautia and Lachnoclostridium associate with fecal deoxy-
cholic acid.
https://doi.org/10.1016/j.jhepr.2024.101188
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Primary sclerosing cholangitis (PSC) is a cholestatic liver dis-
ease with a direct interaction between the gut and the liver. In
this study of patients with early-stage PSC, levels of fecal
deoxycholic acid correlated with serum total bilirubin, a marker
of clinical outcomes. In addition, Blautia and Lachnoclostridium
were associated with fecal deoxycholic acid suggesting an
interaction between these gut bacteria, fecal bile acids, and
disease progression. Future research to determine the under-
lying mechanisms of these associations may lead to novel
targets to prevent PSC disease progression.
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Research article
Fecal deoxycholic acid associates with diet, intestinal
microbes, and total bilirubin in primary sclerosing cholangitis

Connie Chan1, Mateus Lemos2, Peter Finnegan2, William Gagnon3, Richard Dean1, Maryam Yazdanafar1, Joseph Zepeda1, Marie-Claude Vohl4,
Michael Trauner5, Joshua R. Korzenik6, Olivier Barbier3, Maria L. Marco2, Christopher L. Bowlus1,*

JHEP Reports 2024. vol. 6 j 1–10
Background & Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease with a strong association with
inflammatory bowel disease and variable disease progression. We aimed to gain insights into the role of fecal bile acids (BA) on
disease progression by determining the relationships between fecal BA, diet, and gut microbes, with markers of disease pro-
gression, BA synthesis, and farnesoid X receptor (FXR) activity.

Methods: BA levels in serum and stool, dietary intake, and markers of BA synthesis, and FXR activity were measured in 26
patients with early stage, large duct PSC. Fecal microbiota were quantified by 16S rRNA gene sequencing.

Results: Compared with controls, fecal unconjugated deoxycholic acid (DCA) levels were lower in patients with PSC (padj = 0.04).
Alcohol intake and the abundance of Blautia and Lachnoclostridium were associated with greater fecal DCA levels in patients with
PSC after adjusting for inflammatory bowel disease and treatment with ursodeoxycholic acid. Fecal DCA levels were negatively
associated with total bilirubin levels in patients with PSC (p = 0.006) suggesting a protective role. However, fecal DCA was
associated with greater serum levels of 7a-hydroxy-4-cholesten-3-one, a marker of BA synthesis, and was not associated with
fibroblast growth factor 19, a marker of intestinal FXR activity.

Conclusions: Alcohol intake, Blautia and Lachnoclostridium abundance was associated with increased fecal DCA levels, which in
turn seemed to have had a protective effect in patients with early-stage PSC. However, this effect was not mediated by BA
synthesis or FXR activation.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Primary sclerosing cholangitis (PSC) is a chronic cholestatic
liver disease notable for its progressive biliary inflammation and
fibrosis and its association with inflammatory bowel diseases
(IBD).1 PSC can lead to cirrhosis, liver failure, and the need for
liver transplantation, but disease progression is variable among
individuals, with a median transplant-free survival from time of
diagnosis reported to be from 9.7 to 20.6 years.2 The under-
lying causes of this variable disease progression are not un-
derstood. Although genetic susceptibility to PSC has largely
been linked to autoimmune-related loci, in a genome wide
search for modifying genes, only a single genetic locus was
associated with risk of liver transplant or death.3 Similarly,
environmental factors, including diet have been linked to sus-
ceptibility to PSC, but their contribution to disease progression
has not been elucidated.4

Like other cholestatic liver diseases, bile acids (BA) play a
critical role in secondary liver injury and progression of PSC,5,6

making them a target for PSC therapies. The two primary BA in
humans, cholic acid (CA) and chenodeoxycholic acid (CDCA),
are synthesized and conjugated in the liver with glycine, taurine,
* Corresponding author. Address: Division of Gastroenterology and Hepatology, UC Davis
Tel: +1-916-7343751. Fax.: +1-916-7347908.
E-mail address: clbowlus@ucdavis.edu (C.L. Bowlus).
https://doi.org/10.1016/j.jhepr.2024.101188
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and to a lesser degree glucuronic acid.7–9 Within the intestines,
BA can alter the microbial community by farnesoid X receptor
(FXR)-induced expression of genes such as iNOS and IL1810,11

and by direct detergent activities of BA limiting the growth of
specific microbes. Conversely, bacteria that express bile salt
hydrolase (BSH) deconjugate BA, weakening the BA detergent
properties, limiting BA intestinal absorption, and allowing
deconjugated BA to undergo biotransformation by other bac-
teria into secondary BA, including deoxycholic acid (DCA),
ursodeoxycholic acid (UDCA), and lithocholic acid (LCA).12 In
addition, the fecal BA pool may be shaped by diet with dietary
intake of fat, animal protein, and alcohol leading to increases in
fecal secondary BA.13–15 Further, IBD is associated with in-
creases in primary and decreases in secondary BA.16,17

Fecal BA act as important molecules that are central to BA
homeostasis through FXR signaling in the ileum and also affect
immune responses,18,19 and metabolic processes.20 The two
most potent FXR agonists are CDCA and DCA.21 Activation of
FXR in the ileum induces expression of fibroblast growth factor
19 (FGF19), which downregulates CYP7A1, leading to reduced
conversion of cholesterol to CA and CDCA.22
School of Medicine, 4150 V Street, PSSB 3500, Sacramento 95817, CA, USA.
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Protective effect of fecal DCA levels in PSC
The objective of the current study was to elucidate the
complex relationships between fecal BA, intestinal microbes,
and diet using alkaline phosphatase (ALP) and total bilirubin as
markers of PSC disease progression. We measured fecal mi-
crobes and BA and assessed dietary intake in a well-defined
cohort of patients with early-stage PSC and identified associ-
ations of markers of clinical outcomes with fecal DCA linked to
intestinal microbes and dietary factors.

Patients and methods

Patients

Patients with a diagnosis of large duct PSC in accordance with
AASLD and EASL guidelines were enrolled.1,23 Exclusion
criteria included other concomitant liver disease, hepatic
decompensation, current smoking, history of liver transplant or
current listing for liver transplantation, history of colectomy, use
of antibiotics within 6 months of stool collection, and current
use of immunomodulators including corticosteroids, azathio-
prine, 6-mercaptopurine, mycophenolate mofetil, tacrolimus, or
biologics including anti-TNF and anti-integrin therapies. Fecal
samples for controls were obtained from overweight but
otherwise healthy individuals who had participated in a previ-
ous clinical trial and had received placebo.24 All patients pro-
vided written informed consent. The study was approved by the
institutional review board and was conducted in accordance
with the principles of the Declarations of Helsinki and Istanbul.
Food frequency questionnaires

All patients completed a self-administered Harvard Willett Food
Frequency Questionnaire (FFQ) (2007 version), which is a vali-
dated semi-quantitative tool to estimate the daily intake of
macro- and micronutrients.25 Sulfur microbial diet scores were
calculated as previously published based upon the
FFQ findings.
Serum measurements

Blood samples were collected at the time of stool collection.
Serum was sent for standard liver biochemistries, 7a-hydroxy-
4-cholesten-3-one (C4) by liquid chromatography coupled to
tandem mass spectrometry (LC-MS/MS) (Metabolon, Morris-
ville, NC) and FGF19 was measured by a single-plex bead
assay (Eve Technologies, Calgary, Canada).
Stool collection

Whole stool samples were collected in sterile test tubes and
stored at -80 �C.
Bile acid measurements

BA measurements of stool and serum specimens from patients
with PSC were performed by LCMS with a liquid-liquid
extraction with appropriate internal standards at the UC Davis
West Coast Metabolomics Center. Fecal BA from the patient
samples and from controls were measured by similar methods
as previously reported.27 There was strong correlation (–r =
0.91, p <0.001) between measurements by site. Details are
provided in the Supplementary Materials.
JHEP Reports, --- 2
Bile salt hydrolase assay

The BSH assay was adapted from a previously reported
method.28 Briefly, fecal homogenates (5 lg proteins/reaction)
were suspended in 20 mM HEPES-50 mM NaCl assay buffer
pH 6.0 and incubated (5 lg proteins/reaction) at 37 �C for 4 h
with 100 lM of glycol-DCA (GDCA). All analytes were quantified
by LC-MS/MS using an API3200 instrument (Applied Bio-
systems, Concord, ON, Canada). The limit of quantification of
the LC-MS/MS method used for these assays was 50 nM,
meaning that the BSH assays was able to detect as low as
0.05% of conjugated BA conversion into unconjugated ones.
The percentages of conversion were calculated using molar
amount of unconjugated-DCA produced by the enzymatic
reaction (endogenous values are subtracted) divided by
the initial amount of substrate. Details are provided in the
Supplementary Materials.

DNA extraction and 16S rRNA gene amplicon
DNA sequencing

DNA was extracted from 200 mg frozen stool and 16S rRNA
amplified as described previously.29,30 PCR products were
pooled for library construction and sequencing on an Ion Chef/
S5 system (Thermo Fisher Scientific, Waltham, MA, USA) as
previously reported.29 Quantitative Insights Into Microbial
Ecology 2 (QIIME2) v.2022.2 was used for 16S rRNA gene
bacterial community diversity analysis. Amplicon sequence
variants (ASVs) were generated using DADA2. Shannon Even-
ness, Observed Features, Simpson and Fisher alpha diversity
indices were calculated using the phyloseq package v.1.40.31

Principal coordinates analyses (PCoA) were used to visualize
dissimilarities and to examine the distance matrices corre-
sponding to Bray-Curtis, Unweighted and Weighted Unifrac
metrics for beta diversity using the vegan package v.2.6.32 For
taxonomy assignment, the QIIME2 Naïve Bayes trained clas-
sifier on the SILVA 138 database clustered at 99% for the V3-
V4 regions was used. Core ASVs, defined as ASVs shared in at
least 50% of all samples, were then classified using The Basic
Local Alignment Search Tool (BLAST).33 Further details are
provided in the Supplementary Materials. 16S rRNA sequence
data are available in the European Nucleotide Archive (ENA)
under Accession No. PRJEB60105.

PRISM data

Publicly available data from a prior study of the Prospective
Registry in IBD Study at MGH (PRISM) including 53 patients
with ulcerative colitis (UC), 68 with Crohn’s disease (CD), and
34 controls without IBD, and an independent cohort of 23 pa-
tients with UC, 20 with CD, and 22 population controls from the
Netherlands were used for validation.17 Fecal BA were quanti-
fied by non-targeted metabolomics. Metagenomic shotgun
sequencing was used to measure microbial taxa abundance.

Statistical analysis

Continuous variables were expressed as median and IQR.
Comparisons between groups were performed using the
Kruskal–Wallis rank sum test or Mann–Whitney where appro-
priate. Bonferroni correction for multiple comparisons was
employed where appropriate. Spearman’s correlation coeffi-
cient was used to measure the correlation between fecal BA
024. vol. 6 j 101188 2



Research article
with serum alkaline phosphatase (ALP) and total bilirubin and
between the most abundant taxa with fecal and serum BA
concentrations. Generalized linear models were constructed
from patient-level clinical and laboratory measures and fecal
and serum bile acid measurements. All analyses were per-
formed using SAS v.9.4 (SAS Institute, Cary, NC, USA), SPSS
v.28 (IBM; Armonk, NY, USA), or Graphpad® v.9.3 (GraphPad
Software, San Diego, CA, USA).

For 16S rRNA analysis, Permutational Multivariate Analysis
of Variance (PERMANOVA) was used to determine the signifi-
cance of the PCoA results. Analysis of the Composition of
Microbiomes (ANCOM) was used to assess for differentially
abundant taxa among treatments at the genus level. Diversity
analyses and the correlation plots were visualized using R v.
4.2.0 packages phyloseq v. 1.40.0 and ggplot2 v. 3.3.6 (R
Foundation for Statistical Computing, Vienna, Austria).34 Sig-
nificance level of p <0.05 was set for all analyses.
Results

Patient characteristics

A total of 26 patients with PSC were enrolled; median age was
53.8 years (Table 1). Fourteen (58.3%) patients were male, 17
(70.8%) had IBD (14 with UC and three with CD), and 11
(45.8%) were taking UDCA at a median dose of 12.6 mg/kg/
day. Laboratory tests were consistent with a cohort of patients
with early-stage PSC as reflected by median total bilirubin
levels of 1.0 mg/dl and median albumin of 3.9 g/dl. Controls
consisted of patients with metabolic syndrome without dia-
betes. Nineteen patients had a liver stiffness measurement or
liver biopsy within 12 months of sample collection among
which 17 were consistent with F3 or less fibrosis and only two
were consistent with cirrhosis. The control group had a median
Table 1. Demographic and clinical characteristics of the study population.

Characteristic Value

Age, years 53.8 (43.2–65.4)
Sex, male 14 (58.3%)
PSC duration, years 4.5 (1.5–8.0)
IBD status
Ulcerative colitis, n (%) 14 (58.3%)
Crohn’s disease, n (%) 3 (12.5%)
None, n (%) 7 (29.2%)

IBD duration, years (n = 11) 8.0 (3.0–17.0)
UDCA, current use 11 (45.8%)
ALP, IU 174.5 (109.5–359.5)
ALP >−1.5 × ULN 54.2
AST, IU 42.0 (34.0–61.0)
ALT, IU 63.0 (34.0–72.0)
Total bilirubin, mg/dl 1.0 (0.7–1.2)
Total bilirubin >−1.0 mg/dl 14 (58.3%)
Albumin, g/dl 3.9 (3.8–4.1)
Saturated fat, g/day 25.3 (18.2–31.6)
Monosaturated fat, g/day 25.7 (20.2–40.3)
Polyunsaturated fat, g/day 13.6 (10.1–22.5)
Protein, g/day 80.5 (59.3–97.8)
Fiber, g/day 21.2 (17.1–36.1)
Alcohol, g/day 0.56 (0–6.9)

Categorical values are expressed as n (%); Continuous values are expressed as median
(IQR). Saturated fat, monosaturated fat, and polyunsaturated fat median values were
calculated based on a sample size of N = 22. ALP, alkaline phosphatase; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; IBD, inflammatory bowel disease;
PSC, primary sclerosing cholangitis; UDCA, ursodeoxycholic acid.

JHEP Reports, --- 2
age of 37.9 (32.0–42.0) and 50.0% were male; controls were
only included in the fecal BA and BSH activity measurements.
Fecal DCA was decreased in PSC compared with controls

To determine the impact of PSC on fecal BA level, we
compared fecal BA profiles from patients with PSC and con-
trols. Unconjugated fecal DCA but not tauro- or glyco-
conjugated DCA was lower in patients with PSC compared
with controls (3,684 ± 2,845 vs. M7,512 ± 3,684 pmol/mg, p =
0.009, padj = 0.04) (Fig. 1). No differences were found in fecal
CA, CDCA, LCA, hyocholic acid, UDCA, or muricholic acids
levels (Fig. 1 and Fig. S1 and S2). Among patients with PSC,
there were no differences in fecal DCA levels between those
with and without IBD (p = 0.10).
Fecal DCA is negatively associated with total bilirubin levels
in PSC

To explore the relationship between BA with markers of PSC
disease progression, we examined the correlations between
fecal and serum BA with serum levels of ALP and total bilirubin
(Fig. 2A). Several serum levels of primary BA including taurine
and glycine conjugated CA, CDCA, DCA, as well as taurine
conjugated LCA positively correlated with serum levels of ALP
and total bilirubin, whereas serum levels of unconjugated DCA
were negatively correlated with serum total bilirubin levels.
Similarly, fecal unconjugated DCA was negatively associated
with serum total bilirubin (Fig. 2B). No other fecal BA, including
conjugated forms of DCA, correlated with serum levels of ALP
or total bilirubin. Moreover, no correlation was found between
any fecal BA and Mayo Risk score.

We further examined the relationship between fecal BA
known to be FXR agonists or antagonists with serum ALP and
total bilirubin adjusting for IBD status and UDCA use. Only fecal
DCA was associated with serum total bilirubin with increasing
fecal DCA associated with lower serum total bilirubin (p =
0.006) (Table 2). Fecal CA, CDCA, LCA, TUDCA, TaMCA, and
TbMCA were not associated with serum total bilirubin. There
were no associations between ALP and any of the fecal bile
acid FXR ligands.
Effect of diet on BA and total bilirubin

Dietary constituents impact on fecal levels of DCA including
dietary fat, protein, fiber, and alcohol were examined for as-
sociations with fecal DCA. The intake of dietary fat, protein, and
fiber was consistent with a low-fat diet (Table 1). Twelve of the
24 participants reported not consuming alcohol, whereas 11
participants reported consuming 1.1–14.3 g/day and one
participant reported consuming greater than 50 g/day. Alcohol
intake, but not fats, protein, or fiber, was associated with higher
fecal DCA levels (Table 3). In addition, alcohol intake was
significantly associated with lower serum total bilirubin in pa-
tients with PSC. There was also a negative association be-
tween dietary fiber intake and serum total bilirubin, but not with
fecal DCA. In addition, alcohol and fiber were negatively
associated with total serum taurine conjugated BA (Table 3),
but not with total fecal taurine conjugated BA (Table S1). No
significant associations were found with the sulfur microbial
diet score (Table 3), which incorporates food groups linked to
024. vol. 6 j 101188 3
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Table 2. Association of fecal bile acids with serum alkaline phosphatase and total bilirubin adjusted for IBD status and UDCA use.

Alkaline phosphatase Total bilirubin Mayo risk score

Standardized b (95% CI) p value Standardized b (95% CI) p value Standardized b (95% CI) p value

DCA 74.3 (-55.3, 203.8) 0.26 -0.45 (-0.76, -0.13) 0.006 -0.19 (-0.67, 0.29) 0.43
CA 65.7 (-73.6, 205.0) 0.36 0.24 (-0.10, 0.58) 0.16 -0.02 (-0.54, 0.51) 0.94
CDCA -44.5 (-183.6, 94.6) 0.53 0.08 (-0.26, 0.42) 0.65 0.03 (-0.52, 0.58) 0.93
LCA -27.5 (-218.7, 163.7) 0.78 -0.02 (-0.49, 0.44) 0.92 0.05 (-0.7345, 0.8359) 0.90
TUDCA 35.8 (-48.5, 120.2) 0.40 -0.00 (-0.21, 0.20) 0.96 0.06 (-0.2502, 0.3742) 0.70
TaMCA -65.3 (-143.1, 12.5) 0.10 0.02 (-0.17, 0.21) 0.84 0.18 (-0.10, 0.47) 0.21
TbMCA -58.8 (-135.0, 17.5) 0.13 -0.06 (-0.24, 0.13) 0.55 -0.0002 (-0.28, 0.28) 1.00

Generalized linear models were constructed from patient-level clinical and laboratory measures and fecal and serum bile acid measurements and adjusted for IBD status and
ursodeoxycholic acid use. CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; LCA, lithocholic acid; TUDCA, tauro-ursodeoxycholic acid; TaMCA, tauro-a-
muricholic acid; TbMCA, tauro-b-muricholic acid.
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bacterial species involved in sulfur metabolism and has been
associated with the risk of colorectal cancer.26,35

Gut microbiota associated with fecal BA

Bacterial composition in stool samples was assessed using
16S rRNA gene amplicon DNA sequencing and the observed
bacterial alpha and beta diversity analyses were examined
relative to sex, IBD status, serum ALP (<1.5 times upper limit of
normal [ULN] vs. >−1.5 × ULN), and serum total bilirubin
(<1.0 mg/dl and >−1.0 mg/dl). Bacterial alpha (Fig. S3) and beta
(Fig. S4) diversity did not differ by sex, IBD status, ALP, or total
bilirubin. Only the Simpson index for alpha diversity was
significantly different by sex and ALP (p <0.05).

Consistent with these findings, the bacterial taxonomic dis-
tribution was similar between patients and was dominated by the
phyla Bacillota (Firmicutes) and Bacteroidota (Bacteroidetes)
(Fig. S5). Lachnospiraceae, Bacteroidaceae, Ruminococcaceae
andPrevotellaceaewere the fourmost prevalent families (Fig. S6).
Among the genera, Bacteroides, Blautia, Faecalibacterium, and
Roseburia were present in more than 50% of the samples
(Fig. 3A). Klebsiella was present at a very small abundance
(0.056% of the total features identified in the dataset). There were
no differentially abundant taxa when the taxa were categorized
based on sex, IBD status, ALP activity, or total bilirubin (p >0.05).

To investigate potential relationships between bacterial
abundance and BA, we examined correlations between
fecal DCA and total BA (TBA) with the predominant 16
genera (Bacteroides, Blautia, Prevotella, Faecalibacterium,
Roseburia, Parabacteroides, Agathobacter, Subdoligranulum,
Streptococcus, Lachnoclostridium, Dorea, Alistipes, Eubacte-
rium hallii group, Lachnospiraceae NK4A136 group,
Table 3. Associations of dietary intake with fecal DCA and serum total bilirub

Fecal DCA

Unstandardized b p value

Multivariate model of dietary constituents
Saturated fat -108.8 (-551.2, 333.6) 0.63
Monounsaturated fat 90.1 (-435.4, 615.6) 0.74
Polyunsaturated fat -204.9 (-1,021.2, 611.3) 0.62
Protein -90.4 (-283.5, 102.7) 0.36
Fiber 73.5 (-261.1, 408.2) 0.67
Alcohol 449.6 (28.3, 870.8) 0.04

Univariate model of sulfur microbial diet
Sulfur microbial diet score -1,410.2 (-3,054.4, 234.0) 0.09

Generalized linear models were constructed from patient-level nutrient intake based upon f
taurine conjugated serum bile acids. The sulfur microbial diet score was calculated as pre
use. DCA, deoxycholic acid.
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Bifidobacterium, and Ruminococcus torques group). Blautia
was positively correlated with both fecal DCA and TBA (p
<0.05) (Fig. 3B and Figs S7 and S8). Additionally, the pro-
portions of Lachnoclostridium and Streptococcus were posi-
tively and negatively correlated with fecal DCA (p <0.01),
respectively (Fig. 3B). Furthermore, we examined the relation-
ships between these microbes and biomarkers for clinical
outcomes including serum ALP, total bilirubin, tauro-cholic acid
(TCA), and tauro-chenodeoxycholic acid (TCDCA) but no sig-
nificant associations were found (Figs S9–S12).

To determine whether the associations between Blautia,
Lachnoclostridium, and Streptococcus were consistent with
changes observed in patients with IBD, we analyzed publicly
available data from a cohort of patients with IBD and non-IBD
controls.17 As previously reported, fecal DCA as a fraction of
total fecal BA was significantly lower in patients with UC and
CD compared with non-IBD controls (Fig. S13). In addition,
among patients with IBD, fecal DCA was strongly correlated
with Lachnoclostridium and to a lesser extent with Blautia and
negatively correlated with Streptococcus whereas no correla-
tions were found among non-IBD controls (Table 4 and Fig. 3C).
Notably, among patients with IBD, these associations were
most pronounced in patients with CD.

Fecal BSH activity

Blautia is one of several genera that express BSH, which is
required for the transformation of primary BA to secondary BA
including DCA. To investigate the potential role of BSH in our
findings, we measured the BSH activity of fecal extracts of
patients with PSC and controls. BSH activity did not differ
between patients with PSC and controls (Fig. S14). In addition,
in.

Serum total bilirubin Total serum taurine conjugates

Unstandardized b p value Unstandardized b p value

0.03 (0.00, 0.06) 0.062 79.0 (-20.1, 178.2) 0.12
0.01 (0.03, 0.04) 0.69 -61.0 (-178.8, 56.7) 0.31
0.00 (-0.06, 0.05) 0.87 104.1 (-78.8, 287.0) 0.26
0.01 (0.00, 0.02) 0.19 30.8 (-12.5, 74.0) 0.16

-0.02 (-0.05, 0.00) 0.037 -88.4 (-163.4, -13.5) 0.02
-0.07 (-0.10, -0.04) <0.0001 -163.2 (-257.5, -68.8) 0.0007

0.08 (-0.07, 0.22) 0.31 129.7 (-321.3, 580.7) 0.57

ood frequency questionnaires and measures of fecal DCA, serum total bilirubin, and total
viously described.35 All analyses were adjusted for IBD status and ursodeoxycholic acid
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Protective effect of fecal DCA levels in PSC
BSH activity did not correlate with Blautia abundance or fecal
DCA (Table S2). Further, we found no correlation of BSH ac-
tivity with ratios of fecal GDCA/DCA, total glyco-BA/total BA, or
primary BA/secondary BA.

Bile acids correlations with serum FGF19 and C4 levels

Finally, we examined correlations between BA with down-
stream FXR signaling, specifically FGF19 and C4 (Fig. 4).
Serum levels of FGF19 correlated with serum levels of TCDCA
and GUDCA. Serum C4 levels were strongly correlated with
several serum BA including CDCA, DCA, and x-MCA. Fecal
levels of the FXR agonist CDCA correlated with serum FGF19
levels, but so did levels following treatment to FXR antagonist
Table 4. Correlations of microbial abundance and fecal deoxycholic acid in pa

IBD (n = 164) UC (n

Blautia 0.21 (0.007) 0.10
Lachnoclostridium 0.61 (<0.001) 0.51 (<
Streptococcus -0.16 (0.03) -0.15

Spearman correlation coefficients (p value) were calculated from data on microbial abund
patients with IBD (76 UC and 88 CD) and 56 people without IBD from the previously publ
bowel disease; UC, ulcerative colitis.
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tauro-b-MCA. After adjusting for IBD and UDCA use, fecal DCA
associated with increasing serum C4 (p = 0.02) but no asso-
ciation with FGF19 was found (p = 0.75).

Discussion
In the present study, we demonstrated that fecal DCA was
lower in patients with early stage PSC compared with controls
and that fecal DCA was inversely associated with total bilirubin,
a major predictor of clinical outcomes.36–39 In addition, we
found that the abundance of Blautia and Lachnoclostridium and
dietary intake of alcohol were associated with increased fecal
DCA. In contrast, Streptococcus abundance was associated
with decreased fecal DCA levels. Similar associations with fecal
tients with IBD and non-IBD controls from the PRISM cohort.

DCA (fraction of total bile acids)

= 76) CD (n = 88) Non-IBD (n = 56)

(0.39) 0.35 (<0.001) -0.17 (0.21)
0.001) 0.62 (<0.001) -0.11 (0.42)
(0.19) -0.19 (0.07) -0.13 (0.34)

ance of Blautia, Lachnoclostridium, and Streptococcus with fecal DCA levels from 164
ished PRISM cohort.17 CD, Crohn’s disease, DCA, deoxycholic acid; IBD, inflammatory
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Fig. 4. Correlations between fecal and serum bile acids with serum levels FGF19 and C4. (A) Heat map of Spearman’s rank correlation coefficients of fecal and
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DCA with Blautia and Lachnoclostridium were found in an in-
dependent cohort of patients with IBD but not in non-IBD
controls. Further, we found that fecal DCA was unexpectedly
associated with increased serum C4 levels.

Prior studies have examined differences in the fecal micro-
biota, serum BA, and diet between patients with PSC and
healthy individuals and patients with IBD.4,40,41 Although these
studies can provide insights into the potential role that these
factors play in the initiation of PSC, they do not address how
they relate to disease progression. In addition, these studies
included patients with advanced liver disease which alters BA
homeostasis and intestinal microbes. In contrast to these
studies, we selected patients with early-stage disease and
excluded potential cofounders such as use of antibiotics, im-
munosuppressants, or proton pump inhibitors. In addition, our
focus on fecal BA and microbiota and disease progression is
meant to provide insights into the mechanisms of disease
progression rather than pathogenesis.

The lower fecal DCA levels in patients with PSC compared
with a control group of patients with metabolic syndrome
without diabetes is consistent with the increased fecal DCA
observed in patients with metabolic syndrome42,43 and the
decreased secondary bile acids in patients with IBD.16,17 In two
prior studies comparing fecal BA in patients with PSC and IBD
JHEP Reports, --- 2
to patients with IBD, LCA was the only BA found to differ and
this was in a study which included only seven patients with
PSC.44,45 The only other study evaluating fecal BA in PSC used
an untargeted metabolomic approach and also found a
decrease in DCA compared with controls despite that only 10
of the 37 patients with PSC also had IBD.46

Fecal DCA is the result of transformation of primary BA into
secondary BA by specific microbes. This process includes BSH
followed by transformation by bai operon encoded genes
present in a limited number of microbes, including Blautia
spp.47,48 Bacteria from the Blautia genus are also able to
perform 7a-dehydroxylation, a necessary step in the biotrans-
formation of BA.47 Compared with patients with IBD without
PSC or controls, the mucosa associated microbiota of PSC
patients have been shown to be enriched with Blautia.49

Although we were unable to demonstrate a direct association
of fecal BSH activity with fecal DCA, the consistent association
between Blautia and Lachnoclostridium with fecal DCA in IBD
add further support to the important role of these microbes in
the production of fecal DCA in PSC.

Diet also shapes the bile acid pool of Western diets, which
are characterized by high-fat and animal proteins, leading to
increases in fecal secondary BA, particularly fecal DCA,50

whereas a diet with low fat and high fiber results in
024. vol. 6 j 101188 7
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decreased total fecal BA, including fecal DCA.13 The lack of
significant associations between fecal DCA and fats in our
study may be attributed to the relatively low levels of dietary fat
within our cohort. However, we found that even low to mod-
erate levels of alcohol use in patients with PSC was associated
with increases in fecal DCA. This is consistent with the increase
in fecal DCA seen with alcohol use in the absence of cirrhosis
among people with alcohol use disorder as well as modest
alcohol intake in people with metabolic dysfunction-associated
steatotic liver disease (MASLD) and even people without liver
disease.14,15,42 Taken together, these results indicate that fecal
DCA in patients with PSC is controlled by the same dietary and
microbial factors observed in other conditions.

The most significant finding of our study was the relationship
between greater fecal DCA with lower serum total bilirubin. A
similar finding was observed in a cohort of patients with PSC in
China, which unlike our study, also found a strong negative as-
sociation with serum alkaline phosphatase.46 In contrast, in pa-
tients with MASLD and advanced fibrosis stage, fecal DCA is
greater compared with those with early fibrosis.42,43,51 The
mechanisms by which fecal DCAmight ameliorate or exacerbate
PSCorMASLDare not clear.Onepotentialmechanism fecal DCA
might protect against disease progression is through FXR acti-
vation, a therapeutic target for both MASLD and PSC. In patients
with advanced PSC when serum BA are elevated, serum C4
levels are inversely correlated with serum bile acid levels
consistent with an intact FXR-FGF19 signaling axis.52 However,
C4 appeared to be fully suppressed in late stage disease and
associated with increased risk of liver transplantation or death.
Further, in a study of oral CDCA challenge in patients with
advanced PSC, C4 was not reduced, indicating that FXR
signaling was maximally suppressed at end-stage disease.53

Surprisingly, in our study as well as in studies involving
obesity and MASLD,43,54 increasing fecal DCA was paradoxi-
cally associated with increasing C4 levels. Although DCA
directly and effectively activates FXR and suppresses CYP7A1
in hepatocytes, it is not effective for co-activator recruitment
considered essential for full FXR signaling.55 Relevant to our
study, the induction of FGF19 by DCA in the ileum is only
20–40% of the levels induced by CDCA.56,57 Therefore, at
physiologic concentrations in the presence of CDCA, DCA
may competitively bind to FXR and effectively inhibit full acti-
vation by CDCA. This is supported by studies in mice in which
JHEP Reports, --- 2
feeding DCA increases fecal DCA but reduces ileal expression
of FXR and FGF15, the mouse equivalent of FGF19, and in-
creases hepatic expression of Cyp7a1 consistent with DCA
inhibition of FXR activity.58 Further complicating our under-
standing of the potential effects of fecal DCA on regulation of
BA are prior reports demonstrating that hepatic expression of
FGF19 is induced in patients with cholestasis, including those
with PSC.59,60

DCA and other BA also shape the intestinal microbial
community either by acting as a carbon source or through
cellular toxicity.61 Compared with other BA, DCA has shown
the highest level of bacterial toxicity to Bifidobacterium breve62

and several other intestinal microbes.63 In addition, DCA in-
hibits Clostridioides difficile germination and vegetative cell
outgrowth64 and mice fed DCA have reduced abundance of
Lactobacillus, Clostridium XI, and Clostridium XIV.58 Changes
in these and/or other microbes along with their metabolites
provide another potential mechanism by which DCA may alter
the progression of PSC.

The limitations of the study include the correlative cross-
sectional design of analyzing BA levels, clinical data, and di-
etary intake estimated from FFQs. As such, these findings
require validation in additional study populations as well as
investigations to establish causality of these associations.
Similarly, small but significant effects may not have been
identified. Additionally, lack of metagenomic data prevented
further analysis at the species level and did not allow to
determine associations with BA transforming enzymes, which
may or not be encoded by Blautia. Fecal DCA is associated
with colon cancer. Patients with PSC have an increased risk of
colon cancer and thus understanding the balance of risks
related to fecal DCA with liver disease progression and colon
cancer will need to be considered in future studies. Lastly, our
choice of control group composed of patients with obesity and
metabolic syndrome is a limitation of our study since obesity is
associated with increased fecal DCA.

In conclusion, diet and intestinal microbes were found to be
associated with increased fecal DCA, which in turn was asso-
ciated with lower serum total bilirubin. Further research into the
relationship between diet and the microbiome along with its
effect on BA composition and PSC disease progression may
lead to a better understanding of the variable progression of
PSC and potential novel therapies.
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