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with duplications guided by synteny level
genome reconstruction
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Abstract

Background: Reconstructing ancestral gene orders in the presence of duplications is important for a better
understanding of genome evolution. Current methods for ancestral reconstruction are limited by either
computational constraints or the availability of reliable gene trees, and often ignore duplications altogether. Recently,
methods that consider duplications in ancestral reconstructions have been developed, but the quality of
reconstruction, counted as the number of contiguous ancestral regions found, decreases rapidly with the number of
duplicated genes, complicating the application of such approaches to mammalian genomes. However, such high
fragmentation is not encountered when reconstructing mammalian genomes at the synteny-block level, although
the relative positions of genes in such reconstruction cannot be recovered.

Results: We propose a new heuristic method, MULTIRES, to reconstruct ancestral gene orders with duplications
guided by homologous synteny blocks for a set of related descendant genomes. The method uses a synteny-level
reconstruction to break the gene-order problem into several subproblems, which are then combined in order to
disambiguate duplicated genes. We applied this method to both simulated and real data. Our results showed that
MULTIRES outperforms other methods in terms of gene content, gene adjacency, and common interval recovery.

Conclusions: This work demonstrates that the inclusion of synteny-level information can help us obtain better
gene-level reconstructions. Our algorithm provides a basic toolbox for reconstructing ancestral gene orders with
duplications. The source code of MULTIRES is available on https://github.com/ma-compbio/MultiRes.

Keywords: Ancestral genome reconstruction, Gene orders, Synteny blocks, Duplications

Background
Recent advances in next-generation sequencing technolo-
gies have dramatically expanded the reach of genetic
studies to many more non-model organisms. Ances-
tral genome reconstruction based on the whole genome
sequences of these new genomes will provide us with great
opportunities to elucidate the trajectory of genome evo-
lution and shed new light on the molecular signatures
of phenotypic variation [1, 2]. The problem of predict-
ing ancestral genome structures, in terms of ancestral

*Correspondence: jianma@cs.cmu.edu
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gene orders [3] and synteny orders [4], has received much
interest in comparative genomics [5–11]. Current meth-
ods for reconstructing ancestral gene orders often rely on
the gene orders in extant species and their phylogeny to
find a solution to optimize a relevant objective function.
These methods are generally classified as (i) model-based
approaches, which minimize genomic distances along all
branches of a phylogeny [5, 12–14], where the distances
are based on rearrangement events, such as inversion,
indels, transposition and translocation; and (ii) model-free
approaches, which maximize conserved syntenic charac-
ters in the descendant species [15, 16].
However, these methods usually do not account for

insertions, duplications and losses [15, 17, 18]. While
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progress has been made to incorporate insertions and
deletions [19], efficient reconstruction of gene orders
with duplications remains a largely open problem. There
exist maximum likelihood methods that also reconstruct
gene orders with duplications [20], as well as methods
which utilize reconciled gene trees into the reconstruction
framework [21], but obtaining robust gene trees itself is a
complicated problem [22]. A number of studies also show
that incorporating duplications in current reconstruction
models renders the related optimization problems com-
putationally intractable [23, 24].
Reconstructing the ancestral genomes [15, 25] as an

ordering of synteny blocks defined through whole genome
alignment of the extant genomes [26] can create a more
contiguous genome structure. The length of such blocks
can be controlled, and is typically defined to be greater
than 100 kb. At this resolution, it is common to assume
that synteny blocks appear at most once in a descen-
dant species for amniotes [27], and at most once in the
ancestral reconstruction. These reconstructions usually
have low fragmentation (MGRA [17], for example, pro-
duces exactly as many fragments as themaximum number
of extant chromosomes). However, micro-rearrangements
occurring within each synteny block [4] are hidden, pre-
venting us from obtaining a comprehensive view of the
genome evolution at this level.
In this paper, we propose a new heuristic framework,

MULTIRES, that integrates information frommultiple res-
olutions to reconstruct the ancestral genome. Themethod
uses reconstructed synteny block orders of an ances-
tor to infer gene orders while incorporating duplica-
tions. MULTIRES uses an approach described in [24] for
finding circular chromosomes in the presence of dupli-
cations. We develop a novel method for partitioning
families of homologous genes using the synteny blocks
that they occur in. We show that MULTIRES recovers
up to 18 % more ancestral adjacencies that are missed
by a method which uses the same optimization rou-
tine without using synteny blocks (originally implemented
for scaffolding ancestral contigs in [28]) on simulated
data, and provide a more comprehensive reconstruction
of the X-chromosome of the primate-rodent common
ancestor.

Method
We assume that we are given the following pieces of data
as input.

1. A resolved (binary) phylogenetic tree on a set of
extant species, and a marked ancestral node at which
we want to reconstruct the genome. We are also
given branch lengths on the tree. In the absence of
branch lengths, we may assume that each branch has
length 1.

2. A set of ancestral synteny blocks on the extant
species. These blocks capture genomic regions across
different genomes with high sequence similarity, and
can be defined by comparingmultiple genomes [15, 26].
It is assumed that all homologous extant synteny
blocks evolved from a single ancestral region [27].

3. Extant gene orders, with genes grouped into
homologous gene families consisting of orthologous
and paralogous genes in all species.

Our aim is to reconstruct the gene order at a given
ancestor of interest. The challenge here is twofold: given
two homologous genes, we need to distinguish where they
appear on the ancestral genome, and the gene order needs
to be ‘consistent’ with the ancestral synteny block order. In
this paper, we define consistency as finding a gene order
such that, for each consecutive subsequenceW of synteny
blocks and gaps between the blocks which is inferred to
exist in the ancestral genome, there exists a correspond-
ing consecutive subsequence S in the gene order such that
the genes and adjacencies in S are preserved within W ,
according to some parsimony criterion which we specify
later. We want to find the largest weight set of gene adja-
cencies which is (i) consistent, with weights defined by
the status of their phylogenetic conservation [15], while
ensuring that (ii) the number of copies of each gene in the
order is upper bounded by a precomputed ancestral copy
number. MULTIRES is presented as a heuristic that aims to
achieve both.
The outline of MULTIRES is presented as a flowchart

in Fig. 1. We first infer an ancestral order for the synteny
blocks. We use ANGES [29] to find an ancestral recon-
struction using the synteny blocks and the species tree
as inputs. Note that it is possible to use different meth-
ods for this purpose. We used ANGES since, at the time
of the experiments, it was one of the few software that
could consider non-unique, non-universal synteny blocks
in the extant species and produce an ancestor with at most
a single copy of each block. Since then, we also have the
option of using other methods, such as the new version
of MGRA [19], but the results were identical to those of
ANGES on the X-chromosome data set and simulations
in our experiments. We use the set of contiguous ances-
tral regions (CARs), sequences of synteny blocks, obtained
from ANGES as an input.
Themain idea ofMULTIRES is summarized in Fig. 1, and

along with some accompanying notation, is presented as a
schematic view in Fig. 2. We use the mapping of gene fam-
ilies into synteny blocks on the extant species to partition
a gene family into one or more subfamilies, called local-
izations, which are expected to be sufficiently far apart in
the ancestral reconstruction. We construct an ancestral
adjacency graph on the set of localizations, using the set of
adjacencies between families which are conserved within



The Author(s) BMC Bioinformatics 2016, 17(Suppl 14):414 Page 203 of 282

Fig. 1MULTIRES flowchart. A high-level overview of the MULTIRES pipeline

consecutive subsequences in the CARs. All adjacencies in
this graph are given a weight based on their conservation
pattern in the species tree, as defined in [15]. We then use
the algorithm presented by Maňuch et al. in [24] to find
a maximum weight set of adjacencies such that nodes of
specified subgraphs can be arranged into a set of circular
sequences, with constraints on howmany times each node
may appear over all sequences. To the best of our knowl-
edge, this is the only known polynomial time algorithm
which outputs an optimum weight set of adjacencies with
a set of chromosomes with duplications as input. Finally,
we combine the results for all subgraphs to obtain a linear
gene order for each CAR.
In the interest of brevity, we only present the frame-

work after the ancestral reconstruction at the synteny
block level. The inputs we use are the phylogenetic tree,
extant gene orders, a set of adjacencies between synteny
blocks, ancestral gene copy numbers, and a set of CARs.
For details of the process used to obtain the input, see the
Additional file 1. We also refer the readers to [16, 30] for
reference on how to compute conserved characters and
ancestral copy numbers.

Definitions
We first introduce some common terminology. A gene, in
the context of this manuscript, is a short contiguous seg-
ment of a genome. For a given set of extant species, we
assume that we know the exact order of genes in their

genomes. A gene family is a set of genes, either within a
single species or across a set of extant species, which are
inferred to have evolved from a single original gene in
some ancestral species. The set of gene families forms a
partition of the set of genes.
Each gene family can be partitioned into a head and a

tail, following the usual method of doubling [12, 31]. The
head and the tail of a gene family are referred to as mark-
ers, and there is a one-to-one relation between a given
head/tail marker and the associated gene family. Thus, a
chromosome can be thought of as a sequence of markers,
not necessarily unique, with length 2n (n being the num-
ber of genes in the chromosome, with a unique pairing of
themarkers in positions 2k−1 and 2k, k ∈ {1, . . . , n}). Two
successive markers in the sequence that are not paired
to each other are said to form an adjacency. It is possi-
ble for two markers corresponding to extremities of the
same gene family to not be paired to each other; these cor-
respond to tandem duplications. Given markers g, h, an
adjacency between them is denoted by

{
g, h

}
. However,

for the purposes of exposition, we will represent genes in
examples and figures as a single solid element instead of a
combination of 2 point markers.
Given a gene family g, or equivalently a marker g, an

occurrence of g on an extant genome denotes a specific
locus at which a gene belonging to this gene family/marker
occurs. Each gene family and the corresponding markers
are associated to a precomputed ancestral copy number
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Fig. 2 a Estimating localizations. Here it shows how MULTIRES defines and infers localizations. Coloured solid wedges represent gene families, with
wedges of the same colour belonging to the same family. Synteny blocks are indicated by hollow wedges, with colour indicating homology. The
orientation of the wedges represent the orientation of the genes/blocks. Inferring adjacencies between gene families parsimoniously results in the
ancestral adjacency graph shown on the top left, with edges representing adjacencies between gene ends. We also have a set of contiguous
ancestral regions (CARs) reconstructed at the ancestor, each of which consists of an ordering of the ancestral synteny blocks. On the right of the tree,
we display an example of a CAR, and the CAR after all synteny blocks have been doubled into head and tail extremities. We define windows of
length 3 as consecutive subsequences of 3 extremities on the CAR. The windows, indicated by coloured line segments in the figure, are used to
partition the CAR. In the diagram, we observe after partitioning that one copy of the brown gene (g1) always occurs in the red window, and one
always occurs in the blue window, and never in their intersection. This allows us to partition the brown gene family into two subfamilies, g11 and g12,
called localizations, which are restricted to appear only in the relevant blocks, leading to the localized adjacency graph at the bottom. b Optimization
and consensus. Here we show a localized adjacency graph (top) with copy numbers associated to each localization (numbers under the genes).
Partitioning the ancestral CARs into segments (black line segments) defines an ordered sequence of induced subgraphs. Using the algorithm given
by [24] on each induced subgraph results in a set of adjacencies shown at each layer, with each localization adjacent to at most as many adjacencies
as its copy number. For example, the brown localization g12 can have at most 1 copy in the gene order, making it adjacent to at most 2 other
localizations. The algorithm indicates that these adjacencies are to the red (g31) and orange (g71) localizations. Finally, we combine the subgraphs and
find a linear gene order by finding the most frequently conserved adjacencies and using the order of the segments. In the example, since the purple
localization g22 is only conserved in Segment 3, while the cyan localization g51 is conserved in Segment 2 as well, we can resolve the gene order
around the duplicated orange localization g71

[30]. This number defines an upper limit on the number
of copies of the gene in the ancestor.
Synteny blocks can also be doubled, and give rise to

two extremities. As in the case of markers, a chromo-
some can also be defined as a sequence of extremities of
length 2n, with a unique pairing of extremities in positions
2k − 1 and 2k, k ∈ {1, . . . , n}, to form synteny blocks. We
use the term region to denote a pair of two extremities.
Thus, a region represents either a pair of extremities from
the same synteny block, or the pair of extremities which
frame a gap between two adjacent synteny blocks. We will
use the notation [a, b] to denote a region, where a, b are
block extremities. From now on, we will only work with
extremities and regions in order to take into account the
orientation of the blocks.
A contiguous ancestral region (CAR) C = c0. . . . .c2k−1

of length 2k is a sequence of 2k extremities ci, such that
each region [c2i, c2i+1] is a synteny block, and each region
[c2i−1, c2i] is an adjacency between synteny blocks. By
extension, it can also be described as a sequence of 2k − 1

regions. The output of general ancestral reconstruction
techniques is a set of CARs, describing reconstructed
contiguous genomic segments in the ancestor.
Consider two markers g and h. We say that an adja-

cency
{
g, h

}
is parsimoniously conserved(or equivalently,

conserved) in the ancestor if, for two extant species Si and
Sj in the phylogenetic tree, we find that the two mark-
ers g and h are adjacent in both species, and the ancestor
under consideration lies on the evolutionary path between
these two species in the species tree. The term conserved
is also used to refer to a region [a, b] that occurs in two
extant species such that the ancestor of interest lies on
their evolutionary path in the species tree.
An ancestral adjacency graph (or adjacency graph) on

the set of markers is a graph G = (V ,E), where the ver-
tex set is the set of all markers under consideration, and
the set of edges is the union of the set of parsimoniously
conserved adjacencies betweenmarkers on a given species
tree and the set of edges between the head and tail markers
of the same gene [15]. It is easy to see that a genome can
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be described as a set of walks on the adjacency graph, with
each walk alternating between the conserved adjacencies
and the edges between head and tail markers of the same
gene [23, 24]. We use a function μ : V → N, called the
ancestral copy number or multiplicity function (see [30]
or consult the Additional file 1 for details on how to infer
the function). This specifies an upper limit on the number
of copies of a single marker (and by extension, of a single
gene) allowed in set of walks [23, 24]. We also have a posi-
tive weight functionw : E → R, which is inferred from the
phylogenetic conservation of each conserved edge [15].

Estimating extant containments
Given a set of extremities, we can find the sequence of
genes that are contained within these extremities in every
extant species. For a gene family g with an occurrence of
length � in a given extant species, we say that g is con-
tained within an extant region [a, b] in the same species
if at least half the length of the occurrence (i.e., �/2) lies
within the region [a, b]. Formally, if g has head/tail mark-
ers at loci x < y in a given extant species, we say that
the gene family g is contained within a region [a, b] in the
species, if, given that the extremities of the region are con-
secutive on the extant genome, and located at loci la < lb
on a given chromosome, one of the following conditions
holds.

1. la ≤ x < y ≤ lb, or
2. x < la < y and |la − y| ≥ �/2 or,
3. x < lb < y and |lb − x| ≥ �/2.

Similarly, if the head and tail markers of g are located at
loci x > y, then g is said to be contained in a region [a, b]
in the extant species if the symmetrical conditions hold.
For each extant region, in each species that this region
is found in, we thus obtain the sequence of gene family
occurrences in this region, if any. Ideally, the gene fam-
ily sequence within a region would be conserved across
all extant species, and the mapping of these gene fam-
ily sequences to the synteny-level reconstruction should
define an ancestral gene order. However, this is rarely the
case in real data due to rearrangements, insertions, and
deletions at the gene level within the regions. The subse-
quent sections address how to find an order of the genes
such that the gene content within successive sequences
of regions is preserved, and the total weight of adja-
cencies between the genes in a given sequence, inferred
phylogenetically, is maximized.

Finding gene orders in a CAR
We now use the extant gene sequences in regions, con-
served marker adjacencies and copy numbers, the species
tree, and CARs as the input to find putative ancestral gene
family orders.

Algorithm 1 Algorithm for constructing the adjacency
graph. Copy numbers and adjacency conservation are
determined by parsimony
Input Ancestral CARs, gene family set Vg , gene con-

tainments in regions, extant regions and gene orders,
species tree T and window length �.

Output An ancestral adjacency graph G = (V ,E), copy
numbers μ : V → N

1: for all g ∈ Vg do
2: Set yg = −1
3: end for
4: V ← ∅, E ← ∅
5: for all CARs C = c0.c1 . . . ck−1, ci being extremities.

do
6: for all consecutive windowsWi = ci . . . ci+�−1 do
7: if (

{
g, h

}
are contained and adjacent in

region
[
cj, cj+1

]

for species S0, and in region
[
cj′ , cj′+1

]
for

species S1,
i ≤ j, j′ < i + � − 1, and the ancestor lies on
the evolutionary path between S0 and S1
in T ) then

8: if both
[
cj, cj+1

]
,
[
cj′ , cj′+1

]
were not

spannedbeforeWi
9: yg ← yg + 1, yh ← yh + 1.

10: end if
11: V ← V ∪ {

gyg , hyh
}
.

12: E ← E ∪ {
gyg , hyh

}
.

13: Compute μ
(
gyg

)
, μ

(
hyh

)
using parsimony

on T
considering all regions inWi.

14: end if
15: end for
16: end for
17: return G = (V ,E) ,μ.

Inferring conserved adjacencies
Given an ancestral synteny order reconstruction in the
form of CARs, a consecutive subsequence of regions
in this reconstruction should inform us about the gene
content in the corresponding region. To formalize this
intuition, we define a window as follows.

Definition 1 Let C = (
c0, . . . , ck−1

)
be a CAR, where

each ci is an extremity. A window of length � on C is
a consecutive subsequence W = ci . . . ci+�−1, with each[
cj, cj+1

]
, i ≤ j < i+�−1, being a region in C. The integer �

is called the window length. A region
[
cj, cj+1

]
is said to be

spanned by the windowW if cj and cj+1 are adjacent inW.

Fig. 2a shows 2 different windows of length 3 defined on
the ancestral CAR, and the constituent regions as located
in a set of extant species. We use windows to partition
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gene families (and by association, markers) into subfami-
lies which are expected to occur ‘far apart’ in the ancestral
genome. Formally, we have the concept of localizations.

Definition 2 Let g be a gene family, and let W =
{Wi : 0 ≤ i < k} be a subset of all windows of length � in all
CARs, such that ∀Wi ∈ W there exist regions r, r′ spanned
by Wi, which contain g in extant species Sa and Sb respec-
tively, such that r, r′ are not spanned by any other window
in W , and the ancestor of interest lies on the evolutionary
path between Sa and Sb. Note that r and r′ may be the same
region.
A localization of g (and by extension, of the markers of g),

is a subfamily gi of g defined such that all adjacencies to g
from other gene families conserved within the window Wi
are adjacent only to gi.

In other words, if an occurrence of g in a region [a, b] in
some extant species is always adjacent to a marker p, and
an occurrence of g in a different region which is not in the
same window as [a, b] is adjacent to a distinct marker q,
then we can partition the gene family of g into occurrences
adjacent to p and occurrences adjacent to q.
Algorithm 1 describes how to define localizations and

adjacencies between them. As output, we obtain parti-
tions of the gene families (markers) into localizations,
which we denote by V , a set of parsimoniously conserved
adjacencies between localizations, denoted by E, and a
function μ : V → N, which assigns a copy number to each
localization using the parsimony algorithm detailed in
[30]. The sets V and E are used to define a localized adja-
cency graph G = (V ,E), which differs from the original
adjacency graph on the set of markers in that the ver-
tices are now localizations. The algorithm is summarized
in Fig. 2a, which shows the locations of the windows and
their constituent regions in the extant species, as well as
a description of how the adjacency graph on localizations
differs from the adjacency graph on markers.
The algorithm updates the copy number function μ so

that the total copy number of all localizations of a given
gene family is equal to the original estimated copy num-
ber of the gene family. This constraint is enforced by the
following heuristic: (i) delete localizations which are not
involved in any adjacencies, and (ii) decrease the copy
number of the localization with the highest copy number
iteratively till the condition is satisfied. The algorithm also
associates each localization to a set of regions in which
they could be contained in the ancestor. This is repre-
sented as a map ψ : V → 2R, where V is the set of
localizations, and R is the set of all regions, such that for
any localization vk ∈ V of a marker v, ψ (vk) is the set of
regions in which v can be found in some extant species, as
observed in Line 7 of the algorithm. Since each region in
ψ (vk) can only be associated with a single localization of

v, we can define the “inverse map” ψ−1 ([a, b]) as the set
of localizations associated to the region [a, b].

Optimizing within a segment
Given the adjacency graph G on the set of localizations,
and a set of associations of these localizations to regions,
we can use the linear structure of the CARs to design a
local optimization scheme. In order to do this, we again
consider consecutive subsequences of L extremities, or
equivalently L − 1 regions, on the CARs, and try to find
local gene orders in each of these subsequences. These
subsequences, which wewill call segments, are thus similar
to windows, except that the user-defined parameter spec-
ifying their length L is required to be at least as long as
the window length � used to constructG. Therefore, a seg-
ment may contain many windows, and by extension many
localizations of the same original gene family. Figure 2b
shows how segments are defined.
Once we have a set of segments of the CARs, we find

subgraphs in G restricted to the set of regions spanned by
each segment and find a ‘good’ set of adjacencies in each
subgraph as follows.

1. For each segment of length L on a CAR, where the
corresponding L − 1 regions are {[bi, bi+1]}k≤i<k+L,
find the induced subgraph G′ of G on the following
set of localizations,

V ′ =
⋃

k≤i<k+L
ψ−1 ([bi, bi+1]) ,

i.e., the set of localizations associated with regions in
this segment.

2. Let μ
(
G′) be the restriction of the copy number

function μ to the localizations in V ′. Use
(
G′,μ

(
G′))

as the input to Maňuch et al.’s [24] algorithm to find
a maximum weight set of adjacencies in G′ which
will admit a set of linear or circular chromosomes.
The algorithm finds a set of adjacencies in which
each localization v ∈ V ′ is adjacent to at most μ(v)
other localizations.

3. Return the set of all adjacencies found within each
segment.

For subgraph G′, we obtain a maximum-weight set of
adjacencies between localizations such that (i) each local-
ization v is adjacent to at most μ(v) other localizations,
and (ii) there is a set of linear/circular walks in G′ which
uses exactly this set of edges. The set of adjacencies will
be similar for consecutive segments, with one possibly
extending the other. The definitions of the segments and
the result on the associated subgraphs after optimization
illustrated in Fig. 2b.
The previous step is the bottleneck in the process, con-

sisting of multiple maximum matching routines, which
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take roughly O
(|E′|3/2) each, where E′ is the set of adja-

cencies between localizations in a subgraph. However, if
the window and segment lengths are carefully chosen, this
step can be completed under 400s for an instance with
∼730 genes in the extant species, compared to over 1000s
for other parameter combinations on a single Intel Xeon
2.20 GHz processor, while, as shown in the Additional
file 1, varying the parameters does not significantly affect
the reconstruction quality.

Constructing the final ordering
The final step of the method is to find a consensus
sequence of markers using adjacencies kept for each seg-
ment of each CAR.Wemerge the adjacencies kept in each
segment to create an adjacency graph for a single CAR.
In this adjacency graph, the copy numbers of the localiza-
tions are inherited from the previous step, but overlapping
segments may have conflicting adjacencies.
We assign each adjacency

{
x, y

}
a weight defined by

wgt
({
x, y

}) = P
({
x, y

})
/T

({
x, y

})
, where P

({
x, y

})
is the

number of subgraphs in which the adjacency
{
x, y

}
is kept,

and T
({
x, y

})
is the number of subgraphs in which both

x and y are associated to some region, not necessarily the
same.
We then greedily delete the lowest weight adjacency

such that the degree of the adjacent markers exceeds their
copy numbers. Repeating this process results in a set
of adjacencies between localizations which have at most
as many adjacencies as their copy numbers. We use the
following method to find the order of localizations.

1. Rank the localizations based on the sequence of
regions they are contained in. For example, a
localization is contained in a sequence c0.c1.c2 of
extremities is ranked higher than one that appears in
the sequence c1.c2.c3 on the same CAR.

2. Starting at the highest ranked localization, if it has a
unique neighbour, add the neighbour to the expected
path.

3. Traverse the graph in the direction of the neighbour
of the last localization added to the path.

4. If a localization has more than 1 neighbour, traverse
the graph in the direction of the highest ranked
neighbour, taking into account the number of copies
of that neighbour used. If all copies of the neighbour
have been used, move to the next highest ranked
neighbour.

5. If there is a tie in the ranking, construct the paths
from the tied neighbours separately, and add them to
the path sequence in order of the highest ranked
ending vertex in the paths.

6. If the traversal returns a cycle, delete the last edge
traversed.

7. Return path(s) obtained in the order of their traversal.

The final order is returned as a set of concatenated
paths, with the order and orientation of each path
expected to be indicative of the relative order of the mark-
ers compared to the neighbouring paths, as shown in
Fig. 2b.

Results
We used MULTIRES to reconstruct the X-chromosome
gene order of the primate-rodent ancestor for both sim-
ulated data as well as real data. We used human, chim-
panzee, rhesus macaque, marmoset, rat and mouse as
ingroups, and dog, cattle, pig and horse as outgroups.
The genes and species tree were obtained from Ensembl
(the species tree is illustrated in Fig. 3). We used syn-
teny blocks of resolution 100 K on the descendant species,
computed using whole genome comparison. No synteny
block appeared twice in any species, a common assump-
tion for amniotes [27], but they could be unique to a single
descendant.
Unless otherwise mentioned, the method is run with

parameters of window length 25 and segment length 65.
In the Additional file 1, we show that the parameters in the
range chosen do not significantly change the quality of the
reconstruction, measured as the number of ancestral adja-
cencies recovered. However, longer window and segment
lengths lead to added complexity, since the induced sub-
graphs grow larger. Our choice of window and segment
lengths is based on minimizing the running time for the
chosen parameters.

Results on simulated data
We created 50 simulated data sets each at 2 differ-
ent rearrangement, duplication, insertion and deletion
rates. The simulation methodology is described in the
Additional file 1. The two rearrangement rates were cho-
sen so that the number of breakpoints between ingroup
species form lower and upper bounds to those found in
the real data.We called the two simulation sets at different

Fig. 3Mammalian species tree. The species tree, with the ancestor of
interest marked in red
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rearrangement rates the low rearrangement simulations
and the high rearrangement simulations respectively.

Simulation results
We ran MULTIRES for

(8
2
)
parameter combinations, vary-

ing segment lengths and window lengths from 15 to
85 at intervals of 10. We assessed our results by com-
paring against FPMAG. FPMAG is a method derived
from FPSAC [28], a tool for scaffolding ancestral bacte-
rial contigs. While FPSAC and FPMAG are not intended
for use on mammalian genomes, they use the max-
imum matching routine described in [24], and the
concept of repeat spanning intervals [28] to resolve dupli-
cations. To the best of our knowledge, this is the only
publicly available software package that computes an
ancestral reconstruction in the presence of duplications
with only gene families and a phylogenetic tree as input.
Since it uses the same optimization routine as MUL-
TIRES, we feel this comparison can be used to gauge
how the introduction of synteny blocks can augment
the reconstruction process. We also compare MULTIRES
against MGRA2 [19], in order to highlight how the pres-
ence of duplications can obfuscate ancestral gene order
reconstruction.
We used the number of ancestral adjacencies recovered

in the reconstruction to measure reconstruction quality.
Figure 4 compares the true positive, false positive and
false negative rates of reconstructed adjacencies for both

simulation sets, using fixed parameter values as recovered
by FPMAG, MGRA2 and MULTIRES. MULTIRES yields
a significantly longer reconstruction, of average length
∼627 adjacencies for the low rearrangement sets, with
∼ 78 % true positives, and average length ∼583 for the
high rearrangement sets, with ∼ 70 % true positives. The
false positive rate in both cases is well under 10 %. In com-
parison, FPMAG returns a reconstruction with an average
of ∼445 and ∼416 adjacencies, with true positive rates of
∼ 56 % and ∼ 50 % for the two simulation sets respec-
tively, while MGRA2, which ignores duplications, finds at
most ∼35 % true positives and about ∼31 % false posi-
tives in reconstructions of average length ∼496 and ∼445
respectively.
Comparing the fragmentation levels of the methods

used, we found that FPMAG produces ∼39 CARs (stan-
dard deviation = 5.16) in the low rearrangement sim-
ulations on average, while in the high rearrangement
simulations, it produces ∼45 CARs (s.d. = 6.85). MGRA2
produces only 1 CAR, but does not recover most of the
gene content, as seen in Fig. 4. Using both synteny blocks
and gene families, MULTIRES finds on average 46 frag-
ments in the low rearrangement simulation set, and ∼59
fragments in the high rearrangement simulation set. How-
ever, there is a total order on these fragments, which are
linearly ordered on 1 or 2 CARs formed at the synteny
block level, for both rearrangement rate sets on average.
Therefore, the reconstructed gene order is reconciled

Fig. 4 Adjacency recovery comparison. Comparison of adjacency true positive (TP), false positive (FP) and false negative (FN) rates for MULTIRES
against FPMAG (cf. [28]) and MGRA2 [19] on both the low rearrangement rate and high rearrangement rate simulations. FPMAG fails to recover a
number of ancestral adjacencies, despite using repeat spanning intervals. The results using MGRA2 are provided to contrast how much of a
difference the presence of duplications can make in a reconstruction
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with the synteny blocks and their adjacencies which are
expected to contain those genes.

Larger scale conservation
We also examined the number of recovered common
intervals, as defined in [32]. A common interval of length
2k > 2 between two genomes is a set of 2k (not neces-
sarily distinct) markers, or equivalently k genes, which are
found to occur consecutively in both genomes, with the
internal order of the genes unspecified.
Here, we do not compare against MGRA2 and FPMAG

for the following reasons: the gene content recovered by
MGRA2 is comparatively low, which precludes the possi-
bility of recovering a large number of common intervals,
and FPMAG has a high fragmentation rate, due to which
very few sufficiently long common intervals are recov-
ered. In comparison, MULTIRES has the advantage of
having ordered the genes on ancestral CARs, which allows
for a better comparison against the simulated ancestral
genome.
Comparing the number of recovered intervals at both

rearrangement rates for fixed parameter values, we
obtained Fig. 5. We first point out how the number of
common intervals decreases rapidly with interval length.
This is a result of the number of genes in the ancestor that
were not found in the reconstruction: since such genes are
never found, all intervals containing them are lost. How-
ever, the number of short intervals recovered (length 6

to 10) is usually competitive with the number of ancestral
adjacencies recovered. Indeed, in the high rearrangement
sets, more intervals of length 6 are recovered (≥ 70 %)
than adjacencies, as seen by comparing with Fig. 4. This
shows that MULTIRES finds small neighbourhoods of co-
localized genes present in the ancestor, even if the exact
gene order is hard to recover.
Another reason for the loss of large intervals is our

reliance on the synteny-level reconstruction. Any intervals
which contain markers from two or more different CARs
will be lost. For example, if the synteny level reconstruc-
tion produces 2 CARs for a single ancestral chromosome,
and of two adjacent genes, each one is found in a region on
exactly 1 CAR, then no intervals containing both of them
can be recovered.

Results on real data: ancestral X-chromosome of the
primate-rodent common ancestor
For the experiments on the real data, we attempted to
reconstruct the X-chromosome of the primate-rodent
common ancestor. The X-chromosome was chosen due
to the high concentration of gene duplications (∼20 %
of the gene families). We used synteny blocks with reso-
lution 100 Kb, and found a synteny-level reconstruction
of the ancestor using ANGES consisting of a single CAR
of 374 synteny blocks. The set of extant genes consisted
of 626 extant gene families occurring in at least 2 extant
species, at least one of which is an ingroup species. Gene

Fig. 5 Interval recovery. The ratios of intervals recovered against the size of the intervals, for both simulation sets. Note the steady difference in the
ratio of recovered intervals: fewer intervals in the high rearrangement set are recovered. The red plot has been shifted by 0.1 along the x-axis for
easier viewing. Longer intervals are lost due to the number of genes which are not recovered in the reconstruction
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families with inferred ancestral content greater than 15
were discarded.
As before, we compared the method against MGRA2

and FPMAG. To evaluate the reconstruction, we con-
sider the total number of genes which are recovered in
the reconstruction, the number of adjacencies found, and
the number of fragments reconstructed. Table 1 sum-
marizes the results on the real data. We found that a
large proportion of the total possible gene content was
lost. Of 746 possible genes (summing up the ancestral
copies of each gene family), we found around 518 genes,
with a maximum of 553, and a minimum of 478 depend-
ing on the parameters used. Similarly, of 749 conserved
ancestral adjacencies, we recovered around 468, with a
minimum of 459 and a maximum of 480. This is an adja-
cency recovery rate of about 62 %. The method found
57 linear fragments on average, ordered on the single
CAR to obtain a gene-level representation of the ancestral
X-chromosome.
In comparison, MGRA2, which does not take duplica-

tions into account, recovered 132 genes, and of the 749
conserved adjacencies, only recovered 42. It also created
88 novel adjacencies which are not phylogenetically sup-
ported. However, MGRA2 is able to control the number of
fragments created in the process, and finds only 1 CAR.
FPMAG found 429 genes and 350 adjacencies, arranged

into 79 CARs. This is an adjacency recovery rate of about
47 %. Both MULTIRES and FPMAG are homology based
methods, and do not create any unsupported adjacencies
outside those conserved. As in the simulations, the false
positives created by these two methods can be attributed
solely to convergent evolution scenarios. However, they
will also fail to recover ancestral adjacencies which are lost
along all branches of the species tree.

Discussion
The use of low-resolution genomic information in order
to improve the accuracy of high-resolution genomic
reconstruction is not limited to ancestral reconstruction;

Table 1 Comparison of the gene order reconstruction of the
primate-rodent ancestral X-chromosome using MGRA2, FPMAG
and MULTIRES

Conserved MGRA2 FPMAG MULTIRES

Genes 746 132 429 518.12 (19.81)

Adjacencies 749 130 350 468.31 (6.05)

Recovered - 42 350 468.31 (6.05)

Fragments N/A 1 79 53.16 (4.76)

The row for total adjacencies indicates the number of adjacencies found in the
reconstruction. The third row indicates the number of reconstructed adjacencies
which are conserved in 2 or more descendant species. Note that FPMAG and
MULTIRES only recover conserved adjacencies. MGRA2 can also limit the number of
CARs reconstructed and find a single CAR. The results for MULTIRES are averaged
over all parameter combinations. The low standard deviations demonstrate the
robustness of the method to parameter choices

for example, using long reads to improve short-read
assembly is a well-studied principle [33]. Till recently,
though, ancestral reconstruction relied on genomic infor-
mation at a single resolution. Longer regions were inferred
via ancestral conservation [16, 28, 29, 34].
The current method relies on the quality of the synteny-

level reconstruction. While this provides the added flex-
ibility of using a given synteny-level reconstruction, if
the original synteny-level reconstruction is still highly
fragmented, we cannot hope to achieve better results at
the gene-level reconstruction. Using the gene-level data
to correct the synteny-level reconstruction would be an
interesting next step for the current model. A rigorous
formalization and analysis of the current model, along
with comparison to improved models, could provide use-
ful insights into the robustness of the method and its place
in future reconstruction pipelines.
In order to validate the result of the reconstruction, we

used both adjacency and interval conservation as metrics.
One of the problems we ran into while computing inter-
val conservation was the inability to recover large intervals
due to loss of gene content. In this regard, it would be
useful to consider the concept of approximate common
intervals [35–37].We aim to analyze interval conservation
in this context in future work.
As with other homology based reconstruction methods,

MULTIRES cannot detect signals of convergent evolution.
In Fig. 4, the false positives found by MULTIRES are all
attributable to convergent evolution. In the high rear-
rangement rate simulations, for example, an average of
213 adjacencies, out of a total of ∼885 conserved in the
descendant species were not present in the ancestor. Fur-
thermore, 10 % to 15 % of the false negatives are ancestral
adjacencies that were lost during evolution. This problem
is exacerbated at higher rearrangement rates.

Conclusion
The results presented in this manuscript provide a proof
of concept on how synteny block information obtained via
multiple genome comparison can help ancestral recon-
struction at a higher resolution where duplications may
be prevalent. The implications of the method are twofold:
(i) even with a high level of fragmentation, it is possi-
ble to obtain a relative order of the fragments on the
synteny-level reconstruction, and (ii) the synteny blocks
allow us to disambiguate duplications, which are nor-
mally discarded in reconstruction methodologies, thus
preventing fragmentation and obtaining a more complete
reconstruction. From a methodological point of view, the
method described relies on the decomposition of the
reconstruction problem into many smaller, overlapping
subproblems, which to our knowledge is a novel technique
in ancestral reconstruction. The use of the maximum
matching routine [24] for these subproblems instead of on
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the whole graph also allows us to better control the linear-
ity of the result obtained, preventing the reconstruction of
large, circular components.
The approach introduced in MULTIRES provides a

proof of principle for further development that takes into
account information from different resolutions to achieve
more comprehensive ancestral genome reconstruction.

Additional file

Additional file 1: Supplementary Material: Additional background to the
methods used, and additional figures showing the variation in MULTIRES
results with parameters, and runtime. (PDF 303 kb)
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30. Csűrös M. Ancestral reconstruction by asymmetric wagner parsimony
over continuous characters and squared parsimony over distributions In:
Nelson CE, Vialette S, editors. Comparative Genomics: International
Workshop, RECOMB-CG 2008, Paris, France, October 13-15, 2008.
Proceedings. Berlin: Springer; 2008. p. 72–86. http://dx.doi.org/10.1007/
978-3-540-87989-3_6.

31. Kececioglu J, Sankoff D. Exact and approximation algorithms for sorting
by reversals, with application to genome rearrangement. Algorithmica.
1995;13(1):180–210. doi:10.1007/BF01188586.

32. Schmidt T, Stoye J. Combinatorial Pattern Matching: 15th Annual
Symposium, CPM 2004, Istanbul, Turkey, July 5-7, 2004. Proceedings In:
Sahinalp SC, Muthukrishnan S, Dogrusoz U, editors. Berlin: Springer;
2004. p. 347–58. http://dx.doi.org/10.1007/978-3-540-27801-6_26.

33. Deshpande V, et al. Cerulean: A hybrid assembly using high throughput
short and long reads In: Darling A, Stoye J, editors. Algorithms in
Bioinformatics: 13th International Workshop, WABI 2013, Sophia Antipolis,
France, September 2-4, 2013. Proceedings. Berlin: Springer; 2013. p.
349–63. http://dx.doi.org/10.1007/978-3-642-40453-5_27.

34. Perrin A, et al. ProCARs: Progressive reconstruction of ancestral gene
orders. BMC Genomics. 2015;16(Suppl 5):6.
doi:10.1186/1471-2164-16-S5-S6.

35. Böcker S, Jahn K, Mixtacki J, Stoye J. In: Vingron M, Wong L, editors.
Computation of Median Gene Clusters. Berlin: Springer; 2008, pp. 331–45.
http://dx.doi.org/10.1007/978-3-540-78839-3_28.

36. Amir A, Gasieniec L, Shalom R. Improved approximate common interval.
Inf Process Lett. 2007;103(4):142–9. doi:10.1016/j.ipl.2007.03.006.

37. Jahn K. Efficient computation of approximate gene clusters based on
reference occurrences. J Comput Biol. 2011;18(9):1255–1274.
doi:10.1089/cmb.2011.0132.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1093/bioinformatics/btt527
http://dx.doi.org/10.1093/bioinformatics/bts457
http://dx.doi.org/10.1007/978-3-540-87989-3_6
http://dx.doi.org/10.1007/978-3-540-87989-3_6
http://dx.doi.org/10.1007/BF01188586
http://dx.doi.org/10.1007/978-3-540-27801-6_26
http://dx.doi.org/10.1007/978-3-642-40453-5_27
http://dx.doi.org/10.1186/1471-2164-16-S5-S6
http://dx.doi.org/10.1007/978-3-540-78839-3_28
http://dx.doi.org/10.1016/j.ipl.2007.03.006
http://dx.doi.org/10.1089/cmb.2011.0132

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Method
	Definitions
	Estimating extant containments
	Finding gene orders in a CAR
	Inferring conserved adjacencies
	Optimizing within a segment
	Constructing the final ordering


	Results
	Results on simulated data
	Simulation results
	Larger scale conservation

	Results on real data: ancestral X-chromosome of the primate-rodent common ancestor

	Discussion
	Conclusion
	Additional file
	Additional file 1

	Acknowledgments
	Declarations
	Funding
	Availability of data and material
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References



