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Abstract

Realizing the Full Potential: Detecting and Measuring Supermassive Black Holes in
Triaxial Galaxies

by

Emily Rose Liepold

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Chung-Pei Ma, Chair

Supermassive black holes lie at the centers of all elliptical galaxies and are thought to
play fundamental roles in guiding the evolution of their host galaxies. A number of well-
established empirical scaling relations are known between the mass of the black hole to
various galaxy properties, such as the stellar velocity dispersion, the break radius of the
light profile, and the bulge mass of the galaxy. The behavior of these relations at their upper
end is less well-established as only a handful of black holes above 109M� have been been
detected and measured. Galaxies harboring these black holes are now known to frequently
have kinematic features which indicate that the galaxies have triaxial intrinsic shapes, while
the modelling that has produced these few black hole mass measurements has nearly always
assumed axisymmetry. The assumed symmetry of a galaxy has potentially significant impact
on the resulting inferred black hole mass. This dissertation follows the development of a code
for triaxial Schwarzschild orbit modelling and application of that technique to measure the
intrinsic three-dimensional triaxial shape of massive elliptical galaxies simultaneously with
the masses of their central supermassive black holes and other parameters which describe
their mass distributions.

We begin by exploring simpler axisymmetric Schwarzschild models. We found that our
adopted Schwarzschild modelling code (TriOS) was frequently ill-behaved when running
triaxial models with nearly axisymmetric shapes. To ensure that the code was robust once
moving further from axisymmetry, we first focused on refining these axisymmetric models,
including making changes to the code to allow for properly axisymmetric models, along the
way developing further understanding of the conditions required for proper axisymmetry and
then applying the updated code to the massive elliptical galaxy NGC 1453, a fast-rotating
galaxy in the MASSIVE sample. With the updated code and procedures, we detected a black
hole in NGC 1453 which was consistent with models using axisymmetric Jeans modelling
and consistent with the MBH–σ relation.
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We then turn to triaxiality. As with the axisymmetric case, we found that a number of
procedures within the TriOS code and prior prescriptions for usage of the code lead to
erroneous models. Quite significantly, one of the symmetries associated with triaxiality was
mis-applied and the mass distributions were mis-constrained in the original code, leading to
potential biases in the inferred parameters. We found a triplet of parameters which intuitively
specify a particular deprojection of the light profile and allows for efficient searches over the
space of allowed intrinsic shapes. We again apply our refinements to NGC 1453, finding
consistent mass parameters with the axisymmetric case, but now with a constraint on the
intrinsic shape which strongly rejects axisymmetry.

We finally focus on the massive elliptical galaxies M87, Holmberg 15A, and IC1101, per-
forming observations on them over five years to build comprehensive maps of the stellar
kinematics for each galaxy extending from the central region within the black hole’s sphere
of influence to deep within the dark matter halo. For Holmberg 15A and IC1101, the stellar
kinematic maps extend to beyond 50 kpc from the center of the galaxy. Both M87 and Holm-
berg 15A’s velocity fields exhibit prominent kinematic misalignments, a tell-tale indication
of triaxiality. We use the TriOS code to perform triaxial Schwarzschild orbit modelling on
all three galaxies, adding a new measurement of the black hole mass to the long history
of measurements of M87’s black hole and measuring the three-dimensional triaxial shape
of its stellar halo for the first time, as well as significantly refining the mass measurement
of Holmberg 15A* and making the most detailed measurements of the stellar kinematics of
IC1101 to date.
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function of the triaxiality of the stellar density near the oblate axisymmetric
limit. The same mass model and orbit sampling parameters for NGC 1453 shown
in Figure 3.1 is assumed here. In this example, long-axis tube orbits begin to
appear when T is as small as ∼ 5 × 10−4 , or |ψ − 90◦| as small as ∼ 9 × 10−6,
and the fraction of these orbits increases monotonically as the potential becomes
more triaxial, reaching ∼ 6% at T = 0.05. . . . . . . . . . . . . . . . . . . . . . 56

3.3 Illustration of the issue with setting the zero-point of the logarithmic potential to
Φ0 = 0 in Equation (3.4), as is assumed in the original code. As an example, we
use the best-fit mass model for NGC 1453 from Chapter 2 [119] with a logarithmic
dark matter halo of Rc = 15 kpc and Vc = 633 km s−1. The ratio of the potential
energy to the maximum kinetic energy is plotted for this halo (dotted), halo plus
stars (dot-dashed), and all three mass components (dashed). When this ratio is
much larger than 1, as is shown for a large range of radius, even large errors in the
kinetic energy would have little effect on the total energy. Energy conservation is
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4.5 Comparison of the original (left) and new (right) mass binning scheme in the
TriOS code. The top row shows that the bins near the x − y plane contain far
more mass than the bins near the z axis due to the significant difference in bin
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shows an example of the resulting χ2 in the mass fits for a triaxial galaxy for the
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Chapter 1

Introduction

The broad goal of this dissertation is to identify and measure the masses of the supermassive
black holes (SMBHs) that lie at the centers of a collection of massive galaxies. These objects
are fascinating for a number of reasons which in no small part owe to their extreme nature—as
some of the most massive objects in the universe they force our imaginations to their limits
and inspire awe. The black holes which lie at the centers of galaxies are now understood to
play essential roles in directing the evolution of the galaxies they live within. In turn, the
growth of these supermassive black holes is impacted by the growth and evolution of their
homes. This pattern of feedback and co-evolution between the two suggests that in order
to deeply understand the long-term evolution of the galaxies in our universe we must also
understand the relations between SMBHs and their host galaxies.

A number of relations between the mass of the central SMBH and various galaxy pa-
rameters have been empirically determined. For example, the MBH–σ relation connects that
central mass to the velocity dispersion σ (the second moment of the velocity distribution; a
measure of the spread in stellar velocities) [133]. This relation tells us that galaxies which
have larger velocity dispersions and where stars tend to be moving more quickly tend to have
more massive central SMBHs. Similarly, the MBH–Mbulge relation finds that galaxies with
more massive bulges tend to have larger central black holes, with MBH ∼ 0.2%Mbulge [133,
108].

These relations hold over multiple orders of magnitude in the black hole mass, from M32*
and Sgr A* at ∼ 106.5M� [44, 85, 60, 89] to M87* at ∼ 109.5M� [221, 77, 120], a thousand
times larger. At the high end (& 109M�) these relations become more tentative in part due
to a paucity of black hole mass measurements in this region—at present only six SMBHs have
been measured to have masses above 5×109M� using stellar dynamical methods: NGC4486
[120], NGC2832 [136], NGC3842 [135], NGC1600, [192], NGC4889 [135], and Holmberg 15A
[138].

All six of these measurements have overmassive central black holes which lie above
the usual MBH–σ and those with reliable bulge mass or bulge luminosities lie above the
MBH–Mbulge and MBH–Lbulge. Deviation in the scaling relations in this regime is in part
expected as the growth pathways for these most massive galaxies tend to shift somewhat
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from those with lower mass. In particular, dry mergers are thought to have increased im-
portance for these galaxies [8, 61, 145] and they’re thought to be more likely to be among
the brightest galaxies in their clusters and that the clusters they belong to are more likely
to be very massive [112] and the mergers in these environments are thought to yield steeper
scaling relations than the usual relations [16].

Given the sparseness of black hole mass measurements in this regime, two major strategies
can be followed to improve the constraints on the relations between the central black holes
and their host galaxies: additional points can be added and the existing points can be
made more accurate. The work in this dissertation partially follows both pathways, working
to establish techniques for properly modelling galaxies with triaxial stellar halos using the
Schwarzschild orbit superposition method, then using that technique along with new stellar
kinematic observations to make a new measurement of the mass of NGC1453* and to refine
the previous mass measurements of M87* and Holmberg 15A*.

The galaxies harboring the most massive SMBHs tend to be elliptical in morphology, a
result of their being the end product of series of mergers of less massive galaxies. These
systems are known as ‘early-type’ galaxies, in part due to an arbitrary choice of nomencla-
ture within Hubble’s classification scheme [98, 100]. The central SMBHs cannot be observed
directly, so their masses must be inferred from their impacts on the surrounding matter.
In the work throughout this dissertation, the primary observable impact is in the motion
and distributions of galaxy’s stars, especially those near the central region. As this intro-
duction will discuss, to infer the black hole mass from these properties, we must measure
the light distribution of the galaxy, as well as the distributions of velocities of stars, then
perform extensive modelling to determine the mass models which are consistent with those
observations.

1.1 Observing Early-Type Galaxies

1.1.1 Photometric observations of early type galaxies
Photometric observations are among the most intuitive in astronomy – in short, it’s simply
photography. This class of observation has evolved rapidly over the past century from the
emergence of extragalactic astronomy in the 1920s when distances to extragalactic objects
were first measured [99, 98, 97] to today where large-scale galaxy surveys are commonplace.
The distant nature of extragalactic astronomy pushes technologies to their limits as the an-
gular size of objects shrinks with their distance from us, and observation on smaller angular
scales requires overcoming atmospheric seeing which effectively blurs small-scale spatial fea-
tures. In tandem with evolution of the photon collection evolving from photographic plates
to simple photoelectric scans and photon counters (e.g. [39]) to modern CCDs, the tele-
scopes available for such work have evolved tremendously, from the 100–inch class telescopes
used at the turn of the century (including the 100–inch reflecting telescope used by Hubble
through the 1920s) to the 10–meter class telescopes used today (including the Keck tele-
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scopes used in this dissertation), and to higher and more remote locations, including at the
peak of Maunakea, low Earth orbit (e.g., the Hubble Space Telescope whose archival data is
used in this dissertation), and the Lagrange point L2 (e.g, the James Webb Space Telescope).

In these observations, a recording medium measures a quantity which is related to the
number of photons received through a telescope from the astronomical object in the sky.
With proper calibrations, that quantity is converted into a measure of the physical flux
associated with the target. Typically a filter is used to only allow photons from a specific
spectral range. In a similar manner to color photography, comparison of the flux in different
bands gives a measure of the color of the object being viewed.

Measurement of the light profiles of early type galaxies and galaxies more generally has
been a significant activity within astronomy over the past century. The profiles of elliptical
galaxies are frequently described by the the ellipticity (their roundness or flatness), their PA
(the orientation of the long axis of the ellipse on the sky), and their surface brightness (often
expressed in magnitudes per square arcsecond). The projected morphology encodes a sub-
stantial amount of information about the internal behaviors of these galaxies. For example,
if the intrinsic three-dimensional structure of the galaxy is well-described by axisymmetric
ellipsoids, the isophotes of the projected light distribution will each have the same position
angle. Accordingly, if the photometric PA is not constant one can immediately infer non-
axisymmetry in the intrinsic shape of the galaxy [224, 184]. The degree of ‘boxiness’ in the
isophotes, has been correlated with the relative amounts of coherent rotation and random
motion in the stellar velocity field as well as the relative amount of rotation along the minor
axis – galaxies which are more boxy tend to have more random motion, and much of the
coherent rotation which is present is along the minor axis [106]. The overall brightness of
the galaxies is also correlated with intrinsic properties. Efforts to infer the distributions of
intrinsic three-dimensional shapes from populations of early-type galaxies have found that
brighter ellipticals tend to have rounder isophotes than faint ellipticals and tend to be con-
sistent with triaxial intrinsic shapes rather than axisymmetry [214, 195]. Additionally, the
shapes of the isophotes have been correlated against the presence or absence of a central core
in the brightness profile [113, 114], which in turn has been correlated against the presence
and mass of a central supermassive black hole [192].

For ellipticals, the light profile can often be well-approximated by a profile in the Sérsic
family of functions. The de Vaucouleurs profile was the first member of this family [40],
followed by the general Sérsic profile [175]:

ln I(R) = ln I0 − kR1/n

ln I(R) = ln Ie − bn
[
(R/Re)

1/n − 1
] (1.1)

These expressions describe the intensity I as a function of two-dimensional radius R. The
overall shape of the profile is set by the Sérsic index n. For n = 1, the profile is exponential,
while for n = 4, the profile is the earlier de Vaucouleurs profile. The overall amplitude is set
by the central intensity I0 in the first expression or by the intensity Ie at the effective radius



CHAPTER 1. INTRODUCTION 4

Re. The effective radius is the isophote which contains half the overall light. In the first
form, the overall length scale of the profile is related to k. In the second form, the auxiliary
quantity bn appears. This is well-approximated by bn = 2n− 1/3.

A somewhat more complicated but useful expansion of this form has been developed to
accomodate galaxies which have power-law behavior in their central regions, but Sérsic-like
behavior in their outer regions [84]:

I(R) = I ′
[
1 +

(
Rb

R

)α]
exp

[
−bn

(
Rα +Rα

b

Rα
e

)1/(αn)
]

(1.2)

This form introduces two additional parameters, the inner slope α and the break radius
Rb which specifies the transition between the power-law and Sérsic behaviors.

For the most part in this thesis, we will focus on analytic but less easily interpretable
surface brightness profiles in the form of Multi-Gaussian Expansions (MGEs; [24]), which are
sums of several concentric Gaussians. These two-dimensional Gaussians each have potentially
different widths, axis ratios, and orientations to flexibly fit a wide variety of real galaxies.
The MGE parameterization of the surface brightness has the form

Σ(R′, θ′) =
N∑
j=1

Lj
2πσ′2

j

exp

[
− 1

2σ′2
j

(
x′2j +

y′2j
q′2j

)]
(1.3)

where Σ is the surface brightness, R′ and θ′ are the polar coordinates on the sky plane, Lj,
σ′
j, and q′j are the total luminosity, projected major axis length, and projected axis ratio for

the j-th component of the fit. The orientations of each component are related to a series of
position angles ψ′

j on the sky so that x′j = R′ sin(θ′ − ψ′
j) and y′j = R′ cos(θ′ − ψ′

j).

1.1.2 Deprojection
A primary problem in modelling and understanding the structure of early type galaxies
is projection. Along any line of sight only the integrated light from stars along that line
can be measured, so the intrinsically three-dimensional light distribution is collapsed into
a two-dimensional image. While the two dimensional image places significant constraints
on the the three-dimensional shape, assumptions about that shape must be made in order
to deproject the light profile. The most significant assumption is typically the symmetry
associated with the the three dimensional structure.

In the simplest case, one can imagine a spherically symmetric system where the three-
dimensional light density ν(r) is a function of only the three-dimensional radial coordinate.
The corresponding surface brightness profile Σ(R) must also be azimuthally symmetric,
resulting from the integration of the three-dimensional density along a line of sight with

Σ(R) =

∫ ∞

−∞
ν(
√
R2 + z2)dz = 2

∫ ∞

R

ν(r)r dr√
r2 −R2

, (1.4)
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where R is the two-dimensional radial coordinate and z traces along the line of sight. The
second form on the right side comes from interpreting this integral as an Abel transform.
This is valuable as it allows one to trivially perform a deprojection – that is, to infer ν from
Σ – with the inverse Abel transform:

ν(r) =
−1

π

∫ ∞

r

dΣ

dR

dR√
R2 − r2

(1.5)

Importantly, this deprojection is unique and a given radially symmetric surface brightness
fully determines the form of the three-dimensional spherical density profile.

This notion can be extended trivially to the case of edge-on axisymmetric deprojections
[80]. These deprojections depend only on the cylindrical coordinates with ν(r, y), where r
is the cylindrical radial coordinate and y is the axial coordinate. Since the deprojection is
edge-on, this axial coordinate y lies on the sky plane. We can index the line-of-sight with
the coordinate z so that the x-axis also lies in the sky plane.

We can relate the two and three-dimensional profiles as before with

Σ(x, y) =

∫ ∞

−∞
ν(r =

√
x2 + z2, y)dz (1.6)

This is identical in structure to the form shown above, though now with both densities
indexed by the axial coordinate y. We can then repeat the deprojection as before.

ν(r, y) =
−1

π

∫ ∞

r

∂Σ(x, y)

∂x

dx√
x2 − r2

(1.7)

Unfortunately, this case is a relatively uncommon occurrence. For randomly oriented
galaxies, orientations within a degree of edge-on (that is, θ > 89◦) should appear in only
about 1.7% of cases. Furthermore, except for very flattened systems the orientation can not
be determined a priori – a thick system viewed edge-on may appear virtually identical to a
flattened system viewed obliquely. In order to avoid these degeneracies, when the intrinsic
three-dimensional shape of the galaxy is important it must be treated as an additional
parameter to model.

A useful framework for early type galaxies is to assume that the intrinsic mass or light
distribution stratified on similar ellipsoids, with an elliptical radius variable r2 = x2+y2/p2+
z2/q2 and intrisic axis length ratios p and q, so that the intrinsic mass distribution can be
expressed as a function of only this radius with ν(x, y, z) = ν(r; p, q). In this case, a triplet
of ‘viewing angles’ (θ, φ, ψ) are required to specify the coordinate transformation between
the intrinsic (x, y, z) coordinate system of the galaxy and the projected (x′, y′, z′) coordinate
system associated with observation on the sky-plane [13, 41, 74]. Within this convention,
the long, intermediate, and short axes of the three-dimensional ellipsoid are aligned with the
intrinsic x, y, and z axes. Similarly, in the projected coordinate system, the long axis of the
projected ellipse is aligned with the x′ axis, the short axis with the y′, and the z′ axis points
towards the us along the line of sight.
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The viewing angles θ and φ define the vector pointing from the galaxy to the observer
and are the usual spherical angles within the galaxy’s reference frame (θ = 0◦ points along
the z axis, θ = 90◦ points in the x–y plane; φ = 0◦ points in the x–z plane, φ = 90◦ points
in the y–z plane). A third angle ψ is required to specify the rotation about the line of sight
on the sky.

In projection, the corresponding two-dimensional surface brightness profile will also be
ellipsoidal, with an elliptical radius variable R′2 = x′2+y′2/q′2 and Σ(x′, y′) = Σ(R′; q′). With
a choice of viewing angles, the projection can still be expressed as an Abel transform and
the deprojection still expressed as the inverse Abel transform [184, 13]. Accordingly, for each
triplet of viewing angles, there’s a well-determined mapping from an observed q′ axis ratio to
the intrinsic axis ratios p and q and a dimensionless scale factor u. Alternatively, for a given
q′, there’s a well-determined mapping from a choice of u, p, and q into a triplet of viewing
angles, so long as the chosen intrinsic axis ratios obey the inequality 0 ≤ q ≤ uq′ ≤ p ≤ u ≤ 1
[24, 202].

In realistic elliptical galaxies, the observed flattening of the surface brightness profile
is typically variable. Often the central regions have relatively round isophotes, while the
outer regions become increasingly flat. In triaxial systems, the position angle (PA) on the
sky associated with the apparent long axis of the isophotes may also twist [9]. Both of
these features suggest that a simple single-ellipsoid model may not be sufficient. A common
approach to address this is to consider real galaxies to be built from a superposition of
ellipsoids with different flattenings which possibly lie at different PAs. With a set of common
viewing angles, these components with varied q′ will deproject into a set of components with
varied p and q, resulting in a three-dimensional profile which also has spatially-varying shape.

This opens yet another realm of non-uniqueness in the deprojection process – the particu-
lar decomposition of the two-dimensional image into a superposition of elliptical components
may depend on both the parameterization of the light profile (that is, the functional form
of Σ(R′; q′)) and the fit parameters used to generate that functional form. A number of ap-
proaches and codes exist to address this problem (e.g. [131, 38]). Throughout this thesis, I’ll
use the commonly-used technique of Multi-Gaussian Expansion (MGE; [24]) to perform the
decomposition. The MGE technique fits the two-dimensional surface brightness image with
the form shown in Eqn. 1.3 which consists of a series of concentric Gaussian components,
each with distinct projected axis ratio q′j and length scale σ′

j. In turn, the three-dimensional
density profile is also described by a series of Gaussians with varied intrinsic axis ratios pj,
qj and length scales σj. As noted above, the mapping from the observed to intrinsic axis
lengths (σ′

j, q
′
jσ

′
j) → (σj, σjpj, σjqj) is fully specified by a choice of viewing angles (θ, φ, ψ).

1.1.3 Spectroscopic observations of early type galaxies
While photometric observations typically collect all photons within some broad spectral win-
dow (the band), one can also perform spectroscopy to measure the flux as a function of the
photon wavelength. This typically involves use of a diffraction grating to disperse multi-
chromatic light along an axis. Historically, long-slit spectroscopy has been commonplace
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in measurements of early-type galaxies. These observations capture light along a narrow
region on the sky, essentially a one-dimensional image. This light is dispersed spectrally to
form a two dimensional image, where one axis is spatial and the other is spectral. In recent
decades, integral field spectroscopy has become standard, where the use of image slicers or
fibers allows for construction of a three-dimensional datacube with two spatial axes and one
spectral axis. The work in this thesis makes significant usage of the Gemini Multi Object
Spectrograph (GMOS; [96]) and the Keck Cosmic Web Imager (KCWI; [142]).

Spectral fitting

As a rough approximation, the measured stellar spectra are convolutions of the distribution
of line-of-sight velocities of the stars and the rest-frame spectra of the individual stars. In our
work we are typically interested in measurement and use of the stellar line-of-sight velocity
distribution (LOSVD), so additional processing of individual spectra must be performed to
extract LOSVDs from observed spectra.

A conceptually simple early approach to this problem is the Fourier quotient method
[171]. In short, given an observed spectrum G(λ) and a stellar spectrum S(λ), then the
Fourier transform of the broadening function B which relates the two can be inferred by
division of the Fourier transforms of the two spectra (G̃(k) and S̃(k)). The parameters
associated with the distribution (the line strength γ, mean velocity v and dispersion σ) can
then be fit by finding the parameters which best reproduce the Fourier quotient Q̃ (see Sec
2.2 of [48], Eqn 1 reproduced here)

Q̃(k) =
G̃(k)

S̃(k)
≈ B̃(k) = γ exp

[
−1

2

(
2πkσ

N

)2

+

(
2πvik

N

)]
(1.8)

A related technique is the cross-correlation scheme [194], where a stellar spectrum and
galaxy spectrum are cross-correlated with C(n) =

∑
mG(m)S(m−n). Tonry and Davis 1979

demonstrate that this cross-correlation can be related to the parameters of the broadening
function with (see Sec 2.3 of [48], eqn 5 reproduced here)

C(v) ∝ γτ 2

σ2 + 2τ 2
exp

[
−1

2

(v − v0)
2

σ2 + 2τ 2

]
, (1.9)

where τ is the broadening of the stellar spectrum, σ is the width of the velocity distribution,
v0 is the mean velocity of the distribution, and γ is the line strength.

Variations on these two techniques were developed over many years, including the Fourier
correlation quotient (FCQ) method [7]. A major limitation of Fourier and cross-correlation
techniques is their inability to efficiently incorporate masks on regions of the spectrum which
are impacted by bad pixels, sky spectrum contamination, or gas emission. For the past
decades performing fitting directly in the spectral pixel space has been standard practice.
These techniques construct a model for the observed spectrum in each spectral pixel, then
optimize the parameters of the model to best fit the observed spectrum. A standard code
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used for this technique is the penalized pixel fitting code (pPXF; [22, 26]). The model used
in pPXF has the following form (Eqn 11 of [26]), and other codes (see e.g., [78, 63, 139])
typically use some variation of this scheme:

Gmod(x) =
N∑
n=1

wn

[
[Tn(x) ∗ L(cx)]

K∑
k=1

akPk(x)

]
+

L∑
l=1

blPl(x) +
J∑
j=1

cjSj(x) (1.10)

In this expression, a set of stellar templates Tn are superimposed with weights wn and
convolved against an LOSVD L, whose spectral pixels are indexed by x. This convolution
is multiplied against a ‘multiplicative polynomial’ akPk, which corrects for variations in the
flux calibration and shape of the continuum between the stellar templates and observations
or for reddening due to dust. An ‘additive polynomial’ blPl corrects for additional additive
components in the spectrum (sky background, AGN, etc), and explicit sky correction can
be performed by including representative sky spectra cjSj. With this scheme, the best-fit
parameters can be found through standard optimization methods.

1.2 Modelling Early-Type Galaxies

1.2.1 The collisionless Boltzmann equation and the Jeans
equations

The basic problem of our work is inference of masses from the kinematic and photometric
observations described in the previous section. In this section, we’ll follow Binney and
Tremaine Chapter 4 [14] to motivate various forms of the collisionless Boltzmann equation
and Jeans equations.

It’s useful to consider the state of an elliptical galaxy to be described by a distribution
function f(x,v, t). In the most literal sense, we can consider this to consist of delta functions
at the true locations of each individual star in the phase space. That is,

f(x,v, t) ∝
∑
i

miδ(xi(t)− x)δ(vi(t)− v). (1.11)

However, it’s more informative to interpret the distribution function as a probabilistic mea-
sure of how likely one is to locate a star in a particular location in the six-dimensional
phase-space at a particular time. As a probability, the natural normalization for f is∫
f d3xd3v = 1. With this interpretation, we can write down the conservation of proba-

bility for the phase-space
∂f

∂t
+

∂

∂x
· (f ẋ) + ∂

∂v
· (f v̇) = 0 (1.12)

With use of Hamilton’s equations, this can be substantially simplified:
∂f

∂t
+ ẋ · ∂f

∂x
+ v̇ · ∂f

∂v
= 0 (1.13)
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We care about particles subject to the gravitational potential, generally expressed with
Φ(x, t), so v̇ = −∂Φ(x,t)

∂x

∂f

∂t
+ v · ∂f

∂x
− ∂Φ(x, t)

∂x
· ∂f
∂v

= 0 (1.14)

This is the collisionless Boltzmann equation, expressed in cartesian coordinates. The Jeans
equations follow by taking the zero-th and first velocity moment of this equation. To take
the zero-th moment, we integrate over all velocity, which results in the following:

∂ν

∂t
+

∂

∂x
· (νv) = 0 (1.15)

The second Jeans equation comes from taking the first velocity moment of the CBE –
that is, we multiply by velocity, then integrate over velocity. This results in the following:

∂(νvj)

∂t
+
∂(νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0 (1.16)

The commonly-used form of this equation subtracts the continuity equation and expresses
the second velocity moments in terms of the velocity-dispersion tensor σ2

ij = vivj − vivj:

ν
∂vj
∂t

+ νvi
∂vj
∂xi

= −ν ∂Φ
∂xj

−
∂(νσ2

ij)

∂xi
(1.17)

This is the Jeans equation from the first velocity moment of the CBE, which relates the first
and second moments of the velocity.

1.2.2 Estimating Masses with the Virial Theorem
The simplest mass estimation scheme follows from the virial theorem, which we can derive
following the Jeans equations from above. The route here follows the description from Binney
and Tremaine, Chapter 4 [14].

First, we multiply our second Jeans equation by Mxk where M is the total mass of the
system and integrate spatially. We can use the definition that the physical density is just
ρ =Mν

0 =
∂(νvj)

∂t
+
∂(νvivj)

∂xi
+ ν

∂Φ

∂xj

0 =

∫
d3xxk

∂(ρvj)

∂t
+

∫
d3xxk

∂(ρvivj)

∂xi
+

∫
d3xxkρ

∂Φ

∂xj

(1.18)

The second term can be evaluated with the divergence theorem and is related to the kinetic
energy tensor: ∫

d3xxk
∂(ρvivj)

∂xi
= −

∫
d3x δkiρvivj = −2Kkj (1.19)
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Similarly, the third term is the potential energy tensor Wkj. Note that Wjk = Wkj and
Kkj = Kjk as both tensors are symmetric.

With a bit of algebra, the first component can be related to the moment of inertia
tensor. First, since W and K are symmetric we can average the index-swapped versions of
the previous equation and move the time derivative outside the integral.

0 =
1

2

d

dt

∫
d3x ρ(xkvj + xjvk)− 2Kjk −Wjk (1.20)

Consider the time derivative of the moment of inertia tensor:

d

dt
Ijk =

d

dt

∫
d3xρxjxk =

∫
d3x

∂ρ

∂t
xjxk (1.21)

The first Jeans equation from above has the form of a continuity equation and can be used
to replace the derivative on the right side. The result can be evaluated with the divergence
theorem.

d

dt
Ijk = −

∫
d3x

∂(ρvi)

∂xi
xjxk =

∫
d3xρ(xkvj + xjvk) (1.22)

This is identical in form to the remaining term in our main equation, so we can plug it in to
find the full tensor virial theorem.

0 =
1

2

d2

dt2
Ijk − 2Kjk −Wjk (1.23)

For a model galaxy we can assume time independence and drop the first term. We can also
take the trace of this equation to form the usual scalar virial theorem.

0 = W + 2K (1.24)

The kinetic energy is just K = 1
2
M〈v2〉, so this directly relates the second moment of the

velocity to the potential energy.
〈v2〉 = −W/M (1.25)

We can understand this relation as describing how the motion of the stellar population relates
to the potential surrounding them. This potential does not need to come from only the stellar
mass distribution and can include contributions from non-stellar sources (e.g., dark matter
and a central BH). For simple systems which consist of stars alone, the relation between
W and M can be characterized by the gravitational radius rg = GM2/|W |. Different mass
distributions will result in different values for rg. Binney and Tremaine note that for many
reasonable models (e.g., Jaffe, Hernquist, King), the half-light radius of the model and its
gravitational radius are related with scale factors of rh ∼ 0.4rg to 0.5rg. Accordingly, this
suggests a reasonable approximation with 〈v2〉 ∼ κGM/rh for κ ∼ 0.45. In the case of
systems with a spatially constant total mass-to-light ratio, we can interpret the mass M to
be the total mass from all components.
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This chain of reasoning provides a straightforward relation between the velocity disper-
sion, light profile, and mass. Of course, there are significant features lacking. Real galaxies
have highly spatially variable velocity distributions and have velocity distributions which are
not well described with only their second moment. Additionally it is not trivial (as we will
see in the next section) to infer the three dimensional velocity dispersion from observations
alone and assumptions must be made to relate the observed line of sight distribution to the
three-dimensional velocity distribution. These limitations suggest that virial estimators are
useful in their simplicity and intuitive behavior, but more comprehensive schemes must be
used to model realistic galaxies.

1.2.3 Jeans (anisotropic) modelling
While the virial estimator discussed in the previous section provides relations between the
total kinetic energy and total potential energy of the system, the Jeans equations describe
how local quantities (ν, vj, σ2

ij, and Φ) vary throughout the galaxy. This is extremely
valuable for constructing models which take into account the local variations in the potential
(that is, differentiating between different mass profiles or assessing the presence of a central
SMBH) and for incorporating the wealth of spatially resolved kinematic information we have
available with modern instruments and techniques (see Sec. 1.1.3). Models which directly
apply the Jeans equations are called Jeans models.

The Jeans Anisotropic Modelling (JAM, [18, 25]) code is well-established and widely used
for this purpose. Other schemes and codes exist (e.g.,[12, 205, 185]), but as JAM gives a good
picture of their general behavior, we’ll restrict this discussion to that scheme. Two versions of
the JAM code exist, which make different assumptions about the velocity anisotropy in the
galaxy. For this discussion, we’ll focus on the scheme described in Cappellari 2008 (hereafter
C08; [18]), which assumes cylindrically aligned velocity ellpsoids. We’ll follow the discussion
in that paper to motivate the Jeans modelling strategy.

Eqn. 1.17 gave a general form of the Jeans equation, expressed in Cartesian coordinates.
The cylindrically aligned JAM solution uses cylindrical coordinates, and imposes axial sym-
metry where the potential and distribution function are constant w.r.t. the azimuthal angle.
Additionally, the system is assumed to be time-independent, so the time-derivative term is
dropped. That equation can be rewritten in cylindrical coordinates as a pair of equations
related to the R and z derivatives of the potential (C08 eqns 3 and 4):

νv2R − νv2φ
R

+
∂(νv2R)

∂R
+
∂(νvRvz)

∂z
= −ν ∂Φ

∂R

νvRvz
R

+
∂(νv2z)

∂z
+
∂(νvRvz)

∂R
= −ν ∂Φ

∂z

(1.26)

In total this pair of equations has six variable quantities: ν, Φ, v2R, v2φ, v2z , vRvz. Typically
two of these quantities (Φ, ν) are fixed by assuming a specific mass model, so the model is
still underspecified. JAM provides a closure to this system by assuming that the velocity
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ellipsoids defined by vivj terms are aligned with the cylindrical coordinate system – that is,
that when cylindrical coordinates are used, that off-diagonal terms in that tensor vanish.
This eliminates the vRvz term. The second major assumption is that in the R–z plane, the
velocity ellipsoids have constant flattening with v2R = bv2z which completes the closure. The
equations above simplify significantly under these assumptions:

ν(bv2z − v2φ)

R
+
∂(νbv2z)

∂R
= −ν ∂Φ

∂R

∂(νv2z)

∂z
= −ν ∂Φ

∂z

(1.27)

These equations now have three model parameters (b,ν,Φ) and two unknown quantities (v2z ,
v2φ)

These equations allow us to reconstruct v2R(R, z), v2z(R, z) and v2φ(R, z), which character-
ize the velocity ellipsoids in the galaxy’s coordinates. Following this, the intrinsic velocity
distribution is projected along the line-of-sight. In Sec. 1.1.2 we discussed the general prob-
lem, noting that three angles are required to fully specify a projection and deprojection.
When the intrinsic shape of the ellipsoid is axisymmetric (that is, p = 1), two of those angles
are constrained and the projection-deprojection is fully specified by just the inclination θ,
which is usually expressed as i in this context. This adds an additional JAM model parame-
ter i, which specifies the projection. This projection performs the mapping from the internal
model quantities v2z and v2φ to the observable quantity v2LOS.

The basic strategy of practical usage of Jeans modelling is then to propose a trial model
specified by (Φ,ν,b,i), infer the v2LOS at numerous locations on the sky, then compare those
dispersions to a set of observed LOSVDs at the same locations. This has the form of a
standard curve-fitting optimization problem and can be treated as such. Jeans modelling
is extremely valuable due to its relative flexibility and semi-analytic form. For a particular
model, the goodness of fit to a set of observations can be evaluated in a fraction of a second
in most cases, allowing for relatively short evaluation time even for long MCMC chains or
nested sampling routines.

Unfortunately, the assumptions made for Jeans modelling are quite limiting. In the case
of JAM, the global alignment of the velocity ellipsoids limits the ability of the model to
reproduce the expected anisotropies in regions where the potential has different symmetries.
Coarsely speaking, in regions where the potential is highly spherical, such as within the
sphere of influence of a black hole or far into the dark matter halo, one may expect roughly
spherical-coordinate-aligned ellipsoids while in regions where the potential is more axisym-
metric (such as in the stellar-mass-dominated region of an axisymmetric galaxy), one may
expect closer alignment with cylindrical coordinates [18, 25]. Additionally, the assumption of
an axisymmetric stelllar component is less justified for the very massive early type galaxies
explored through this thesis, as those systems tend to be at least somewhat triaxial [117,
102, 103, 54]. Finally, the line of sight velocity distributions which can now be measured
with precision IFU spectroscopy often have distinctly non-Gaussian features and are not
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well-characterized by only their dispersion. Since Jeans modelling typically only constrains
the second moment of the velocity as it uses the first moment of the CBE, these higher order
features cannot be captured in the current formalisms.

1.2.4 Schwarzschild modelling
Much of the work throughout this thesis uses the Schwarzschild orbit superposition method
[173, 174], which is described at length elsewhere throughout this thesis (See Chap. 2.4, 3.2,
4.2, 5.4, and 6.5), so it will not be described at length here. In short, a mass distribution
is proposed, a library of representative orbits which span the phase space associated with
the potential is constructed, and the orbits within those libraries are superimposed in order
to reproduce both the assumed mass distribution and a set of observables. By repeating
this procedure for a large number of proposed mass distribution, one can find the mass
distributions which best reproduce the observations.

1.3 Overview of this Dissertation
This thesis follows two broad trajectories, first expanding and demonstrating the robustness
of a code for performing Schwarzschild orbit modelling in potentials with triaxial stellar
components, then applying that code to real galaxies. Chapter 2 describes our usage of
the TriOS triaxial orbit superposition to perform axisymmetric modelling of the massive
elliptical NGC 1453. Chapter 3 discusses the behavior of the otherwise triaxial code in
the axisymmetric limit and the changes to the code and its usage which are required to
produce robust axisymmetric models. Chapter 4 extends our usage of TriOS to models with
triaxial stellar halos, measruing the mass of the the SMBH in NGC 1453 simultaneously
with its triaxial three-dimensinoal shape. Chapter 5 presents new measurements of the
stellar kinematics of M87 using the Keck Cosmic Web Imager which are used to revise the
stellar dynamical measurement of the central black hole. Finally, chapter 6 presents new
measurements of the stellar kinematics of H15 and IC1101, two massive ellipticals with
exceptionally large cores, as well as a re-measurement of the mass of H15’s supermassive
black hole.
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Chapter 2

A Stellar Dynamical Mass
Measurement of the Supermassive
Black Hole in Massive Elliptical
Galaxy NGC 1453

The broad goal of this thesis is to develop and expand techniques for simultaneously mea-
suring the intrinsic three-dimensional triaxial shapes and mass parameters of massive early
type galaxies, but we have begun our work with simpler axisymmetric models. The mo-
tivation for this comes from a few threads. First, axisymmetric models are fundamentally
simpler models – since they have azimuthal symmetry, the effective dimensionality of the
distribution function is reduced relative to triaxiality. Axisymmetric models have intuitively
simpler orbital structures, consisting only of loop orbits which orbit about the symmetry
axis, while triaxial models consist of multiple types of loops, box orbits, and other minor
orbit families. Second, the parameter-space required to specify an axisymmetric deprojec-
tion is one-dimensional compared to the three dimensions of triaxial models, so exploration
of the full parameterspace is substantially easier in axisymmetry. Third, we initially had
quite a bit of difficulty getting physically reasonable results with triaxial models, even when
those models had shapes relatively near axisymmetry. In our troubleshooting, bug-fixing,
and head-scratching, we found that the most prudent path forward was to ensure that our
TriOS Schwarzschild orbit modelling code could give reasonable results in axisymmetry be-
fore adding the complications of triaxiality.

These first two chapters describe our first explorations with the TriOS code with axisym-
metric stellar components. This chapter discusses the detection and measurement of the
black hole at the center of NGC 1453, a fast-rotator in the MASSIVE sample. This is our
group’s first black hole mass measurement using TriOS in the axisymmetric limit.

In addition to detection of the SMBH in NGC 1453 and discussion of the use of TriOS
in the axisymmetric limit, this chapter also discusses considerations while using the Gauss-
Hermite moments of the line-of-sight velocity distributions (LOSVDs) as constraints within
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a Schwarzschild model, noting that prior practice typically underconstrained the velocity
distributions, potentially introducing non-physical artifacts and weakening the constraint on
the inferred model parameters (such as the black hole mass).

This chapter was originally published as
Christopher M. Liepold et al. “The MASSIVE Survey. XV. A Stellar Dynamical Mass

Measurement of the Supermassive Black Hole in Massive Elliptical Galaxy NGC 1453”. In:
Astrophys. J. 891.1 (Feb. 2020), p. 4. doi: 10.3847/1538-4357/ab6f71

Note that in the original publications of this chapter and the two following chapters, my
first name and middle initial were woefully mis-spelled. For chapter 5 and beyond, this error
has been corrected. Minor alterations to the text of this chapter have been made to ensure
fluency throughout this dissertation.

2.1 Introduction
Making a direct dynamical measurement of the mass of a supermassive black hole (SMBH)
using stellar or gas kinematics requires both exquisite observational datasets and extensive
theoretical modeling. Over three decades of efforts by multiple research groups have accumu-
lated about 100 dynamically determined masses for SMBHs at the centers of local galaxies
out to a distance of about 120 Mpc, with varying degrees of accuracy (see compilations in,
e.g., [133, 108, 165]).

The high-mass regime (MBH & 109.5M�) faces the additional challenge that the host
galaxies are massive elliptical galaxies whose central stellar light profiles typically have flat-
tened cores that differ significantly from the high-density and cuspy centers of less massive
elliptical galaxies and bulges of disk galaxies. These stellar cores are a defining feature of
the most massive ellipticals (e.g., [61, 112, 32, 66, 84]), indicating a significant deficit of
stars, possibly due to three-body gravitational slingshots that scatter stars passing close to
a SMBH binary to larger radii (e.g., [6]). These diffuse cores make it extremely difficult to
obtain stellar absorption-line spectra of high-S/N quality that is needed for reliable MBH

measurements. Long-integration observations on large ground-based telescopes in excellent
seeing conditions or with the assistance of adaptive optics are required.

In pursuit of a comprehensive study of the highest-mass regime of local SMBHs and
galaxies, we have been conducting a volume-limited survey, MASSIVE, of the most massive
galaxies in the local universe [126]. The MASSIVE survey targets ∼ 100 early-type galaxies
(ETGs) in the northern sky (δ > −6 degrees) within a distance of 108 Mpc. Within this
volume, it is designed to be complete to an absolute K-band magnitude ofMK = −25.3 mag,
covering all ETGs with stellar mass M∗ & 1011.5M� and with no selection cuts on galaxy
size, velocity dispersion or environment. This parameter range is unexplored by ATLAS3D,
the previous volume-limited survey of 260 local ETGs out to a distance of 42 Mpc [19].

We have obtained comprehensive spectroscopic data using IFS on both sub-arcsecond and
arcminute scales and performed uniform measurements of the spatially-resolved kinematics.
Many results on the stellar kinematics and stellar populations of MASSIVE galaxies out to
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a few effective radii from our wide-field IFS observations can be found in Veale et al. [209,
210, 211], Ene et al. [54], and Greene et al. [86, 87]. Results from finely-resolved stellar
kinematics in the central ∼ 2 kpc regions of 20 MASSIVE galaxies are presented in Ene et
al. [53, 55]. In addition to the IFS data, we have also assembled an extensive array of multi-
wavelength data of MASSIVE galaxies to study stellar light profiles [83], cold molecular gas
[36, 37], warm ionized gas [149], and hot X-ray gas [82, 215].

In addition to studying the luminous baryonic components in massive ETGs, one major
science goal of the MASSIVE survey is to perform simultaneous dynamical mass modeling
of the SMBH, stars, and dark matter for a sample of cleanly selected massive ETGs using
a uniform set of sub-arcsecond and wide-field IFS data and photometric data. To date,
only 7 of the 100 galaxies in the MASSIVE survey have published SMBH masses that are
determined from orbit mass modeling of stellar kinematic data. Three of the 7 galaxies are
in the Virgo cluster: NGC 4486 (M87; Gebhardt et al. [77]; see also Walsh et al. [221] and
EHT Collaboration [57]), NGC 4472 (M49; Rusli et al. [164]), and NGC 4649 (M60; Shen
et al. [178]). Two others are the brightest cluster galaxies of rich clusters: NGC 4889 in
the Coma cluster and NGC 3842 in the Leo cluster [134, 136]. The remaining two are the
brightest galaxies in galaxy groups: NGC 1600 in a fossil-like group [192] and NGC 7619
in the Pegasus group [164]. Except for NGC 4649, the spectroscopic observations were
all conducted with IFS on 8-10 meter telescopes. The measured MBH spans an order of
magnitude from ∼ 2 × 109M� to ∼ 2 × 1010M�. More MBH measurements in this mass
range are clearly needed to quantify more robustly the upper end of the MBH-galaxy scaling
relations for a better understanding of black hole feedback processes and massive galaxy
evolution. We have acquired the spectroscopic and photometric data that are needed to
perform dynamical modeling for the 20 galaxies reported in Ene et al. [53] and several other
galaxies in the MASSIVE survey.

We turn to this goal in this paper and report the stellar dynamical measurement of
the mass of a new SMBH at the center of the massive elliptical galaxy NGC 1453, a fast
rotator in the MASSIVE survey. NGC 1453 is the brightest galaxy in its galaxy group, a
typical environment for MASSIVE galaxies [210]. As listed in Table 3 of Ma et al. [126], the
2MASS “high-density contrast” group catalog [35] identified 12 galaxies as members in the
NGC 1453 group, and estimated the virial mass of the group to be 1013.9M�, presumably
with large errors due to the small number of member galaxies. Our HST images of NGC 1453
show very regular elliptical isophotes (Figure 13 of Goullaud et al. [83]). The photometric
and kinematic axes are also closely aligned [54, 53, 55], suggesting that the galaxy can be
approximated as an axisymmetric system.

A distance measurement is needed to convert the observed angular scales to physical
length and mass scales, and the inferred MBH scales linearly with the assumed distance. For
NGC 1453, we use our new determination of 51.0 Mpc from the MASSIVE-WFC3 project
[83] using the surface-brightness fluctuation technique [101]. This new distance is about 10%
smaller than 56.4 Mpc from group-corrected flow velocity in the 2MASS redshift survey. For a
flat ΛCDM with a matter density of Ωm = 0.315 and a Hubble parameter of H0 = 70 km s−1

Mpc−1, 1 arcsec is 245 pc at 51.0 Mpc.
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We perform Schwarzschild orbit modelling [173] using the triaxial implementation de-
scribed by van den Bosch et al. [202]. We perform this modelling in the axisymmetric limit,
and in Section 2.4.1 provide a prescription for how to achieve this limit properly in the triax-
ial code. The line-of-sight stellar velocity distributions (LOSVDs) are the main observational
inputs in any stellar dynamical mass modeling of galaxies using orbit-based methods. It is
a common practice, and the practice within this code, to expand the LOSVDs in a Gauss-
Hermite series [132, 162]. The Gauss-Hermite expansion provides a natural way to express
deviations from a Gaussian distribution since the terms in the series are orthogonal and lin-
ear. However, there has been little discussion in the literature about the appropriate order
at which to truncate the series. To date, most published work on MBH measurements that
relied on the Gauss-Hermite expansion of the LOSVDs had measured only the lowest four
moments from the stellar spectra (i.e., velocity V , dispersion σ, skewness h3, and kurtosis
h4), using only these moments as observational constraints in subsequent orbit modeling and
ignoring all higher moments. In this paper, we investigate the importance of including the
higher moments for constraining MBH in NGC 1453. When higher moments are left uncon-
strained, the LOSVDs predicted by the orbit models can contain large spurious contributions
from these high moments.

In Sec. 2.2, we describe the spectroscopic observations and the resulting stellar kinematics
from the Gemini Multi-Object Spectrograph (GMOS; [96]) IFS of the central ∼1.5 kpc by 2
kpc region of NGC 1453 and the wide-field coverage with the McDonald Mitchell IFS [93].
In Sec. 2.3, we describe our IR imaging observations of NGC 1453 from the HST Wide Field
Camera 3 (WFC3) and the determination of the 2D light profile and the 3D deprojected
stellar mass profile. The orbit modeling method is discussed in Sec. 2.4. The mass modeling
results are given in Sec. 2.5, and the best-fit mass model is discussed further in Sec. 2.6.
In Sec. 2.7, we discuss a number of relevant issues: the impact of Gauss-Hermite series
truncation on the inferred MBH, the subtleties in achieving axisymmetry within the triaxial
code, comparisons to results from Jeans modelling, implications for the black hole scaling
relations, and connections to our previous observations of warm ionized gas in NGC 1453
[149].

2.2 Spectroscopic Data and Stellar Kinematics
As part of the MASSIVE survey, we obtained spatially-resolved stellar spectra for NGC 1453
with the Gemini Multi Object Spectrograph (GMOS; [96]) in the IFS mode on the 8.1 m
Gemini North Telescope and the Mitchell/VIRUS-P IFS [93] on the 2.7 m Harlan J. Smith
Telescope at McDonald Observatory. Here we summarize the observations, data reduction
processes, and the procedures used to extract the stellar kinematics.
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Figure 2.1: Signal-to-noise map of the Gemini GMOS IFS data for the 135 Voronoi bins in the
central 5′′×7′′ of NGC 1453. A target S/N of 125 is used in the binning procedure. The S/N
value for each bin scatters around the target with a typical RMS scatter of ∼ 10%, while the
innermost bins achieve S/N up to ∼ 150. Stellar kinematics from high-quality spectra are
critical for measuring the gravitational effects of the central black hole. Our observations are
able to achieve this high S/N over finely resolved spatially bins; both needed for kinematic
extraction and black hole measurements.

2.2.1 Central kpc kinematics
We observed the central ∼1.5 kpc × 2 kpc region of NGC 1453 using GMOS in the 2015B
semester. The two-slit mode of GMOS provided a field of view of 5′′ × 7′′ consisting of
1000 hexagonal lenslets, each with a projected diameter of 0.′′2. An additional 500 lenslets
observed simultaneously a 5′′ × 3.′′5 region of the sky, which was offset by about 1′ from
the science field. The R400-G5305 grating and CaT filter combination was used to avoid
spectral overlap on the detector and to provide a clean wavelength coverage of 7800-9330 Å.
The spectral resolution of GMOS is determined from arc lamp lines for each lenslet with a
mean value is 2.5 Å FWHM. Six science exposures, each of 850 seconds, were taken. The
median seeing was 0.′′7 FWHM. Other details and our data reduction procedure are described
in Ene et al. [53].
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We use the CaII triplet absorption features over the rest wavelength range of 8420-8770
Å to measure the stellar kinematics. We apply the Voronoi binning algorithm [21] with
a target S/N of 125 to determine how to spatially group the individual GMOS lenslets to
achieve uniformly high-quality spectra. The procedure returns S/N values (per spectral pixel
of 0.67 Å) that scatter about the target with an rms of ∼ 10%. Spectra from individual
lenslets within a Voronoi bin are co-added as described in Ene et al. 2019 [53]. After fitting
the spectra with pPXF, we re-estimate the S/N as the ratio of the median flux and the
root-mean-square residual from the fit. The resulting S/N map for the 135 Voronoi bins is
shown in Figure 2.1. The resulting CaII region of the spectra for three representative bins
are shown (black curves) in Figure 2.2.

We measure the stellar line-of-sight velocity distribution (LOSVD) within each spatial
bin using the penalized pixel-fitting (pPXF) method of Cappellari et al. [27]. The LOSVD
is parameterized as a Gauss-Hermite series1 up to order n

f(v) =
e−

y2

2

√
2πσ2

[
1 +

n∑
m=3

hmHm(y)

]
, (2.1)

where y = (v−V )/σ, V is the mean velocity, σ is the velocity dispersion, and Hm is the mth

Hermite polynomial as defined in Appendix A of van der Marel and Franx [132].
For each spectrum, the stellar continuum is modeled with an additive polynomial of

degree zero (i.e., an additive constant) and a multiplicative polynomial of degree three. A set
of stellar template spectra are convolved with the instrumental line spread function and the
LOSVD before adding and multiplying by these polynomials. The polynomial coefficients,
template weights, and Gauss-Hermite moments are fitted simultaneously.

To test for potential issues with template mismatches, we compare two sets of stellar
templates chosen from the Calcium Triplet (CaT) Library of 706 stars [30] and find negligible
differences in the resulting kinematics. The first set contained 15 stellar templates of the
same 15 stars used in the extensive tests in Barth et al. [5]. For the second set, we use all
360 G and K stars in the CaT Library for each bin. The resulting V and σ differ by an
average of ∼ 5 km s−1 and the higher moments by ∼ 0.01, all well within the measurement
errors. Our kinematic moments determined from the CaII triplet region are therefore robust
to template choices, similar to the findings in Barth et al. [5]. The stellar spectra of the
CaT library cover the wavelength range of 8348-9020 Å with a spectral resolution of 1.5 Å
FWHM.

The resulting stellar template broadened by the best-fit LOSVD is shown for each of the
three example bins in Figure 2.2 (red curves). We use a bootstrap approach to determine
the error bars on the kinematic moments of each LOSVD. For comparison, we have also
estimated the errors using the standard Monte Carlo method with 100 trial spectra per bin.
The bootstrapped errors on the kinematic moments are typically 50% to 100% larger than
the Monte Carlo errors. See Sec. 4 of Ene et al. [53] for a detailed discussion.

1Note that the pPXF method described in Cappellari et al. 2004 [22] only allows n = 2, 4, or 6. The
version described in Cappellari et al. 2016 [27] allows arbitrary n.
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Figure 2.2: CaII triplet region of the Gemini GMOS IFS spectra (black) for three represen-
tative bins at three locations of NGC 1453: center with S/N = 143 (top), 1.′′81 from center
with S/N = 130 (middle), and 3.′′68 from center with S/N = 112 (bottom). The stellar tem-
plate broadened by the best-fit LOSVD (red) is overlaid on each observed spectrum. The fit
is performed over the rest wavelength range of 8420-8770 Å centered around the CaII triplet
absorption lines, excluding the grey shaded regions of improperly subtracted sky lines. The
fit residuals (green dots) are shifted by an arbitrary amount for clarity.
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Figure 2.3: Maps of the stellar kinematics measured from the Gemini GMOS IFS over 135
spatial bins in the central 5′′ × 7′′ of NGC 1453. Each panel shows one of the eight velocity
moments in the Gauss-Hermite expansion of the LOSVD: velocity V , velocity dispersion σ,
and the h3 to h8 higher moments. The velocity map shows a regular rotation pattern with
|V | reaching ∼ 100 km s−1 and the σ map shows a central peak. North is up and east is to
the left.

The maps of the 8 kinematic moments, V , σ, h3, . . . , h8, are shown in Figure 2.3. The
velocity map shows a regular rotation pattern with |V | reaching ∼ 100 km s−1, and the σ
map shows a central peak of ∼ 325 km s−1. The mean errors are 7.1 km s−1 for V and
8.4 km s−1 for σ. The mean errors for h3 through h8 are quite similar, varying from 0.018
to 0.023. The radial profiles of these moments are shown below in Figure 2.4.

2.2.2 Wide-field kinematics
We observed NGC 1453 as one of the 100 MASSIVE galaxies in 2013 trimester 3, using
the Mitchell/VIRUS-P IFS. The Mitchell IFS consists of 246 evenly spaced fibers with a
one-third filling factor. Each fiber has a 4.′′1 diameter, and the IFS covers a large 107′′×107′′

FOV. Three dither positions of equal exposure time were used to obtain contiguous coverage
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Figure 2.4: (Unfolded) radial profile of the stellar kinematics determined from GMOS
(left) and Mitchell (right) observations (black), and kinematics predicted by the best-fit
mass model (red) with black hole mass MBH = 2.9 × 109M�, stellar mass-to-light ratio
M∗/LF110W = 2.09 (in solar units), and enclosed dark matter halo mass (within 15 kpc)
M15 = 7 × 1011M�. The kinematic bins have been unfolded so that bins whose centers lie
between −90◦ and +90◦ of the photometry PA are plotted with positive R and others are
shown with negative R. The rotation in V and central values of σ are well-fit by this model,
and the high moments h5 − h8 are close to 0 with some scatter.
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of NGC 1453. We interleaved a 10-minute exposure on sky and two 20-minute exposures
on target for a 2-hour total on-source exposure time. The spectral range spans 3650-5850
Å, covering the Ca HK region, the G-band region, Hβ, Mg i b, and several Fe absorption
features.

Individual central fibers have S/N above 50, while the outer fibers are binned spatially
to achieve a S/N threshold of 20 for the fainter outskirt of the galaxy. A similar procedure
as in Sec. 2.2.1 is used to determine the stellar LOSVD for each of the 38 spatial bins. We
used the MILES library of 985 stellar spectra ([166, 64]) as stellar templates and ran pPXF
over the full library for each spectrum. Further details are described in Ma et al. [126] and
Veale et al. [210].

As can be seen in Figure 2.4 here and Figure 21 of Ene et al. [53], the kinematic moments
in the innermost Mitchell bins match well with the GMOS moments.

2.3 Photometric Data
To model the spatial distribution of the stellar component of NGC 1453, we use the IR
imaging portion of the MASSIVE survey with the F110W filter of the HST Wide Field
Camera 3 (WFC3/IR) [83]. The observations of NGC 1453 had a total exposure time of
2496 seconds, which was divided into five dithered exposures using a five-point subpixel
dither pattern to improve the point spread function (PSF) sampling. The pixel scale at
F110W is 0.128 arcsec pix−1 and is slightly undersampled for this wavelength. Details of the
data reduction procedures, background sky measurement, mask construction, and isophotal
fitting process were given in Goullaud et al. [83].

The isophotes of NGC 1453 are very regular (top panel of Fig. 2.5) with a mean ellipticity
of 0.17± 0.001. The position angle (PA) changes with radius mildly from (27.9± 1.0)◦ (east
of north) at 1′′ to 36.1◦ ± 0.4◦ at 79.5′′, with a luminosity-weighted average of 30.1◦ ± 0.2◦.
We fit the surface brightness using the Multi-Gaussian Expansion (MGE) method [51, 24]
with a sum of 2D Gaussian components that share a common center and PA:

Σ(x′, y′) =
N∑
k=1

Lk
2πσ′2

k q
′
k

exp
[
− 1

2σ′2
k

(
x′2 +

y′2

q′2k

)]
, (2.2)

where x′ and y′ are projected coordinates measured from the galaxy center, with x′ and
y′ being along the photometric major and minor axes, respectively. The subscript k labels
the individual Gaussian components; Lk, σ′

k, q′k are the luminosity, projected width, and
projected axis ratio of each Gaussian, respectively. To compare to WFC3 images, we convolve
the model with a PSF composed of 5 nearly-circular gaussian components (with axis ratios
> 0.98), obtained by fitting the PSF from Goullaud et al. [83]. The MGE fitting routine
by default determines the PA using the central region of the galaxy. As a result, it chooses
a PA of 28.5◦, slightly different from the mean value 30.1◦ quoted in Goullaud et al. [83].
We repeated the MGE fit with the PA fixed to 30.1◦ and found a virtually identical fit. We
choose to use 28.5◦, the value from the MGE fitting routine.
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Figure 2.5: (Upper left) The F110W-band HST image of NGC 1453 used for our photom-
etry [83]. The image is oriented so that the +x axis lies at 30.1◦ east of north. (Upper
right) Isophotes of the HST WFC3 IR image of NGC 1453 (black) and the best-fit MGE
model (magenta). The isophotes have no measurable deviation from purely elliptical con-
tours [83]. (Lower left) The surface brightness profiles along the major (black) and minor
(red) axes are well-fit by the sum of 10 Gaussians with small fitting errors. The difference
between the data (solid) and model (dotted) is not discernible in the plot, where the frac-
tional error (lower half of the panel) is ∼1% except at large radii beyond 50′′. (Lower right)
Deprojected 3D luminosity density for an oblate axisymmetric model viewed edge-on for the
best-fit MGE model.
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Our best-fit MGE to the surface brightness of NGC 1453 consists of 10 Gaussian compo-
nents, which are summarized in Appendix 2.A and plotted in Figure 2.5 (lower-left panel).
The small fitting residuals (lower half of the panel) demonstrate that the MGE model agrees
very well with the data. This MGE fit has an effective radius Re = 19.′′6 ≈ 4.8 kpc, very
similar to Re = 21.′′9 from Ene et al. [54] using our deep K-band photometry from CFHT.

The intrinsic and projected coordinate systems are related by a set of three viewing
angles (θ, φ, ψ) [13]. The angles θ and φ specify how the line of sight is oriented relative
to the principal axes of the galaxy, and ψ specifies the rotation of the galaxy around the
line of sight, where an oblate axisymmetric potential is defined to have ψ = 90◦. Given
these viewing angles, an MGE fit to the light profile Σ(x′, y′) can be deprojected into a 3D
luminosity density ν(x, y, z) with x, y, z in the intrinsic coordinate system; see lower-right
panel of Figure 2.5.

Dust was not observed in the central region of NGC 1453 in our WFC3 data. The mean
optical and UV colors of NGC1453 are typical of those of evolved, red giant ellipticals of
similar masses (e.g., [62, 124]). Annibali et al. [3] derived a mean age of 9.4 +/- 2.1 Gyr and
metallicity [Z/H] = +0.22 dex within the central 3′′. Thus, the dominant stellar population
is old and metal-rich. We find no significant gradient in the g-z color from PanSTARRS data
[101].

2.4 Schwarzschild Orbit Models
We use the Schwarzschild orbit superposition method [173] through the implementation
described by van den Bosch et al. [202]. In this method, a library of orbits with a wide
range of initial conditions is constructed for a stationary potential due to a central black
hole, a stellar component described by the MGE, and a dark matter halo. As each orbit
passes through the region of the sky corresponding to a kinematic bin, its velocity is recorded
to construct an LOSVD which is then decomposed in terms of Gauss-Hermite moments. A
superposition of orbits is constructed with the QPB quadratic programming solver from the
GALAHAD library [81], which minimizes the χ2 associated with the kinematics under the
constraint that both the projected mass within each aperture and the 3D mass distribution
are fit within 1% of the MGE.

We have found several problems in the code during our tests and have fixed them as
described in Chapter 3 [155]. We have also determined that additional modifications are
required to achieve axisymmetry within the code. These changes are discussed briefly in the
following subsections and more fully in Chapter 3 [155].

2.4.1 The axisymmetric limit
NGC 1453 is a fast rotator with regular elliptical isophotes (Fig. 2.5) and no significant
misalignment between the projected rotation axis and photometric minor axis [54]. These
properties suggest that NGC 1453 can be approximated as an oblate axisymmetric model.
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However, we find the original version of the triaxial code by van den Bosch et al. [202] not
to be able to achieve exact axisymmetry. Here we describe two precautions and one change
that we implemented in order to achieve axisymmetry.

First, the box orbit library, which is generated by default in the original code, should
be excluded when the code is to be used for axisymmetric gravitational potentials. Orbits
in the box orbit library start from rest with Lz = 0. These orbits are important in triaxial
potentials, but not in axisymmetric systems where Lz is an integral of motion. In an ax-
isymmetric potential, box orbits cannot precess about the minor axis as they retain Lz = 0
for all time. As a result, they remain in their starting plane and do not exhibit axisymme-
try. We therefore exclude these intrinsically non-axisymmetric orbits from our axisymmetric
models2.

The second precaution is to avoid generating long-axis tube orbits in the orbit library, a
class of orbits not supported by axisymmetric stellar mass distributions. We find that these
orbits can be eliminated only when the value for the viewing angle ψ is set to be sufficiently
close to 90◦ in the input parameter file. As described in Section 2.3, the code uses three
viewing angles (θ, φ, ψ) to relate the intrinsic and projected coordinate systems and to set
the axis ratios of the stellar potential. An oblate axisymmetric potential is obtained when
ψ is exactly 90◦ and the axis ratio p between the long and intermediate axes is exactly 1.
Due to floating point imprecision, however, the code does not run when ψ is set to 90.0◦

with double precision. Earlier work typically chose |ψ− 90◦| = 10−3 or 10−2, assuming these
values were close enough to 90◦ to generate axisymmetry. For NGC 1453, however, we find
even |ψ − 90◦| = 10−3 to be sufficiently far away from 90◦ to allow for long-axis tubes in
the orbit start space, hence violating axisymmetry. We instead choose ψ = (90 + 10−9)◦ in
this work, which is far enough from 90◦ to avoid numerical issues but close enough that the
potential is essentially axisymmetric for all available choices of the inclination.

Even after we excluded both the box and long-axis tube orbits, we still were unable to
achieve axisymmetry with the original triaxial code. In the case of NGC 1453, we find that
many orbits precess on timescales much longer than the default integration time, which is
set to be 200 times the orbital periods in the code. These orbits should be symmeterized
so that their contributions to the kinematics and mass grids are axisymmetric. To achieve
this, we combine 40 copies of each orbit, each rotated slightly about the intrinsic minor axis
of the galaxy; see Chapter 3 [155] for details of our implementation.

These changes allow the triaxial code to be properly run in the axisymmetric limit. We
will compare results from the original code and our version in Section 2.7.2.

2For a triaxial potential, the “loop” orbit library generated by the code can contain some box orbits that
have no overall sense of direction (see orbit start space in Fig. 2 of Schwarzschild 1993 [174]. However, as
Lz is an integral of motion for an axisymmetric potential and all orbits in the library are initialized with
Lz 6= 0, these orbits are also excluded.
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2.4.2 Orbit library and phase space sampling
As described in Schwarzschild 1993 [174] and van den Bosch et al. [202], the orbits used
for the models span a grid of energies (E) and starting positions (R,Θ) on the meridional
plane of the galaxy. We choose 40 energies corresponding to the potential energies Φ(r, 0, 0)
evaluated at a set of 40 radii that are logarithmically spaced between 0.01 and 102.5 arcsec.
These radii are chosen to span from roughly one order of magnitude below the pixel scale of
our photometry to the radii where ≥ 99.999% of the MGE mass is contained. We verify that
orbits at the highest and lowest energies are given very low weight in the models. Our tests
also verify that adding orbits starting at higher or lower radii does not impact our models.
For each energy, we construct a grid of 9 × 9 starting positions spanning the radii between
the inner and outer thin orbit radii for that energy and angles between 0◦ and 90◦.

To improve the sampling of the phase space, the code allows orbit dithering where groups
of orbits spanning a small volume in the (E,R,Θ) space are generated, combined, and given
a single weight during orbit superposition. We use bundles of 53 = 125 orbits for the final
results below, and bundles of 33 = 27 for numerous tests since they produce similar results
and are less CPU-intensive. Our models also include a time-reversed copy of each orbit. In
total, we use a library of 810,000 orbits (or 174,960 orbits for tests) for each mass model
with 2× 40× 9× 9 = 6480 independent weights.

As discussed in Section 2.4.1, we use ψ = (90 + 10−9)◦ to run the triaxial code in the
axisymmetric limit. In this limit, the φ viewing angle does not affect the MGE deprojection,
but it sets the orientation of the plane of the orbit start space relative to the plane of the
sky. As we axisymmetrize the orbits before projecting them onto the sky, the orientation
between the start space and the sky becomes unimportant and we find that our model fits
are independent of the viewing angle φ. We choose φ = 1◦. For reference, when the viewing
angles ψ = 90◦ and θ = 90◦ are used, the choices of φ = 0◦ and φ = 90◦ correspond to
aligning the intrinsic x-axis and y-axis with the line of sight, respectively.

The potential due to the central black hole includes a softening length so that the po-
tential at the origin is not singular. We set this length to 3 × 10−4arcsec, which is roughly
two and a half orders of magnitude smaller than the size of our central kinematic bin and
one and a half orders of magnitude smaller than the peribothron of the most central orbits.

We convolve the integrated orbit trajectories in the models with PSFs while projecting
the orbits onto the sky. This convolution is done separately for each kinematic dataset as
they have different PSFs. For each, we assume a single circularly symmetric Gaussian with
a FWHM of 0.′′7 for the GMOS kinematics and 1.′′2 for the Mitchell kinematics.

2.4.3 Input Gauss-Hermite moments
We use the first 12 moments in the Gauss-Hermite expansion of the LOSVDs as constraints
in the orbit models. For the central region of NGC 1453, we use the first 8 moments V ,
σ, h3, …, h8 measured from the GMOS spectra as described in Section 2.2.1 and shown
in Figure 2.3. The corresponding radial profile of each of the moments for all 135 GMOS
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spatial bins is plotted (black points) in the left panel of Figure 2.4. The errors on h3 through
h8 are quite similar from moment to moment and bin to bin. The mean errors on these
moments range from 0.018 to 0.023, with a typical standard deviation of 0.003 over the
spatial bins. To choose an appropriate number of moments to extract using pPXF, we
performed the extraction with increasing numbers of moments (4, 6, 8). As the number
of extracted moments is increased, we find that the typical value of the highest extracted
moment becomes consistent with 0. For the GMOS spectra, this occured when 8 moments
were extracted.

To prevent spurious behavior in the higher-order moments in the model, we further
constrain the next four orders, h9 to h12, to be 0.0± δ, where δ represents the typical errors
in the higher moments. Since the size of errors is very similar from h3 to h8, we do not find
the exact assigned values of δ to matter. Nonetheless, we try to mimic the mild bin-to-bin
variations by assigning the measured errors for h7 for a given bin to δ for the odd moments
h9 and h11 in that bin, and similarly for the even moments (i.e., using the h8 errors for h10
and h12).

For the wide-field data that have lower S/N , we use the first 6 Gauss-Hermite moments
measured from the Mitchell spectra as constraints (Sec. 2.2.2). The radial profile of the
moments for the 38 Mitchell spatial bins extending to a radius of ∼ 50′′ is shown in the
right panel of Figure 2.4. We again constrain the 7th and 12th moments to be 0 with
uncertainties equal to the measured errors for h5 (for odd orders) or h6 (for even orders).
The errors on moments h3 through h6 from the Mitchell spectra are also quite uniform
between moments. The mean errors on these moments range from 0.029 to 0.035 with a
typical standard deviation of 0.006 over the spatial bins.

We discuss further the importance of constraining the higher Gauss-Hermite moments in
Sec. 2.7.1 below.

2.5 Results: Mass Model Search

2.5.1 Mass Model
We investigate four mass model parameters – inclination θ, central black hole mass MBH,
F110W-band stellar mass-to-light M∗/LF110W , and the enclosed mass of the dark matter
halo at 15 kpc. We use a logarithmic halo with mass density

ρDM(r) =
V 2
c

4πG

3R2
c + r2

(R2
c + r2)2

. (2.3)

We find the circular velocity Vc and the scale radius Rc to be highly degenerate for our data
because the enclosed mass

Menc(r) =
V 2
c

G

r3

r2 +R2
c

(2.4)

scales with V 2
c /R

2
c within the scale radius where most of our data points are located. We

therefore choose to parameterize the halo with the enclosed mass within 15 kpc, M15, where
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15 kpc is the middle of the radial extent of the outermost Mitchell bins (spanning 9.4 kpc
to 18.8 kpc).

2.5.2 Marginalization
Previous orbit modeling papers have often determined the 1σ (68%) and 3σ (95%) confidence
intervals for each model parameter by finding the values at which the χ2 rises by ∆χ2 = 1
and 9 relative to the best-fit model. This method is only exactly correct when there is no
covariance between the marginalized and free parameters and where the free parameter’s
χ2 landscape is quadratic so that the likelihood is Gaussian. To avoid reliance on these
assumptions, we compute best-fit values and confidence intervals through an interpolation
and marginalization routine described in Appendix 2.B.

2.5.3 Inclination
In the oblate axisymmetric limit (p = 1), the MGE deprojection requires a single viewing
angle, θ, which specifies the assumed inclination of the galaxy. An edge-on view of the
system corresponds to θ = 90◦ while face-on corresponds to θ = 0◦. The inclination affects
the axis ratios of the deprojected density distribution with qi =

√
q′2i − cos2 θ/ sin θ, where q′i

is the observed axis ratio of the i−th component of the MGE fit described in Appendix 2.A,
and qi is the intrinsic axis ratio between short axis to the long axis in that component’s
deprojection.

Deprojection is only possible when cos−1(min q′i) < θ < 90◦, where min q′i is the smallest
axis ratio in the MGE fit. For the MGE used in this analysis, we have cos−1(min q′i) = 38◦.
When inclinations near this threshold are used, flattening of the the MGE component with
the smallest q′ changes significantly. For example, when θ = 40◦, the component with
q′ = 0.786 has q = 0.27, and for θ = 50◦, the component is flattened to q = 0.59.

To determine the inclination of NGC1453, we search coarsely over MBH, M∗/LF110W ,
and M15 but finely over the inclination. This grid includes 11 values of MBH from 0.0 to
6× 109M� in steps of 6× 108M�, 8 values of M∗/LF110W from 1.6 to 2.3 (in solar units) in
steps of 0.1, and 3 values of M15: 2.8, 6.3, and 11.2 ×1011M�, corresponding to Vc = 400,
600, and 800 km s−1 with Rc = 15 kpc. We use 12 values of θ from 40◦ to 89◦ in steps of
10◦ below 70◦ and 2.5◦ above. The code does not allow perfectly edge-on viewing angles, so
the highest θ sampled was 89◦ rather than 90◦. This grid contains 11× 8× 3 = 264 models
for each choice of θ and 264× 12 = 3168 models in total.

Figure 2.6 shows that nearly edge-on viewing angles are strongly preferred. WhenM15 =
6.3 × 1011M�, θ = 89◦ gave the lowest overall χ2 with θ = 80◦ and 70◦ lying ∆χ2 = 20.9
and 22.3 higher. For each θ and M15, we compute the best-fit MBH and M∗/LF110W with
their 68% confidence intervals. When θ > 70◦, the best-fit values depend only weakly on
θ, and their confidence intervals coincide. This suggests that our recovered black hole mass
and stellar mass-to-light ratio are relatively insensitive to the inclination within the edge-on
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Figure 2.6: Best-fit MBH (top) and M∗/LF110W (middle) with 1σ confidence intervals and
the corresponding marginalized 1-d χ2 (bottom) as a function of the inclination angle θ. The
grey points in the lower panel denote the χ2 of individual models within the grid, and the
red horizontal dashed lines denote the conventional 0, 1, 3, 5σ confidence levels corresponding
to ∆χ2 = 0, 1, 9, 25. The halo is fixed to M15 = 6.3 × 1011M� in this plot for illustrative
purposes; similar dependence is found for other halo masses we examined.
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limit. We therefore fix the inclination to be nearly edge on with θ = 89◦ as we sample over
halos below.

2.5.4 Black hole, stars, and dark matter halo
With the inclination fixed to be nearly edge-on with θ = 89◦, we search the three mass
parameters, MBH, M∗/LF110W , and M15, using two sets of grids. The primary grid covers
the parameter ranges broadly and is then supplemented by a finer grid that zooms into the
best-fit model of the primary grid with half the grid spacing in both MBH and M∗/LF110W .

The primary grid has 16×15×13 = 3120models forMBH,M∗/LF110W andM15. This grid
samplesMBH linearly from 0 to 6×109M� in steps of 4×108M�,M∗/LF110W from 1.60 to 2.30
(in solar units) in equal steps of 0.05, and the enclosed halo mass fromM15 = 2.79×1011M�
to 11.16× 1011M� by varying the circular velocity roughly linearly from Vc = 400 km s−1

to 800 km s−1 (for Rc = 15 kpc).
For the finer grid, we first determine the MBH and M∗/LF110W model that minimizes

the χ2 for each value of M15. We then construct the fine grid around that model sampling
another 16 × 15 values of MBH and M∗/LF110W , where the spacing between models is half
of that of the primary grid, and MBH is sampled over a range of 3 × 109M� in steps of
2× 108M�, and M∗/LF110W is sampled over a range of 0.35 in steps of 0.025. Many of these
models overlap with those of the primary grid, so only 176 × 13 = 2288 additional models
are run.

We perform the interpolation and marginalization described in Appendix 2.B to deter-
mine the best-fit values and uncertainties in MBH, M∗/LF110W and M15 from these 5408
models. The resulting χ2 landscapes are displayed in Figure 2.7. We find the best-fit
mass parameters to be MBH = (2.9 ± 0.4) × 109M�, M∗/LF110W = (2.09 ± 0.06)M�/L�,
and M15 = (7.0 ± 0.7) × 1011M�. For comparison, if the best-fit parameters are cho-
sen by finding the range of models where the χ2 rises by ∆χ2 ≤ 1 from the minimum
value, as was frequently done in prior MBH papers, we find comparable central values
for the mass parameters for NGC 1453, but the error bars are underestimated by a fac-
tor of 1.5 to 2: MBH = (3.0 ± 0.2) × 109M�, M∗/LF110W = (2.06 ± 0.03)M�/L�, and
M15 = (7.4± 0.4)× 1011M�. These values are tabulated in Table 2.1.

Figure 2.8 presents a clear view of the χ2 landscape over the wide range of MBH covered
by our grid. It shows that models with small black hole masses are highly disfavored.
In particular, MBH = 0 has ∆χ2 = 75.5 above the minimum, corresponding to the 8.7σ
confidence level. This result will be further discussed in Section 2.7.2.

In the best-fit mass model for NGC 1453, the enclosed stellar mass is equal to MBH,
2MBH, 3MBH and 5MBH at radius 0.18 kpc (0.74′′), 0.26 kpc (1.05′′), 0.33 kpc (1.32′′), and
0.45 kpc (1.83′′), respectively. The enclosed stellar mass equals that of the dark matter at
8.4 kpc (34.1′′). At the effective radius (5 kpc), the dark matter fraction is 0.27.
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Figure 2.7: Marginalized 1-d and 2-d likelihood distributions from the grids of MBH, M15

and M∗/LF110W described in Section. 2.5.4. The 1σ, 2σ, and 3σ confidence intervals cor-
responding to the 68, 97, and 99.5 percentile confidence levels are shown as red, blue, and
green curves in the 2-d panels and as different shade of grey in the 1-d panels. The extracted
best-fit values and 1σ confidence interval are shown above each 1-d panel.

Table 2.1: Best-fit values of the black hole mass, stellar mass-to-light in the F110W band,
and dark matter mass enclosed within 15 kpc. The center column presents values determined
though interpolation and marginalization as described in Appendix 2.B. The right column
presents values determined through projection, where the confidence interval bounds all
models within ∆χ2 ≤ 1 of the global minimum.

Mass parameters Marginalized Projected
MBH (109M�) 2.9± 0.4 3.0± 0.2

M∗/LF110W (M�/L�) 2.09± 0.06 2.06± 0.03
M15 (10

11M�) 7.0± 0.7 7.4± 0.4
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Figure 2.8: χ2 as a function of MBH for the full range of MBH explored in this paper. The χ2

is obtained by marginalizing over the other two mass parameters, M15 and M∗/LF110W , as
described in Appendix 2.B. Models with MBH = 0 are highly disfavored with a ∆χ2 = 75.5
relative to the best-fit MBH, corresponding to the 8.7σ confidence level.

2.6 Results: Best-Fit Mass Model

2.6.1 Stellar kinematics
Our best-fit mass model (red points in Fig. 2.4) provides an excellent fit to the observed
stellar kinematics (black). Both the rotation V and the large central σ are well captured
by this model. The total χ2 for the best-fit model from all the kinematic moments is 493.0,
where the bulk of this (471.5) comes from the moments extracted from data and only a small
fraction (21.5) comes from the additional high moments that are constrained to be zero.

To estimate the reduced χ2, we note that there are 8 measured moments for each of the
135 GMOS bins and 6 measured moments for each of the 38 Mitchell bins, for a total of 1308
data points. The kinematic maps of the odd moments have been point-anti-symmetrized and
the even moments have been point-symmetrized according to the prescription in Appendix
A of van den Bosch and de Zeeuw [199]. Our total reduced χ2 from the moments extracted
from data is therefore 471.5/1308 = 0.36. The reduced χ2 from the GMOS data alone is
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366.2/(135 ∗ 8) = 0.34 and the reduced χ2 from Mitchell alone is 105.3/(38 ∗ 6) = 0.46.
The high moments which were constrained to be zero have an associated reduced χ2 of
21.5/768 = 0.03.

2.6.2 Orbital structure
While computing the orbit libraries, the code constructs a 3D spherical grid containing the
first and second velocity moments of the orbits. We use this velocity grid to compute the
anisotropy parameter β = 1− σ2

t /σ
2
r and the ratio of radial to tangential dispersions σr/σt.

We note that various definitions of β have been adopted in prior papers, and at times it is
unclear whether σ in such quantities is treated as a dispersion or a second moment of the
velocity, i.e., whether σ2 = 〈v2〉 − 〈v〉2 or σ2 = 〈v2〉. We choose to define

σ2
t =

σ2
θ + σ2

φ

2
, β = 1− σ2

t

σ2
r

,

σ2
rot =

σ2
θ + σ2

φ + 〈vφ〉2

2
, βrot = 1− σ2

rot

σ2
r

,

where the brackets denote a mass-weighted mean over θ and φ. These pairs of definitions are
only expected to differ when there is significant contribution from the ordered flow velocity
term 〈vφ〉2. For reference, differing definitions and symbols were used in the literature, e.g.,
β from Thomas et al. [191], βr from Peletier et al. [151], and σr/σt from Walsh et al. [220]
all excluded the 〈vφ〉2 term, while βrot from Krajnović et al. [110] and Thomas et al. [191]
and σr/σt from Gebhardt et al. [76] included this term.

The resulting velocity anisotropy as a function of spherical radius r for the best-fit model
of NGC 1453 is shown in Figure 2.9. The orbits are tangential near the core, but become in-
creasingly radially anisotropic beyond the effective radius (∼ 5 kpc) Even though NGC 1453
exhibits rotation and is considered a fast rotator for an ETG, the maximal velocity observed
in our kinematics is ∼100 km s−1, which is much below the dispersion σ shown in Figure 2.4.
The term 〈vφ〉2 therefore has negligible impact on the value of σrot and βrot at all radii, and
σrot ≈ σt and β ≈ βrot at all radii.

Thomas et al. [191] studied eleven massive elliptical galaxies with axisymmetric Schwarzschild
models. Six of those galaxies had stellar cores and exhbited strongly tangential anisotropies
(βrot < −0.5) in the core regions and highly radial anisotropies (βrot ∼ 0.5) well outside the
cores. Similar trends in the anisotropy were found in MASSIVE survey galaxy NGC 1600
[192]. This behavior is consistent with gravitational core scouring, where a central binary
black hole preferentially ejects radial orbits from the core leaving an orbital structure which
is tangentially biased [6]. We observe similar behavior in NGC 1453 suggesting that its core
may have also been depleted through core-scouring.
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Figure 2.9: Velocity anisotropy β (top) and σr/σt (bottom) as a function of radius for
the best-fit model of NGC 1453. The orbits within the central ∼ 1 kpc are preferentially
tangential with σr/σt < 1 and β < 0. The orbits become increasingly radial beyond the
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2.7 Discussion

2.7.1 Gauss-Hermite series truncation and LOSVDs
As described above, the stellar LOSVD in each spatial bin is parameterized by a Gauss-
Hermite series up to order n. Some care must be taken to ensure that the unconstrained
higher moments beyond order n in the orbit models do not introduce spurious behavior in
the predicted LOSVDs.

It is useful to begin the discussion by examining how the LOSVDs are obtained in the
triaxial orbit code. During orbit integration, the code first computes the LOSVD of each
orbit for a spatial bin as it passes through the aperture on the sky. The Gauss-Hermite
moments are then determined from each LOSVD through the direct integration described
by van der Marel and Franx [132], using the observed V and σ values for that bin. During the
subsequent orbital weight finding process, the Gauss-Hermite moments of the superposition
of orbits in each bin are easily computed due to their linearity.

To find the best-fit orbital weights for a mass model, the code places no constraints on
moments beyond those provided to it. We are concerned that some of the unconstrained
higher moments can add spurious non-Gaussian features to the LOSVDs. This is to be
contrasted with how the LOSVDs are determined from the data. There, the pPXF algorithm
determines the best-fit moments from the observed spectrum in the least-squares sense,
choosing moments that minimize the residual contribution from higher moments.

To test the impact of unconstrained higher moments on MBH, we perform a series of
controlled experiments in which we vary systematically the number of Gauss-Hermite mo-
ments determined from the GMOS spectra and used as constraints in the orbit model. We
compare the results from grid searches for four cases here. For the first three cases, 4, 6,
and 8 GH moments are measured from the GMOS data with pPXF and those 4, 6, and 8
GH moments are fit with orbit models to infer MBH. In the fourth case, 8 GH moments are
determined from the GMOS data with pPXF and 12 GH moments are used as inputs into
the dynamical models, with the 9th to 12th moments set to 0 and assigned uncertainties
as described in Sec. 2.4.3. The fourth case, where 12 moments are used to constrain the
dynamical models, corresponds to our production run reported in earlier sections. For each
case, we then perform a grid search for the best-fit MBH and M∗/LF110W . Our aim here
is to test the effects on the measured MBH, so we keep the large-scale Mitchell kinematics
unchanged and fix the halo to the best-fit value of M15 = 7× 1011M� from our production
run.

The resulting first 12 moments predicted by the best-fit model for each of the four cases
of increasing truncation orders are shown in Figure 2.10. The corresponding LOSVDs for
three representative GMOS bins in each case are shown in Figure 2.11. The marginalized χ2

versus MBH for the four cases are shown in Figure 2.12 (left panel), and the best-fit MBH are
listed in Table 2.2 under “Berkeley Version”. We note that while the best-fit MBH changes
by only ∼ 20% (in the range of 2.6 to 3.2 × 109M�) as the truncation order is varied, the
confidence level is improved significantly when more input moments are used, and the errors
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Figure 2.10: Dependence of the first 12 Gauss-Hermite moments predicted by the best-fit
orbit model on the assumed truncation order applied to the GMOS data and used as input
constraints. The four colors show the progression of increasing truncation order: up to h4
(green), h6 (blue), h8 (red), and h12 (black; our production run). In each case, the moments
beyond the truncation order are unconstrained in the orbit model and exhibit correlated
deviations from 0. This is most clearly seen in the green curves in the unconstrained h5
and above. An interpolating line has been added to each curve to guide the eye. The
corresponding marginalized χ2 versus MBH for the four cases are shown in Figure 2.12 (left
panel). See text in Sec. 2.7.1 for details.
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Figure 2.11: LOSVDs for three representative GMOS bins predicted by the best-fit orbit
models. Each panel compares the LOSVDs from the four models described in Sec. 2.7.1 and
shown in Figure 2.10, where the number of Gauss-Hermite moments fit by the dynamical
models varies from 4 (green), 6 (blue), 8 (red), to 12 (black). When only 4 moments are con-
strained, the LOSVDs have the most pronounced irregular features due to the unconstrained
h5 and beyond seen in Figure 2.10. These unobserved features are gradually reduced when
higher moments are used to constrain the model.
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on MBH are reduced by a factor of ∼ 2.3 when we increase the truncation order from 4 to
12.

The detailed dependence of each of the 12 Gauss-Hermite moments on the truncation
order can be clearly seen in Figure 2.10. These moments are determined from the LOSVD
of each bin (e.g., Fig. 2.11) through the direct integration described by van der Marel and
Franx [132]. Although only moments up to the truncation order are used for constraining
the model LOSVDs, arbitrary higher moments can be computed. The lowest 4 moments V ,
σ, h3 and h4 predicted by the best-fit models are mostly independent of the truncation order
we tested. This is not surprising since these 4 moments are fit during modelling in all cases.
The predicted moments beyond h4, however, start to show varying degrees of deviations.
The case in which the series is truncated at h12 (black points) corresponds to our production
run. It uses all 12 moments as constraints by design, so as expected, the best-fit model is
well-behaved in all 12 panels. In comparison, when only 4 moments are fit by the orbit-
based models (green points), the unconstrained 5th moment and beyond deviate strongly
from the black points. Similarly, when 6 (blue) or 8 (red) moments are used as constraints
during the modelling, the 7th or 9th moment and beyond also show deviations from the
black points. Importantly, the deviation from 0 is not random; instead, the unconstrained
moments are correlated spatially, being somewhat symmetric about R = 0” for even moments
and antisymmetric about R = 0” for odd moments. The general trend that we observe in
Figure 2.10 is that the lower the truncation order is, the more their higher moments show
unobserved and correlated features.

We illustrate the spurious features in the shapes of the LOSVDs resulting from the uncon-
strained higher Gauss-Hermite moments in Figure 2.11. For all three representative GMOS
bins shown, the model LOSVDs have the most pronounced irregular features when only 4
moments are used (green curve), and these features gradually go away as the truncation
order is increased.

To date, a number of published dynamical MBH measurements based on orbit modeling
of stellar kinematics have used the method of Gauss-Hermite expansion to approximate the
LOSVDs. Most have used the first four moments as constraints in the orbit models, e.g.,
[213, 199, 201, 219, 220, 217, 218, 1, 176, 110, 188, 189], while a few have used the first six
moments, e.g., [23, 29, 111]. Our tests here are applied only to the triaxial Leiden code in
the case of NGC 1453, so we cannot speak directly to the impact of higher Gauss-Hermite
moments on MBH in other work. However, we recommend that similar tests be performed
in future work.

2.7.2 The MBH = 0 model: comparison to Ahn et al. (2018)
Recently, Ahn et al. [1] used the same triaxial orbit code as in this work to perform ax-
isymmetric mass modeling of the ultracompact dwarf galaxy M59-UCD3. They reported
a puzzling global χ2 minimum at MBH = 0, which was inconsistent with their best-fit
MBH = 4.2+2.1

−1.7 × 106M� from Jeans modeling and an orbit code that is intrinsically axisym-
metric. Various tests were performed but none explained the discrepancy. They speculated
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Figure 2.12: Illustration of the increasing constraints on MBH provided by progressively
higher Gauss-Hermite moments used to represent the LOSVDs. Two versions of the orbit
code with different settings are shown: the Berkeley version described in Sec. 2.4.1 (left),
and the original triaxial Leiden version (right) with typical choice of ψ, including box orbits,
and without orbit axisymmetrization. In each panel, we vary systematically the number of
Gauss-Hermite moments used as constraints in the orbit model from 4 (green), 6 (blue), 8
(red), to 12 (black). Our production run corresponds to the black curve in the left panel.
The green curve in the right panel uses a similar setting as in Ahn et al. [1] for M59-UCD3
and prefersMBH = 0. TheMBH = 0 minimum disappears as moments beyond h4 are applied
in the original code (right) but the best-fitMBH is highly dependent on the truncation order.
In comparison, the main effect of additional moments in the Berkeley version (left) is to
tighten the error bars on MBH while leading the central value largely unchanged. Note we
use a linear scale in the confidence level for the y-axis here for a clearer illustration of the
locations of the minima, while Fig. 2.8 uses a linear scale in χ2.

about a “numerical artifact” in the triaxial Leiden code and favored the non-zero MBH from
Jeans and axisymmetric orbit modeling.

As discussed in Sec. 2.4 and 2.7.1, we have made a number of changes to the original
triaxial code and typical settings to arrive at the “Berkeley version” results for NGC 1453
presented in Sec. 2.5 and 2.6. Even though our final outcome in Figure 2.8 shows MBH = 0
to be disfavored at the 8.7σ confidence level, we also encountered difficulties in constraining
MBH in the case of NGC 1453 when we ran the original triaxial code using similar settings
as those of Ahn et al. [1]; that is, choosing |ψ − 90◦| ≥ 10−3, including box orbits from the
default library, not axisymmetrizing the loop orbits, and using 4 Gauss-Hermite moments as
kinematic constraints. Our resulting χ2 for this setting using the original code is represented
by the green curve in the right panel of Figure 2.12. The overall constraint on the NGC 1453
MBH is weak, with the lowest χ2 occurring at MBH = 0, and another local χ2 minimum at
MBH ∼ 1.5× 109M�. This is in stark contrast to the result from our version of the settings
and code represented by the black curve in the left panel of Figure 2.12.
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Table 2.2: Best-fit black hole mass and 1σ (68%) confidence intervals for the eight cases
shown in Figure 2.12. The 4-moment Leiden run results in a χ2 minimum at MBH = 0. For
all other runs, the quoted confidence intervals here are properly marginalized through the
routine described in Appendix 2.B.

# of constrained Berkeley Version Original Leiden Version
moments MBH (109M�) MBH (109M�)

4 3.30± 0.81 0
6 2.64± 0.59 1.51± 0.49
8 2.63± 0.48 1.93± 0.41
12 2.91± 0.35 2.22± 0.55

In view of the importance of constraining higher Gauss-Hermite moments (Sec. 2.7.1), we
have run further tests using the original code but increasing the number of input moments
from 4 to 6, 8, and then 12. The results are plotted in the right panel of Figure 2.12. The
χ2 minimum at MBH = 0 in the case of h4 disappears as the truncation order is increased,
but the location of the χ2 minimum depends sensitively on the number of moments, and the
best-fitMBH increases monotonically and shows no convergence even at order 12, as listed in
Table 2.2. In comparison, models from the “Berkeley Version” in the left panel of Figure 2.12
and in Table 2.2 have better-behaved χ2 contours.

2.7.3 Comparison to Jeans modeling
In Ene et al. [54], we applied the method of Jeans Anisotropic Modeling (JAM; [18]) to
determine the mass parameters in NGC 1453. JAM is computationally cheap but is limited
by the assumptions of axisymmetric potentials and cylindrically aligned velocity ellipsoids,
and by the fact that its solutions could be unphysical. JAM has been shown to give consistent
results as axisymmetric orbit models for regular fast rotators like NGC 1453 [28].

Previous studies with JAM have typically assumed a globally constant βz = 1−〈v2z〉/〈v2R〉,
which quantifies the flattening of the velocity ellipsoid along the minor axis. In order to at
least partially replicate orbit-type variation, we allowed two different values for βz, one for
the Gaussian components with σk < 1′′, and the other for the Gaussian components with
σk > 1′′. The choice of 1′′ is motivated by the light profile of NGC 1453 which starts to fall
off more rapidly at R & 1′′ (see bottom panel of Fig. 2.5).

The JAM Modelling in Ene et al. [54] used the distance 56.4 Mpc from the 2MASS
redshift survey. After adjusting to 51.0 Mpc, the best-fit parameters from JAM are MBH =
(2.98 ± 0.23) × 109 M� and M∗/LF110W = 2.28 ± 0.04 (with 1σ errors). The MBH value is
within the 1σ confidence interval of our best-fit value, while the M∗/LF110W is higher than
our best-fit value but is consistent with the 3σ interval.

The best-fit circular velocity for the dark matter halo from JAM is Vc = 364±45 km s−1

with Rc = 6.5 ± 2.5 kpc. Assuming that the uncertainties in these two parameters are
highly correlated, this corresponds to M15 = (3.89 ± 0.96) × 1011M�. This is roughly half
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our preferred value of M15 = (6.98 ± 0.73) × 1011M�. At small radii, the enclosed dark
matter in the JAM model is much larger than ours. The central density of JAM’s halo is
(17.4± 4.3)× 107M�/kpc

3, while ours is half at (9.9± 1.0)× 107M�/kpc
3. At 6.9 kpc, the

enclosed masses of the two halos are identical.
The best-fit velocity anisotropy is βGz (σ′

k < 1′′) = −0.58 ± 0.62 for the inner part and
βGz (σ

′
k > 1′′) = 0.15 ± 0.04 for the outer part. The anisotropy in the central region is

comparable to what we find in Section 2.6.2, but we find the the orbits to be much more
radially biased in the outer region. The black hole and stellar mass distribution of the
JAM best-fit model and our best-fit model are very similar, suggesting that similar velocity
anisotropies are required to fit the kinematics. Conversely, the enclosed mass due to the halo
in our best-fit model is much larger than that of JAM beyond 6.9 kpc, suggesting that our
model must be more radially biased to similarly fit the kinematics, as we observe.

2.7.4 Black Hole Scaling Relations
The SMBH at the center of NGC 1453 lies 0.32 dex above the mean MBH-σ scaling relation
from McConnell and Ma [133], which is within the 0.38 dex intrinsic scatter in that rela-
tion. For the other seven MASSIVE galaxies with stellar dynamical MBH, four galaxies –
NGC 4472, NGC 4486, NGC 4649 and NGC 7619 – are within 0.3 dex of the scaling relation,
whereas the other three – NGC 1600, NGC 3842, and NGC 4889 – have MBH that is over-
massive by a factor of ∼ 3− 6 than predicted by their respective galaxy velocity dispersion.
These 8 galaxies exhibit similarly large scatter in the scaling relation between MBH and the
bulge stellar mass, where M∗ spans a factor of ∼ 3 while MBH spans a factor of ∼ 10.

The stellar core radius of NGC 1453 from our photometry is rb = 0.97′′ (0.24 kpc). This
value is obtained by fitting a 2D core-Sérsic profile, convolved with the PSF from Goullaud
et al. [83]. This fit was performed using Imfit [56]. The scaling relation between MBH and rb
for a sample of 21 massive cored ETGs is found to be log10MBH = 10.27+1.17 log10(rb/kpc)
with an intrinsic scatter of 0.29 dex [192]. Our inferred MBH for NGC 1453 is only 0.077 dex
below this relation.

2.7.5 Gas Kinematics
In Pandya et al. [149], we observed the kinematics of warm ionized gas out to ∼ 8 kpc
within NGC 1453 by tracing the 3727 Å [O II] emission line using the spectra obtained
with the Mitchell IFS. This warm gas was found to rotate with a PAgas∼312.5◦, roughly
perpendicular to the stellar rotation along PAstars∼35◦. This extreme misalignment suggests
that the warm gas originated from external accretion rather than in-situ stellar mass loss.
The gas was observed to have a rotation velocity of up to ∼200 km s−1 and a comparable
velocity dispersion, giving an rms velocity of ∼300 km s−1, similar to that of the stars
studied in this paper.



CHAPTER 2. A STELLAR DYNAMICAL MASS MEASUREMENT OF THE
SUPERMASSIVE BLACK HOLE IN MASSIVE ELLIPTICAL GALAXY NGC 1453 43

2.8 Summary
We have presented a black hole mass determination of the MASSIVE survey galaxy NGC 1453
using high-spatial resolution stellar kinematic data from the GMOS IFS, wide-field kine-
matic data from the Mitchell IFS, and photometry from HST WFC3. Stellar kinematics are
measured from the spectra to produce a truncated Gauss-Hermite parameterization of the
LOSVDs. We determine the first eight moments of the LOSVDs from the high-S/N GMOS
spectra and the first six moments from the Mitchell spectra (Figs. 3 and 4). The two sets
of kinematic data together span about two orders of magnitude in radial extent, from 0.′′3 to
76′′ (∼3 effective radii) with a total of 173 spatial bins of varied size.

In the production run described in this paper, we perform axisymmetric Schwarzschild
orbit modelling for more than 8000 mass models to determine the mass parameters in
NGC 1453. For each mass model, we use a library of up to 800,000 stellar orbits to sample
the phase space, and then use a quadratic programming solver to find a superposition of
orbits that minimizes the χ2 associated with the observed kinematics and also fit the ob-
served photometry to within 1%. This procedure is done for all mass models to produce
likelihood distributions for the mass parameters (Figs. 2.7 and 2.8). The best-fit model
for NGC 1453 has a black hole mass MBH = (2.9 ± 0.4) × 109M�, a stellar mass-to-light
ratio (in F110W band) M∗/LF110W = (2.09 ± 0.06)M�/L�, and an enclosed dark matter
mass M15 = (7.0 ± 0.7) × 1011M� at 15 kpc. The inclination is found to be nearly edge-on
(Fig. 2.6).

We began the orbit modeling with the original triaxial Schwarzschild code of van den
Bosch et al. [202] but determined that numerous changes must be made to properly model
axisymmetric systems with that code. We found the gravitational potential not to be suffi-
ciently axisymmetric when we adopted the typical setting of this code used in prior studies.
As a result, the orbit start space includes box and long-axis orbits that are forbidden in truly
axisymmetric potentials. Additionally, many of the integrated orbits near the black hole or
far into the halo do not exhibit axisymmetry as their precession timescale is much longer
than the code’s default integration time. We introduced an additional axisymmetrizing step
to enforce this symmetry. We also addressed several other issues and improved the compu-
tational efficiencies in the code. The changes leading to the Berkeley version of the code is
discussed in Sec. 2.4; further details are described in Chapter 3 [155].

Another key finding of this paper is that care must be taken to properly handle the
truncation of the Gauss-Hermite series used to describe the stellar LOSVDs. When the
higher-order terms in the series are left unconstrained for NGC 1453, the resulting best-
fit LOSVDs produced by the orbit models contain spurious features (Fig. 2.11), and the
contributions from the unconstrained higher-order moments are not random but show spatial
correlations (Fig. 2.10) When the Berkeley version of the orbit code is used, we find that
the confidence level on the MBH determination for NGC 1453 is significantly improved when
at least 8 Gauss-Hermite moments are used as constraints: the 1-sigma confidence interval
shrinks by a factor of ∼ 2 relative to models with typical constraints on only V through h4
(left panel of Fig. 12). By contrast, the χ2 landscape is not as well behaved when the original
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Table 2.3: Best-fit MGE parameters to the NGC 1453 HST WFC3 IR photometry. Each
Gaussian component is parametrized by a central surface density Ik = Lk/2πσ

′2
k q

′
k (calculated

using an absolute solar AB magnitude M�,F110W = 4.54), dispersion σ′
k (in arcseconds), and

axis ratio q′k.

Ik [L�/pc2] σ′
k [′′] q′k

6285.72 0.118 0.895
11089.5 0.323 0.928
15865.7 0.715 0.863
9393.34 1.392 0.794
5676.12 2.373 0.852
1824.78 3.846 0.791
1326.46 5.962 0.848
561.023 10.501 0.786
280.091 20.747 0.823
80.423 47.289 0.896

code is used with typical settings (right panel of Fig. 2.12). Tests on each individual galaxy
would have to be performed to assess whether earlier MBH determinations are similarly
impacted.

A number of the findings and code changed discussed in this paper are also relevant when
the orbit code is applied to a triaxial gravitational potential. In particular, the problem of
insufficient integration time for the subset of orbits with long precession timescales occurs
in both axisymmetric and triaxial models. We are currently investigating these issues with
the aim to build equilibrium triaxial models for non-axisymmetric galaxies.

Appendix

2.A Multi-Gaussian Expansion parameters
We list in Table 2.3 the best-fit parameters of the 10 MGE components to our HST WFC3
IR photometry of NGC 1453 shown in Figure 2.5. The 10 Gaussians terms are assumed to
have the same center and position angle of 28.5◦.

We also performed an MGE fit to this photometry in Ene et al. [54]. The two MGEs
differ in that the fit presented here was found by using the ’mge_fit_sectors()’ function rather
than the ’mge_fit_sectors_regularized()’ function. We find that when the regularized fit is
performed, the photometry is similarly well-fit. However, for the regularized fit we find a
significant uptick in the model’s surface brightness in the central ∼0.′′1, below the pixel scale
of the photometry. To avoid this un-physical feature, we use the un-regularized fit here.
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2.B Interpolation and Marginalization
We perform an interpolation with cubic radial basis functions (RBF) to promote our discrete
sample of χ2 evaluations at each model point to a continuous function over the parameter-
space. We use a variation on the implementation described by [105]. The RBF interpolation
is described by

χ2(~x) =
N∑
i=1

λi(||T (~x− ~xi)||)3 +~b · ~x+ a,

where ~x describes a point in the parameter-space and λi, ~b, and a are uniquely defined from
the criterion that the interpolation passes through all N sample points. T is initially the
identity matrix.

A spatial rescaling is performed to improve the fit around the minimum of the landscape.
This is done by evaluating the interpolating function at 10000 points drawn from a uniform
distribution over the parameter-space. The covariance matrix of the 500 points with lowest
predicted χ2 is computed, then the eigenvalues αi and eigenvectors ~mi of that matrix are
computed. Finally, T is constructed with ~Ti = ~mi/

√
αi. Given this new T , λi, ~b, and a are

recomputed so that the interpolation once again passes through all N sample points.
To extract best-fit values and confidence intervals for each parameter we perform a

straightforward marginalization. With marginalization we wish to reduce the interpolated
χ2(~θ, ~ψ) to χ2(~θ), where ~ψ are the parameters we wish to eliminate and ~θ are those which
remain. The likelihood is related to the χ2 by L = e−χ

2/2 and likelihoods are marginalized
in the same sense as probabilities. Therefore

L(~θ) =

∫
dNψL(~θ, ~ψ)

and thus
χ2(~θ) = −2 ln

∫
dNψe−χ

2(~θ, ~ψ)/2

, where N is the number of parameters in ψ.
To obtain predictions for the best-fit and confidence interval for a parameter, we first

construct the 1D likelihood function for that parameter:

L(θ) =

∫
dNψe−χ

2(θ, ~ψ)/2.

For the best-fit, we determine the value where the cumulative-likelihood function is one-half:∫ θ
−∞ L(θ′)dθ′∫∞
−∞ L(θ′)dθ′

=
1

2
.

For the confidence intervals, we find the values where the cumulative-likelihood function
reaches reaches the appropriate percentiles:∫ θ±

−∞ L(θ′)dθ′∫∞
−∞ L(θ′)dθ′

=
1± erf(k/

√
2)

2
,
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where θ+ and θ− yield the upper and lower bounds to the cumulative-likelihood and k sets
the confidence level (k = 1 corresponds to the 68% level, k = 2 for 95%, and so on). We
compute these integrals with the VEGAS Monte Carlo integrator implemented in the Python
package ’vegas’.
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Chapter 3

Axisymmetry in Triaxial
Schwarzschild Orbit Superposition
Models

The previous chapter describes our first results using a triaxial Schwarzschild orbit superpo-
sition code in the axisymmetric limit. This chapter describes in more detail the modifications
of the code and prescriptions for settings which were required to generate consistent models
within this limit. As in Chapter 2, we explore these modifications and prescriptions in the
lens of NGC 1453, one of two fast-rotators within the MASSIVE sample.

This chapter was originally published as
Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Dynamical Mod-

eling of Galaxies and Supermassive Black Holes: Axisymmetry in Triaxial Schwarzschild
Orbit Superposition Models”. In: Astrophys. J. Suppl. Ser. 254.2, 25 (June 2021), p. 25.
doi: 10.3847/1538-4365/abe6a0. arXiv: 2005.00542 [astro-ph.GA]

Minor alterations to the text have been made to ensure fluency throughout this disser-
tation.

3.1 Introduction
The Schwarzschild orbit superposition method [173] enables efficient construction of self-
consistent and equilibrium mass models of galaxies. The basic procedure consists of two
steps: integrating a representative set of orbits in a static triaxial gravitational potential,
and finding weights for these orbits such that their superposition reproduces the assumed
mass distribution.

The orbit superposition method has been extended to include kinematic information and
used to determine mass distributions in real galaxies, starting with studies such as Pfenniger
et al. [152], Richstone and Tremaine [160, 161], and Rix et al. [162]. From the quality of the
fit to both kinematic and photometric data, this method can be used to assess the relative
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likelihood of a range of mass models and to determine best-fit mass parameters such asMBH,
stellar mass-to-light ratios, galaxy shapes, and dark matter halo parameters.

Due to the large number of orbits needed to sample the relevant phase space, the orbit
superposition method is computationally expensive. To reduce the number of orbits and
the dimensions of the model parameter space, a few orbit-based numerical codes have been
developed for axisymmetric systems (e.g., [33, 79, 190, 197, 20]). Many dynamical measure-
ments of MBH from stellar kinematics have been obtained using these axisymmetric orbit
codes.

Triaxiality allows for more general galaxy shapes and additional orbit types, but modeling
orbits in triaxial potentials comes at the cost of increased complexity and computation time.
van den Bosch et al. [202] presented a triaxial orbit-based code capable of comparing directly
to observations, using an orbital sampling scheme based on that of Schwarzschild 1993 [174].
van de Ven et al. [212] performed recovery tests of this code for analytically tractable triaxial
potentials (excluding central black holes). Only a handful dynamical determinations ofMBH

have been obtained using triaxial models from this code [199, 219, 65]. Several additional
MBH were determined using this code in the (nearly) axisymmetric limit [176, 220, 217, 218,
1]. This code has also been used to construct axisymmetric and triaxial galaxy models to
determine stellar dynamics and dark matter distributions for a wide range of galaxies (e.g.,
[230, 154, 103]). Vasiliev and Valluri [208] recently presented a new triaxial orbit-based code
using a different method for phase space sampling and orbit initialization; the method was
tested on mock data but had not been applied to real data.

An important test of the orbit superposition codes is the ability to produce consistent
results between an axisymmetric code and a triaxial code in the axisymmetric limit. We
note that the code by van den Bosch et al. [202] is written for triaxial potentials and “is
not capable of making a perfectly axisymmetric model” [199]. Studies that attempt to run
it near axisymmetry and then compare with results from axisymmetric codes have reached
conflicting conclusions. For instance, van den Bosch and de Zeeuw [199] used their triaxial
code to construct (nearly) axisymmetric models for M32 and NGC3379, and found the mass-
to-light ratios and MBH to be consistent with those from earlier studies using axisymmetric
codes ([206, 104, 213] for M32; [79, 177] for NGC 3379). Ahn et al. [1], on the other
hand, found a puzzling global χ2 minimum at MBH = 0 while using this triaxial code to
perform axisymmetric modeling of the ultracompact dwarf galaxy M59-UCD3. They found
this minimum to be inconsistent with the best-fit non-zero MBH from Jeans modeling and
the axisymmetric orbit code of [20].

It is the purpose of Chapter 2 [119] and this chapter to investigate how to modify the van
den Bosch et al. [202] code to enable it to handle properly both axisymmetric and triaxial
systems. Since no galaxy in nature is likely to be exactly axisymmetric, it may appear that
we are taking a step backwards in examining the axisymmetric limit of a triaxial code. While
our next goal is indeed to adopt the more realistic triaxial potentials, we believe that one
critical test of a triaxial code is its behavior in the simpler, axisymmetric limit. Such a study
– the main goal of this paper – is a particularly important step in the quest for dynamical
MBH measurements in view of the facts that almost all existing MBH measurements have
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been obtained assuming exact axisymmetry, and that the aforementioned recent comparison
of axisymmetric and triaxial codes have led to unresolved conflicting results.

In Chapter 2 [119], we described a set of recipes and code changes for achieving axisym-
metry. We then performed proper axisymmetric orbit modeling using the revised code to
obtain a new MBH measurement for the massive elliptical galaxy NGC 1453, a fast rotator
in the MASSIVE survey [126] well suited for axisymmetric orbit modeling. Similar to Ahn
et al. [1], we had encountered difficulties in constraining MBH in NGC 1453 when we used
the original code with comparable settings. Through extensive testing, we came to two main
conclusions: (1) higher Gauss-Hermite moments (beyond the typically used h4) of the line-
of-sight velocity distributions (LOSVDs) are needed to fully constrain the orbital weights,
and (2) the orbit libraries need to be modified to satisfy axisymmetry. The use of higher
moments is described in detail in Section 2.7.1 [119]. Here, we focus on the construction of
axisymmetric orbit libraries in a triaxial orbit code.

In this paper, we provide a full discussion of the required steps to axisymmetrize the
model and the various modifications that we have implemented to the triaxial code by van
den Bosch et al. [202]. The code was never given a name; we will refer to it as the TriOS
(“Triaxial Orbit Superposition”) code from this point on. In Section 3.2, we provide some
background information about the implementation of the orbit superposition method in
this code. We focus on four topics that are pertinent to subsequent discussions: the three
major orbit types in a triaxial potential (Section 3.2.1), orbit sampling and initialization
(Section 3.2.2), orbit integration (Section 3.2.3), and parameters used to quantify triaxial
shapes (Section 3.2.4).

In Section 3.3, we give an in-depth discussion of the three main ingredients for axisymme-
try listed in Section 2.4.1 [119]: axisymmetrization of short-axis tube orbits (Section 3.3.1),
criteria for how to exclude long-axis tube orbits (Section 3.3.2), and exclusion of box orbits
(Section 3.3.3).

We have made additional improvements and corrections to the code (Section 3.4). We
identify a subset of slowly precessing quasi-planar orbits that are misclassified and are “mir-
rored” improperly in the orbit library (Section 3.4.1). We correct an issue with the zero
point of the logarithmic potential for the dark matter halo that would otherwise render en-
ergy conservation checks ineffective in the code (Section 3.4.2). We are able to speed up the
total runtime of a mass model by a factor of 2 to 3 by a simple modification to how the point
spread function convolution is implemented in the code (Section 3.4.3). An improvement
in setting the intrinsic mass grid used to constrain stellar density profiles is described in
Section 3.4.4. Finally, we illustrate the effects of these changes in the case of NGC 1453
(Section 3.5).

Three appendices are included as well. Appendix 3.A derives a simple analytic criterion
for the existence of long-axis tube orbits within a model. Appendix 3.B outlines a change in
the thin orbit finding algorithm that must be made to the TriOS code in order to generate the
correct orbit sampling. Finally, Appendix 3.C presents a mock recovery test demonstrating
the ability of our revised TriOS code to recover the input mass parameters.
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3.2 Orbit Modeling Background
A summary of the implementation of the Schwarzschild orbit superposition method in the
TriOS code is given in Section 2.4 [119]. Here we focus on the topics relevant for subsequent
discussions of axisymmetry (Section 3.3) and code modifications (Section 3.4).

In this paper, we use a Cartesian coordinate system in which the x, y, and z axes are
directed along the intrinsic major, intermediate, and minor axes of the galaxy, respectively.
The z-axis is therefore the symmetry axis of an oblate axisymmetric potential, and the x-axis
is the symmetry axis of a prolate axisymmetric potential. We focus on oblate axisymmet-
ric systems in this paper, although our discussions can be easily modified for the prolate
axisymmetric case.

3.2.1 Orbit Types in a Triaxial Potential
In a static triaxial gravitational potential, time invariance is the only global continuous
symmetry of the Hamiltonian, H. By Noether’s theorem, this symmetry gives rise to con-
servation of energy as the only “classical” integral of motion. This conservation law restricts
the allowed phase space for a given orbit from the full six phase space dimensions to a five
dimensional subspace defined by the energy H = E. An integral that reduces the allowed
phase space dimension in this way is referred to as an isolating integral.

Numerical studies have revealed that orbits in many potentials often conserve two ad-
ditional “non-classical” isolating integrals of motion [173], which we refer to as I2 and I3.
These additional integrals do not typically have simple analytical expressions nor correspond
to global symmetries of H. Orbits that conserve three (or more) isolating integrals of motion
are referred to as regular. These regular orbits often fall into one of three main orbit types:
short axis tubes, long axis tubes, and boxes.

Both types of tubes have a fixed sense of rotation. For short-axis tubes, the component
of angular momentum along the potential’s minor axis, Lz, does not change sign. Similarly,
for long-axis tubes, the component of angular momentum along the potential’s major axis,
Lx, does not change sign. For box orbits, all three components of angular momentum change
sign, leaving no fixed sense of rotation. Box orbits also have the property of touching the
equipotential surface, Φ(x, y, z) = E, at some point during their trajectory. Intermediate
axis tube orbits are typically unstable in triaxial models [91].

A triaxial system generally admits all three of these main orbit types. For oblate axisym-
metric systems, the orbit structure is simpler because Lz is an integral of motion, and only
short-axis tubes are present. Similarly, for prolate axisymmetric systems, Lx is an integral
of motion and only long-axis tubes are present.

3.2.2 Orbit Sampling and Initialization
The set of initial conditions (referred to as a start space) should sample over all orbit types
supported by the potential. Even though regular orbits in a triaxial potential conserve energy
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Figure 3.1: Two examples of the initial orbit locations in the x-z start space. Two nearly
axisymmetric models for massive elliptical galaxy NGC 1453 are shown: (left) triaxiality
parameter T = 0.002, (luminosity weighted) axis ratio p = 0.9997, and viewing angles
(θ, φ, ψ) = (89◦, 45◦, 90.001◦); (right) T = 0.05, p = 0.993, and (θ, φ, ψ) = (89◦, 45◦, 90.026◦).
Both models have the best-fit MBH, mass-to-light ratio, and dark matter halo from Chap-
ter 2 [119] and assume the orbit sampling parameters (NΘ, NR, NDither) = (9, 9, 3) (see Sec-
tion 3.3.2). In each panel, one energy is shown, where the energy is chosen such that the
potential is dominated by the stellar mass. Each symbol represents the initial location for
a single trajectory, which are bundled with adjacent trajectories to form one dithered orbit.
The long-axis tubes (red crosses) are all contained within the angle η of the z-axis for both
values of T , where η and T are related by Equation (3.2). In general, more triaxial potentials
contain a larger fraction of long-axis tubes in the x-z start space.

plus two additional integrals of motion, the non-classical integrals of motion, I2 and I3, may
not be the same quantities for each orbit type [11, 14]. Thus, for a given energy, each orbit
type can be sampled by a 2D start space, but the start spaces for the different orbit types
cannot necessarily be combined into a single 2D start space.

Schwarzschild [174] argued that a 4D space can guarantee that all orbit types of a given
energy are sampled, and further suggested that a pair of 2D start spaces is sufficient for
sampling phase space in realistic galaxy potentials. The first of these start spaces, the
x-z start space, is defined by sampling over a grid of points in the x-z plane, and setting
y = vx = vz = 0 and vy from v2y = 2[E −Φ(x, 0, z)] for a given E. For simplicity, vy is taken
to be positive and a second copy is added to the orbit library with the velocity direction
flipped. Two examples of this x-z start space are shown in Figure 3.1.

Typically, tube orbits will pass through the positive quadrant of the x-z plane perpen-
dicularly at two points, separated by the thin orbit curve (see Figure 3.1). Orbits launched
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along that curve will perpendicularly pass through the plane at a single point, so the curve
can be found by iteratively launching orbits at different radii to identify those which pass
through the x-z plane in a thin curve (see Appendix 3.B). Each orbit in the x-z start
space passes once inside and once outside the thin-orbit radius, so the code avoids double
counting by initializing orbits only between the thin-orbit curve and the equipotential where
E = Φ(r), as shown by the crosses in the examples in Figure 3.1. All three main orbit types
pass through this start space.

The second 2D start space proposed by Schwarzschild [174] is referred to as the stationary
start space. In this start space, orbits are started from rest on the equipotential surface and
are sampled over solid angle. Since tube orbits never come to rest, box orbits will be the only
main orbit family in this start space. By combining the x-z start space that samples mainly
tube orbits with the stationary start space that samples mainly box orbits, Schwarzschild
[174] suggests that any remaining unsampled region of phase space is likely to be small.

The TriOS code is designed for static triaxial potentials that possess reflection symmetry
along each of the three principal axes. Under this assumption, any orbital property only
needs to be calculated in one octant; it can then be “mirrored” into the other seven octants
by symmetry. Taking advantage of this symmetry, the code initializes orbits only in one
octant (x, y, z > 0) and integrates only these orbits. Seven additional copies of each orbit
are then created by simply mirroring along the three axes. The details are described in
Section 4.5 of van den Bosch et al. [202] and the mirroring scheme is given in Table 2 there.
A key feature to note in Table 2 is that the exact mirror procedure (i.e., how the signs of the
velocity components are flipped in each octant) depends on whether the orbit is a short-axis
tube, long-axis tube, or box. The orbits therefore must be classified first.

To classify an orbit, the code determines how the angular momentum components change
sign over the course of its integrated trajectory and uses these rules: (1) short-axis tubes, if
Lx and Ly flip signs while Lz does not, (2) long-axis tubes, if Ly and Lz flip signs while Lx
does not, and (3) box orbits, if all three angular momentum components change signs. The
velocities are mirrored in order to maintain the orbit’s sense of rotation. If an orbit does not
fall into any of these categories, its velocity is mirrored to have zero angular momentum.

3.2.3 Orbit Integration
The TriOS code uses the DOP853 explicit Runga-Kutta integrator with order 8(5,3). The
integrator performs adaptive time stepping to ensure that the relative error in the positions
and velocities are below a set threshold, typically 10−5. After each orbit is integrated,
a relative energy tolerance is used to check energy conservation. If the change in energy
exceeds this tolerance (typically set to 10%), it is re-integrated with a smaller integration
error threshold.

The default integration time for each orbit is 200 dynamical times, where a dynamical
time is set to the period of a closed elliptical orbit of the same energy. To enforce smooth-
ness of the recovered distribution function, the orbital initial conditions can be “dithered”
by combining N3

Dither trajectories corresponding to nearby initial conditions. By merging
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trajectories in this way, each orbit represents a small volume of the start space rather than
a single point. This results in smoother orbital properties without a significant memory
increase, since only the bundled orbital properties are stored.

After integration, the trajectory of each orbit is interpolated onto a set of points (typically
50,000) that are uniformly spaced in time. These interpolated points are then stored and
used for computing orbital properties. Once the orbit libraries are constructed, weights are
found for each orbit to reproduce the observed surface brightness (SB) distribution, the
LOSVDs, and intrinsic 3D mass distribution.

3.2.4 Viewing Angles, Axis Ratios, and Triaxiality
Three viewing angles (θ, φ, ψ) can be used to relate the intrinsic and projected coordinate
systems of a triaxial galaxy [13]. The two angles θ and φ describe the orientation of the
observer’s line of sight with respect to the intrinsic axes of the galaxy. The angle ψ specifies
the remaining degree of freedom – rotation of the galaxy around the line of sight. The angle
ψ = 90◦ corresponds to an oblate axisymmetric potential. In the oblate axisymmetric limit,
θ is the inclination with θ = 90◦ corresponding to edge-on, and φ describes rotations about
the symmetry axis.

These three viewing angles are related to the intrinsic axis ratios p and q, where p = b/a
is the intrinsic intermediate-to-major axis ratio, q = c/a is the intrinsic minor-to-major
axis ratio, and a, b, c are the lengths of the three principal axes of a triaxial system (with
c ≤ b ≤ a). A third parameter, u = a′/a, represents a compression factor due to projection,
where a′ is the major axis of the projected shape on the sky; u = 1 corresponds to the intrinsic
major axis lying in the plane of the sky, while u = p corresponds to the intrinsic intermediate
axis lying in the plane of the sky. These quantities obey the inequality 0 ≤ q ≤ p ≤ u ≤ 1.
The relationship between the viewing angles, intrinsic axis ratios and observed axis ratio is
given in Equations (7)-(10) of [202]. In addition, a triaxiality parameter is often used:

T =
1− p2

1− q2
. (3.1)

This parameter ranges from 0 for oblate axisymmetry to 1 for prolate axisymmetry, with
values in between indicating a triaxial shape.

The oblate axisymmetric limit can be achieved by setting either p = 1 or ψ = 90◦, but
for numerical reasons, the code does not run when ψ is exactly 90◦. As we discussed in
Chapter 2 [119] and elaborate on below (Section 3.3.2), axisymmetry in the code can be
achieved only with carefully chosen values of ψ or p.

3.3 Ingredients for Achieving Axisymmetry
In this section, we discuss a number of steps that need to be taken to generate orbit-
superposition models in the oblate axisymmetric limit using the TriOS code. It is straight-
forward to modify these steps for the prolate axisymmetric limit. In Appendix 3.C, we test
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the modified TriOS code on a mock dataset showing that we can accurately recover input
parameters.

3.3.1 Axisymmetrize Short-Axis Tube Orbits
As we described in Section 3.2.2, a triaxial potential exhibits reflection symmetry along each
principal axis, allowing the TriOS code to initialize orbits in only one octant of the x-z start
space. These orbits are then mirrored via eight-fold reflections about the principal axes into
each of the other seven octants. This setup is not meant for axisymmetric systems, in which
the orbit library should respect azimuthal symmetry about the symmetry axis.

To enable modeling axisymmetric systems, we have implemented an axisymmetrized
version of the orbit library by creating 80 copies of each short-axis tube orbit in the original
loop library: 40 copies rotated evenly through an angle 2π about the short axis with velocities
rotated to preserve Lz, and another 40 copies generated by flipping the sign of z and vz in
each of the 40 rotations. We choose 40 rotations, as this gives several copies per quadrant,
with a comparable density to the start space grid sampling. Once we perform this operation,
it is unnecessary to perform the eight-fold reflections in the original code. A similar rotation
scheme was tested on mock data with no central SMBH in Hagen et al. [88].

The net result of our axisymmetrization process is to create a library of short-axis tube
orbits in the TriOS code that samples the azimuthal angle uniformly with effectively equal
orbital weights. In order for this procedure to be justified, the library should consist solely
of short axis-tubes. In the next section, we show how to ensure that no long-axis tubes occur
in this library.

3.3.2 Exclude Long-Axis Tube Orbits
In an oblate axisymmetric potential, the long-axis tube orbits become unstable since there
is no longer a single preferred long axis. These orbits therefore should not be present in the
orbit library. 1

As we discussed in Section 3.2.4, the potential is oblate axisymmetric when ψ is set
to 90◦ exactly, and long-axis tubes should be absent in this limit. For numerical reasons,
however, the code does not run when ψ is set to 90◦ within machine accuracy. Prior work
using this code for black hole mass measurements in the axisymmetric limit chose either
|ψ − 90◦| between 0.001◦ and 0.01◦ [217, 1], or an axis ratio of p = 0.99 [176, 220, 218]. As
we first pointed out in Chapter 2 [119], some of these values may not have been close enough
to the desired axisymmetric values to exclude long-axis tubes. Here we provide a detailed
explanation.

We use two examples of the x-z start space in Figure 3.1 to illustrate how long-axis tube
orbits are initialized in the code. As shown in Appendix 3.A, long-axis tube orbits in many

1Similarly, in the case of a prolate axisymmetric potential, the short-axis tube orbits become unstable
and should be absent.
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realistic triaxial potentials are confined to pass through the x-z start space within an angle η
from the z-axis. The angle η depends on the shape of the potential, and we find the relation
between η and the triaxiality parameter T (Equation 3.1) to be well approximated by

η = tan−1

√
T

1− T
. (3.2)

This is demonstrated in Figure 3.1 where the black line at angle η separates the short-axis
tube orbits (black crosses) from the long-axis tube orbits (red crosses). As the potential
becomes more oblate axisymmetric (T = 0.05 in the right panel vs. T = 0.002 in the left
panel), η becomes smaller and the area in the x-z start space occupied by long-axis tubes
shrinks. To effectively achieve oblate axisymmetry, η needs to be small enough so that no
orbits are sampled within an angle of η of the positive z-axis. Two additional mass models
with higher triaxiality, (T = 0.25 and 0.75) are shown in Appendix 3.A and Figure 3.1.
Equation (3.2) again provides an excellent approximation for the angle demarcating the
long-axis and short-axis tube orbits in the x-z start space.

Whether orbits are sampled within the angle η on the x-z plane depends on the input
parameters. For a given energy, the code starts the orbits on a grid of NR radii between the
inner and outer thin orbit radii and NΘ angles between 0◦ and 90◦ in the positive quadrant
on the x-z plane [202]. The code further allows for dithering, where N3

Dither nearby initial
conditions, adjacent in (E,R,Θ), are bundled together to improve the phase space sampling.
Orbits are therefore sampled at a total of NΘ×NDither angles, where the first angle from the
z axis is chosen to start at half of the grid spacing (i.e., at an angle of (π/2)/(2NΘNDither)
from the z-axis). The criterion to satisfy oblate axisymmetry is therefore

1

2NΘNDither

π

2
& η. (3.3)

The two examples of NGC 1453 shown in Figure 3.1 have NΘ = NR = 9, NDither = 3,
and 27 × 27 orbits initialized in the x-z start space. The orbits closest to the z-axis are
therefore at an angle of ≈ 1.67◦ away. These orbits lie within the demarcation angle η of
Equation (3.2) for either model in Figure 3.1: η = 2.56◦ for T = 0.002 (left) and η = 12.9◦

for T = 0.05 (right). Both models therefore violate Equation (3.3) and contain long-axis
tubes. This provides the physical explanation for our statement in Chapter 2 [119] that even
|ψ− 90◦| as small as 0.001 (left panel) is not sufficiently close to 90◦ to achieve axisymmetry
in our models.

To extend the discussion beyond the two specific mass models shown in Figure 3.1, we
illustrate in Figure 3.2 the relation between T and ψ for nearly axisymmetric models of
NGC 1453 (top panel), and the corresponding fraction of long-axis tubes that are initialized
in the x-z plane (bottom panel). The inclination angle θ is assumed to be 89◦ here, and
the shaded band indicates the additional dependence of T on φ. Figure 3.2 shows that
T . 5 × 10−4 is needed to exclude long-axis tube orbits in this case. The corresponding
requirement on ψ is |ψ − 90◦| . 8.7 × 10−6 for φ ∼ 1◦, 89◦ and |ψ − 90◦| . 2.5 × 10−4
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Figure 3.2: (Top panel) Relationship between the viewing angle ψ and the triaxiality of
the deprojected stellar density. Exact oblate axisymmetry has T = 0 and ψ = 90.0◦. The
other viewing angle θ is taken to be 89◦, and φ is varied from 1◦ to 89◦. (Bottom panel)
Fraction of long-axis tube orbits in the x-z start space as a function of the triaxiality of the
stellar density near the oblate axisymmetric limit. The same mass model and orbit sampling
parameters for NGC 1453 shown in Figure 3.1 is assumed here. In this example, long-axis
tube orbits begin to appear when T is as small as ∼ 5 × 10−4 , or |ψ − 90◦| as small as
∼ 9×10−6, and the fraction of these orbits increases monotonically as the potential becomes
more triaxial, reaching ∼ 6% at T = 0.05.

for φ ∼ 45◦. We advocated |ψ − 90◦| = 10−9 in Chapter 2 [119], which safely excluded all
long-axis tube orbits.

Earlier work using the code in the near axisymmetric limit does not typically sat-
isfy the criterion in Equation (3.3). For M59-UCD3, Ahn et al. [1] used (θ, φ, ψ) =
(85◦,−49.99◦, 89.99◦), which we find to correspond to T = 0.004 and η = 3.64◦. The orbit
sampling parameters were not explicitly given for the runs using the triaxial code. Assuming
the same parameters used in their runs with the axisymmetric orbit code (NΘ = 8, NDither =
6), we find that the innermost ray would be at an angle of 0.94◦ from the z-axis, which is
well inside η = 3.64◦, and therefore violates the criterion in Equation (3.3).

For M60-UCD1 [176], NGC 1271 [220], and Mrk 1216 [218], each paper quoted an axis
ratio of p = 0.99. The minimum possible triaxiality with this value of p is T = 1−p2 = 0.0199
(in the unrealistic limit of a razor-thin disk with q = 0), leading to a minimum η of 8.1◦. For
NGC 1271 and Mrk 1216, NDither = 5 was used, while NΘ was set to 8 and 9 respectively.
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Thus, orbits were sampled starting at 1.125◦ and 1◦ away from the z-axis, indicating that
neither satisfies the criterion in Equation (3.3). For M60-UCD1, not enough information is
given about the orbit sampling to determine whether the criterion is satisfied. However, for
typical orbital sampling parameters quoted above, the criterion in Equation (3.3) would not
be satisfied.

The modeling of the NGC 1277 black hole used NΘ = 9 and NDither = 5 [217]; the
innermost ray of initial orbits therefore lies at 1◦ from the positive z-axis. The complete
shape information was not given in the paper, but private communication indicated that
(θ, φ, ψ) = (75.3◦, 71.6◦, 90.001◦) was used. We find this set of viewing angles to correspond
to T = 0.0002 and η = 0.85◦, narrowly satisfying the criterion in Equation (3.3).

We note that the presence of the long-axis tube orbits in the orbit library does not nec-
essarily imply that they receive significant weights after fitting to observational constraints
for a given galaxy. Direct tests would need to be performed for each galaxy to assess the
impact of these orbits on previous work.

3.3.3 Exclude Box Orbits
As we discussed in Section 3.2.1, all orbits in the (oblate) axisymmetric limit conserve Lz.
Box orbits in this limit have Lz = 0 and therefore have similar properties as the tube orbits
with small Lz. In this case, as long as angular momentum is sufficiently sampled by the tube
orbits, there is no need to include box orbits explicitly.

The TriOS code devotes an entire library to box orbits and initializes them in the station-
ary start space (Section 3.2.2). One can modify the code to exclude this library when needed.
We use a simpler approach without changing the code itself: we skip running the orbit in-
tegration routine orblib_f.f90 for the stationary start space, and replace the box library
with a copy of the x-z library in the input file for the weight-finding routine triaxnnls.f90.
These modifications typically reduce the total computation time of the original code by more
than half.

While box orbits are unnecessary in the axisymmetric limit, they also should be harmless
and not affect the results if included. As a test, we have run our revised code including the
box library for comparison. Since the box orbits launched at different azimuthal angles
are allowed to have different weights in the triaxial code, we have to impose an additional
constraint of equal weights to enforce axisymmetry in the box library. Once these weights
are forced to be equal, we indeed find similar results as the case when the box library is
excluded altogether. The case where the box library weights are free to differ between
azimuthal angles is discussed in Section 3.5. To reduce computational cost, we recommend
excluding the stationary start space for axisymmetric models.

For a triaxial potential, we note that box orbits can also occur in the x-z start space (e.g.,
Figure 1 of Schwarzschild 1993 [174]). However, the region in the x-z start space that would
generate box orbits shrinks as the potential becomes increasingly axisymmetric. When exact
axisymmetry is reached, only the orbits that begin exactly on the equipotential surface in
the x-z start space have Lz = 0 (since they have zero initial velocities) and are box orbits.
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The TriOS code does not sample orbits lying exactly on the equipotential curve in the x-z
start space, so the number of box orbits will shrink to 0 as axisymmetry is approached. In
other orbit-based codes that assume axisymmetry from the start, the Lz = 0 orbits also are
not usually sampled, as they are presumed to be represented by the tube orbits with small
but non-zero Lz (e.g., [33, 190]).

3.4 Additional Code Fixes and Improvements
We have made several modifications in the TriOS code in addition to those described in
Section 3.3. These modifications include corrections, improvements and speedups that are
general to the code regardless of the issue of axisymmetry. We describe these changes in this
section.

3.4.1 Correct Orbit Misclassifications
As we described in Section 3.2.2, the TriOS code assumes the triaxial potential to possess
reflection symmetry along each of the three principal axes and integrates only orbits that
are initialized in one octant of space to save computation time. It then uses an eight-fold
reflection scheme to generate seven more copies of each orbit. How the orbits are “mirrored”
depends on whether the orbit is classified as a short-axis tube, long-axis tube, or box orbit.

We have discovered that the mirroring scheme in the original code misclassifies a subset
of orbits for which the angular momenta vary on timescales slower than the integration
time. We find this to happen in at least two situations. First, in nearly oblate axisymmetric
models, many box orbits in the stationary start space tend to be misclassified as short axis
tubes due to the near conservation of Lz. Because Lz varies slowly, it may not change sign
throughout the integration time. However, these orbits have very low angular momentum,
so it is unlikely that mirroring these orbits to preserve Lz would cause significant issues in
the models themselves.

The second situation occurs in regions of space where the potential is nearly spherical,
e.g., deep within the SOI of an SMBH, or in the outer part of a galaxy where a (spherical) dark
matter dominates the potential. Some orbits in these regions follow quasi-planar rosettas
or Keplerian-like ellipses with nearly constant angular momentum vectors, consistent with
prior studies of orbits near a central point mass [182, 183, 198]. For the subset of orbits with
precession time longer than the integration time, no component of their angular momentum
changes sign over the entire integrated trajectories. These orbits therefore do not fall into any
of the categories listed above and are mirrored incorrectly to have no net angular momentum.

These quasi-planar orbits will not be significant in most Schwarzschild models, as they
are only present at extreme radii. We checked this in our models of NGC 1453, with the prop-
erly axisymmetrized code as described in Section 3.3 using the lowest four Gauss-Hermite
kinematic moments as constraints. In this model, we find that ∼ 10% of the total weight
after orbital weight minimization is assigned to orbits that would have been quasi-planar
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in the original version of the code (∼ 10% of the mass within the Mitchell apertures and
∼ 2% of the mass within the GMOS apertures). These relatively low percentages suggest a
minimal effect on the model for NGC 1453.

We expect the issues with orbit integration time and misclassification to be more severe
for galaxies with data that resolve well within the black hole’s sphere of influence (SOI), or
well beyond the stellar half-light radius, e.g., M87 and the Milky Way black hole. The effect
is also likely to be more significant if the galaxy has a net rotation at these radii.

We find a further issue with orbit classification in the orbital composition information
outputted in the file intrinsic_moments.out. This file reports the mass fraction of box
orbits for each bin in the intrinsic spatial grid described in Section 3.4.4. In this case, however,
all orbits that are neither long-axis tubes or short axis-tubes are grouped together as box
orbits. Since this includes the quasi-planar orbits discussed above, the reported fraction of
true box orbits may be overestimated.

In our revised code for axisymmetric systems, these orbit misclassification issues are not
present because we manually assign all orbits as short-axis tubes and exclude all other orbit
types. We will discuss further these quasi-planar orbits in triaxial systems in Section 3.6.

3.4.2 Fix Zero-point Issues with the Logarithmic Halo
A logarithmic potential is often used to approximate the dark matter halo in prior orbit
modeling work. The spherical version of a logarithmic halo is given by

Φ(r) =
1

2
V 2
c ln

(
R2
c + r2

)
+ Φ0 , (3.4)

where Rc is the core radius, and Vc is the circular velocity at large r:

Vc(r) =
Vc r√
R2
c + r2

. (3.5)

The zero point Φ0 can in principle be chosen arbitrarily; the original code set Φ0 = 0. In
practice, we find the choice of Φ0 = 0 and the use of physical units such as kilometers for all
distances to create numerical problems. The cause is simple: unlike other commonly used
dark matter potentials (e.g., Hernquist [92] and NFW [146]) that are negative at all locations
and approach 0 at large r, the logarithmic potential with Φ0 = 0 is positive everywhere and
grows unbounded at large r. Thus, for the other potentials, |Φ(r)| can be interpreted as the
local maximum kinetic energy for a bound orbit, but the orbital binding energy is infinite in
the logarithmic potential. Furthermore, with the choice of Φ0 = 0, |Φ(r)| is much larger than
the kinetic energy for all orbits in a logarithmic halo. This is because the central potential
energy value, Φ(0) = V 2

c ln(Rc), is much larger than the maximum possible kinetic energy
sampled by the orbits, which is Φ(rmax)−Φ(0), where rmax is the largest equipotential radius
of any orbit in a model.

To illustrate this point, we plot the ratio of |Φ(r)| and |Φ(rmax) − Φ(0)| for the best-fit
logarithmic dark matter halo of NGC 1453 from Chapter 2 [119] in Figure 3.3 (dotted curve).
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Additional contributions to the potential from the stars and black hole reduce the value of
the potential energy and help lower this ratio (dot-dashed and dashed solid curves), but the
ratio is well above unity for all relevant radii in all cases.

An unintended consequence of this large central offset is that even a ∼ 100% change in
the kinetic energy would contribute to only a tiny fraction of the total energy and would be
difficult to detect. The energy conservation checks in the code are therefore effectively not
performed for most orbits. While these numbers are worrying, we did not find the choice of
Φ0 = 0 to affect significantly the best-fit mass parameters of NGC 1453 in Chapter 2 [119].
The reason for this particular case is that the orbit integrator happened to be accurate
enough to satisfy the energy conservation tolerance (set to the default 10%) even when this
conservation criterion was unchecked. There is, however, no guarantee that this would be
true for other galaxies or for parameters outside the ranges that we had explored.

To ensure energy conservation is checked in the code for the logarithmic potential, we
choose a different zero point

Φ0 = −Φ(r = 2rmax) , (3.6)

so that Φ(r) is negative for the entire allowed radial range of the orbits and approaches 0
outside the largest equipotential radius rmax. The resulting ratio of |Φ(r)| to |Φ(rmax)−Φ(0)|
for the best-fit model of NGC 1453 is shown by the solid line in Figure 3.3.

Our choice of Φ0 in Equation (3.6) also removes another issue that we have encountered
with the original code: the orbit start space was sometimes not calculated correctly for mass
models in which the black hole is either absent or has small mass compared to the stellar
component and the logarithmic halo. As discussed in Section 3.2.2 and shown in Figure 3.1,
the x-z start space of Schwarzschild 1993 [174] requires finding equipotential curves in the
x-z plane. The code locates it by finding the equipotential radius for each of a series of
angles in the plane. For each angle, the equipotential radius is found via bisection with a
relative tolerance that is typically taken between 10−7 and 10−5. For Φ0 = 0, this tolerance
again is not enforcing the intended accuracy level due to the large central value of Φ. For
NGC 1453, this issue exists only for a few central equipotential radii and thus did not have
a significant impact on our results.

3.4.3 Speed Up Point Spread Function Implementation
The point spread function (PSF) of the relevant observations needs to be incorporated into
a mass model before the model is fitted to data to determine the orbital weights. The TriOS
code approximates the effect of the PSF by perturbing each trajectory at every stored time
step with a pair of δx and δy randomly drawn from the PSF, which is assumed to be a single
or multiple Gaussian functions. This scheme involves a large number of operations since an
orbit is typically stored at 50,000 points along the trajectory (see Section 3.2.3), and up to
∼ 106 orbits can be used to represent a single mass model.

The code generates each orbit perturbation by drawing two independent numbers, kx
and ky, from a uniform distribution over the interval (−1, 1) repeatedly until a pair with
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Figure 3.3: Illustration of the issue with setting the zero-point of the logarithmic potential
to Φ0 = 0 in Equation (3.4), as is assumed in the original code. As an example, we use the
best-fit mass model for NGC 1453 from Chapter 2 [119] with a logarithmic dark matter halo
of Rc = 15 kpc and Vc = 633 km s−1. The ratio of the potential energy to the maximum
kinetic energy is plotted for this halo (dotted), halo plus stars (dot-dashed), and all three
mass components (dashed). When this ratio is much larger than 1, as is shown for a large
range of radius, even large errors in the kinetic energy would have little effect on the total
energy. Energy conservation is therefore effectively not enforced in the original code for a
logarithmic potential. The solid line shows the same ratio with all three mass components
included, but with the halo zero point set according to Equation 3.6.

k ≡ |~k| < 1 is found. The perturbations δx = kx
k

√
−2 ln(k2) and δy = ky

k

√
−2 ln(k2) are

then normally distributed. This large number of operations is not easily vectorized and is
computed sequentially.

We are able to speed up this process significantly using instead the Box-Muller transform,
which is easily vectorized. In this scheme, we draw a pair of independent numbers A and
B from the uniform distribution over (0, 1) and then construct the normal distribution with
δx =

√
−2 lnA cos(2πB) and δy =

√
−2 lnA sin(2πB). We have tested that the resulting

distributions of displacements are consistent with analytical PSFs to within the counting
error from the finite number of timesteps, and the consistency increases as expected when
the number of timesteps increases.

To benchmark the amount of speedup gained by our scheme, we note that PSF convo-
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lution is one of several operations performed in the orbit library construction subroutine
orblib_f.f90 in the code. This subroutine first integrates the orbits and generates the nec-
essary reflected or rotated copies of the orbits about the symmetry axes (see Section 3.3.1).
It then computes each orbit’s contribution to the 3D mass grid and projects each orbit onto
the sky plane. The projected trajectories are then perturbed according to the PSF as de-
scribed above. Finally, the subroutine determines each orbit’s contribution to each observed
kinematic aperture on the sky and stores the associated LOSVDs. The tasks performed in
this subroutine consume the bulk (> 90%) of the total runtime of the code (for one mass
model); much of the remaining time is spent on performing minimizations to find optimal
orbital weights.

To our surprise, our timing analysis of the various tasks executed in this subroutine (using
NDither = 5 and NGC 1453 as a test case) shows that the PSF portion of the code (before
implementing orbit axisymmetrization in Section 3.3.1) takes up ∼ 55% of the run time,
while the orbit integration itself only contributes ∼ 20%, and sky projections contributes the
remaining ∼ 25%. When we switch to the vectorized Box-Muller transform, the computation
time for the PSF step becomes negligible. We are therefore able to reduce the total runtime
of the code by a factor of ∼ 2 in this test.

The speedup is even more dramatic in our axisymmetrized version when the orbits are
copied azimuthally (Section 3.3.1). In this case, 80 (instead of 8) copies of each orbit are
projected onto the sky and perturbed by the PSF. We find ∼ 70% of runtime is spent on
the PSF portion with the original scheme, while our new scheme reduces the runtime by a
factor of ∼ 3.

3.4.4 Improve Intrinsic 3D Mass Grid
The TriOS code uses an intrinsic 3D spatial grid to constrain the stellar component in a model
to reproduce the 3D stellar density profile deprojected from the photometry of a galaxy. The
code calculates the mass contributed by each orbit as it passes through a spatial bin and
records this information during the stage of orbit library construction. At the subsequent
stage of orbital weight optimization, the superposition of the orbits is required to match the
input mass profile within a pre-specified precision (typically 1%) in each bin.

In each octant of this 3D spatial grid, the code uses azimuthal and polar bins for the two
angles, each linearly spaced between 0 and 90◦. The radial bins are logarithmically spaced
between rmin and rmax/2, where rmin and rmax are the innermost and outermost equipotential
radii used to determine the orbital energies sampled in the model. The innermost bin is then
extended down to r = 0 and the outermost is extended out to 100rmax.

For the outer boundary of the innermost mass bin, we find it preferable not to base the
value on rmin, which is used for a different purpose of specifying the innermost equipotential
radius for sampling orbital energy. Instead, we modify the code to make it an independent
parameter, which we set to be of similar scale as the PSF of the photometric data since these
are the data used to constrain the deprojected 3D mass density. To ensure that sufficient
orbits are used to represent the innermost mass bins, we recommend that rmin be set to be
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Figure 3.4: Illustration of the changing MBH constraints in NGC 1453 as the orbit model
goes through the step-by-step axisymmetrization procedure described in Sections 3.3 and
3.4. The starting case (red dotted) uses the original code with typical (near) axisymmetric
parameters assumed in the literature (ψ = 90.001◦; see Section 3.5.1 for details). The end
case (black solid) uses our final axisymmetrized code including all changes from Sections 3.3
and 3.4. The four intermediate curves have all the code fixes described in Section 3.4, but
have different combinations of orbit types according to Sections 3.3.2 and 3.3.3. The left
panel is for models with orbital weights chosen by fitting to the first four Gauss-Hermite
moments of the LOSVDs determined from kinematic data, as is typical in the literature.
The right panel uses 12 moments as constraints and shows tighter constraints on MBH, as
is reported in Chapter 2 [119]. The 1D χ2 in MBH is obtained by marginalizing over the
stellar mass-to-light ratio using a smoothed 2D χ2 landscape generated by Gaussian Process
regression with a squared-exponential covariance function [150]. The dark matter halo is
fixed to the best-fit logarithmic halo in Chapter 2 [119].

smaller than the outer boundary of the innermost mass bin. In the case of NGC 1453, we
set the outer boundary of the innermost mass bin to be 0.03′′ and set rmin to 0.01′′.

For similar reasons, we allow the outermost mass bin’s edges to also be set independently
from the outermost equipotential radius, rmax. The remaining bin boundaries are then
logarithmically sampled between the outer boundary of the innermost bin and the inner
boundary of the outermost bin.
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Figure 3.5: Same as the left panel of Figure 3.4 but showing the azimuthal dependence of
the original code when ψ is chosen to be 90.001◦ and all three main orbit types are included
(red curves). Our final axisymmetrized code does not depend on φ and obeys azimuthal
symmetry.

3.5 A Case Study: NGC 1453
We use the massive elliptical galaxy NGC 1453 reported in Chapter 2 [119] to illustrate the
effects of the modifications described thus far. In Chapter 2 [119], we demonstrated that
using more than 4 Gauss-Hermite moments was essential for obtaining robust constraints on
the model LOSVDs. Below we examine the effects in both the 4-moment and 12-moment
cases, with the latter being our chosen configuration. We stress that the 4-moment case is
included here only for comparison purposes since this is the typical configuration used in
the literature. We have found the 4-moment case to lead to unconstrained higher moments
and spurious features in the LOSVDs for NGC 1453 (Figs. 2.10 and 2.11; Figs. 10 and 11 of
[119]); the resulting χ2 in this case should therefore not be trusted.

3.5.1 Fitting up to h4

We begin with the case labeled “up to h4” and “original Leiden version” in Figure 2.12
(Figure 12 of [119]). This case is run with the original code, NDither = 3, NΘ = 9, and the
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viewing angles (θ, φ, ψ) = (89◦, 45◦, 90.001◦), corresponding to a nearly oblate axisymmetric
potential with a triaxiality parameter of T = 0.002. As we discussed in Section 3.3.2, these
parameters are chosen to resemble those used in earlier studies, and the models include both
the x-z and stationary start spaces and contain all three major types of orbits: short-axis
tubes, long-axis tubes and box orbits. The left panel of Figure 3.1 illustrates the starting
locations of both short- and long-axis tube orbits in the x-z start space for one energy in
this configuration.

The 1D χ2 as a function of MBH (marginalized over the mass-to-light ratio) is shown in
the left panel of Figure 3.4 (red dotted curve). As first shown in Chapter 2 [119], the favored
model in this case contains no black hole. The χ2 minimum at MBH = 0 here resembles
the finding for the dwarf galaxy M59-UCD3 by Ahn et al. [1], which also used four Gauss-
Hermite moments as constraints and a set of viewing angles with a similar deviation from
axisymmetry.

Applying the code changes described in Section 3.4 results in minor changes in the χ2

contour for NGC 1453 (purple short dashed curve in Figure 3.4), but theMBH = 0 minimum
remains. In the next step, we exclude the box orbits and long-axis tube orbits as described
in Section 3.3. The box orbits are eliminated by the simple procedure in Section 3.3.3. To
remove the long-axis tube orbits, we choose a galaxy shape that is sufficiently axisymmetric,
as discussed in Section 3.3.2. For NGC 1453, we simply change ψ from 90.001◦ to (90+10−9)◦,
as was done in Chapter 2 [119]. This new value is far enough from 90.0◦ to avoid numerical
issues in the code but is close enough to 90.0◦ so that all of our orbits lie outside the long-axis
tube region in the x-z start space shown in Figure 1.

The effect of excluding these orbits on the best-fit parameter values for NGC 1453 is
significant. The preferred MBH is changed from 0 to 2.8 × 109M� (green dot-dashed curve
in Figure 3.4a). Before their removal, box orbits generally accounted for less than 10-35%
of total mass, while long axis tube orbits accounted for less than 2%. Removing box orbits
(orange long dashed curve in Figure 3.4a) has a significant effect on MBH because box orbits
starting at different azimuthal angles are not forced to have equal weights in the original
code (Section 3.3.3). Removing the long-axis tubes (blue dashed curve in Figure 3.4a) has a
significant impact likely due to their ability to fit minor-axis rotation in triaxial potentials.

In addition to excluding the box and long-axis tubes, we describe in Section 3.3.1 the
need to enforce axisymmetry in the code by generating many azimuthally rotated copies of
each short-axis tube in the x-z start space. For NGC 1453, we find that the main effect on
the χ2 contour of this axisymmetrization procedure is to widen the minimum (black solid
curve in Figure 3.4a), as a broader range of orbital weights are able to fit the mass constraint
for each mass model.

The results presented thus far with the original version of the code all assumed a viewing
angle of φ = 45◦. When the model galaxy is perfectly axisymmetric, this angle is irrelevant
and the resulting χ2 landscape should be independent of φ. As a test, we have repeated the
run with the original code (using four Gauss-Hermite moments) with two other values of φ
(15◦ and 75◦) while keeping all other parameters fixed. The resulting χ2 as a function of
MBH for the three values of φ are shown in Figure 3.5. The dependence on φ indicates that
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the mass models are indeed not consistent with axisymmetry. All three values of φ exhibit
the same preference for MBH = 0.

3.5.2 Fitting up to h12

We now examine models in which the orbital weights are constrained to fit the first 12
Gauss-Hermite moments of the observed LOSVDs for NGC 1453. The first 8 moments are
measured from spectroscopic observations, while the 9th-12th moments are set to 0 with an
error bar based on the lower moments, as described in detail in Section 2.4.3 [119]. Even
without any of the modifications described in this paper, Section 2.7.1 [119] showed that the
original code performed better when 12, rather than 4, moments were used as constraints.
The right panel of Figure 2.12 (Fig. 12 in [119]) illustrated how the best-fit black hole mass
moved from MBH = 0 for 4 moments (green curve) to MBH = 2.2× 109M� for 12 moments
(black curve). The result from the original code, however, was highly dependent on the
number of input moments and showed no convergence even at 12 moments. By contrast,
after the orbit and code modifications were implemented, the main effect of increasing the
constraining kinematic moments was to tighten the error bars while leaving the best-fit values
largely unchanged (left panel of Fig. 2.12 or Fig, 12 in [119]).

Here we examine the progression of changes after each of the key modifications described
in Sections 3.3 and 3.4 is implemented, all for the case of using 12 moments as constraints.
The right panel of Figure 3.4 shows that implementing the code fixes described in Section 3.4
(purple dot-dot-dashed curve) and removing long-axis tubes (blue dot-dashed curve) move
the best-fit MBH by ∼ 10% in comparison to MBH ∼ 2.2 × 109M� from the original code
(red dotted curve). Removing the box orbits increases MBH to ∼ 2.9 × 109M� (orange
dot-dash-dashed and green dashed curve). The subsequent axisymmetrization of short-axis
tubes (Section 3.3.1) has essentially no effect (black solid curve).

To ensure that the number of orbits included in the modelling is sufficient, we tested the
effect of increasing the number of orbits. We increased the density of energy sampling by
a factor of 4, from 40 energy values to 160 over the same range. With 4 times the number
of orbits, the best-fit MBH changed by less than 3%, and the 1σ error changed by less than
10%, demonstrating that our results do not depend on the exact number of orbits used.

3.6 Conclusion
We have presented a revised version of the triaxial orbit superposition code by van den
Bosch et al. [202], which we refer to as the TriOS code, that is capable of properly modeling
axisymmetric systems. The original code was designed for triaxial systems with (discrete)
reflection symmetry along each of the three principal axes. The setup was not capable of
modeling exactly axisymmetric systems in which the orbit library should respect (continuous)
azimuthal symmetry about the symmetry axis.
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We have implemented two main changes needed for modeling axisymmetric systems
within the triaxial code: excluding all orbit types that are not allowed in an axisymmetric
model, and enforcing axisymmetry among the allowed orbits. In the case of oblate axisym-
metry, our recipe involves (1) axisymmetrizing the short-axis tube orbits by creating multiple
copies of the orbits rotated about the symmetry axis (Section 3.3.1), (2) setting the viewing
angle ψ to be sufficiently close to 90◦ to allow no long-axis tube orbits (Section 3.3.2), and
(3) excluding the stationary start space used to generate box orbits (Section 3.3.3).

We have made further improvements and corrections to the code in general. We discussed
an issue with slowly precessing quasi-planar orbits that are misclassified and are “mirrored”
improperly in the orbit library (Section 3.4.1). We also corrected a problem with the loga-
rithmic halo implementation that prevented checking energy conservation of the integrated
orbits (Section 3.4.2). We achieved a factor of 2 to 3 speedup in the runtime of the code
by adopting a different algorithm for modeling PSF convolution (Section 3.4.3). Finally, we
allowed the orbit sampling and mass constraints to be set independently (Section 3.4.4).

For NGC 1453, we found the shape of the χ2 contours for MBH to vary significantly as
we went through the step-by-step axisymmetrization procedure described in this paper (Fig-
ure 3.4). As we described in Chapter 2 [119], the orbit models favored no black holes when
we used the original code with typical (near) axisymmetric parameters in the literature and
four Gauss-Hermite moments to constrain the stellar LOSVDs. In contrast, we obtained a
well constrained non-zeroMBH using our final axisymmetrized code including all the changes
described in Sections 3.3 and 3.4.

One issue that warrants further investigation in triaxial models is the equilibrium behav-
ior of quasi-planar orbits in regions where the potential is nearly spherical, e.g., well within
a SMBH’s SOI, or far outside the galaxy’s effective radius in a spherical dark matter halo.
As we discussed in Section 3.4.1, the subset of quasi-planar orbits with precession times
longer than the integration time has a nearly constant ~L and is misclassified and mirrored
incorrectly in the original code. Furthermore, the integration time for these orbits is not
long enough to fill the allowed volume of phase space. For axisymmetric systems, we resolve
these issues in our revised code described in this paper by including only short-axis tubes
and enforcing axisymmetry in the orbits, while preserving Lz.

We also expect the severity of the orbit integration issue to vary from system to system:
the better a SMBH’s SOI is resolved by the available kinematic data, the more care is
needed to test orbital integration time because quasi-planar orbits occupy a large fraction of
the orbit library, and more orbits are deeper in the SMBH’s potential and hence have longer
precession times. For the NGC 1453 SMBH studied in Chapter 2, Liepold et al. [119], and
here, since our kinematic data do not reach deep inside the SOI, orbits in our mass models
with precession time exceeding 200 dynamical times account for less than 4% of luminosity
within the central arcsecond. The integration issue (and the resulting misclassification)
therefore does not significantly impact our results, as is evidenced by the similarity between
the solid black and green dashed curves in Figure 3.4. We expect a different situation for
better resolved systems such as the M87 and Milky Way SMBHs.

In future work, a straightforward solution to ensure that quasi-planar orbits are repre-
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sentative of their equilibrium distributions is to extend the default integration time of 200
dynamical times in the code. Our preliminary tests suggest that integrating the orbits up to
∼ 10 times longer is computationally feasible, but this may still be insufficient for the orbits
closest to the SMBH and in the outermost part of the galaxy where the precession times are
slowest. A more reliable treatment of these orbits would be needed.

Appendix

3.A Criterion for Existence of Long-axis Tubes
We use Stäckel potentials to gain insights into the existence of long-axis tubes. A potential
is said to be in Stäckel form if it can be written as:

V (λ, µ, ν) = − F (λ)

(λ− µ)(λ− ν)
− F (µ)

(µ− ν)(µ− λ)
− F (ν)

(ν − λ)(ν − µ)
, (3.7)

for some function F (τ) where (λ, µ, ν) are ellipsoidal coordinates defined as the roots of τ in
the equation

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1 , (3.8)

such that −γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. Here, (α, β, γ) are constants that define the
coordinate system. Such a potential is said to be separable in these coordinates. When a
density corresponding to a Stäckel potential is projected in any direction to give a 2D surface
density, it will have no isophotal twists [74]. Thus, we can use the viewing angles (θ, φ, ψ) of
Binney 1985 [13] to define the relationship between the primary axes of the projected and
intrinsic densities. This set of viewing angles imposes a constraint on the allowed values of
(α, β, γ) given by:

√
β − α√
γ − β

=

√
sin2 θ

cot 2ψ sin 2φ cos θ + cos2 φ(cos2 θ + 1)− 1
. (3.9)

This expression follows from Equation (B9) of Franx 1988 [74]. Orbital structure in Stäckel
potentials has been well studied [227]. This structure is what motivated the x-z start space
described in Schwarzschild 1993 [174]. Long axis tube orbits pass through the x-z start-space
above the focal curve, defined by

z2

γ − β
+

x2

α− β
= 1 . (3.10)

For large x, this curve is approximately a line given by z ≈ x
√
γ−β√
β−α . Therefore, the angle

that this line forms with the z axis can be written simply in terms of the viewing angles as

tan η =

√
sin2 θ

cot 2ψ sin 2φ cos θ + cos2 φ(cos2 θ + 1)− 1
. (3.11)
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Any orbits launched initially between the focal curve and the positive z-axis in the x-z
plane will be long axis tubes which violate axisymmetry. To effectively achieve axisymmetry,
the angle η must be small enough for no orbits to be sampled above the focal curve. Since
the line defined by the angle η is a lower bound to this curve, if all initial orbits in the
positive x-z quadrant are launched outside of the approximate angular region between the
z-axis and the angle η, there will be no long-axis tubes in the model.

This expression is derived for Stäckel potentials. However, in the absence of isophotal
twists, we expect it to apply reasonably well to more realistic models as they can often be
locally approximated by a Stäckel potential [168]. A central SMBH is inconsistent with a
Stäckel potential and can thus destroy the ordered orbital structure. However, we suggest
that Equation (3.11) could give a rough rule-of-thumb for where the boundary between long-
axis and short-axis tubes will exist in models from the code, particularly at radii far from
the SMBH.

The stellar mass distribution is represented by an MGE in our models. Each gaussian
component is stratified on similar ellipsoids, and can thus be related to its deprojection via
the equations given in Binney 1985 [13]. These equations can be rearranged to give

T

1− T
=

sin2 θ

cot 2ψ sin 2φ cos θ + cos2 φ(cos2 θ + 1)− 1
, (3.12)

where T = (1−p2)/(1−q2) of each MGE component. For an MGE with no isophotal twists,
each MGE component has the same triaxiality parameter, T . Thus, in this case, the angle,
η, can be written simply as:

η = tan−1

√
T

1− T
, (3.13)

where T is the triaxiality parameter for each MGE component. Two examples of triaxial
start spaces for NGC 1453 models are shown in Figure 3.6. The boundary between long-axis
tubes and short-axis tubes is well approximated by the angle η for a wide range of galaxy
shapes.

3.B Thin Orbit Finding
The TriOS code uses the thin orbit curve to construct its start space. This curve has to be
found numerically in the x-z plane. For a given angle in this plane, the thin orbit radius is
found by integrating test orbits starting at different radii. For each orbit, the radius of the
orbit is recorded each time it passes through the x-z plane. The thin orbit radius is found
by minimizing the difference between the maximum and minimum of these radii.

This algorithm should work for triaxial models but needs some revision in the axisym-
metric case, particularly when there is no central density cusp or mass concentration. In
this case, when close enough to the center, the potential should be well approximated by
a harmonic oscillator. When the potential is axisymmetric, the motion can be regarded as
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Figure 3.6: Same as Figure 3.1 but for two additional mass models with larger triaxiality:
(left) triaxiality parameter T = 0.25, (luminosity averaged) shape parameters (u, p, q) =
(0.96, 0.95, 0.77), and viewing angles (θ, φ, ψ) = (67.62◦, −28.38◦, 86.61◦), and (right) T =
0.75, (u, p, q) = (0.96, 0.85, 0.79), and (θ, φ, ψ) = (48.74◦, −51.33◦, 67.15◦). The diagonal
black line in each panel represents the angle η given in Equation (3.2). As in Figure 3.1,
this angle approximates well the boundary separating long-axis (red symbols) and short-axis
(black symbols) tube orbits in the x-z start space.

two separate contributions: an oscillation in the z-axis and a closed elliptical orbit about the
z-axis. Since the x-y motion constitutes a closed ellipse centered on the z axis, all orbits will
pass through the x-z plane at a fixed x value, with some z value. The orbit width is then
simply set by the maximum and minimum z values. Thus, for a given ray in the x-z plane,
the orbital width in this plane can be minimized by simply taking the initial radius to be
as small as possible. To solve this issue when running an axisymmetric model, we instead
record radii when passing through the x-y plane. Closed ellipses will have a finite width in
this plane while all thin orbits should pass through this plane in a circle of 0 width.

It is unclear how much this issue should affect the resulting orbit libraries. If orbits are
sampled starting at the origin instead of the thin orbit, the result should be a less uniform
sampling of angular momentum. There should also be some range of energies where the thin
orbit radius is not estimated to be 0 or the correct value, but rather somewhere in between.
This would result in a significantly non-uniform sampling of angular momentum since orbits
passing through the x-z plane within this radius will be undersampled relative those that do
not. This issue should be essentially resolved outside of the axisymmetric limit, or if a black
hole or density cusp is included. However, axisymmetric studies that use this code with no
central cusp may be affected [88].
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3.C Mock Recovery Tests
In the above sections, we demonstrated that our changes to the TriOS code result in a
consistent, non-zero SMBH mass estimate for our NGC 1453 dataset. Here, we show that
the changes correctly recover the SMBH mass in a mock dataset with known parameter
values. Mock tests have been performed within various other Schwarzschild codes [e.g. 197,
34, 130, 179, 208].

For our mock galaxy, we use a flattened version of the spherical potential introduced by
Siopis et al. [179]. These models have an axisymmetric gravitational potential given by

Φ(R, z) =
1

2
V 2
c ln

(
R2 + z2/q2Φ

1 pc2

)
− GMBH√

R2 + z2
, (3.14)

where qΦ is the flattening of the potential due to the extended mass distribution. The stellar
DF is chosen to have a Michie-like form:

f = A exp

{
−
[
E + L2

z/(2r
2
a)

σ2

]}
L2N
z u (E1, E,E2), (3.15)

where A is the normalization, and ra, N , σ, E1, and E2 are parameters of the model: ra is an
anisotropy distance, N controls the Lz dependence, σ is a characteristic velocity dispersion,
and E1 and E2 are energy cutoffs. The symbol u denotes a step function defined by

u(E1, E,E2) =

{
1, if E1 ≤ E ≤ E2

0, otherwise.
(3.16)

Because Lz only enters Eq. (3.15) in even powers, there is additional freedom in how f differs
for positive and negative values of Lz. Here, we set a fixed fraction of stars to rotate in each
positive direction. In this model, the stars are essentially regarded as massless tracers of
the underlying potential in eq. 3.15. Even when the potential is chosen to be spherical, the
stellar distribution function can be axisymmetric.

We use the same potential parameters as Siopis et al. [179], with Vc = 220 km s−1 and
MBH = 1.126 × 108 M�. We generated two models: one model with a spherical potential
(qΦ = 1) to compare with Siopis et al. [179], and one model with a flattened potential
(qΦ = 0.95). The models both have a sphere of influence of about 10 pc. We also use
the same two component DF parameters as Siopis et al. [179]: the first component is a
non-rotating nearly spherical bulge-like component which has σ = 160 km s−1, ra = 600 pc,
N = 0, E1 = Φ(10 pc), E2 = Φ(1000 pc) with equal numbers of stars having positive and
negative Lz; the second component is a rotating disk-like component w has σ = 120 km s−1,
ra = 200 pc, N = 2, E1 = Φ(10 pc), E2 = Φ(1000 pc) with 3/4 of the stars having positive
Lz and 1/4 having negative Lz. The two components have equal numbers of stars.

We draw points in phase space from this distribution function for each star to generate
mock data. We use a nearly edge-on projection, with an inclination of θ = 89◦. For the model
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with the flattened potential, we convolve the projected positions with a circular gaussian PSF
with standard deviation 5 pc. We bin the stars into mock IFU data with a resolution of
10 pc, with a square FOV of 1000 pc. We fit an MGE to the projected surface brightness.
We then run Voronoi binning on all bins with central radii > 20 pc, resulting in 12 inner
unbinned kinematic points and 108 larger outer bins. In order to keep the bins between
the two models fixed, we use the Voronoi bins derived from the spherical potential. Each
LOSVD is fit with a Gauss-Hermite expansion up to h12. Gaussian noise is added to each
LOSVD bin, resulting in a scatter of about 0.03 in each moment and about 0.03

√
2σ in the

average velocity and velocity dispersion for each bin. We draw 20 realizations of this noise,
and run the updated TriOS code for each realization.

Figure 3.7 shows the resulting constraint onMBH for each noise realization. The left panel
is for the mock in the spherical potential, while the right panel is for the mock in the flattened
potential. The kinematic contribution to the reduced χ2 in these realizations ranges from
0.81 to 0.94 for the spherical potential and 0.71 to 0.84 for the flattened potential, indicating
a good fit to the projected kinematics for all realizations.

The average SMBH masses and corresponding sample standard deviations from these
combined 20 runs are MBH = (1.17± 0.09)× 108 M� for the spherical potential, and MBH =
(1.18 ± 0.13) × 108 M� for the flattened potential. In both test cases, the estimated MBH

values are in excellent agreement with the true value of MBH = 1.126× 108M�.
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Figure 3.7: Illustration of the MBH constraints for the mock datasets described in the text.
Each dashed curve represents a separate realization of the noise. In the left panel, the
potential is spherical, no PSF convolution is performed and each DF component has 5× 108

stars. In the right panel, the model is flattened, projected stellar positions are convolved
with a circular gaussian PSF with a standard deviation of 5 pc, and each DF component has
5×109 stars. The 1D χ2 curves are obtained by marginalizing over Vc in the smoothed 2D χ2

landscape generated by Gaussian Process regression with a squared-exponential covariance
function [150].
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Chapter 4

Triaxial Orbit-based Dynamical
Modeling of Galaxies with
Supermassive Black Holes and an
Application to NGC 1453

The past two chapters have followed a perhaps paradoxical path – using a triaxial Schwarzschild
orbit modelling code to produce axisymmetric models. That process allowed us to better
understand in a practical sense a number of the forces at hand in practical usage of this
code, in particular the orbit phase space sampling, the interplay between triaxiality and
the various orbit families, and the impact of different constraints on the stellar line of sight
velocity distributions.

Here we use these insights to apply the TriOS triaxial orbit superposition code to produce
models with fully triaxial stellar mass distributions. Along the way we find a useful parame-
terization of the deprojection, characterized by a triplet of shape parameters (T , Tmaj, Tmin)
which relatively intuitively map into either relations between the ratios of axis lengths or
viewing angles. This parameterization allows for a more efficient and comprehensive search
through the now 6-dimensional parameterspace of the problem. We also find additional
prescriptions for properly constructing triaxial models with this code and fix a number of
bugs.

We apply the revised code to the same galaxy that was explored with axisymmetry
in Chapter 2, NGC 1453, a fast-rotating elliptical galaxy within the MASSIVE survey.
These models prefer a relatively triaxial model and strongly rejects axisymmetry with T =
0.33 ± 0.06, where T is the usual triaxiality parameter and T = 0 corresponds to oblate
axisymmetry while T = 1 corresponds to prolate axisymmetry. The intermediate-to-long
axis ratio is found to be p = 0.933+0.014

−0.015 and the short-to-long axis ratio is found to be
q = 0.779± 0.012. Despite this very different shape from the axisymmetric case (which has
T = 0 and p = 1), we find that the preferred central supermassive black hole mass, stellar
mass-to-light ratio, and dark matter mass (enclosed within 15 kpc) is essentially unchanged
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and is consistent with the axisymmetric case. Importantly, this work makes NGC 1453 one
of only a small handful of galaxies where a black hole was measured along with a triaxial
stellar potential.

This chapter was originally published as
Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Triaxial Orbit-

based Dynamical Modeling of Galaxies with Supermassive Black Holes and an Application
to Massive Elliptical Galaxy NGC 1453”. In: Astrophys. J. 926.1, 30 (Feb. 2022), p. 30.
doi: 10.3847/1538-4357/ac3e68

Minor alterations to the text have been made to ensure fluency throughout this disser-
tation.

4.1 Introduction
Elliptical galaxies exhibit a wide range of isophotal shapes and surface brightness profiles.
There is an intrinsic uncertainty in inferring the 3D stellar luminosity density from the ob-
served 2D isophotes on the sky. When stellar kinematics from spectroscopic observations
are combined with photometric information, stronger constraints can be placed on the in-
trinsic 3D shapes of elliptical galaxies (e.g., [13, 73]). An idealized galaxy obeying exact
axisymmetry would, by construction, have a regular surface brightness distribution without
any isophotal twists and have perfectly aligned photometric and kinematic axes. Triaxial
systems, on the other hand, can have isophotal twists, misaligned photometric and kinematic
axes, and other spatially varying kinematic features absent in an axisymmetric system. This
consideration led Binney [13] to argue that triaxiality is common among elliptical galaxies.

Since then, a more detailed picture has emerged. Elliptical galaxies with lower stellar
mass (M∗ . 1011.5M�) tend to exhibit properties typical of axisymmetry [e.g., 49, 222, 27,
71]. Comparatively, elliptical galaxies with higher mass (M∗ & 1011.5M�) typically exhibit
photometric twists, slow or no rotation, and misalignments between the photometric and
kinematic axes, suggesting triaxial intrinsic shapes [e.g., 209, 210, 211, 110, 54, 83, 55]. Thus,
it is vital to understand the role of triaxiality in dynamical galaxy modelling, particularly in
studying massive elliptical galaxies and their central black holes in the local universe.

The most massive SMBHs observed in the nearby universe lie in centers of some of the
most massive nearby elliptical galaxies [126]. However, few triaxial SMBH mass (MBH) mea-
surements have been published thus far, perhaps because of the complexity in orbital struc-
tures, high-dimensional parameter space, and the associated computational cost required to
model stellar orbits in triaxial potentials. To date, all published MBH measurements based
on triaxial orbit modeling have been performed using the code initially presented in van den
Bosch et al. [202]. This code was first applied to determine the intrinsic shapes and MBH of
two fast-rotating elliptical galaxies M32 and NGC 3379 [199]. In this work, M32 was found
to be near oblate axisymmetry with MBH = (2.4± 1.0)× 106M�, fully consistent with MBH

from earlier axisymmetric models [206, 104, 213]. NGC 3379, on the other hand, was found
to be moderately triaxial, and the inferred MBH = (4 ± 1) × 108M� was double the value
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derived from axisymmetric models [79, 177]. In a subsequent application to the S0 galaxy
NGC 3998 [219], the best-fit model was found to be moderately triaxial although oblate
axisymmetry was not ruled out.

Feldmeier and Krause [65] applied the van den Bosch et al. [202] code to the nuclear star
cluster and SMBH at the Galactic center. The cluster shape was strongly triaxial, and the
inferred MBH was consistent within 1σ of the values inferred from the orbit of the S2 star
[85, 44].

More recently, den Brok et al. [42] used the van den Bosch et al. [202] code to model
PGC 046832. This galaxy exhibits dramatic twists, and the resulting models preferred strong
variations in triaxiality. However, while axisymmetric models suggested a central black hole
mass of 6×109M�, the triaxial models prefer models with no central black hole. Instead they
report an upper bound on the central black hole mass of 2×109M�. This differs significantly
from the value determined from axisymmetric models.

In addition to these published triaxial MBH values, the van den Bosch et al. [202] code
has been used to determine severalMBH in the nearly axisymmetric limit [176, 220, 217, 218,
1]. It has also been used to estimate the intrinsic triaxiality of galaxies under the assumption
of a fixed MBH [e.g., 202, 115, 229, 230, 154, 226, 103].

We have been revamping the van den Bosch et al. [202] code for a systematic study of
the SMBHs and other mass components in the ∼ 100 most massive local early-type galaxies
in the MASSIVE survey [126]. As a first step, we introduced a version of the code capable
of achieving the exact axisymmetric limit in Chapters 2 and 3 [119, 156]. The original
[202] code was (intentionally) not built to respect axisymmetry, but it had been used to
perform (nearly) axisymmetric orbit modeling, leading to unexplained inconsistencies when
the resulting MBH values were compared to those from axisymmetric orbit codes (e.g., [1]).
Our axisymmetrized version of the code has bridged this gap and now enables dynamical
modeling of galaxies using stellar orbits that properly obey axisymmetry. We applied our
axisymmetrized code to NGC 1453, a fast-rotating elliptical galaxy in the MASSIVE survey,
and obtained a significant detection of its SMBH withMBH = (2.9±0.4)×109 M� (Chapter 2;
[119]). Models without black holes were excluded at the 8.7σ level.

For clarity, we refer to the original code (which was unnamed) by the citation [202], and
refer to our versions as the TriOS (Triaxial Orbit Superposition) code.

In this chapter, we move beyond the axisymmetric limit of Chapter 3 [156], and present a
triaxial version of the TriOS code and a first application of this code. This triaxial TriOS code
differs in a number of major ways from the original van den Bosch et al. [202] code. We have
implemented these changes to correct a number of bugs and issues that we uncovered during
extensive tests of the original code for triaxial potentials. As a start, we correct a major error
in the orbit construction part of the code that incorrectly flips some velocity components for
the tube orbits. Our tests indicate that for most viewing angles, correcting this mistake has
a significant impact on the resulting orbital kinematics and galaxy model parameter recovery
within the code. Other major changes include (i) modifying the acceleration table used for
orbit integration to gain a significant speedup in runtime, (ii) resolving issues with insufficient
orbit sampling that can result in spurious shape preferences, and (iii) using a more uniform
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mass binning scheme to eliminate frequent problems in satisfying mass constraints. Details
of these changes are described in Section 4.4.

In addition to these code changes, we introduce a new set of shape parameters in this
chapter (Section 4.3) that are chosen to improve the efficiency of parameter searches in
triaxial galaxy shapes and orientations. These parameters strike a balance between sampling
in galaxy intrinsic shape and galaxy orientation, and result in fewer unrealistically flat galaxy
shapes. To place these new parameters in context, we provide a summary (Section 4.2) of
the parameters used in previous work to describe a triaxial galaxy’s intrinsic and observed
axis ratios, the relations of viewing angles and sky projections, and how an observed surface
brightness is deprojected to obtain a 3D intrinsic shape within the TriOS code.

We apply our triaxial TriOS code to NGC 1453 in the final part of the chapter (Sec-
tion 4.5). Since triaxial modeling typically involves at least five parameters (three for shapes
and at least two for mass parameters), we introduce an efficient new search strategy for
sampling this multi-dimensional parameter space. This new strategy does not rely on direct
grid searches used in previous orbit modeling studies. Instead, we apply nested Latin hy-
percube sampling to a 6D parameter space and are able to converge to a best-fit model for
NGC 1453 with an order-of-magnitude fewer sample points. The resulting best-fit triaxial
model is compared to the best-fit axisymmetric model from Chapter 2 [119].

4.2 Modeling a Triaxial Galaxy
In this section we summarize the information relevant for modeling a triaxial galaxy, e.g.,
coordinate systems, intrinsic and apparent shape parameters, viewing angles, and sky pro-
jections.

4.2.1 Intrinsic Shapes and Axis Ratios
To describe the 3D structure of a galaxy, we use a Cartesian coordinate system centered at
the galaxy’s nucleus, in which the x, y, and z axes are directed along the intrinsic major,
intermediate, and minor axes of the galaxy, respectively. The z-axis is therefore the symmetry
axis of an oblate axisymmetric galaxy, and the x-axis is the symmetry axis of a prolate
axisymmetric galaxy.

It is convenient to use a different coordinate system to describe properties projected on
the sky. We follow the standard practice and take the x′ and y′ axes of this coordinate
system to be along the major and minor axes of the projected surface brightness distribution
of a galaxy. The z′ axis is along the line-of-sight.

We use a, b, c to denote the lengths of the three principal axes of a triaxial ellipsoidal
isodensity surface, assuming c ≤ b ≤ a. We use a′ and b′ to denote the lengths of the
(observed) major and minor axes of the projected ellipse on the sky. Four useful axis ratios
are

p =
b

a
, q =

c

a
, u =

a′

a
, q′ =

b′

a′
, (4.1)
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where p is the intrinsic intermediate-to-major axis ratio, q is the intrinsic minor-to-major axis
ratio, u represents a compression factor between the intrinsic major axis and the apparent
major axis on the sky due to projection, and q′ is the flattening of the projected shape. These
quantities obey the inequalities

0 ≤ c ≤ b′ ≤ b ≤ a′ ≤ a ,

or 0 ≤ q ≤ uq′ ≤ p ≤ u ≤ 1 . (4.2)

The upper and lower limits of u correspond to the intrinsic major axis lying in the plane of
the sky (u = 1 or a′ = a) and the intrinsic intermediate axis lying in the plane of the sky
(u = p or a′ = b), respectively.

The commonly used triaxiality parameter is

T =
a2 − b2

a2 − c2
=

1− p2

1− q2
, (4.3)

which ranges between 0 for an oblate axisymmetric shape (a = b), and 1 for a prolate
axisymmetric shape (b = c), with values between 0 and 1 indicating a triaxial shape.

4.2.2 Viewing Angles and Sky Projections
A line of sight between an observer and a galaxy is specified by two viewing angles (θ, φ),
where θ and φ are the usual polar angles in the galaxy’s intrinsic (x, y, z) coordinate system.
Thus, θ = 0◦ is for a line of sight along the intrinsic minor axis (i.e., a face-on view down
the z-axis), and θ = 90◦ is for lines of sight in the x− y plane (i.e., an edge-on view with the
intrinsic minor axis in the sky plane). Similarly, φ = 0◦ is for lines of sight in the x− z plane
(i.e., the intrinsic intermediate axis is in the sky plane), and φ = 90◦ is for lines of sight in
the y − z plane (i.e., the intrinsic major axis is in the sky plane).

Given a triaxial 3D density stratified on similar concentric ellipsoids, the viewing angle
θ and φ are sufficient to project the 3D shape and determine the 2D projected coordinate
system (x′, y′). To de-project an observed 2D shape on the sky, however, a third angle, ψ,
is needed to completely specify the intrinsic coordinate system. This third angle ψ specifies
the remaining degree of freedom once θ and φ are fixed – a rotation of the galaxy around
the line of sight. More precisely, ψ is defined as the angle between the y′ axis, and the line
defined by the intersection of the x′ − y′ and x − y planes. When ψ = 0◦, the x − y plane
and x′− y′ plane intersect along the y′ axis; when ψ = 90◦, the x− y plane and x′− y′ plane
intersect along the x′ axis.

Together, the three angles (θ, φ, ψ) uniquely specify the orientation of the intrinsic axes
with respect to the projected axes. If the 3D density is stratified on similar concentric
ellipsoidal surfaces, the axis ratios (p, q, u) of Equation (4.1) can be uniquely determined
from the projected surface brightness and (θ, φ, ψ) using the equations from Appendix A of
de Zeeuw and Franx [41].
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4.2.3 Deprojecting Observed Surface Brightness
Within the TriOS code, the 3D stellar density distribution is described by a sum of multiple
Gaussian components of varying widths and axis ratios using the Multi-Gaussian Expansion
(MGE) scheme [24]. To determine these components, one first fits a 2D MGE to the observed
surface brightness of the galaxy. Each MGE component is allowed to have its own projected
flattening q′ to account for radially varying ellipticity in the observed isophotes. In addition,
each MGE component can have a different position angle (PA) to accommodate any observed
isophotal twists.

In general, the deprojection of a 2D surface brightness distribution to give a 3D triaxial
luminosity density is not unique. MGE is a parametric method of choosing one particular
3D density for a given 2D surface brightness and set of intrinsic axes. Non-parametric
deprojection methods have also recently been developed for triaxial galaxies [38], but the
TriOS code is not yet capable of using these deprojections.

For a set of (θ, φ, ψ) that specifies the alignment of the galaxy’s intrinsic principle axes
(x, y, z), one can determine the deprojection of each MGE component that shares these prin-
ciple axes (if a valid deprojection exists). This deprojection is unique due to the assumption
that each 2D gaussian corresponds with a 3D gaussian density with similar concentric el-
lipsoidal surfaces of constant density. The axis ratios p and q of each deprojected MGE
component can have their own values. The triaxiality parameter T , on the other hand, has
the convenient property that it is identical for all MGE components when the components
share the same PA (i.e., no isophotal twists).1

4.3 New Parameters for Triaxial Space Sampling

4.3.1 Prior practice
As discussed in Section 4.2, either (p, q, u) or (θ, φ, ψ) can be used to specify the shape
of a triaxial galaxy and its sky projections. One can in principle search in either space
when running orbit models to determine a galaxy’s intrinsic shape and mass parameters. In
practice, however, prior triaxial orbit modeling studies favored (p, q, u) over the angles. In
these studies, the orbit models were typically run for a grid of regularly spaced values of
(p, q, u) [e.g., 203, 199, 219, 102]. In a few other triaxial studies, u was fixed to some value
close to 1 while the parameter search was conducted over p and q in a regular 2D grid [e.g.,
229, 230, 154]. Since u ∼ 1 corresponds to the intrinsic major axis lying close to the sky
plane, these studies did not search over all allowed viewing angles.

The argument used by van den Bosch and van de Ven [203] for favoring conducting
parameter searches in (p, q, u) rather than (θ, φ, ψ) is that a change in the angles can result

1This is valid as long as the line-of-sight does not lie in a principal plane of the triaxial shape. If it
does, then all aligned 3D ellipsoids will have parallel or perpendicular PAs when viewed in projection, and
differences in T cannot be inferred from differences in projected PA. We do not consider any models with
lines-of-sight lying directly in the principal planes.
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in either a very small or very large change in axis ratios, depending on the angles being
explored. We note, however, that the converse is also true: a change in the axis ratios can
result in either a very small or very large change in the principal axes’ alignment, depending
on the values of these ratios. Two models with similar axis ratios, but viewed along very
different lines of sight, can result in very different observables. An optimal sampling should
consider both the intrinsic shape and the alignment of the line of sight.

4.3.2 Properties of new parameters
Here we propose a new set of variables to parameterize a galaxy’s intrinsic triaxial shape and
its sky projections. The advantages of conducting parameter searches in these variables over
either (p, q, u) or (θ, φ, ψ) during triaxial orbit modeling will be discussed in Section 4.3.4.

For the first shape parameter, we choose the triaxiality parameter T (Equation 4.3). We
define the next two parameters with forms analogous to T :

T =
a2 − b2

a2 − c2
=

1− p2

1− q2
,

Tmaj ≡
a2 − a′2

a2 − b2
=

1− u2

1− p2
,

Tmin ≡ b′2 − c2

b2 − c2
=

(uq′)2 − q2

p2 − q2
,

(4.4)

where Tmaj parameterizes the length of the projected major axis, a′, relative to its allowed
limits a and b, and Tmin parameterizes the length of the projected minor axis, b′, relative
to its allowed limits b and c. It then follows from the inequalities in Equation (4.2) that
(T, Tmaj, Tmin) form a unit cube, i.e.,

0 ≤ T ≤ 1 ,

0 ≤ Tmaj ≤ 1 ,

0 ≤ Tmin ≤ 1 .

(4.5)

The limiting cases represented by each face of the unit cube has the following physical
significance: (i) T = 0 and 1 correspond to oblate axisymmetric (a = b or p = 1) and prolate
axisymmetric (b = c or p = q) shapes, respectively; (ii) Tmaj = 0 and 1 correspond to the
intrinsic major axis lying in the sky plane (a′ = a or u = 1) and the intrinsic intermediate
axis lying in the sky plane (a′ = b or u = p), respectively; (iii) Tmin = 0 and 1 correspond
to the intrinsic minor axis lying in the sky plane (b′ = c or uq′ = q) and the intrinsic
intermediate axis lying in sky (b′ = b or uq′ = p), respectively. While both the Tmaj = 1 and
Tmin = 1 planes correspond to the intrinsic intermediate axis in the sky plane, they represent
two complementary ranges of viewing angles such that b is equal to the projected major axis
a′ for Tmaj = 1, whereas b is equal to the projected minor axis b′ for Tmin = 1.
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Equation (4.4), along with the requirement that q > 0, yields the inequality

(1− T )Tmin

1− TTmaj

< q′2 , (4.6)

implying that for an observed axis ratio q′ on the sky, only the (T, Tmaj, Tmin) region satisfying
the inequality has valid deprojections. When the projected shape is flattened (q′ < 1), some
models within the unit cube will result in negative (and thus invalid) values of the squared
minor axis length, c2. This volume surrounds the line (T, Tmaj, Tmin) = (T, 1, 1), which does
not have a valid deprojection for any flattened projected shape.

4.3.3 Relating (T, Tmaj, Tmin) to old parameters
While Equations (4.4) relate our new parameters to (p, q, u), it is often useful to do the
inverse and convert a given set of (T, Tmaj, Tmin) to (p, q, u). To do so, we use these sequential
expressions

1− q2 =
1− q′2

1− (1− T )Tmin − q′2TTmaj

,

1− p2 = T (1− q2) ,

1− u2 = Tmaj(1− p2) .

(4.7)

For a given set of (T, Tmaj, Tmin), these equations define the deprojection from an observed
MGE component with flattening, q′, to its 3D shape parameters, (p, q, u).

Similarly, it is useful to convert (T, Tmaj, Tmin) to the angles (θ, φ, ψ):

cos2 θ = Tmin(1− T Tmaj) ,

tan2 φ =
1− Tmaj

Tmaj

1− Tmin

1− Tmin(1− T )
,

tan2 ψ =
[1− Tmin(1− T )] (1− T Tmaj)(1− Tmin)

T 2(1− Tmaj)Tmaj Tmin

.

(4.8)

We choose to use the branch where 0◦ ≤ θ ≤ 90◦, 0◦ ≤ φ ≤ 90◦, and 90◦ ≤ ψ ≤ 180◦, though
other equivalent branches exist as well.2 The inverse expressions relating (T, Tmaj, Tmin) and
(θ, φ, ψ) are given in Appendix 4.A.

Equations (4.7) and (4.8), as well as Equations (4.11) and (4.12), follow directly from
the definitions in Equation (4.4), and the general expressions for the deprojection of a tri-
axial density that is stratified on similar, concentric ellipsoids [e.g., 41, discussed further in
appendix 4.A]. Furthermore, since Equation (4.8) and its inverse Equation (4.12) make no
reference to the observed flattening, the same set of values (T, Tmaj, Tmin) can be used for a
density that is composed of multiple such components with different flattening values. Thus,

2For instance, if one prefers 0◦ ≤ ψ ≤ 90◦ and 0◦ ≤ θ ≤ 90◦, then φ obeys −90◦ ≤ φ ≤ 0◦.
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Figure 4.1: Isocontours of the new shape parameters, Tmaj and Tmin, in a galaxy’s coordinate
system, where the x, y, and z axes are chosen to be the intrinsic major, intermediate,
and minor axes, respectively. The triaxiality parameter, T , is assumed to be 0.35 here.
The parameters Tmaj and Tmin are seen to change relatively uniformly with the line-of-sight
direction, resulting in fewer unrealistically flattened models near non-deprojectable regions
(see text).

(T, Tmaj, Tmin) and (θ, φ, ψ) are simply different parameterizations of the same space. Equa-
tions (4.7) and (4.8), along with the equations listed in Appendix 4.A, make no reference to
the MGE formalism and are applicable to any triaxial system that meets these conditions.
The existence and uniqueness of a valid deprojection are not affected by the choice of shape
space parameterization outside the principal planes.

To illustrate the properties of Tmaj and Tmin, we plot a set of lines of constant Tmaj

and Tmin in a galaxy’s intrinsic coordinate system x, y, and z in Figure 4.1. The corner
points (Tmaj, Tmin) = (1, 0), (0, 0), and (0, 1) correspond to viewing angles along the short,
intermediate, and long axes, respectively. The point (Tmaj, Tmin) = (1, 1) represents a line
of sight lying along the line θ = η = tan−1(

√
T/(1− T )) in the x − z plane, which only

results in a valid model for round projected shapes. For flattened shapes, there are no
valid deprojections for lines of sight within a solid angle surrounding this direction. This
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non-deprojectable region increases in size, as the projected shape becomes flatter.

4.3.4 Advantages of T, Tmaj and Tmin

The parameters T , Tmaj, and Tmin have a number of desirable properties. First, as Figure 4.1
illustrates, Tmaj and Tmin change relatively uniformly with the line-of-sight direction. This
is in contrast to the axis ratio space, (p, q, u), in which tiny changes can result in large
differences in the angles. For example, models with p = 0.99 and a fixed q would undergo a
90◦ rotation in φ when u is varied from 0.99 to 1.

Similarly, the galaxy shape varies much more uniformly with (T, Tmaj, Tmin) than with
(θ, φ, ψ). Again, tiny changes in the latter can result in large differences in galaxy shape. For
example, when an observed surface brightness (without isophotal twists) is deprojected into a
3D ellipsoidal shape with principle axes defined by (θ, φ, ψ) = (89◦, 45◦, 90◦), Equation (A2)
shows that the resulting 3D shape has T = 0, i.e., it is oblate axisymmetric. As ψ is
increased from 90◦ by only ∼ 1◦, however, the deprojected shape varies drastically, with
oblate axisymmetry at ψ = 90◦ to prolate axisymmetry at ψ ∼ 91◦, with the full range of
triaxialities lying in between. From Equation (A2) with φ = 45◦, we find prolate axisymmetry
(T = 1) to occur when ψ− 90◦ = (90◦/π) arctan

(
2 cos θ/ sin2 θ

)
on our chosen branch. As θ

approaches 90◦, the value of ψ that gives prolate axisymmetry approaches 90◦. For θ = 89◦

(and φ = 45◦), prolate axisymmetry occurs at ψ = 90.99985◦.
The behavior in the example above arises from coordinate singularities in the (θ, φ, ψ)

space. When the line-of-sight is chosen to lie in a principal plane (i.e., cos (θ) = 0, 1 or
sin (2φ) = 0), it is impossible for continuous photometric twists to arise in projection as
triaxiality is varied. One consequence of this is that the only valid values of ψ are 0◦ or 90◦,
meaning it is no longer an independent parameter. Thus, (θ, φ, ψ) are insufficient to fully
specify the 3D projection. The parameters (T, Tmaj, Tmin), on the other hand, have no such
singularity. In the above example, the proximity of the chosen value of θ to 90◦ causes the
rapid shift in shape with ψ.

Another desirable property of Tmaj and Tmin is that, similar to T (see Section 4.2.3),
they do not vary among MGE components with different axis ratios, so long as there are no
isophotal twists.

This invariant property can be explained by identifying Tmaj and Tmin as the shifted
and rescaled versions of the conical coordinates, µpro and νpro within the galaxy’s intrinsic
coordinate system [74], where µpro = a′2 and νpro = b′2. Since the coordinate surfaces of µpro

and νpro are the same for all MGE components, the shifted and scaled quantities Tmaj and
Tmin do not vary between components.

The advantages of T , Tmaj, and Tmin are especially clear for systems not far from ax-
isymmetry. Towards oblate axisymmetry (T ≈ 0), we have Tmin ≈ cos2 θ and Tmaj ≈ cos2 φ.
Thus, a uniform sampling in

√
Tmin and

√
Tmaj will result in a nearly uniform sampling in

the cosines of the inclination and the azimuthal angle. The same behavior holds towards
prolate axisymmetry (T ≈ 1) since the roles of Tmaj and Tmin are simply switched if the x and
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Position Long-axis tube Short-axis tube Intermediate-axis tube
(x, y, z) (vx, vy, vz) (vx, vy, vz) (vx, vy, vz)
(−x, y, z) (−vx, vy, vz) (vx,−vy,−vz) (vx,−vy,−vz)
(x,−y, z) (−vx, vy,−vz) (−vx, vy,−vz) (vx,−vy, vz)
(x, y,−z) (−vx,−vy, vz) (vx, vy,−vz) (−vx,−vy, vz)
(−x,−y, z) (vx, vy,−vz) (−vx,−vy, vz) (vx,vy,−vz)
(−x, y,−z) (vx,−vy, vz) (vx,−vy,vz) (−vx, vy,−vz)
(x,−y,−z) (vx,−vy,−vz) (−vx, vy,vz) (−vx,vy, vz)
(−x,−y,−z) (−vx,−vy,−vz) (−vx,−vy,−vz) (−vx,−vy,−vz)

Table 4.1: Corrected mirroring scheme of the three types of tube orbits in our TriOS code.
Boldfaced velocity components have the opposite signs from the original scheme in Table 2
of van den Bosch et al. [202]. These components were flipped incorrectly in the original
code.

z axis labels are interchanged. Thus, for nearly axisymmetric galaxies, a uniform sampling
in (T,

√
Tmaj,

√
Tmin) results in fewer unrealistically flattened models.

4.4 Code Corrections and Improvements
In this section, we describe the key corrections, improvements, and speedups made to the
van den Bosch. [202] code. See Section 3.4 (Section 4 of [156]) for other general changes
that we had implemented (regardless of axisymmetry).

4.4.1 Correct orbital mirroring mistakes
The TriOS code is written for a static triaxial potential that is symmetric under reflection
along each of the three principal axes of a triaxial system. Under this assumption, any
orbital property only needs to be calculated in one octant of the orbit space; it can then be
“mirrored” into the other seven octants by symmetry.

Taking advantage of this symmetry, the code initializes orbits in only one octant (x, y, z >
0) and integrates only these orbits. Seven additional copies of each orbit are then created
by simply mirroring along the three axes. The recipe for how to flip the signs of the velocity
components is given in Table 2 of van den Bosch et al. [202]. The exact procedure depends
on whether the orbit is a short-axis tube, long-axis tube, or box. These orbits are classified
as follow: throughout its trajectory, an orbit is labelled a box orbit if all three components of
its angular momentum (Lx, Ly, Lz) change sign, and a tube orbit if exactly one component
of angular momentum maintains its sign. The tube orbits are further classified according
to the angular momentum component that maintains its sign, i.e., a long-axis (i.e. x-axis)
tube maintains the sign of its Lx, an intermediate-axis (y-axis) tube maintains the sign of
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Figure 4.2: Illustration of the impact of the incorrect mirroring scheme in the van den Bosch
et al. [202] code. We plot the fractional error between the incorrect and corrected schemes
(see Table 1) in the kinematic map of the line-of-sight velocity dispersion, σ, for a single
orbit. The orbit is chosen from the x−z start space of a triaxial model with T = 6×10−6 for
NGC 1453, but it is representative of typical short-axis tubes in a triaxial potential. Each
panel represents a different viewing inclination angle θ. The fractional error is largest near
θ = 45◦, reaching beyond 50% for some parts of the orbit.

Ly, and a short-axis (z-axis) tube maintains the sign of Lz. Orbits that don’t fall into the
tube or box orbit classifications are flipped in the same way as box orbits.

We discovered that the tube orbits are incorrectly flipped for four of the eight octants
in Table 2 of van den Bosch et al. [202]. We indicate the incorrect components in boldface
and give the corrected expressions in Table 4.1. The mistakes are such that the mirrored
positions and velocities are inconsistent with one another, and the two do not combine to give
a valid trajectory. A consequence of these mistakes is that the magnitude of each component
of ~L is not always preserved by the mirroring, as it should be, and the resulting |~L| is also
not preserved. For instance, for the short-axis tube flip, the original recipe would change
the amplitudes of Lx and Ly for 4 of the 8 copies, and the resulting total L would not be
preserved. Similarly, Ly and Lz are incorrect for 4 copies of the long-axis tubes, and Lx and
Lz are incorrect for 4 copies of the intermediate-axis tubes.

To illustrate the impact of the incorrect orbital flips, we plot the error in the line-of-sight
velocity dispersion, σ, for a single short-axis tube orbit for three different viewing angles
in Figure 4.2. We first integrate the trajectory of this orbit within the potential and then
compute the 7 mirrored copies using the original and corrected flips in Table 4.1. The
fractional difference in the projected σ between the two schemes is then plotted for three
different values of viewing inclination angle θ. The errors vary across the plane of the sky
and exceed 50% for θ = 45◦. For this orbit, the incorrect flip scheme tends to under-predict σ
along the galaxy’s projected major axis and over-predict σ near the edges. The orbit shown
in Figure 4.2 is typical of short-axis tubes in triaxial potentials. Long-axis tube orbits exhibit
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similar error patterns when the appropriate axis labels are switched. While the pattern of
velocity dispersion error is different for each orbit, systematic errors with magnitudes of
10%−100% are typical, with peak errors of over 1600% in some cases for orbital inclinations
near 45◦.

To assess further the impact of the incorrect flips, we perform full orbit modeling for
a grid of triaxial models for NGC 1453 using the original and then the corrected scheme.
Overall, when the correct flips are used, we find that χ2 is lowered by a wide range of values
depending on the triaxiality and viewing angles. For instance, the value of χ2 can decrease
by more than 100 for strongly triaxial models, while it can change by less than 5 or even
increase slightly for other models. The overall χ2 landscape is therefore significantly altered
by our corrections.

Due to the symmetry of the tube orbits, the errors in the orbital flips can cancel out when
the galaxy is viewed along a principal axis. Nearly axisymmetric models that are viewed
edge-on or face-on will be similarly unaffected. Outside of these special cases, the orbital
kinematics have significant errors. The incorrect flips were not used in our axisymmetric
modelling of NGC 1453 (Chapters 2 and 3; [119, 156]) since we used an axisymmetrization
procedure in place of the flips in the TriOS code.

The discussion above is relevant only for tube orbits. For box orbits, we find the flips
given in Table 2 of van den Bosch et al. [202] to be correct. However, in addition to this
set of 8 mirrored orbits, we choose to include 8 more orbits for each point in the stationary
start space (defined in section 4.4.3) that correspond to enforcing time reversal symmetry for
the box orbits. This addition ensures that box orbits have the expected even parity in their
line-of-sight velocity distributions (LOSVDs). In the cases that we have examined, these
orbits already have small enough odd LOSVD components that this change makes very little
difference.

4.4.2 Modify acceleration table for significant speedup
In order to speed up orbital integration, the orbit code pre-computes a lookup table of
acceleration values over a spatial grid and performs a trilinear interpolation to closely ap-
proximate the true acceleration. If an orbit passes outside the radial range of this grid, the
acceleration is then computed from scratch, which is multiple orders of magnitude slower
than interpolating values from the lookup table. It is therefore prudent to choose the extent
of the grid wisely because even a small number of orbits passing outside the table’s cover-
age can dominate the total runtime and unnecessarily increase the computation time of the
entire orbit library.

We have noticed that some orbits can indeed pass outside the radial range used in the
original code and result in a significant slow down. To eliminate this situation, we have made
a simple modification to the radial range used for the acceleration table. In van den Bosch
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Figure 4.3: Average orbital integration time (per orbit) as a function of the inner interpolation
radius, rinterp,min, used to tabulate the accelerations. The stationary start space contains
mostly box orbits that pass near the galaxy center. The box orbit integration time increases
drastically with rinterp,min, and the value used in the van den Bosch et al. [202] code is
typically not small enough to minimize the integration time.

et al. [202], the acceleration is pre-computed over a grid spanning the radial range

rinterp,min = min [0.1×min (σ′
i), 0.01 rmin] ,

rinterp,max = max [6×max (σi), 1.05 rmax] , (4.9)

where σ′
i is length of the semi-major axis of the ith projected MGE component, σi is the

length of the semi-major axis of the corresponding intrinsic MGE component, and rmin and
rmax are the innermost and outermost orbital equipotential radii in the model. Thus, the
lowest and highest energy orbits included in the model have energies Φ(x = rmin, y = 0, z = 0)
and Φ(x = rmax, y = 0, z = 0), where Φ is the gravitational potential of the model.

In practice, we find that the second conditions in Equation (4.9) typically determine
the range of the acceleration table, i.e., rinterp,min = 0.01 rmin and rinterp,max = 1.05 rmax.
The outer boundary is never exceeded because energy conservation prevents orbits from
passing outside rmax and therefore rinterp,max. The inner boundary of rinterp,min = 0.01 rmin,
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however, can be problematic because centrophilic box orbits can pass well within 0.01 rmin.
The DOP853 Runga-Kutta integrator in the TriOS code uses adaptive timesteps, tuning
them to minimize errors in the position and velocity between timesteps. In this scheme
many acceleration evaluations are required in regions of the trajectory where the timestep is
smaller, namely, when the trajectory passes closest to the central black hole where the orbits
are most likely to reach below 0.01 rmin. The fraction of acceleration evaluations within this
boundary is somewhat model-dependent and may be higher when box orbits are launched
from well within the SMBH’s sphere of influence because the potential felt by those orbits
is largely spherical and supportive of highly centrophilic box orbits. For a typical case of
rmin = 0.1′′ and rinterp,min = 0.01 rmin = 0.001′′, we find as many as a sixth of the acceleration
evaluations during the box orbit integrations to lie outside the lookup table. This minority
of acceleration evaluations take up more than 50% of the total time when constructing the
orbit library.

To enable a more efficient use of the acceleration table, we choose to decouple rinterp,min

and rinterp,max from rmin and rmax which are used to determine the range of orbital energy
sampling. When rinterp,min is allowed to be smaller than 0.01 rmin, we find the total time to
integrate orbits can be reduced by a factor of a few, with a negligible change in accuracy.
This speed-up is illustrated in Figure 4.3. As the acceleration table is extended to smaller
radii, fewer orbits fall outside the radial coverage of the table, and the average integration
time for box orbits drops significantly with decreasing rinterp,min. For the example shown in
Figure 4.3, choosing rinterp,min ∼ 0.0001′′ would reduce the orbit integration time by a factor
of & 2 compared with the original setting of rinterp,min = 0.01 rmin = 0.001′′. Since energy
conservation prevents orbits from passing outside rmax, setting rinterp,max to be slightly larger
than rmax minimizes the integration time while maximizing the interpolation accuracy.

Since we don’t typically vary the interpolation boundaries by more than 1 dex, the
density of points in the interpolation grid does not change dramatically, and we find that the
accuracy of the interpolated potential is sufficient. However, if the boundaries are changed
more drastically, the number of radial interpolation points should be adjusted to maintain
the desired accuracy.

4.4.3 Resolve issues with insufficient orbit sampling
The TriOS code samples orbit initial conditions from two separate spaces, referred to as start
spaces [174, 202]. In the first start space (“stationary start space”), all orbits start from rest
on the equipotential surface for a given energy. This start space contains only box, box-like,
and chaotic orbits.

The second start space (“x − z start space”) contains mainly tube orbits and samples
orbits in the x − z plane, with velocity vectors pointing along the y-axis. As illustrated in
Figure 4.4, orbits of a given energy in this space are sampled over the region bounded by the
equipotential and thin-orbit curves. Typically, NI2 = 9 rays of orbits are sampled uniformly
in polar angles from 0 to π/2 in the positive x and z quadrant; along each ray, NI3 = 9
orbits are uniformly spaced between thin-orbit curves and equipotential curve. Additionally,
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Figure 4.4: An example of the initial orbit locations in the x − z start space for a single
energy value in the triaxial TriOS code. Orbits are launched from within the thin-orbit curve
(inner grey arc) and equipotential curve (outer grey arc). The orbit initial conditions are
sampled with NI2 = 9 radial rays uniformly spaced in the polar angle from the z-axis to
the x-axis, NI3 = 9 points along each ray, and Ndither = 3 to further improve the sampling,
resulting in a total of 27 × 27 orbits. Each of the 27 × 27 color dots indicates the initial
locations of an orbit (color coded by the type of orbits). The black line at angle η (see text)
approximates the boundary between long-axis and short-axis tube orbits within this start
space. Model χ2 values are sensitive to the alignment between the angle η and orbit cell
boundaries.
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the code allows for dithering, where orbits with Ndither adjacent initial conditions in each
dimension are integrated and then bundled together to form each of the 9×9 orbits in order to
improve phase space sampling. Figure 4.4 illustrates the case of (NI2 , NI3 , Ndither) = (9, 9, 3),
where 27× 27 tube orbits are launched in the positive quadrant of the x− z start space for
a given energy.

For a triaxial model, the short-axis tubes (red points in Figure 4.4) and long-axis tubes
(blue points) occupy two regions of the x − z start space separated by the focal curve. As
derived in Appendix 3.A (Appendix A of [156]), the focal curve is roughly approximated by
a line at angle

η = tan−1

√
T

1− T
. (4.10)

Thus, as T increases from 0 to 1, the focal curve moves smoothly from the z-axis to the x-
axis, and the composition of the tube orbits changes from being all short-axis tubes (for an
oblate axisymmetric potential) to all long-axis tubes (for a prolate axisymmetric potential).

When orbits are well sampled, model properties such as the goodness-of-fit (χ2) should
vary smoothly as η (and hence T ) is varied. In our test runs for NGC 1453, however, we find
that on top of a smooth variation, χ2 varies periodically with T with a frequency matching
the spacing between dithered orbits, (π/2)/NI2 , resulting in multiple spurious local minima
at different values of T . Further testing reveals that these local minima arise from insufficient
orbit sampling: as T increases, the focal curve approximated with η crosses rays of orbits
in a periodic manner, resulting in the artificial oscillations in χ2 with that same period.
Since the periodic behavior is coherent as other model parameters are changed, it can have
a significant impact on the recovered value of T and its uncertainty. Other parameter values
are mainly impacted through their correlations with T .

We are able to eliminate the spurious oscillations in χ2 vs. T by increasing NI2 , which
increases the number of radial rays in the x − z start space and therefore improves the
sampling in the polar angle. For the models presented in Section 4.5, we find that increasing
NI2 from the default value of 9 to 15 and beyond removes the oscillations and also yields
convergent results. We choose NI2 = 18 for the x− z start space.

We do not find similar issues for the other start space. Nonetheless, we increase NI2

to 18 for the stationary start space as well so as to maintain equal sizes for the tube and
box orbit libraries. In summary, we use (NE, NI2 , NI3 , Ndither) = (40, 18, 9, 3) for both start
spaces. This results in a total 40×18×9×33×3 = 524, 880 integrated orbits in each galaxy
model, where the last factor of 3 accounts for the 3 orbit libraries (the x− z start space, its
time-reversed copy, and the stationary start space).

4.4.4 Improve intrinsic mass binning scheme
In addition to kinematic constraints, the TriOS code enforces self-consistency of the mass
model by requiring that the orbital weights be chosen to reproduce an input mass distribution
(e.g., deprojected surface brightness profile of a galaxy). This is done by binning the mass
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Figure 4.5: Comparison of the original (left) and new (right) mass binning scheme in the
TriOS code. The top row shows that the bins near the x−y plane contain far more mass than
the bins near the z axis due to the significant difference in bin volume in the original scheme
(top left). Our new binning scheme evens out the mass considerably (top right). The color
scale here indicates the fraction of mass that falls within a given angular bin, summed over
radius. The bottom row shows an example of the resulting χ2 in the mass fits for a triaxial
galaxy for the two binning schemes. The color scale here indicates χ2 from attempting to fit
a particular mass model, summed over radius. Only the 3D mass distribution is fit, with an
error of 1% assumed on each bin. The most significant contributions to the mass χ2 are from
bins near the z-axis that contain very little mass. The triaxial mass model shown here has
MBH = 2.9× 109M�, M∗/LF110W = 2.0, T = 0.10, q = 0.96q′, Tmaj = 0.95, and Tmin = 0.12.

in spherical coordinates (r, θ, φ), and requiring that the mass in each bin be reproduced to
within a pre-specified precision (typically 1%). van den Bosch et al. [202] uses linearly
spaced bins between 0◦ and 90◦ for θ and φ, and logarithmically spaced bins between rmin

and rmax/2 for r, where rmin and rmax are the innermost and outermost equipotential radii
discussed in Section 4.4.2.

In the axisymmetrized TriOS code (Chapter 3; [156]), we changed the radial binning
scheme above to ensure sufficient orbits are used to represent the innermost and outermost
mass bins. During our subsequent tests for triaxial systems, however, we noticed occasional
problems with mass misfits in which a handful mass bins would have difficulty satisfying
the 1% precision and/or contribute disproportionately high values to the total χ2 of the
galaxy model under examination. We are able to trace the problem to uneven bin sizes in
θ used in the original code: the bins near the poles contained much less mass, as shown in
the left panel of Figure 4.5. Because of this, the mass near the z axis was subject to much
more stringent constraints than elsewhere, leading to frequent difficulties in satisfying the
1% fitting criterion. Even in the absence of kinematic constraints, spurious variations would
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arise in the χ2 landscape, as illustrated in the right panel of Figure 4.5. The more oblate
(T . 0.1) and round (q & 0.9q′) systems are more prone to this issue.

We find that this mass misfitting problem can be easily resolved by using mass bins
linearly spaced in cos (θ) and φ, rather than in θ and φ. The resulting bins at a given radius
then occupy the same volume, and the mass in each bin is much more uniform, with the
bin-to-bin variations representing the galaxy’s intrinsic deviation from spherical symmetry.
Correspondingly, the pre-specified mass constraint criterion is enforced more uniformly.

For clarity, we have chosen to illustrate the mass misfitting issue in Figure 4.5 without
imposing any kinematic constraints. When kinematic constraints are added in full orbit
modeling (see Section 4.5), the total χ2 returned by the code includes contributions from fits
to the masses as well as kinematics. In this case, models with significant mass misfits due to
uneven binning schemes would have disproportionately larger χ2 values, leading to potential
biases in the recovered galaxy parameters.

4.5 Triaxial Orbit Models of NGC 1453

4.5.1 NGC 1453
We apply the updated TriOS code described in the previous section to NGC 1453, a massive
elliptical galaxy targeted by the MASSIVE survey [126]. In Chapter 2 [119], we performed
orbit modeling of NGC 1453 using the axisymmetrized TriOS code. A detailed description of
the input kinematic and photometric data is presented in that chapter. In brief, the stellar
kinematics are measured over 135 spatial bins from our high-spatial resolution Gemini GMOS
IFS data [53, 55] and wide-field McDonald Mitchell IFS data [209, 210, 211]. The first eight
Gauss-Hermite moments are measured from the IFS spectra and used to constrain the stellar
LOSVD in each kinematic bin; see Figure 2.4 (Figure 4 of [119]).

The MGE components representing the galaxy’s mass distribution (see Section 4.2.3)
are obtained from deprojections of our HST WFC3 photometry [83]. Here we use the same
input data but relax the assumption of axisymmetry in the orbit models. In order to ensure
that all trajectories within the model are representative of their equilibrium distributions,
we integrate each orbit in the x− z start space for 2000 times the orbital period for a thin
tube orbit of the same energy. For orbits in the stationary start space, we integrate for 200
times the orbital period, as is typical of previous studies using the van den Bosch et al. [202]
code.

Due to the regular isophotes of NGC 1453 (Figure 2.5; Figure 5 of [119]), we use the
same PA for all MGE components and do not model isophotal twists. This is a common
simplifying assumption [e.g., 199, 219, 65] and it enables us to explore the galaxy’s shape
using the new scheme outlined in Section 4.3.

For the distance to NGC 1453, we adopt our new determination of 51.0 Mpc from the
MASSIVE-WFC3 project [83] using the surface-brightness fluctuation technique [101]. At
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Figure 4.6: (Left) 5D likelihood landscape for orbit models of NGC 1453. As described
in the text, the models are sampled in T ,

√
Tmaj,

√
Tmin, MBH, M∗/LF110W , and M15,

and the 1D and 2D likelihood landscapes are obtained by marginalizing over a smoothed
5D landscape generated by Gaussian process regression. The red, green, and blue curves
represent the 1σ, 2σ, and 3σ contours, respectively. (Right) 3D likelihood in axis ratio
space, (p, q, u), marginalized over MBH, M∗/LF110W , and M15. All three axis ratios are
significantly correlated with one another, in particular between p and u. This degeneracy is
significantly reduced when our new shape parameters T, Tmaj, and Tmin are used.
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this distance, 1′′ is 245 pc for a flat ΛCDM model with a matter density of Ωm = 0.315 and
a Hubble parameter of H0 = 70 km s−1 Mpc−1.

4.5.2 Parameter Search Using Latin Hypercube Sampling
We conduct the search for the best-fit galaxy shape in the new triaxial parameters (T, Tmaj, Tmin)
introduced in Section 4.3. The dark matter halo is modelled as a logarithmic potential. We
parameterize it through its mass within 15 kpc, M15, which is roughly the central radius of
the outermost kinematic bins, following Chapter 2 [119]. As in Chapter 2, we fix the scale
radius of the dark matter halo to 15 kpc. Combining the three shape parameters with the
three mass parameters MBH, M∗/LF110W , and M15, we sample the 6D parameter space of
galaxy models.

We determine the best-fit parameters by minimizing a χ2 that includes terms for each
LOSVD moment within each aperture, the projected light within each aperture, as well as
the binned 3D mass density in order to enforce self-consistency for the stellar density. For
each model, the best-fit set of weights are used to calculate the χ2 differences between models.
Lipka and Thomas [121] recently suggested that recovery of the inclination of axisymmetric
models can be biased unless the intrinsic flexibility of the models is accounted for. However,
a triaxial exploration of model flexibility is beyond the scope of the present chapter.

Instead of conducting model searches on a regular grid as was done in previous studies, we
use the more efficient method of Latin hypercube sampling [137]. There are many techniques
for ensuring spatial uniformity in multidimensional spaces. We adopt the scheme described
in Deutsch and Deutsch [43], as implemented in the LHSMDU python package [143]. This
procedure results in models that span a more continuous range of values than a regular
grid, and are more uniformly spaced than random sampling. This approach allows a more
representative sampling of the 6 dimensions with many fewer points than a regular grid.

We initially use a hypercube consisting of 1000 models spanning the range ofM∗/LF110W ∈
[1.7, 2.3], M15 ∈ [3.5, 10.5]× 1011M�, and MBH ∈ [1, 5]× 109M�, and the full range between
0 and 1 for (T,

√
Tmaj,

√
Tmin). Of these models, 927 resulted in valid deprojections. We

then use a rejection-based scheme to choose subsequent sets of model points. A Gaussian
process interpolation of the 6-dimensional χ2 surface is computed from the previously-run
models. We use this interpolation to estimate the χ2 for O(104) points chosen using the
LHS scheme described above in the original volume and select points where the estimated
χ2 is within ∆χ2 = 20.06 (3σ for 6 parameters) of the estimated global minimum. To avoid
premature optimization we perform this routine 10 times where random subsets of half of
all previously-run models are used to build the interpolation function. With this scheme we
select roughly 1000 model points which are expected to lie near the global χ2 minimum to
evaluate with the TriOS code. We perform two iterations of this rejection scheme, yielding
roughly 3000 total model evaluations.

The resulting 6D likelihood landscape is shown in Figure 4.6. To determine the best-
fit value and uncertainties, we fit the χ2 landscape using Gaussian process regression with
a squared-exponential covariance function [150]. To make the 2D contours shown in Fig-
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ure 4.6, we transform this smoothed surface from (T,
√
Tmaj,

√
Tmin) to (T, Tmaj, Tmin), or

(p, q, u). The marginalized 1D likelihood is also shown for each parameter. The shapes of
the 2D contours in Figure 4.6 clearly demonstrate that (T, Tmaj, Tmin) do not have the strong
degeneracy apparent in (p, q, u).

The standard values of ∆χ2 = 1, 4, 9 are used to define the 1σ, 2σ, and 3σ confidence
intervals for 1 degree of freedom when considering the marginalized landscape for each vari-
able individually. For the 2D contours, we use the values for 2 degrees of freedom, giving
∆χ2 ≈ 2.3, 6.2, 11.8. This is different from most previous work using the van den Bosch et al.
[202] code, where typically ∆χ2 =

√
2Nobs is used to define the 1σ confidence interval, where

Nobs is the number of apertures on the sky, multiplied by the number of moments fitted
within each aperture. This value is chosen to represent the intrinsic noise in the χ2 values
for each model, and is much larger than our values. However, while this is true when the
input data are varied according to its noise level as discussed in Vasiliev and Valluri [208],
the noise level in the χ2 values between models are significantly smaller when the input data
are fixed.

4.5.3 Best-fit Triaxial Model
The best-fit values and the uncertainties for each NGC 1453 parameter are listed in Ta-
ble 4.2. For each parameter, all other dimensions have been marginalized over. The best-fit
MBH is consistent with the value determined from axisymmetric modelling in Chapter 2
[119]. The value of M∗/LF110W has shifted down slightly, but is still consistent within 2σ of
the axisymmetric value. To provide the closest comparison between the axisymmetric and
triaxial modelling we use the same configuration of kinematic observations as in Chapter 2
[119]. We use 8 moments to describe the observed LOSVDs while fitting the GMOS spectra
and six moments to describe the Mitchell spectra. For all bins the remaining moments up
to h12 are constrained to be nearly zero in our models to reduce spurious behavior in the
LOSVDs. This procedure is described in Sec. 2.4.3.

The best-fit shape, on the other hand, is inconsistent with axisymmetry. It is useful to
compare our best-fit values of p = 0.93 and q = 0.78 with those inferred statistically from
the observed distributions of ellipticity and misalignment angle between the kinematic and
photometric axes for 49 slowly-rotating massive elliptical galaxies with measurable kinematic
axes in the MASSIVE survey [54]. In that sample, 56% of the galaxies have p > 0.9 with
a mean value of 0.88, and the mean value of q is 0.65. Our best-fit shape for NGC 1453
indicates this fast-rotating galaxy is relatively oblate like the MASSIVE slow rotators and
is slightly less flattened than the mean of that population.

The orbital composition of the best-fit triaxial model is shown in Figure 4.7 (top panel).
Long-axis tubes and box orbits – two orbit types that are present only in triaxial potentials
– together account for ∼ 30% of the orbital weights in the inner part and ∼ 45% in the
outer part of NGC 1453. Quasi-planar orbits account for a small fraction of the total mass
at small and large radii and are excluded from the plot. While long-axis tubes contribute
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Parameter Value
MBH (109M�) 2.9± 0.4

M∗/LF110W (M�/L�) 2.02± 0.07
M15 (10

11M�) 7.0+0.6
−0.5

T 0.33± 0.06
Tmaj 0.89± 0.03
Tmin 0.12± 0.03
u 0.941+0.012

−0.013

p 0.933+0.014
−0.015

q 0.779± 0.012
θ (◦) 73± 3
φ (◦) 19± 3
ψ (◦) 92.7+0.7

−0.8

Table 4.2: Best-fit triaxial model parameters for NGC 1453 from the 6D likelihood landscape
in Figure 4.6. For each parameter, all other dimensions have been marginalized over.

a significant fraction of the mass, the projected model has fairly little minor axis rotation,
due in part to the LOS being close to the intrinsic major axis.

The orbital velocity anisotropy of the best-fit model (bottom panel of Figure 4.7) is
mildly tangential (β < 0) in the inner part and becomes increasingly radial outward. The
radial profile has a similar shape to the axisymmetric model presented in Chapter 2 [119].

4.5.4 Triaxial vs. Axisymmetric Best-fit Models
The best-fit triaxial model presented above matches the observed kinematics significantly
better than the best-fit axisymmetric model in Chapter 2 [119].

Even though the best-fit χ2 values in the two cases – 493.0 for axisymmetric versus
382.7 for triaxial – differ by ∼ 110, they should not be compared directly because triaxial
potentials require a new library of box orbits, and different numbers of orbits are used (6480
independent weights for axisymmetric versus 19440 for triaxial). Nonetheless, within triaxial
modeling, our best-fit triaxiality of T = 0.33 is preferred over nearly oblate axisymmetric
models with T ≈ 0 at a confidence level of about 5σ. To understand why non-axisymmetric
models are favored, we examine the 2D maps of V and the lowest 3 even Gauss-Hermite
moments in the GMOS data in Figure 4.8 (first row). We recall that axisymmetric models
by construction produce only bisymmetric kinematics about the photometric major axis
on the sky, meaning that the LOSVDs would be symmetric for points mirrored across the
projected major axis and anti-symmetric for points mirrored across the projected minor axis.
Any observed systemic deviation from bisymmetry would then indicate triaxiality.

For this reason, we decompose each GMOS moment map into a bisymmetrized component
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Figure 4.7: Orbital composition (top) and velocity anisotropy (bottom) of the best-fit tri-
axial model of NGC 1453 as a function of radius. Short-axis tubes (solid) are dominant
throughout the model, with significant contributions from long-axis tubes (dashed) and box
orbits (dotted) that are present only in triaxial potentials. The velocity anisotropy parame-
ter, β, has a similar radial profile for the best-fit triaxial (solid) and axisymmetric (dashed)
models, being mildly tangentially anisotropic in the inner part and becoming more radially
anisotropic in the outer part.

(second column) and a non-bisymmetrized component (third column). The latter exhibits
clear systemic deviations from bisymmetry. The most obvious feature is the residual minor
axis rotation indicative of kinematic misalignment. These maps assume a bisymmetrization
along the projected photometric major axis used by our dynamical models, with a PA of
28.5◦. The residual pattern persists and can not be “rotated away” even if the PA is within
uncertainties in the PA determination determined from the isophotal profile from Goullaud
et al. [83]. An axisymmetric model (consistent with the photometry) would be incapable of
fitting these non-bisymmetric features in the data. To confirm this point, we plot the residual
maps (fourth column) between the GMOS data and the best-fit axisymmetric model from
Chapter 2 [119]. Indeed, the axisymmetric model exhibits similar residual patterns as in
the data (third column). In comparison, the best-fit triaxial model is able to fit these non-
bisymmetric features to a large extent, producing essentially random residuals (fifth column).
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Figure 4.8: Maps of the stellar kinematics from the Gemini GMOS IFS in 135 spatial bins of
the central 5′′×7′′ of NGC 1453. Four velocity moments are shown (from top down): V , σ, h4
and h6. The maps are oriented such that the horizontal and vertical axes are aligned with the
galaxy’s projected major and minor photometric axes, respectively. The data (first column)
are decomposed into a bisymmetric component (second column) and a non-bisymmetric
component (third column). To accentuate systematic patterns, we plot the non-bisymmetric
component normalized by the moment uncertainty. Since an axisymmetric model can only
produce bisymmetric kinematic maps, the residuals from the best-fit axisymmetric model
(fourth column) show similar patterns to the bisymmetrized residuals. h6 shows additional
residuals that are consistent with bisymmetry, but unable to be fit by an axisymmetric
model. A triaxial model (right column) is able to capture most of the systematic behaviour
in the input map, resulting in largely random residuals. The residuals have been normalized
by the moment uncertainty.
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Figure 4.8 indicates that the preference for triaxiality is driven by the non-axisymmetric
features in the NGC 1453 kinematics. Even though the non-bisymmetric features are some-
what subtle, they lead to detectable triaxiality, which we find to be best fit with p = 0.933,
q = 0.779, and T = 0.33. Thus, despite being a fast rotator with regular isophotal and
kinematic features, NGC 1453 is best fit by a triaxial model. This is further evidence for
widespread triaxiality in massive elliptical galaxies.

Importantly, however, the best-fit black hole mass MBH = 2.9 × 109M� is unchanged
from that in the axisymmetric model. The stellar mass-to-light ratio and dark matter mass
within 15 kpc agree to within a 1σ confidence level.

4.6 Conclusions
In this paper we have presented a revised code and a revamped approach for performing
dynamical modeling of triaxial galaxies and their central SMBHs using the orbit superpo-
sition technique. We discussed a new triaxial version of the TriOS code that is capable of
modeling triaxial systems while avoiding several shortcomings of the original van den Bosch
et al. [202] code. As a first application of this code, we performed triaxial orbit modeling
of the massive elliptical galaxy NGC 1453 and presented the best-fit galaxy shape and mass
parameters. This work complements Chapters 2 and 3 [119, 156], in which we introduced a
properly axisymmetrized version of the TriOS code.

We discovered and corrected a major error in the orbit kinematics in the van den Bosch
et al. [202] code: the tube orbits had wrong signs in certain mirrored velocity components
in the orbit library (Table 1), resulting in incorrect projected kinematics. The magnitude of
the kinematic errors varies spatially and depends on the viewing angles (Figure 4.2). This
issue impacts all triaxial models that are not viewed along a principal axis, and all nearly
axisymmetric models that are not viewed edge-on. How this error affects the best-fit galaxy
shapes and mass parameters would have to be assessed on a galaxy-by-galaxy basis by re-
running the models with the corrected orbital flips in Table 4.1. In the case of NGC 1453,
we find the χ2 landscapes to be altered drastically, with χ2 values changing non-uniformly
by more than 100 for some models.

Following Chapter 3 [156], we continued to find ways to speed up the code. In this
updated version of the TriOS code, we achieved another significant speedup (of up to ∼ 50 %;
Figure 4.3) in orbit integration time by a simple extension of the interpolation table used to
evaluate orbit accelerations (Section 4.3). The reduction in integration time is particularly
pronounced for centrophilic orbits.

We have made two other adjustments in the code that significantly improve the sampling
of long-axis tube orbits (Section 4.4.3) and enforce more uniformly the 3D mass constraints
(Section 4.4.4). After these changes, the behavior of χ2 vs. T (triaxiality parameter) no
longer exhibits spurious oscillations, and the orbit code is able to find reasonable solutions
for some mass models that were previously strongly disfavored.
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The rest of this paper is devoted to new and improved strategies for searching the multi-
dimensional parameter space required to specify triaxial galaxy models. We introduced a
new set of shape parameters (Section 3) as well as a novel sampling technique (Section 4.4.3),
which together lead to a remarkable gain in parameter searching efficiency. Searching in the
new parameters T , Tmaj, and Tmin (Equation 4.3) avoids significant non-uniformities asso-
ciated with other parameters used in earlier work. Our Latin hypercube sampling scheme
results in an order-of-magnitude reduction in needed sampling points compared with con-
ventional grid searches.

We applied the TriOS code and triaxial sampling scheme to the fast-rotating massive
elliptical galaxy NGC 1453 in the MASSIVE survey (Section 4.5). NGC 1453 has a rel-
atively small twist in the isophotes, and the kinematic and photometric axes are nearly
aligned. Despite these properties that are typically invoked to justify the use of axisym-
metric orbit codes, we find the best-fit model to have a triaxiality value of T = 0.33, with
intrinsic axis ratios p = 0.933 and q = 0.779. This best-fit triaxial model is able to match
the observed kinematic maps significantly better than the best-fit axisymmetric model in
Chapter 2 [119]. The improvement is mainly due to the ability of triaxial models to account
for non-bisymmetric features in the data (Figure 4.8). Most other galaxies in the MASSIVE
survey exhibit less (or no) rotation and more twists in their photometric and kinematic maps
compared to NGC 1453. This is further evidence that massive elliptical galaxies have triaxial
intrinsic shapes.

MBH in the best-fit triaxial model for NGC 1453 is unchanged from the value measured
with the axisymmetrized TriOS code from Chapter 2 [119]. Among the many dozens of
stellar dynamical MBH measurements in local galaxies (e.g., [133]), NGC 1453 is only one
of a handful galaxies whose central SMBH is studied with the full triaxial orbit modeling
technique not limited to axisymmetry. In four other galaxies (Section 4.1), M32 had con-
sistent MBH from axisymmetric and triaxial modeling, the NGC 3379 MBH increased by a
factor of ∼ 2 when axisymmetry was relaxed, the PGC 046832 MBH decreased enough to
be consistent with 0, while NGC 3998 was only modeled with the triaxial code so no com-
parison can be made. All four systems were modeled with the original van den Bosch et
al. [202] code, which used the incorrect mirroring scheme. Triaxial orbit modeling of more
galaxies is needed for a full assessment of the systematic effects on stellar dynamical MBH

measurements when the commonly-made assumption of axisymmetry is relaxed.
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Appendix

4.A Relating new and old parameters
The expressions given in Equation (4.8) can be written in a simpler form when expressed
sequentially:

cos2 θ = Tmin(1− TTmaj) ,

sin2 φ =
(1− Tmaj)(1− Tmin)

sin2 θ
,

tanψ =
−(1− Tmin) cos θ

(Tmin − cos2 θ) tanφ
.

(4.11)

The inverse expressions are then

T =
sin2 θ

cos θ sin 2φ cot 2ψ + cos2 φ− cos2 θ sin2 φ
,

Tmaj = 1− sin2 φ(1− cos θ cotφ cotψ) ,

Tmin = 1− sin2 θ(1− cos θ cotφ cotψ)−1 .

(4.12)

The deprojection equations, giving the intrinsic shape in terms of the projected flattening
and angles (θ, φ, ψ) are given by [24]:

1− q2 =
δ′[2 cos 2ψ + sin 2ψ(sec θ cotφ− cos θ tanφ)]

2 sin2 θ[δ′ cosψ(cosψ + cotφ sec θ sinψ)− 1]

p2 − q2 =
δ′[2 cos 2ψ + sin 2ψ(cos θ cotφ− sec θ tanφ)]

2 sin2 θ[δ′ cosψ(cosψ + cotφ sec θ sinψ)− 1]

u2 =
1

q′

√
p2 cos2 θ + q2 sin2 θ(p2 cos2 φ+ sin2 φ),

(4.13)

where δ′ = 1 − q′2. While Cappellari [24] presents these expressions in the context of the
MGE formalism, they are more broadly applicable to all densities that are stratified on
similar concentric ellipsoids. This is demonstrated in de Zeeuw and Franx [41]. The first two
expressions in equation 4.13 are listed as their equation A8. The third expression giving the
projection axis ratio, u, follows from expressions in this paper as well. Following appendix
A of this paper, combining their equations 3.37, 3.38, and 3.49 gives:

a′2 + b′2 = 2c2 + (a2 − c2)(sin2 φ+ cos2 φ cos2 θ) + (b2 − c2)(cos2 φ+ sin2 φ cos2 θ)

(a′2 − b′2)2 = [(a− c2)(sin2 φ− cos2 φ cos2 θ) + (b2 − c2)(cos2 φ− sin2 φ cos2 θ)]2

+ 4(a2 − b2)2 sin2 φ cos2 φ cos2 θ.

(4.14)

Here, (α, β, γ) in the original expressions have been set to (−a2,−b2,−c2) in order to con-
sider a perfect ellipsoid. The first of these expressions is explicitly given in equation A6
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of the original paper. Squaring the first expression and subtracting the second gives (after
significant simplification):

4a′2b′2 = 4a2b2 cos2 θ + 4a2c2 sin2 φ sin2 θ + 4b2c2 cos2 φ sin2 θ. (4.15)

Substituting the definitions of the axis ratios reduces this expression to the third line of
equation 4.13 above.

Equation 4.8 follows from equations 3.39 and 3.42 of [41], together with the definitions
given in equation 4.4. Equation 4.7 then follows from equation 4.13, together with equa-
tion 4.8. As in appendix A1 of [41], while these expressions are derived in the context of a
perfect ellipsoid, the results are independent of the assumed profile and are thus valid for all
densities stratified on similar concentric ellipsoids.
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Chapter 5

Keck Integral-Field Spectroscopy of
M87 Reveals an Intrinsically Triaxial
Galaxy and a Revised Black Hole
Mass

The history of supermassive black hole measurements and much of the development within
the field can be seen very directly through the history of measurements of M87’s central
black hole M87*. Among the first murmurs of the existence of supermassive black holes from
stellar dynamical arguments came from Sargent in 1978 [170] who used long slit spectroscopic
observations, the Fourier quotient method to infer velocity distributions, and fitting with a
simple Jeans model to infer a central mass of MBH ∼ 5.5 × 109M� (after converting to the
modern adopted distance). In 1990, Dressler and Richstone [46] used long slit spectroscopy
with Fourier methods to infer the stellar kinematics, but now used spherically symmetric
Schwarzschild models. A few years later, van der Marel [204] advanced to fitting the long-slit
spectra in the pixel space, allowing for extraction of the first six Gauss-Hermite moments,
then modelled that data with spherical Jeans models. In 1998, Magorrian et al used the same
data but now applied axisymmetric Jeans models [129]. In 2009, Gebhardt and Thomas
used significantly more sophisticated data from the SAURON integral field spectrograph
and globular cluster kinematics and applied axisymmetric Schwarzschild models [75]. Two
years later they followed up small-scale spectra enhanced by adaptive optics on NIFS and
large scale kinematics from the VIRUS-P spectrograph and again modelled the data using
axisymmetric Schwarzschild models [77].

In parallel, M87 has a history of gas dynamical measurements, including work by van der
Marel [204], HST spectroscopy by Harms et al [90], Macchetto et al [127], and Walsh et al
[221]. This literature has intriguingly consistently measured the central supermassive black
hole mass to be much smaller than stellar dynamical measurements – below 4× 109M�, vs
4–7 × 109M�. A further parallel literature has emerged through the work surrounding the
Event Horizon Telescope, which imaged the radio emission surrounding the central SMBH
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in 2019 [57].
This chapter extends the efforts of the previous chapters, which worked to build a prac-

tical and theoretical understanding of proper usage of the TriOS triaxial orbit superposition
code and uses that code to model the three-dimensional kinematical structure and mass
distribution of the galaxy. This development in modelling is paired with our first published
observations using the Keck Cosmic Web Imager, a relatively new instrument on Keck II.
This allowed us to construct a large, 250′′ × 300′′ mosaic field of view with both high spatial
resolution and signal-to-noise. This map is among the most comprehensive views of the
stellar kinematics of M87 to date.

This chapter was originally published as
Emily R. Liepold, Chung-Pei Ma, and Jonelle L. Walsh. “Keck Integral-field Spec-

troscopy of M87 Reveals an Intrinsically Triaxial Galaxy and a Revised Black Hole Mass”.
In: Astrophys. J. Lett. 945.2, L35 (Mar. 2023), p. L35. doi: 10.3847/2041-8213/acbbcf.
arXiv: 2302.07884 [astro-ph.GA]

Minor alterations to the text have been made to ensure fluency throughout this disserta-
tion. Note also that a significant fraction of the text associated with this chapter is presented
as Appendix 5.5, in line with how it was originally published.

5.1 Introduction
Some of the earliest dynamical evidence for the presence of a supermassive black hole (SMBH)
came from M87 [170]. A bright asymmetric ring of radio emission around the M87 SMBH
was imaged in 2019 [57]. The black hole mass (MBH) inferred from the ring features is
consistent with the value determined from stellar dynamics based on axisymmetric orbit
modeling [77], but it is nearly twice the mass inferred from dynamics of a gas disk around
the hole [221].

M87 is classified as an elliptical galaxy based on the two-dimensional shape of the stellar
light projected on the sky. However, its three-dimensional intrinsic shape has never been de-
termined. A galaxy’s intrinsic shape is a fundamental property that encodes the galaxy’s past
merger history and provides information about the mass ratios of the progenitor galaxies,
the merger orbital parameters, gas fractions, and fraction of stars formed ex-situ. Whether
a galaxy is intrinsically spherical, axisymmetric, or triaxial also impacts dynamical determi-
nations of its SMBH mass and stellar mass, as well as any mass reconstructions based on
the method of gravitational lensing.

Thus far, almost all information about galaxy intrinsic shapes has been inferred statisti-
cally by inverting distributions of observed galaxy properties [73, 222, 72, 54, 118]. Here we
use the Keck Cosmic Web Imager (KCWI; [142]) on the 10 m Keck II telescope to obtain a
spatially-resolved two-dimensional map of the stellar kinematics of M87 over a 250′′ × 300′′

field of view. The resulting kinematics span a radial range of ∼0.′′6–150′′, corresponding to
a physical range of 50 pc–12 kpc at a distance of 16.8± 0.7 Mpc to M87, the value adopted
in [59] and in this work (an angular size of 1′′ corresponds to a physical length of 81.1± 3.3
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Figure 5.1: (Left and Right) Stellar kinematic portraits of M87 from Keck KCWI spectra
in 461 spatial bins. The line-of-sight velocities (left) and velocity dispersions (right) of stars
in M87 are shown over a 250′′ by 300′′ field of view centered at the galaxy’s nucleus. The
systemic velocity of M87 has been removed in the left panel. North is up and east is to the
left. The two orthogonal white arrows indicate the orientations of the photometric major
axis (PA of −25◦) and minor axis (PA of −115◦), as determined from the mean position angle
of the galaxy’s major axis between a radius of 50′′ and 250′′ in photometric data [109]. The
red and blue lines in the left panel mark the measured kinematic axis (PA of −165◦) outward
of 70′′ (see Figure 5.2). (Middle) HST composite image of the central 200′′ by 200′′ FOV of
M87, illustrating the misalignment of the photometric major axis (yellow) and kinematic axis
(red-blue) beyond 50′′ along with sample isophotes of the stellar light distribution (yellow
contours).
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pc). We perform triaxial Schwarzschild orbit modeling using the detailed stellar kinematic
measurements as constraints to determine M87’s shape and mass parameters. Our models
include a radially declining profile for the stellar mass-to-light ratio (M∗/LF110W ) inferred
from stellar population measurements [172].

5.2 Keck observations of M87
We observed M87 with Keck KCWI in May 2020, May 2021, March 2022, and April 2022.
With the large slicer and BL grating of the integral-field unit (IFU), we obtained spectra
between 3500 and 5600 Å at 62 pointings, which provide contiguous two-dimensional spatial
coverage of the nucleus and the outer parts of M87 (Figure 5.1). The data span about 20
kpc (250′′) across the photometric major axis (−25◦ east of north) and about 24 kpc (300′′)
across the photometric minor axis (−115◦ east of north).

We co-add spectra from individual KCWI spaxels to reach high signal-to-noise ratios
(S/Ns), forming 461 spatial bins. Within each spatial aperture, we measure the line-of-sight
stellar velocity distributions (LOSVDs) from the shapes of the absorption lines. Further
details about the observations, data reduction procedures, spectral fitting processes, and
stellar kinematic determination are provided in Appendices 5.A and 5.B.

5.3 Stellar Kinematic Maps

5.3.1 Misalignment between kinematic and photometric axes
The KCWI map for the line-of-sight velocity V (left panel of Figure 5.1) shows a prominent
rotational pattern at large radii, in which the northeast side of the galaxy is blueshifted and
the southwest side is redshifted. The kinematic axis that connects the maximal receding and
approaching velocities, however, is not aligned with the photometric major axis, as it would
be for an axisymmetric rotating galaxy.

To quantify the amplitude and axis of rotation, we model the velocity field as a cosine
function, with V (R,Θ) = V1(R) cos [Θ−Θ0(R)], where R is the projected radius from the
galaxy’s center and Θ is the azimuthal angle on the sky. The model parameters V1(R) and
Θ0(R) are the the amplitude of rotation and the position angle (PA) of the kinematic axis at
radius R, respectively. With increasing radius, the velocity curve shows a systematic shift in
phase and an increase in rotational amplitude (Figure 5.2). Within a radius of 3 kpc, the PA
of the kinematic axis changes rapidly clockwise with radius (lower right panel of Figure 5.2),
representing the kinematically distinct core mapped out by the Multi Unit Spectroscopic
Explorer (MUSE) on the Very Large Telescope [50]. Beyond 3 kpc, where the MUSE data
end (at about 35′′), we find that the PA of the kinematic axis continues to change clockwise
and crosses the PA of the photometric minor axis, plateauing at −165◦ between 6 and 12
kpc. Hence, there is a 40◦ misalignment between the stellar kinematic axis and photometric
major axis in M87.
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Figure 5.2: Line-of-sight stellar velocities as a function of projected radius and azimuthal
angle on the sky. (Left) Line-of-sight velocity as a function of azimuthal angle on the sky
for 11 radial shells spanning R = 15′′–130′′. The velocities in each shell (red data points) are
well fit (blue) by a sinusoidal function of the form V (R,Θ) = V1(R) cos [Θ−Θ0(R)]. (Upper
right) The amplitude of rotation, V1(R), increases with radius and reaches 25 km s−1 around
6 kpc. (Lower right) The phase of the velocity function, Θ0, measures the orientation of the
kinematic axis and varies significantly with radius. It plateaus to −165◦ beyond 6 kpc,
indicating a 40◦ misalignment between the kinematic axis and the photometric major axis
(red dashed curves; [109]) in M87.
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5.3.2 Stellar velocity dispersion
The KCWI map (right panel of Figure 5.1) and radial profile (Figure 5.3) of the stellar
velocity dispersion σ exhibit several features. Towards the center of M87, σ increases rapidly
from 250 km s−1 at a radius of 2 kpc to 370 km s−1 at 100 pc from the nucleus. This is a
clear signature of the gravitational influence of the central black hole on the motions of the
stars in its vicinity. The velocity dispersion stays at about 250 km s−1 between 2 and 5 kpc
and then shows a gentle 10% decline between 5 kpc and the outermost reach of our data at 12
kpc. The stellar σ at the edge of our field connects smoothly to the latest determinations of
the velocity dispersions of discrete dynamical tracers (lower panel of Figure 5.3) such as red
globular clusters and planetary nebulae in the outer parts of M87 [228, 122]. Beyond about
10 kpc, sub-populations of planetary nebulae have been reported to have distinct kinematics
[122]: σ of “intra-cluster” planetary nebulae rises to 800 km s−1 at 100 kpc, whereas those
in the galaxy halo component have a relatively flat σ profile out to 100 kpc, similar to that
of the red population of globular clusters [31, 186, 228].

5.4 Determination of mass and shape parameters
from triaxial Schwarzschild modeling

We use the full LOSVDs from Keck KCWI, along with photometric observations from the
Hubble Space Telescope (HST) and ground-based telescopes [109], to measure M87’s mass
distribution and intrinsic shape. We perform triaxial Schwarzschild orbit modeling with the
TriOS code [156, 157] based on an earlier code [202], and use more than 4000 observational
constraints to simultaneously determine six parameters: MBH, M∗/LF110W , dark matter
content, and the three-dimensional intrinsic shape. As described below, we implement a new
capability in the code to model spatial variations in M∗/LF110W and use a radially declining
M∗/LF110W profile that closely approximates the variation inferred from stellar population
and dynamics studies of M87 [148, 172].

5.4.1 Galaxy model and orbit sampling
Each galaxy model has three mass components: a central SMBH, stars, and a dark matter
halo. The three-dimensional stellar density in the TriOS code is represented as a sum of
multiple Gaussian functions of differing widths and axial ratios. To determine these func-
tions, we first fit a two-dimensional Multi-Gaussian Expansion (MGE; [24]) to the surface
brightness distribution of M87 (see Appendix 5.C). Each MGE component is allowed an
independent flattening parameter (q′ in Table 5.2) to model any radially changing ellipticity
observed on the sky.

For a given set of three angles, θ, φ, and ψ, that relate the intrinsic and projected coor-
dinate systems of a galaxy [13], we deproject each MGE component, multiply by a radially
varying M∗/LF110W (see below), and add the deprojected Gaussians to obtain the three-
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Figure 5.3: Radial profile of stellar velocity dispersion of M87 in the inner 10 kpc (on a
linear scale; top) and out to 100 kpc (on a logarithmic scale; bottom). All 461 KCWI bins
are shown (blue) but many overlap. (Top) The KCWI values within 1 kpc agree well with
those from MUSE on the Very Large Telescope ([50, 172]; yellow and orange respectively),
while the MUSE values are 10–20 km s−1 larger than KCWI between 1 and 3 kpc. At 4.5
kpc, our KCWI measurements match the single data point (red) from an independent KCWI
observation [70]. The VIRUS-P values ([144]; grey), which were used in the axisymmetric
stellar-dynamical measurement of the M87 black hole [77], are 30–50 km s−1 higher than
all other measurements. [144] had noted a similar offset between their values and earlier IFU
measurements [52] in the inner 2 kpc. (Bottom) Red globular clusters have similar σ (red) as
stars and appear to belong to M87’s stellar halo [228], whereas the intra-cluster component
of planetary nebulae have sharply rising σ ([122]; green).
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dimensional stellar density. Each deprojected MGE component can have its own axis ratios
p, q, and u, where p = b/a is the intrinsic middle-to-long axis ratio, q = c/a is the intrinsic
short-to-long axis ratio, and u is the apparent-to-intrinsic long axis ratio. When the best-fit
p, q, and u are quoted below, each value is luminosity averaged over the MGE components.
Further details of the relations between the apparent and intrinsic shape parameters and the
deprojections can be found in Section 2 of [157].

The M∗/LF110W we use to obtain the stellar density varies radially, following a logistic
curve given by

M∗

L
(R) =

(
M∗

L

)
outer

[
δ + (R/R0)

k

1 + (R/R0)k

]
, (5.1)

where δ is the ratio of the inner and outer M∗/LF110W , and R0 and k parameterize the
location and sharpness of the transition. We choose δ = 2.5, R0 = 10′′, and k = 2, which
together well approximate (Figure 5.7) the spatial M∗/LF110W profile of M87 determined
from [172]. We leave the overall normalization—the outer M∗/LF110W—as a free parameter.
A similar form as Equation (5.1) was used in an axisymmetric Jeans dynamical study of
M87 globular cluster and stellar kinematics data [148]. We implement this spatial variation
in our models by choosing distinct M∗/LF110W ratios for each component of the MGE such
that the profile is reproduced.

The dark matter halo is described by a generalized Navarro-Frenk-White density profile
[146]

ρ(r) =
ρ0

(r/rs)γ(1 + r/rs)3−γ
, (5.2)

where ρ0 is the density scale factor and rs is the scale radius. This form of the dark matter
halo is used by [116] when fitting axisymmetric Jeans models to M87 globular cluster and
stellar kinematics data. They determine that rs = 15.7+2.3

−2.0 kpc for the cored γ = 0 model
but find no significant preference for γ = 0 over γ = 1. [147], on the other hand, find a
strong preference for flat cores with γ . 0.13. We have tested models with γ = 0, 0.5, and
1, and find that the models with a γ = 0 halo are a better description of the data, with
the goodness of fit (χ2) lower by at least 100. We therefore adopt the flat core, γ = 0 dark
matter halo. Since the KCWI stellar kinematics extend to a projected radius of 12 kpc, we
expect rs and ρ0 to be quite degenerate; we choose to fix rs = 15 kpc and keep ρ0 as a free
parameter in the models.

For each galaxy model, we compute the trajectories of a library of around 500,000 stellar
orbits that sample 120 values of energy, 54 and 27 values of the second integral of motion
for the loop and box orbit libraries, and 27 values of the third integral of motion over
logarithmically spaced radii from 0.′′01 to 316′′. The loop and box orbits are integrated for
2000 and 200 dynamical times, respectively. We project the stellar orbits onto the sky and
compute the LOSVDs, accounting for the KCWI point-spread function (PSF) and spatial
binning. Using a non-negative least-squares optimization, we determine the orbital weights
such that the linear superposition of orbits reproduces the luminous mass (to an accuracy of
1%) and the observed kinematics in each spatial bin. As described below, the procedure is
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repeated for a large suite of galaxy models to determine the best combination of the galaxy
model parameters.

5.4.2 Parameter search
The best-fit model parameters and uncertainties are determined as follows. We use an
iterative grid-free Latin hypercube scheme to select sampling points in the six-dimensional
model parameter space [119, 157, 153]. In each iteration, the TriOS code is run to assess the
χ2 of each of the sampled galaxy models. The χ2 of a model is determined by comparing
the data and uncertainties for the lowest eight kinematic moments in each of the 461 spatial
bins to the model predictions. An additional set of constraints is imposed on kinematic
moments h9 to h12, in which the value of each moment is required to be zero with error
bars comparable to the errors in h3 to h8. As shown in Chapter 2 [119], these additional
constraints help eliminate spurious behavior in the LOSVDs predicted by the models.

The goodness-of-fit landscape is then approximated using Gaussian process regression
(GPR; [159, 150]) with a Matérn covariance kernel. To map the high-likelihood region in
finer detail, we run the TriOS code again for a next set of models selected by uniformly
sampling a zoom-in volume that lies within the 3-σ confidence level for six parameters in
the previous regression surface. A more accurate GPR surface is then obtained from all
the available models. After multiple iterations we again use GPR to construct a smooth
likelihood surface from all available models (nearly 20,000 in total). Finally, we use the
dynamic nested sampler dynesty [181] to sample from this surface to produce Bayesian
posteriors assuming a uniform prior for all parameters.

Following [157], we search over a different set of shape parameters, T , Tmaj, and Tmin,
instead of angles θ, φ, and ψ. Such a parameterization maps the deprojectable volume in the
viewing-angle space into a unit cube in the shape-parameter space, allowing for simpler and
more efficient searches. The definitions of (T, Tmaj, Tmin) and the relationships with (θ, φ, ψ)
are given in Section 4.3 [157].

The final posterior distributions yield clear constraints on all six model parameters: MBH,
outer M∗/LF110W , dark matter density ρ0, T , Tmaj, and Tmin (Figure 5.4). Instead of the
halo density parameter ρ0, we describe the dark matter halo in terms of the ratio of dark
matter to total matter enclosed within 10 kpc, f10. The posterior distributions for the more
intuitive (luminosity-averaged) axis ratios p, q, and u are also shown. The best-fit parameters
are summarized in Table 5.1.

5.4.3 Black hole mass and stellar mass-to-light ratio
The mass of the M87 black hole has been determined with two other independent methods
[221, 57] in addition to the stellar-dynamical method used here. Compared to our value
MBH = (5.37+0.37

−0.25±0.22)×109 M�, the valueMBH = (6.5±0.2±0.7)×109 M� inferred from
the crescent diameter by the Event Horizon Telescope (EHT) team [59] is 21% higher, but
the difference is within 1.5-σ of their uncertainties. A recent re-analysis of EHT observations
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M87 Property (units) Inferred value

Black hole mass MBH (109 M�) 5.37+0.37
−0.25 ± 0.22

Outer M∗/LF110W (V -band; M�/L�) 3.46+0.04
−0.06 ± 0.15

Inner M∗/LF110W (V -band; M�/L�) 8.65+0.10
−0.15 ± 0.38

Dark matter fraction at 10 kpc f10 0.67± 0.02

Total mass within 10 kpc (1011M�) 5.77± 0.12

Shape parameter T 0.65± 0.02

Shape parameter Tmaj 0.46+0.03
−0.02

Shape parameter Tmin 0.61± 0.02

Average middle-to-long axis ratio p 0.845± 0.004

Average short-to-long axis ratio q 0.722± 0.007

Average
apparent-to-intrinsic
long axis ratio u

0.935± 0.004

Line-of-sight direction θ, φ (◦) 48.9+1.1
−1.0, 37.5+1.4

−1.3

Rotation about line-of-sight ψ (◦) −61.3+1.4
−1.7

Table 5.1: Mass and shape properties of M87. The search over galaxy parameters in the
triaxial orbit modeling in this paper is performed over MBH, outer M∗/LF110W , halo scale
density ρ0, and the shape parameters T , Tmaj, and Tmin. All other parameters in the table
are computed from the posteriors of those six parameters. For the two primary mass param-
eters MBH and M∗/LF110W , the second set of errors denotes systematic uncertainties (68%
confidence levels) due to the uncertainty in the distance to M87: 16.8± 0.7 Mpc [59].
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[17] revised the black hole mass to MBH = (7.13± 0.39)× 109 M�, which is 33% above our
value, but [193] cautioned the false-positive tendency of the method used in the re-analysis
and found that significant systematic uncertainties were not taken into account. The ionized
gas-dynamical determination of MBH = (3.45+0.85

−0.26) × 109 M� (after scaling to our adopted
distance of 16.8 Mpc) is 36% below our value [221, 59].

Before this work, the most recent mass measurement of the M87 black hole that also
used orbit-based stellar dynamics obtained [77, 59] MBH = (6.14+1.07

−0.62) × 109 M� (after
scaling to our adopted distance of 16.8 Mpc), which is 14% above our value. Despite the
apparent consistency, there are many differences between the two measurements. In this
work, the stellar spectra are obtained in a homogeneous manner from the latest IFU at
the Keck Telescope over a contiguous 250 × 300′′ field and have S/N of around 100 per Å
for the outermost bins and above 200 per Å for central bins. The observed stellar velocity
dispersions used to constrain the orbit models in this work are about 20% lower than [77,
144] beyond 1 kpc (Figure 5.3; top panel), but this work is in broad agreement with other
recent measurements [50, 172, 70]. The orbit modeling in this work allows for triaxiality,
and the MBH is obtained from a full six-dimensional model parameter search with posteriors
measured using a Bayesian framework. Furthermore, [77] adopts a spatially constant V -band
M∗/LF110W of 9.7 M�/L� (scaled to our distance of 16.8 Mpc). However, a recent detailed
stellar population analysis of M87 reported a negative radial gradient due to a changing
stellar initial mass function [172]. When incorporating the shape of thisM∗/LF110W gradient
into our stellar-dynamical models, we find the V -bandM∗/LF110W declines from 8.65M�/L�
at the center to an outer value of 3.46 M�/L�.

Using either M∗(< rSOI) = MBH or M∗(< rSOI) = 2MBH as the definition of a black
hole’s gravitational sphere of influence (SOI), we find the SOI radius of the M87 SMBH to
be rSOI = 4.′′4 (0.36 kpc) or 6.′′1 (0.50 kpc).

5.4.4 Dark matter mass
At the outer reach of our data, at a radius of 10 kpc, we find the enclosed dark matter
mass to be MDM(< 10 kpc) = (3.88± 0.12)× 1011 M�, constituting about 67% of the total
mass of the galaxy (f10 in Table 5.1). A similar dark matter fraction (73% at 14.2 kpc)
is obtained from Jeans modeling of the kinematics of globular clusters [116]. A lower dark
matter fraction (about 30% at 11 kpc) is estimated from axisymmetric orbit-based modeling
of the kinematics from stars and globular clusters [144]. This lower fraction arises mainly
from their high estimate of M∗/LF110W discussed in the previous paragraph.

Our inferred total mass of M87 within 10 kpc isMtot(< 10 kpc) = (5.77±0.12)×1011 M�.
Dynamical modeling of globular clusters under the assumption of spherical symmetry yields
very similar value at the same radius [225, 163] but with large modeling uncertainties [225].
Estimates from axisymmetric orbit models find a 15% lower value [144]. Jeans modeling
studies [147, 116] incorporating a radially declining M∗/LF110W find a total mass enclosed
within 10 kpc to be in the range of (3–7.5)× 1011 M�.
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5.4.5 M87’s intrinsic shape
Our orbit modeling results show that M87 is strongly triaxial, where the lengths of the short
and middle principal axes are 72% and 85% of the length of the long axis, corresponding
to q and p, respectively. A triaxiality parameter often used to quantity the ratios of a
galaxy’s principal axes is T = (1− p2)/(1− q2) = (a2− b2)/(a2− c2). This parameter ranges
between T = 0 for an oblate axisymmetric shape (p = 1 or a = b) and T = 1 for a prolate
axisymmetric shape (p = q or b = c), with values between 0 and 1 indicating a triaxial shape.
Our inferred value for M87 is T = 0.65 ± 0.02, strongly excluding the possibility that M87
is an axisymmetric galaxy.

The shape parameters p, q, and u in Table 5.1 are related to a set of angles θ, φ, and
ψ that uniquely specify the orientation of M87’s intrinsic axes with respect to its projected
axes on the sky [202, 157]. The angles θ and φ specify the direction of the line-of-sight from
M87 to the observer; they are the usual polar angles in M87’s intrinsic coordinate system.
The inclination angle θ = 0◦ corresponds to a face-on view of M87 along its intrinsic short
axis, and θ = 90◦ corresponds to an edge-on view with the short axis in the sky plane. The
azimuthal angle φ = 0◦ places the intrinsic middle axis in the sky plane and φ = 90◦ places
the intrinsic long axis in the sky plane. Once the line of sight is described by θ and φ, the
third angle ψ specifies the remaining degree of freedom for the rotation about the line of
sight. Our best-fit angles for M87 are (θ, φ, ψ) = (48.◦9, 37.◦5,−61.◦3). Thus, we are viewing
M87 from a direction that is roughly equidistant from all three principal axes.

5.4.6 Angular momentum vector and origin of kinematic
misalignment

To gain physical insight into the origin of the observed misalignment between the kinematic
axis and photometric major axis of M87 on the sky (Figure 5.2; lower right), we examine
the direction of the total angular momentum vector, L, of the stars predicted by our best-fit
orbit model and how it would be projected on the sky. To do this, we sum the individual
contributions to the angular momentum from the superposition of stellar orbits and compute
the total L. Among the three major orbital types computed in the TriOS code, the box
orbits supported by a triaxial gravitational potential, by construction, have zero angular
momentum, whereas the short-axis and long-axis tube orbits have net L along the intrinsic
short axis and long axis, respectively [173, 202, 157]. The direction of the total L is therefore
determined by the relative contributions from the two types of tube orbits [73].

The rotational velocity of M87 reaches sufficiently high amplitudes beyond about 5 kpc
(Figures 5.1 and 5.2) for us to determine the direction of L robustly. We find it to point
approximately 60◦ off of the intrinsic short axis. Using the best-fit viewing angles to project
L on the sky, we find it to lie at a PA of approximately −60◦. Because the projected L
is orthogonal to the kinematic axis of the projected velocity field, this simple calculation
indicates that the PA of the kinematic axis predicted by the model is around −150◦, very
similar to the observed kinematic axis. The observed kinematic misalignment of M87 on the
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sky is therefore a result of both projection effects of a triaxial galaxy and a physical offset
between the total angular momentum vector and the intrinsic short axis of the galaxy.

M87’s jet lies at a PA of approximately −72◦ oriented about 17◦ off of the line of sight
[141, 216]. Our L is oriented roughly 30◦ off of the line of sight, or only about 15◦ off of
the jet axis. This is a remarkably close alignment, as only about 1.7% of randomly oriented
vectors would be expected to lie within 15◦ of each other. On a much larger scale, the
principal axis of the Virgo cluster has a projected PA of roughly −70◦ and lies 20–40◦ off
of the line of sight [223, 140]. This axis is only about 11◦ off of our model’s net L. These
alignments suggest that the persistent intrinsic sense of rotation within M87’s stellar halo is
related in part to both the overall structure of the Virgo cluster and the orientation of the
jet, which in turn is thought to be related M87*’s spin [58]. The origins and implications of
this multiscale collimation are as of yet unclear but are under active investigation.

5.5 Conclusions
With 4000 constraints from Keck KCWI and our latest triaxial orbit modeling code and pro-
cedure for sampling high-dimensional parameter spaces even with computationally intensive
models, we are able to relax the common assumption of axisymmetry and present the most
comprehensive stellar-dynamical study of the M87 galaxy and its central black hole. This
work is one of only a small number of studies that have produced constraints on all three
intrinsic shape parameters for individual galaxies [103, 169]. Even fewer galaxies have been
observed with sufficient angular resolution, field of view, spectral coverage, and S/N for a
simultaneous determination of the intrinsic shape, supermassive black hole mass, and galaxy
mass [200, 219, 42, 157, 153]. As demonstrated in this work, further advancements have
only been made possible by the installations of wide-field and highly sensitive IFUs on large
ground-based telescopes.

Moving forward, it is crucial to apply triaxial stellar-dynamical orbit models to larger
samples of galaxies, thereby advancing this method from a rarity to a standard technique.
This is especially pertinent for massive elliptical galaxies such as M87 because the majority
of them—when a rotational pattern can be detected in the stellar velocity field—show some
degree of misalignment between the kinematic and photometric major axes, extending to
the half-light radius and beyond [54, 110, 55]. Such an offset indicates triaxiality [13, 73]; an
axisymmetric galaxy would, by symmetry, produce only aligned kinematic and photometric
major axes.

When direct comparisons between axisymmetric and triaxial modeling were made on the
same galaxy, the black hole mass from axisymmetric models has ranged from about 50%
[200] to 170% [153] of the mass when triaxiality was allowed; and in two galaxies, the black
hole mass did not change appreciably [200, 119, 157]. Overall, triaxial models were able to
match the observed stellar kinematics significantly better than axisymmetric models [157,
153].
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More secure black hole masses could result in significant changes to the local black hole
census and the shapes of the scaling relations between black holes and host galaxies, thereby
impacting our understanding of black hole fueling and feedback physics, as well as binary
black hole merger physics used to forecast and eventually interpret gravitational wave signals
for Pulsar Timing Arrays [187] and space-based detectors [2]. In terms of black hole imaging
studies, since the photon ring diameter ranges from about 9.6 to 10.4 gravitational radii
depending on the black hole spin [59], future analyses combining direct imaging with stellar
kinematic measurements such as that presented this paper have the potential to significantly
improve the prospects for measuring black hole spins.

Appendix

5.A Keck KCWI data reduction and analysis
We observed M87 using the integral-field spectrograph KCWI on Keck. We used the BL
grating centered on 4600 Å and the Kblue filter to obtain the widest wavelength coverage,
reducing possible template mismatch during the subsequent extraction of the stellar kine-
matics. The integration time per exposure varied from 300 s for the central pointings to 1500
s for the outermost pointings with low surface brightness. We periodically acquired offset sky
exposures in between the on-source galaxy exposures, each roughly half the integration time
of the adjacent galaxy exposures. Only data taken in good observing conditions are used in
this analysis; the on-source and sky exposure times total 13 hr and 2.8 hr, respectively.

5.A.1 Data reduction
The KCWI Data Extraction and Reduction Pipeline [142] is actively maintained on a pub-
licly accessible GitHub repository. We use the IDL version of the pipeline with its default
settings to reduce each frame. The main steps include overscan and bias removal, cosmic
ray rejection, dark and scattered light subtraction, solving for the geometric distortion and
wavelength solution, flat-fielding, correction for vignetting and the illumination pattern, sky
subtraction, and the generation of datacubes using the spatial and spectral mappings de-
termined previously. The pipeline then corrects for differential atmospheric refraction and
applies a flux calibration using a standard star.

In addition to the default pipeline, we perform custom steps to improve the quality of the
processed data. Some cosmic rays are improperly removed by the KCWI pipeline, leaving
sharp features at certain wavelengths in a small number of spaxels in our datacubes. We
therefore scan through each wavelength slice of the cubes, mask the impacted pixels, and
perform an interpolation to replace their values with those of neighboring pixels. Further-
more, beyond about 100′′, the KCWI spectra are sky-dominated and subtle mis-subtraction
of the sky can result in significant reduction of the S/N of the galaxy spectra. The sky sub-
traction stage of the KCWI pipeline uses b-spline interpolation to build a “noise-free” model
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of the sky in each pixel that is subtracted from the corresponding object exposure. We find
that this routine does not capture highly space- or time-variant sky features, so we further
remove residual sky features using the combination of a principal component analysis (PCA)
and the penalized pixel-fitting (pPXF; [26]) method, as described in Appendices 5.A.4 and
5.B.

In the final step, we merge the on-source M87 datacubes. Roughly half of the pointings
were taken with the long axis of KCWI aligned with a PA of −25◦ and half were oriented
perpendicular to this with a PA of −115◦. We construct a pair of datacubes, one for each of
the two orientations using the nifcube and gemcube IRAF tasks that are part of Gemini’s
data reduction software. We input the fully calibrated KCWI datacubes (the “_icubes.fits”
files) and map the cubes onto a shared grid with a spacing of 0.′′3 × 1.′′4 × 1 Å. This choice of
spaxel size matches the native scale of the individual KCWI datacubes for our observational
setup.

5.A.2 Line-spread function
We find that our selected spectrograph configuration produces a line-spread function (LSF)
that is distinctly non-Gaussian (Figure 5.5). The LSF is instead well described by the
convolution of a Gaussian function and a top-hat function of the form

L(λ) =
∫ ∞

−∞

1√
2πσ2

e−
(λ−τ)2

2σ2 Π
( τ
∆

)
dτ

=
1

2

[
erf

(
λ+∆/2

σ

)
− erf

(
λ−∆/2

σ

)]
,

(5.3)

where Π(x) = 1 if |x| ≤ 1/2 and 0 otherwise, ∆ is the full width of the top-hat component,
and σ is the standard deviation of the Gaussian. To measure the widths of the Gaussian and
top-hat components of the LSF, we simultaneously fit 31 lines of an FeAr arc lamp spectrum
between 4500 and 5000 Å and determine ∆ = 5.105Å and σ = 0.627Å. Repeating this
procedure on different spectral or spatial regions yields comparable best-fit parameters.

5.A.3 Point-spread function
During the first night of observations, we took KCWI data of the inner region of M87 and
the atmospheric seeing was estimated to be 0.′′63 by the differential image motion monitor
at the nearby Canada France Hawaii Telescope weather station. This estimate is consistent
with the broadening of point sources measured from exposures taken with the guider camera.
During the other four nights, we observed the outer regions of M87 and measured similar
seeing. While running stellar-dynamical models, described in Section 5.4, we use a PSF that
is a Gaussian with a full width at half maximum (FWHM) of 0.′′63 (σ = 0.′′28).
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5.A.4 PCA decomposition of sky features
As part of the process to remove residual sky features seen in the reduced M87 datacubes, we
perform a PCA decomposition of the sky spectra. For each sky cube, we apply a conservative
spatial masking of possible sources in the field and coadd the unmasked pixels to obtain a
high S/N sky spectrum. A weighted expectation-maximization PCA [4] is then applied to
each of the sky spectra between 3800 and 5650 Å. Since the amplitudes of the 4861 Å Hβ,
5200 Å [N I], and the 5577 Å [O I] lines are highly variable and are not well captured with a
PCA decomposition [207], we mask these features. The first PCA component is effectively
the mean sky spectrum. The second and fourth components capture slight variations in
the shape of the continuum and the Ca H and K features. The third and fifth components
capture variations in the numerous OH lines. While we obtain measurements of the first ten
components, the fifth component and beyond are consistent with noise. A similar routine
was previously applied to KCWI observations [207] and this method is similar in spirit to
the Zurich Atmospheric Purge (ZAP; [180]) used for MUSE observations.

5.A.5 Spectral and spatial masking
We mask nine spectral features, which together span a total of 274 Å (Figure 5.6). The
masked features include emission lines that are prominent at the nucleus, as well as the 4861
Å Hβ, 5200 Å [N I], and 5577 Å [O I] lines that are masked in the PCA decomposition. The
Mg i b region (5184–5234 Å) is also masked because it is contaminated by the 5200 Å [N I]
skyline and is coincident with Fe emission features at M87’s redshift.

We also apply a spatial mask to exclude potentially contaminant spaxels. This is done
by collapsing the datacubes spectrally, flagging regions of spaxels with substantially higher
surface brightness than their surroundings, and then masking the brightest spaxels in those
regions. This process removes the spaxels that are contaminated by the prominent jet, the
central ∼0.′′85 that is affected by the active galactic nucleus (AGN), and numerous bright
globular clusters.

5.A.6 Spatial binning
We use the vorbin package [21] to construct spatial bins and obtain coadded KCWI stellar
spectra with uniformly high S/N. By default, vorbin calculates the S/N of each coadded
spectrum based on values of the signal and the noise of the individual spaxel spectrum given
by the user, adding the signals linearly and the noise in quadrature. Instead of this default
setting, we modify the sn_func() routine in vorbin’s voronoi_2d_binning to nonanalyti-
cally recompute the S/N from the M87 datacube while binning. This approach improves the
uniformity of the resultant S/N across the bins as it naturally incorporates spatial correla-
tions in the signal and noise between spaxels. We estimate the S/N by first smoothing the
spectrum with a Gaussian kernel with FWHM = 4 Å, comparable to the LSF. The noise is
taken to be the root-mean-square (rms) difference between the raw and smoothed spectra,
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while the signal is taken to be the median flux of the raw spectrum. We apply the spectral
masks described above before smoothing to avoid contamination from sharp features in the
spectra.

This procedure results in 461 spatial bins and a coadded spectrum for each of the bins.
The S/N per Å ranges from about 200 in the central regions to about 100 in the outer
regions. Figure 5.6 shows a series of representative KCWI spectra (black curves) for ten of
the 461 spatial bins located at projected radii of 1′′–130′′.

5.B Stellar kinematic determination
We measure the stellar LOSVD for each of the 461 binned spectra using pPXF [26]. With
pPXF, we convolve a linear combination of template stars with an LOSVD, parameterized
by V , σ, and high-order Gauss-Hermite moments h3–h8 that account for asymmetric and
symmetric deviations from a Gaussian velocity distribution [132]. The S/N of our data
enable the measurement of high-order Gauss-Hermite moments. We find that truncating the
series at h4 (or h6) results in elevated values for h4 (or h6), but when fitting to h8 or h12, the
values of h4 and h6 converge and the highest extracted moments become consistent with 0,
as seen in past work [153, 119]. In addition, we find it important to constrain the kinematic
moments beyond h4 in dynamical modeling. When those moments are not constrained in
orbit models, the models are prone to producing LOSVDs with unphysical features due to
large values in the high-order moments, potentially biasing the preferred model parameters
[156, 119].

For stellar templates, we use the MILES library [64, 167] but select 485 spectra out of
the full 985 templates that have well-identified spectral types and luminosity classifications.
These stellar templates have a higher spectral resolution than our observations and are
degraded to match the KCWI (non-Gaussian) LSF before fitting with pPXF.

During the kinematic fit, we use an additive polynomial of degree one and a multiplicative
polynomial of degree 15 to model the stellar continuum. We also supply the PCA components
that describe the sky background to pPXF. This procedure results in a weighted combination
of the PCA components, which is included as an additional additive term to match the
residual sky features in the M87 spectra that remained after the KCWI pipeline’s default sky
subtraction. Ultimately, we use the first ten PCA components, but find that the extracted
Gauss-Hermite moments are unchanged as long as at least the first five PCA components
are included in the fit.

Because we excluded three highly variable sky lines during the PCA decomposition pro-
cess, we also mask those spectral regions when running pPXF, as well as emission lines
associated with M87 and the Mg i b region, as described previously. In contrast to the other
masked regions, we find that the extracted Gauss-Hermite moments depend strongly on the
endpoints of Mg i b mask and only stabilize once the entire 5184–5234 Å region is excluded
from the fit.
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Ik [L�/pc2] σ′
k [arcsec] q′k

2382.4 0.039 0.860
2460.8 0.206 0.906
1598.8 0.508 0.959
973.48 1.468 1.000
1830.9 4.558 1.000
1515.4 9.851 0.980
592.67 22.228 0.942
180.27 54.299 0.910
35.555 126.213 0.735
9.8327 293.034 0.650
1.6948 567.511 1.000

Table 5.2: Best-fit MGE parameters for the surface brightness of M87. For each of the 11
two-dimensional Gaussian components, the first column lists the central surface brightness
density, the middle column lists the dispersion of the Gaussian, and the last column lists
the axis ratio, where primed variables denote projected quantities. We obtain the MGE by
fitting to the V -band light profile in [109]. To impose aM∗/LF110W gradient in the dynamical
models, the Ik values are adjusted to reproduce the profile in Figure 5.7.

Altogether, we fit the Gauss–Hermite moments, polynomial coefficients, template weights,
and sky weights simultaneously. The stellar templates broadened by the best-fit LOSVD pro-
vide excellent fits to each of the observed spectra, as illustrated by the red curves for the ten
representative spectra shown in Figure 5.6.

The measurement uncertainties on the LOSVDs are determined as follows. After an
initial fit to each binned spectrum, we perturb the spectrum at a given wavelength by
drawing a random number from a Gaussian distribution centered on the spectrum and with a
dispersion equal to the rms of the pPXF residuals from the preliminary fit at that wavelength.
We perform 1000 such perturbed fits with the pPXF bias parameter set to 0 and determine
the mean and standard deviation of each moment over those 1000 realizations, which we
adopt as the kinematic value and its 1-σ uncertainty. For bins in the central 100′′ ×100′′
region, the mean error on V is 2.6 km s−1 and on σ is 3.0 km s−1. The mean errors on h3
through h8 are similar, spanning from 0.009 to 0.016. The typical errors in the outer bins
are slightly larger with mean errors on V , σ, and h3 through h8 of 2.6 km s−1, 3.4 km s−1,
and 0.012–0.022, respectively.

5.C Surface brightness of M87
Besides the stellar kinematics, another constraint used in the dynamical models is the
galaxy’s luminosity density. We use a previously published V -band light profile, along with
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measurements of the ellipticity and PA of the isophotes [109]. The profile extends from
0.′′017 to 2400′′ and comes from a combination of ground-based data and high-resolution
HST images, which have been deconvolved to remove the effects of the PSF as well as the
AGN.

We fit the sum of multiple two-dimensional Gaussians to the composite surface photom-
etry. These MGE [24] approximations are commonly used because they are able to match
the surface brightnesses of galaxies while also enabling analytical deprojections to obtain
intrinsic luminosity densities. Our best-fit MGE reproduces the surface brightness between
0.′′1 and 500′′ within 10%. This MGE has 11 Gaussian components that share the same
center and PA of −25◦. While the value of the PA in [109] varies within 50′′, the isophotes
between 1′′ and 50′′ are very round with ellipticity ε . 0.08; using a constant PA in our MGE
therefore does not affect the quality of the fit. The MGE parameters are given in Table 5.2.

5.D Orbit modeling
Radial profiles of the M∗/LF110W ratio and stellar kinematics used in the orbit modeling in
this work are shown in Figure 5.7 and Figure 5.8, respectively.
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Figure 5.4: Posterior distributions of six parameters from triaxial Schwarzschild orbit model-
ing of M87: black hole mass MBH, outer stellar mass-to-light ratio M∗/LF110W , dark matter
fraction enclosed within 10 kpc f10, and shape parameters T , Tmaj, and Tmin. The posterior
distributions of the luminosity-averaged axis ratios u, p, and q are shown in the upper right.
The three levels of purple shading bound the 1σ, 2σ, and 3σ regions (68%, 95%, and 99.7%
confidence levels, respectively) of the parameters. The vertical lines in each 1-dimensional
distribution indicate the median and the corresponding three confidence levels.
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Figure 5.5: Line Spread Function of Keck KCWI with BL grating. We find the LSF of
KCWI BL grating to be well approximated by a Gaussian function convolved with a top-hat
function, as shown in Equation 5.3. To measure the shape of the LSF, we simultaneously
fit 31 lines of an FeAr lamp spectrum as described in Appendix 5.A.2. Here we plot a
superposition of the nine most prominent of those lines. Black points mark the flux in the
lamp spectrum around each line after normalizing for each line’s amplitude. Our best-fit
LSF model (green) has a top-hat function of width ∆ = 5.105 Å convolved with a Gaussian
function of σ = 0.627 Å. A single Gaussian function, as is typically assumed, would provide
a very poor fit to the KCWI LSF (red).
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Figure 5.6: Representative KCWI spectra of M87. Sky-subtracted galaxy spectra (black
curves) for ten representative spatial bins located at projected radii from 1′′ to 130′′ are
shown. A total of 461 binned spectra are used in this work. The S/N of these co-added
spectra range from about 100 to 200 per Å. The stellar template broadened by the best-fit
LOSVD is overlaid (red curves) on each spectrum. Typical fitting residuals are comparable
to the line widths. Shaded blue regions indicate masked spectral regions excluded from the
analysis. At M87’s redshift, the Mg i b region is contaminated by the 5200 Å [N I] sky line
(marked). The central bins exhibit strong AGN emission lines, especially from [OIII] (4959
Å and 5007 Å), [SII] (4069 Å and 4076 Å), Hβ (4861 Å), and Hγ (4330 Å).
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Figure 5.7: Radial profile of M∗/LF110W ratio used in this work. The logistic approximation
(red) used in our modeling, given by Equation (5.1), is chosen to match the shape of the
r-band M∗/LF110W (black) in Figure 11 of [172]. The inner M∗/LF110W is δ = 2.5 times
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Figure 5.8: Radial profiles of the first eight moments of the stellar LOSVDs. The observed
Keck KCWI moments (gray) are well matched by the moments predicted by the best-fit
model (red) given by Table 5.1. The triaxial orbit models produce point-symmetric LOSVDs,
so we have point-symmetrized the kinematic moments before fitting.
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Chapter 6

Unveiling the 22-Billion Solar Mass
Black Hole in Holmberg 15A with
KCWI Spectroscopy and Triaxial
Modelling

This dissertation closes by turning to my recent and ongoing work on the brightest cluster
galaxies H15 and IC1101. These two galaxies have exceptionally large and diffuse central
regions which suggest the presence of exceptionally large central supermassive black holes.
This chapter presents our work to map the stellar kinematics of these two galaxies using the
Keck Cosmic Web Imager (KCWI), expanding on techniques which were learned and devel-
oped in Chapter 5. For H15, I present the results of triaxial Schwarzschild modelling using
TriOS, following the lessons and usage procedures developed through the earlier chapters of
this dissertation. We find that the supermassive black hole at the center of H15 is roughly
half as massive as previously measured. This galaxy, along with others with very massive
SMBHs, lies far above theMBH–σ relation, but the size of the black hole’s sphere of influence
is relatively well-predicted by the size of the apparent core in the photometry. Modelling of
IC1101 is ongoing and will be presented in future work, but I use the deviations from the
rb–rSOI which were found for H15 to estimate the mass of IC1101’s central SMBH.

This chapter is adapted from a manuscript in preparation by Emily R. Liepold, Jonelle
L. Walsh, and Chung-Pei Ma.

6.1 Introduction
Supermassive black holes (SMBHs) are understood to lie at the center of all massive galaxies,
and are thought to play an instrumental role in directing the evolution of their host galaxies
through various modes of SMBH feeding and feedback. Models of this co-evolution takes are
part informed by so-called scaling relations which relate various galaxy properties, including
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the central SMBH mass.. Famously, the MBH–σ relation which connects the SMBH mass to
the stellar velocity dispersion ties the two quantities across four decades in the black hole
mass – from 106M� to 1010M� – with relatively little scatter (see e.g. [133]). The relative
robustness of this relation, along with others (e.g., MBH vs Bulge mass or luminosity, stellar
light deficit, cusp or break radius) suggest that those relations can be used to constrain
models for the co-evolution of galaxies and their central black holes. With this picture in
hand, precise SMBH mass measurements are vital for drawing accurate relations and those
accurate relations are vital for inferring accurate models of co-evolution. This paper focuses
on the first link in that chain.

At present the upper end of the scaling relations is less well-constrained. Only six SMBHs
with masses above 5×109 have been measured dynamically: NGC4486 (5.4×109M�, [120]),
NGC2832 (< 9×109M�, [136]), NGC3842 (9.7×109M�, [135]), NGC1600 (17×109M�,[192]),
NGC4889 (21 × 109M�, [135]), and Holmberg 15A (40 × 109M�, [138]). The five of these
with two-sided constraints lie above the MBH–σ relation [133]. This is a small sample, but
may suggest that either these masses are overestimated or that the same scaling relation
does not hold in the high-mass region.

Thomas et al. [192] demonstrated that for a collection of high-mass galaxies with well-
determined core radii from core-Sérsic fits, the size of the sphere of influence of the central
black hole is closely correlated with the core radius with a relation which is statistically
indistinguishable from rb = rSOI. Accordingly, for this sample the core radius is also closely
correlated with the mass of the central SMBH. This paper examines two brightest cluster
galaxies which have been claimed to have exceptionally large cores, Holmberg 15A (hereafter
H15) and IC1101, the BCGs of Abell 85 and 2029, respectively. H15 has a redshift of z ∼
0.0555 [128]. For a flat ΛCDM withH0 = 70 km s−1 Mpc−1 and Ωm = 0.31, this corresponds
to an angular diameter distance of 222.3 Mpc and an angular size of 1” corresponds to a
physical size of 1.078 kpc. IC1101 has a redshift of z ∼ 0.0777. For the same cosmology, this
corresponds to an angular diameter distance of 303.1 Mpc and 1” corresponds to 1.470 kpc.

H15 was first cataloged by Holmberg in 1937 [95] and its photometry was first examined
by Hoessel in 1980 [94]. This work fit modified Hubble profiles to a collection of 108 BCGs
of Abell clusters and identified H15 to have the largest core radius of the sample, 6.2 kpc
(corrected with the H0 from above). In recent years, there has been active discussion about
the size of this core and whether or not a core is actually present. In 2014 López-Cruz et
al. performed Nuker profile fits to R-band photometry from KPNO and r′-band photometry
from CFHT [123]. For both sets of fits, they find a cusp radius rγ = 4.57 kpc. To estimate
the light deficit in the central region, they compare the integrated light from a sum of two
Sérsic profiles fit to their photometry against the integrated light from a de Vaucouleurs
profile fit to their data. Their inferred light deficit was LV,def ' 5 × 1011LV,�. This cusp
radius suggests a central SMBH mass of MBH ∼ 3.1 × 1011M� [112, 192] while the light
deficit suggests MBH ∼ 2.6 × 1011M� [107]. The MBH–σ relation [108] for their adopted
σ = 310 km s−1 suggests a black hole which is two orders of magnitude smaller at just
2.1× 109M�.

In 2015, Bonfini et al [15] refuted this picture by analyzing the same CFHT data with
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variations on Sérsic, core-Sérsic, and exponential profiles, finding that a good fit to the
data can be found without including an obvious core. The following year, Madrid and
Donzelli [128] followed up with high resolution photometry using the Gemini Multi Object
Spectrograph (GMOS) in its imaging mode. They found that in the central arcsecond of
their image there is a surplus of light compared to what would be inferred by extrapolating
the image inward, in full contradiction of López-Cruz et al. They also found consistent
fitting behavior with Bonfini et al., where an explicit core is not required to fit the data
well. Notably, they state ”Our results thus nullify the existence of a supermassive black hole
based solely on the presence of a depleted core, which this galaxy, in fact, does not have.”

In contrast, the history of claims surrounding IC1101’s central SMBH is relatively short.
IC1101 has a sparse history of spectroscopic observations including Dressler’s famous obser-
vation of a rising dispersion profile [45] and confirmation of that behavior by Fisher et al
[67]. Dullo et al. [47] observed the galaxy with HST photometry, finding that in contrast
to H15 a core is required to fit the light profile. They infer a core radius of 4.2 kpc and
a central light deficit of LF702W,def ' 1011LF702W,�. As in analysis of H15 in [123], these
suggest extremely large central SMBHs, while the MBH–σ relation suggests a value which is
an order and a half of magnitude lower.

We have obtained extensive spectroscopic observations of both H15 and IC1101 using
the Keck Cosmic Web Imager to explore the stellar kinematics of the central ∼ 50′′ of both
galaxies. We observed H15 in November 2018, 2019, 2020, 2021 and September 2021 and we
observed IC1101 in June 2019, May 2020, and March 2022. In Section 6.2 we complement
these observations with archival photometric measurements first presented in Madrid and
Donzelli [128] and Dullo et al. [47]. Our spectroscopic observations are described and
discussed in Sections 6.3 and 6.4. In Section 6.5, we describe our procedures for performing
triaxial Schwarzschild orbit modelling on H15. And finally we present, discuss, compare,
and contextualize the results our modelling of H15 in Section 6.6.

6.2 Photometric Observations

6.2.1 GMOS Photometry of Holmberg 15A
To characterize the stellar mass distribution of H15, we use archival observations from the
Gemini Multi Object Spectrograph (GMOS) located at the Gemini South telescope (PI
Madrid [128]). The instrument was operating in its imaging mode with the filter r_G0326.
In those observations, two exposures of 200 s were obtained with an effective pixel scale of
0.16 arcsec per pixel and a seeing of 0.56 arcsec. We use data from only the central GMOS
CCD chip to ensure that the background sky is uniform. This results in a 282′′ × 159′′ field,
centered on H15 and with the long axis of the field aligned with north. We perform spatial
masking to exclude contaminants and companion objects. The companion galaxy 75” to the
northwest of the center of H15 has been modelled and subtracted from the image before
performing the primary fitting of H15.
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We use the multi Gaussian expansion (MGE) fitting routine mgefit [26] to parameterize
the surface brightness profile of H15. We use 9 Gaussian components with a fixed PA of
−34◦ to fit the image. The fits tend to reproduce the observations well, with residuals of
less than 10% for sectors within 100” of the center.

As previously discussed in [119], we found that some configurations of the mgefit fitting
routine produced centrally peaky deprojected light distributions. This occurs because for the
innermost component of the fit, the width σ is poorly constrained below the scale of the PSF.
On the other hand, after deprojection the central density scales with ρ(r = 0) ∝ Σ(R = 0)/σ
(where Σ is the surface brightness). We find that often σ � σPSF is selected by the fit,
resulting in exceptionally large and unconstrained central densities. To ameliorate this issue,
we place a constraint on the smallest σ allowed in the fit. For H15 we find that requiring
σ > 0.96′′ well balances the quality of fit to the centralmost pixels and the shape of the
deprojected light profile.

The photometry, fit, and deprojected light profile for our best-fit model (See Section 6.6)
is shown in Figure 6.1. The parameters of the MGE are tabulated in Table 6.1. The MGE
becomes increasingly flattened with radius, with ε = 0.08 at 1”, rising to ε = 0.32 at 50”.
The outermost MGE components are round with q′ = 0.80 and 0.99, so beyond 50”, the
MGE surface brightness profile becomes increasingly round. The most flat component of
this MGE has q′min = 0.639 and the luminosity-averaged flattening is 〈q′〉 = 0.82.

6.2.2 HST Photometry of IC1101
For IC1101, we use archival WFPC2 images from the HST archive (Proposal 6228; PI:
Trauger). Two exposures were captured in the F702W band with a total exposure time of
2100 s. Two additional F450W exposures were taken with a total exposure time of 2300 s.
We use the two F702W images for our analysis as they have somewhat higher S/N than the
F450W images. This data was also used for the analysis presented in [47].

The two F702W images are combined with scale of 0.1 arcsec per pixel. We construct
a composite PSF image from a collection of point sources in the image. The PSF is fit
with an MGE and is well characterized by three components with σ = 0.068′′, 0.120′′, and
0.318′′ with 44.3%, 42.7%, and 13.0% of the PSF mass, respectively. The spatially masked
F702W image is well-fit with an MGE, though we find the same issue as with H15 for the
central component – if no constraints are placed on the fit, then centralmost Gaussian σ is
much smaller than the PSF scale and the deprojected light density is inflated. We impose a
constraint that σ > 0.4′′, which provides both a good fit to the data and removes the central
peakiness. The image, fit, and deprojected light profiles are presented in Figure 6.2 and the
parameters of the MGE are tabulated in Table 6.2.

IC1101’s light profile is very flattened, with an ellipticity which grows with radius. At
1”, the best-fitting MGE has ε = 0.09, which rises dramatically to 0.35 by 10”, 0.45 by 20”
and 0.52 at 50”. The flattest MGE component has q′min = 0.416, and the luminosity-averaged
flattening is 〈q′〉 = 0.656.
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Figure 6.1: (Upper left) The r_G0326-band GMOS image of H15 used for our photometry
[47]. The image is oriented with north up and east left. Masked regions are marked in purple.
(Lower right) Isophotes of the central region (orange inset) of the GMOS image of H15
are marked in black at 0.5 mag/arcsec2 intervals. Contours of the MGE fit to the image at
the same intervals are marked in red. Masked regions are marked in purple. (Upper right)
The surface brightness along the major (black) and minor (red) axes are well-reproduced by
the MGE model. The fractional difference between the observed surface brightness (solid
lines) and the MGE model (dotted lines) is marked in the lower subpanel. (Lower right)
Deprojected 3D luminosity density for the best-fit model as described in Sec. 6.6. The viewing
angles associated with this deprojection are θ = 89.31◦ and φ = 89.08◦ with T = 0.352.
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Figure 6.2: Similar to Fig. 6.1, but for the F702W HST photometry of IC1101. The lower
right panel shows an example deprojection with θ = φ = 90◦ with T = 0.5.
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6.3 Spectroscopic Observations

6.3.1 KCWI observations of H15
We observed H15 using Keck KCWI during November 2018, 2019, 2020, September 2021,
and November 2021. During the November 2018 observations we used the small slicer with
the BL grating to observe the central region and during all other observing runs we used the
large slicer with the same grating to achieve broad spatial coverage.

The small slicer configuration has an 8.′′25 × 20′′ field of view, with 0.′′34 × 0.′′30 spatial
pixels. Seven exposures totalling 150min were taken at slightly dithered positions. Three
sky exposures totalling 30min were taken, following a standard OSO pattern. The field of
view was oriented with the 20′′ axis lying in the -34◦ east of north direction. The seven
exposures were combined as described in [120] using a resampled pixel scale of 0.′′17× 0.′′15.

The atmospheric seeing during the November 2018 small slicer observations was 0.′′60,
as measured by the differential image motion monitor at the nearby Canada–France–Hawaii
Telescope, so the spatial resolution is seeing-limited. This configuration has high spectral
resolution, with a line spread function which is well approximated as Gaussian with a FWHM
of 1.34Å in our spectral window. As discussed in [120], the KCWI line spread function can
be better described as the convolution of a top-hat function and a Gaussian function. For
the small slicer configuration the top-hat component has a width of 1.22Å and the Gaussian
component has σ = 0.421Å. The spectral axis is sampled at 0.5Å intervals.

The large slicer configuration has a field of view which is four times larger, 33′′×20′′ with
1.′′38×0.30 spatial pixels. We use a mosaic of 30 exposures at 10 locations totalling 9.9 hours
to cover the central ∼50′′ (∼56kpc). The seeing measurements for the four nights where the
large slicer was used were similar, between 0.′′57 and 0.′′70. The line-spread function for this
configuration is distinctly non-Gaussian with a top-hat component with a width of 2.55Å
and a Gaussian component with σ = 0.62Å. The spectral axis is sampled at 1.0Å intervals.

For both configurations, we use the BL grating with a central wavelength of 4600Å to
obtain spectra between 3600Å and 5600Å.

6.3.2 KCWI observations of IC1101
We observed IC1101 using Keck KCWI during June 2019 and May 2022. The June 2019
observations used the KCWI small slicer while the May 2022 observations used the large
slicer. We used an identical configuration to our H15 observations with the BL grating and
a central wavelength of 4600Å.

Eight object exposures totalling 160min and four sky exposures totalling 40min were
obtained using the small slicer. The object exposures were centered at the center of IC1101
at slightly dithered locations with the 20” axis of the 8.′′25×20′′ small slicer field of view was
aligned with the +20◦ photometric major axis. The DIMM seeing estimate from the nearby
CFHT was 0.′′39 during these observations.
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Exposures using the large slicer were obtained at six positions spanning a mosaic field of
view of 120′′ × 33′′ with the long axis of the mosaic field aligned with the +20◦ photometric
major axis. These object exposures totalled 240min. Five sky exposures were interspersed,
totalling 44min. These observations were made on two consecutive nights, with positions
to the northeast of the center observed on the first night and positions to the southwest
observed on the second. The mean seeing was 0.′′65 during the first night of observations and
0.′′60 during the second.

6.3.3 Data reduction and kinematic measurement
Data Reduction Pipeline

The numerous KCWI exposures were reduced using the IDL version of the KCWI Data
Extraction and Reduction Pipeline [142]. This pipeline performs overscane and bias removal,
cosmic ray rejection, dark and scattered light subtraction, solving for the geometric distortion
and wavelength solution, flat-fielding, correction for vignetting and the illumination pattern,
sky subtraction, and the generation of three-dimensional datacubes. Finally, the cubes are
corrected for differential atmospheric correction and flux calibrated by use of a standard star.

We perform the same additional reduction stages as described in [120]. First, a small
number of cosmic rays are improperly corrected by the KCWI pipeline. We correct for these
by scanning through each wavelength slice of the datacubes, identifying the sharp peaks or
dips resulting from this mis-correction, masking those regions, and replacing the erroneous
flux in those spaxes with an interpolation from the unimpacted neighboring spaxels. Second,
we the standard sky subtraction routine in the KCWI pipeline does not fully eliminate
highly time- or space-variant features in the sky spectrum, which may be subtly different
between the object exposures and the adjacent offset sky exposures. This is corrected for
by constructing a principal component analysis of all available sky spectra and including
the ten most significant components as additional additive components in fits to the spectra
(See Sec 6.4.1). Finally, we perform a mosaicing of the numerous science frames which cover
different regions of each galaxy using the nifcube and gemcube IRAF tasks which are part
of Gemini’s data reduction software. The resulting spaxels lie on an 0.′′3× 1.′′4× 1Å grid for
the large slicer exposures and an 0.′′15× 0.′′17× 0.5Å grid for the small slicer exposures.

Spectral and Spatial Masking

We follow similar spectral and spatial masking procedures as in Chapter 5 [120].
In Chapter 5, we discussed the use of a PCA decomposition of the sky spectra to cor-

rect for residual sky contamination while performing spectral fitting (see also the following
Sec. 6.4.1). We construct the decomposition between 3800 and 5650Å using the weighted
expectation-maximization PCA [4] routine, excluding three strong and highly variable sky
lines (4861 Å Hβ, 5200 Å [N I], and 5577 Å [O I]) as they tend to dominate the decompo-
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sition. Accordingly, we also mask those regions in our spectral fits to the galaxy spectra for
both H15 and IC1101.

For H15, we observe emission in the central∼3′′. These emission features are not captured
by the stellar templates in our spectral fitting, so we mask four regions in the small slicer
data for H15: Hγ (4340Å rest wavelength), Hβ (4861Å), [O III] (5007Å), and [N I] (5200Å).
For spectra without apparent emission lines, we find that the inferred kinematic moments
are negligibly impacted by masking these regions, so we apply this masking to all small slicer
H15 spectra for self-consistency. For the large-slicer H15 spectra and all IC1101 spectra, we
do not apply any spectral masks beyond the regions excluded from the PCA decomposition.

For both H15 and IC1101, there are several regions within our mosaics which are contam-
inated by spatially compact foreground objects. To mask these regions, we collapse the data
cubes spectrally, locate regions with substantially higher flux than their surroundings, then
iteratively masking the brightest pixels in the region until the contaminant is fully removed.

Spatial Binning

We co-add neighboring pixels using voronoi binning to achieve uniform signal to noise in
each spatial bin. We estimate the S/N while binning by the routine described in [120]. The
spectrum is smoothed with a Gaussian kernel with width comparable to the line spread
function, then the noise is taken to be the root-mean-square difference between the original
and smoothed spectra and the signal is taken to be the median flux from the original spec-
trum. This binning is performed separately for the large and small slicer regions. For both
galaxies, the region observed with the large slicer configuration overlaps with the central
region observed with the small slicer. We use the bins in the overlapping region to test for
consistency between the two datasets but exclude the central large slicer bins which overlap
the small slicer region in the discussion, analysis, and modelling described in the following
sections.

For H15, we bin to achieve a target signal to noise of 130 per spectral pixel for the small
slicer region and 60 per spectral pixel in the large slicer region, resulting in 97 and 216 bins
in the small slicer and non-overlapping large slicer regions. For IC1101, we bin to 100 and
60 per spectral pixel for the small and large slicer regions, resulting in 157 and 101 bins.

6.4 Stellar Kinematics of H15 and IC1101

6.4.1 Stellar Kinematic Fitting
We use pPXF [26] to determine the line-of-sight velocity distributions (LOSVDs) associated
with the stars in each spatial bin. We use similar procedures for both H15 and IC1101 and
for the large and small slicer data. The pPXF model convolves a linear combination of stellar
spectra with an LOSVD. To account for small mismatches in the shape of the continuum,
we use a multiplicative polynomial of order 7. Finally, to accommodate slight residual sky
features which remain after the coarse sky subtraction described in Section 6.3.3, we include
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the first ten most significant PCA sky components as additional additive terms whose weights
are chosen during fitting. The LOSVD is characterized as a Gauss-Hermite series of order 8
and the coefficients of that series (V , σ,h3,. . . ,h8) are parameters in the fit. The full number
of parameters in each pPXF fit is 8 (LOSVD coefficients) + 7 (multiplicative polynomial) +
10 (PCA sky components) + Ntemplates (Number of stellar templates).

We use the Indo-US stellar template library [196]. Similar to as discussed in [120], we
exclude templates without well-identified spectral types in Table 3 of Valdes et al. [196].
This exclusion reduces the library from 1273 templates to 671. For each galaxy we choose
a subset of these 671 templates to use for fitting the numerous binned spectra. The subset
is found by first coadding all unmasked spectra associated with each distinct observing run,
then fitting those spectra allowing all 671 templates. Each of these fits places positive weight
on only a small number, typically ∼15− 20, of the full set of templates for each galaxy. We
choose the subset of the full library to use from the union of those selected by these individual
fits. For H15 we use a set of 22 templates and for IC1101 we use 25 templates. To match the
instrumental spectral resolution of the stellar templates and our observations, we convolve
each template spectrum with a top-hat function and Gaussian of proper width. This in
effect broadens the Indo-US line spread function to match the large and small-slicer LSFs
described in Section 6.3.1.

For each binned spectrum, we perform an initial pPXF fit to find the optimal LOSVD
coefficients, template weights, polynomial coefficients, and sky component weights. Overall
the fits are quite good with fit residuals comparable to the noise in the spectrum. We
determine the uncertainties on the LOSVD coefficients by perturbing the spectrum by a
series of Gaussian-distributed random numbers with dispersion set by the rms residual from
the initial fit. We then re-fit that perturbed spectrum, keeping all fit parameters aside
from the the LOSVD coefficients fixed to their values from the initial fit. We perform 1000
perturbed fits and take the mean and standard deviation of each LOSVD to be the accepted
central value and uncertainty.

6.4.2 H15 Stellar Kinematic Features
Only a few prior measurements of H15’s stellar kinematics have been made. Most sig-
nificantly, [138] used the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large
Telescope to observe the central 60”×60” region. After spatial masking, their coverage is a
roughly octagonal region with outermost kinematic bins lying 28′′ from the center of H15.
They fit the spectra in this region with both pPXF and a non-parametric scheme. [67]
performed slit spectroscopy along a PA of 157◦ (23◦ off of the photometric major axis) and
performed Fourier fitting to infer the stellar velocity and velocity dispersion in five bins out
to 4.6”. [69] and [68] using the Sydney-AAO Multi-object IFS (SAMI) to examine the veloc-
ity and dispersion of the central 15”×15” of a number of ETGs in Abell 85, including H15
(there denoted as J004150.46-091811.2).

The first eight Gauss-Hermite moments of our H15 LOSVDs are shown in Figure 6.3.
For the central small-slicer bins, we find average errors on V , σ, and h3–h8 of 3.5 km s−1,
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3.5 km s−1, and 0.0095, respectively. For the large-slicer bins, the average errors on V , σ,
and h3–h8 are 5.2 km s−1, 6.9 km s−1, and 0.023, respectively.

The stellar velocity dispersion profile is shown in Fig 6.4. H15 exhibits a centrally peaked
dispersion, with σ ∼ 330 km s−1 in our central kinematic bins. The dispersion quickly drops
from this peak to be roughly constant at 290 km s−1 beyond 4 kpc. Beyond 15 kpc, the
profile begins to rise, reaching 350–375 km s−1 in our outer data points at ∼ 40 kpc.

In the central region, we find the Gauss-Hermite moments to be near or consistent with
0, suggesting that the LOSVDs in that region are nearly Gaussian. Mehrgan et al. [138]
observed H15 with MUSE on the VLT and performed parametric and non-parametric fits to
the spectra. They found both higher central σ than our measurements as well as higher h4
(see Fig 6.4). For an LOSVD characterized by only σ and h4, when h4 . 0.1 the full-width at
half-maximum of the LOSVD is well-approximated by FWHM ≈ 2.355σ(1− 1.28h4). That
is, an LOSVD with h4 ∼ 0.1 is about 12.8% narrower than an LOSVD with the same σ but
h4 = 0. Because of this, we find that the LOSVDs reported both here and in Mehrgan et
al. [138] have comparable widths, but very different shapes – LOSVDs with higher h4 have
both sharper central peaks and wider wings extending to high velocities.

The velocity field of H15 exhibits rotation beyond 20”. To quantify the rotation, we
follow the scheme described in Section 3.1 of [120] where we model the velocity field with
V (R,Θ) = V1(R) cos [Θ−Θ0(R)]. We perform fits to find V1(R) and Θ0(R) for groups of
bins lying at different distances R from the center of the field. 10-20 spatial bins are included
in each fit and we perform 20 such fits.

From 20” to our outermost kinematic bin at 44”, the kinematic PA (defined as the PA
where the velocity is maximized) of this rotation is stable at (28 ± 7)◦. This is misaligned
with both the photometric major (−34◦) and minor (+56◦) axes, suggesting an intrinsically
non-axisymmetric shape as axisymmetric models cannot produce kinematic misalignments.
The amplitude of this rotation rises to to the outermost bins to amplitude of approximately
25 km s−1. Within 20”, there is no obvious sense of coherent rotation. Fits to the azimuthal
velocity profile in this region yield amplitudes of . 5 km s−1 with poor constraints on the
phase of the rotation. Fogarty et al. [68] describes the rotation at ∼ 8′′ to have a PA
of 31.5◦ but negligible amplitude. The data presented in Mehrgan et al. [138] also has a
faint indication of rotation with a similar orientation as reported here, though the apparent
amplitude of that rotation was not much larger than the uncertainty in that data.

6.4.3 IC1101 Kinematic Features
The stellar kinematics of IC1101 have previously only been measured through long-slit ob-
servations and those few measurements have only explored the velocity and dispersion along
those slits. Dressler performed used a slit with a PA of −135◦ and found a stellar dispersion
profile which rises with distance from the galaxy’s center [45]. They find a central dispersion
of ∼ 375 km s−1 which rises to ∼ 500 km s−1 ∼ 50′′ from the center in a relatively continu-
ous manner. Fisher et al. seemingly confirmed this result, finding a dispersion profile which
rose slightly from 362 km s−1 at the center to 486 km s−1 11” along a slit with a PA of 31◦
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Figure 6.3: Maps of the stellar kinematics of H15 as measured from Keck KCWI spectra
in 313 spatial bins. The inner 20′′ × 8′′ region is sampled using the small slicer mode of
KCWI to achieve high spatial resolution. Each map shows one of the first eight Gauss-
Hermite moments of the line-of-sight stellar velocity distribution. The fields are oriented so
that north is up and east is left. The background image is an SDSS image of the region
surrounding H15. The mosiac is aligned with an axis with a position angle of −34◦, the
photometric major axis of H15.

[67]. Loubser et al. did not find a rising profile as their data only extended to ∼ 5′′, below
the scale where the rise was previously observed [125].

Our dispersion measurements exhibit qualitatively the same features as these previous
observations. We find a central dispersion of ∼ 380 km s−1, which drops gradually to a
minimum of ∼ 350 km s−1 at 3” from the center. Beyond this, the dispersion rapidly and
continuously rises to ∼ 500–600 km s−1 with large noise in our outermost data beyond 15”.
Similar to with H15, we find h4 ≈ 0 in our central region. For IC1101, h4 rises rapidly
outside the central ∼ 3′′ to lie at roughly 0.08 over most of our data.

Ouside the central region, the velocity field does not show a coherent sense of rotation.
Within the central 5-10”, the velocity field has a ∼ 10 km s−1 rotation which which is
approximately aligned with the photometric long axis (see inset of ’V ’ panel of Fig. 6.5).
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Figure 6.4: (Top) Velocity dispersion (σ) measurements from this work (Blue), Mehrgan
et al. [138] (orange), and Fisher et al. [67] (red). The points from Mehrgan et al. are the
Non-parametric data points shown in their Figure 18. The σ measurements from Mehrgan
et al. lie systematically above the bulk of our data points between 3” and 15”. (Bottom)
The full-width at half-maximum of our new KCWI LOSVDs and from those in Mehrgan et
al. Figure 18 as calculated from σ and h4. The h4 values measured in Mehrgan et al. tend
to be larger than those measured in this work. The inferred FWHM from both datasets
still differ, but with less tension than σ or h4 alone, suggesting that the widths of LOSVDs
coarsely agree but their shapes do not.

6.5 Triaxial Schwarzschild Orbit Modelling
We use the TriOS code [156, 158] to construct triaxial Schwarzschild orbit superposition
models of H15 and IC1101. Models in TriOS consist of a central black hole, a stationary
stellar component parameterized by the deprojection of a two-dimensional MGE, and a dark
matter halo. A pair of libraries of orbits spanning the phase space are integrated and their
contributions to the stellar LOSVDs and light distribution are calculated. Finally, the orbits
in the libraries are superposed with non-negative weights to reproduce the observed stellar
kinematics and light distribution.

The two orbit libraries in TriOS are the x–z and stationary start spaces. For the x–z start
space which consists primarily of loop orbits, we integrate the orbits for 2000 dynamical times
and construct orbits with 120 energies, 54 rays in the x–z plane, and 27 positions along those
rays. A retrograde orbit library is constructed by time-reversing the orbits in the prograde
x–z library. For the stationary start space which consists primarily of box orbits, we integrate
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Figure 6.5: Similar to Fig. 6.3, but for IC1101. At the scale of these maps, the light profile
of IC1101 is very flattened, with ε ∼ 0.5. The mosiac is aligned with an axis with a position
angle of 20◦, the photometric major axis of IC1101. The inset in the velocity map shows
a slight rotation aligned with this photometric axis, but that rotation does not continue
coherently to larger radii.

the orbits for 200 dynamical times and initialize them with 120 energies along a 27×27 array
of positions on the equipotential. We bundle groups of 33 = 27 neighboring orbits in the
phase space together and average their observable properties to enforce smoothness in the
resulting distribution function and to reduce the size of the weight optimization problem.
Additionally, we perform a series of mirroring operations to produce eight versions of each
orbit which lie at the same location in phase space but which have different initial conditions
[158]. In total, our models contain ∼440,000 orbits whose superposition is described by
∼15,000 independent weights.

Deprojection of the two-dimensional MGE is described by a single parameter (the incli-
nation) for axisymmetric deprojections or three parameters for triaxial deprojections. For
triaxial deprojections, a triplet of angles (θ, φ, ψ) associated with the viewing direction from
the galaxy to us and with the orientation of the galaxy on the sky are used to specify the
deprojection. Alternatively, a triplet of shape parameters (T, Tmaj, Tmin) can be used [158].
This triplet of shape parameters is convenient to use while searching the parameter-space
as it maps all valid deprojections into a unit cube and minimizes degeneracies between the
three parameters. In this paper, we’ll use a mixture of these parameters (T ,θ, φ) for intuitive
simplicity.
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Figure 6.6: Velocity dispersion profile of IC1101 from our KCWI observations with compar-
isons to prior measurements. We find qualitative agreement with each prior measurement of
the dispersion of IC1101. The values from Dressler’s 1979 observations (orange; [45]) bracket
ours coarsely tracing the same shape. Fisher’ 1995 observations (red; [67]) lie slightly above
the bulk of our points between 3” and 12” but the large errorbars in those observations
provides consistence with our observations.

6.5.1 Parameter search and model selection
The parameter-space associated with our model selection searches has six dimensions: (MBH,
M∗/L, ρ0, T , θ, φ). The M∗/L is in the filter of the photometric observations–r_G0326 for
H15. The dark matter halo is parameterized by a generalized Navarro-Frenk-White profile
[146] with

ρ(r) =
ρ0

(r/rs)γ(1 + r/rs)3−γ
, (6.1)

where ρ0 is the density scale factor, rs is the scale radius, and γ is the central slope. We
choose a γ = 0 model which has finite central density. For this form, the halo’s density
changes only very gradually within rs, dropping to half the central density at r ≈ 0.25rs
and an eighth the central density by r = rs. We find that our models are not able to
constrain both halo parameters independently, so we fix rs to values roughly preferred in
coarse searches over a seven-dimensional parameter-space (the six parameters enumerated
above, plus rs). For H15 we fix rs = 150 kpc.

To find the preferred models for each galaxy, we follow the procedure described in [120].
First, the parameter-space is broadly searched by points drawn from a Latin hypercube
sampling. Models at these points are evaluated, along with versions of those models where
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the velocities have been scaled up and down by small factors, corresponding to small multi-
plicative shifts in the three mass parameters (MBH, M∗/L, and ρ0). After these models have
been evaluated, we construct 12 random subsets of the models, then use Gaussian process
regression to construct a smooth interpolation of the χ2 values associated with those sub-
sets. We then draw new points from the parameter-space, but only accept those which have
∆χ2 < ∆χ2

cutoff from at least one of the 12 regression surfaces. Initially we use a large cutoff
∆χ2

cutoff to search broadly, then reduce the cutoff with subsequent iterations.
To perform parameter inference, we perform similar Gaussian process regression on the

χ2 values which lie within ∆χ2 < 100 of the global minimum. We use a Matérn ν = 1/2
kernel for the regression. This χ2 surface is passed to the dynesty dynamic nested sampling
code as a log-likelihood, and we use that code to infer parameter posteriors given uniform
priors on each parameter. The final posterior distribution for the model search for H15 is
shown in Fig. 6.7.

6.6 Results and Discussion

6.6.1 Best-fit Triaxial Models of H15
Our sampling of the six-dimensional parameter-space (MBH, M∗/L, ρ0, T , θ, φ) for H15
consists of approximately 23,000 models. As described in Sec. 6.5.1, to infer parameter
values from these discrete model points, we model the log-likelihood surface associated with
the roughly 2,000 of the best-fit models in this space using Gaussian process regression
and sample that continuous log-likelihood surface using dynesty, resulting in the posterior
distribution shown in Fig. 6.7. Here we discuss these results.

First, we find a central SMBH with MBH = 21.7+1.8
−1.9× 109M�. This value is substantially

smaller than the prior measurement (40± 8× 109M�) using MUSE data and axisymmetric
Schwarzschild modelling from Mehrgan et al. [138]. Their value was inferred by splitting
their kinematic observations into four quadrants delineated by the photometric major and
minor axes and fitting their models to the four quadrants independently. Their adopted
value and uncertainty comes from the mean and standard deviation across the locations of
the four best-fit models at (3, 4, 4, and 5)×1010M� (see Fig. 9 of [138]).

The enclosed mass, local density, and enclosed mass fraction for the best-fit models and
the models of Mehrgan et al. [138] are shown in Fig. 6.8. Notably, the enclosed stellar
mass profiles for our preferred models very closely align with those of the prior work, lying
within the error band from their Figure 15 everywhere within 15 kpc and differing by only
∼10% within 100 kpc. On the other hand, the preferred halo in our modelling contributes
considerably less mass within the central 10 kpc than that of Mehrgan et al. Within the
central 10 kpc, the enclosed dark matter mass in our modelling is 5 × 1010M�, while the
models from Mehrgan et al. contain ∼ 1011M� within the same radius. Accordingly, to
produce a comparable dark matter halo mass, the scale density would have to double. As
shown in our modelling posterior (Fig. 6.7), the upper 99.7% credible region extends only
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Figure 6.7: Posterior distributions of the six parameters in our triaxial Schwarzschild models
of H15. The six parameters explored are the central black hole mass MBH, the r_G0326-
band stellar mass-to-light ratio M∗/L, the dark matter halo scale density ρ0, the triaxiality
parameter T , and the viewing angles θ and φ. The three dashed and shaded regions mark
the 68%, 95%, and 99.7% credible regions in 1- and 2-D. The central value reported for
each parameter represents the 50th percentile, while the stated upper and lower uncertainty
bound the central 68% of the posterior mass.

up to about ρ0 = 1.6 × 107M�/kpc
3, about about 15% above the posterior median value.

Similarly, the covariance between the scale density and stellar mass-to-light ratio in our
posterior traces (M∗/L)/(M�/L�) ∼ 9.1− 2.5(ρ0/(10

7M�/kpc
3)). For a halo scale density

which produces a comparable halo mass to Mehrgan et al., this suggestsM∗/L ∼ 2.1M�/L�,
which is unrealistically small for this band.

The preferred viewing angles (θ,φ) are both near their upper limits, corresponding to a
viewing direction near H15’s intermediate axis, and our modelling does not clearly deter-
mine an upper limit for those parameters aside from θ ≤ 90◦ and φ ≤ 90◦ as required by
geometrical constraints. This arrangement of viewing angles maximizes the length of the
short axis c and minimizes the length of the long axis a. The relative length of intermediate
axis between these two values is set by the remaining shape parameter T (often referred
to as the triaxiality parameter), which prefers an intermediate triaxiality of 0.352+0.027

−0.025. A
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triaxiality parameter value of T = 0 corresponds to oblate axisymmetry where the long and
intermediate axes have the same length while T = 1 corresponds to prolate axisymmetry
where the short and intermediate axes have the same length. Intermediate values corre-
spond to triaxial shapes where the intermediate axis has a length between the other two
axis lengths. The preferred triaxiality here strongly excludes axisymmetry. This preference
is consistent with the kinematic misalignment described in Sec. 6.4.2. Due to the symmetry
of their constituent orbits, axisymmetric models cannot exhibit a kinematic misalignment
where the apparent axis of rotation in the projected velocity field is misaligned with the
principal axes of the projected light distribution.

To test whether the lack of an upper bound on the viewing angles is likely to impact
the inferred mass parameters, we’ve repeated our parameter inference using models whose
viewing angles lie at various distances from the intermediate axis. We find that the inferred
mass parameters are broadly consistent even when the viewing orientation is fixed to be up
to 15 degrees from the preferred location. For these models, the preferred black hole mass
shifts downward from the global best-fit value by only about 1σ to 19.5× 109M�.

6.6.2 Scaling relations
The luminosity averaged dispersion across our H15 observations is 306 ± 1 km s−1. Using
the MBH–σ relation for early type galaxies from McConnell and Ma [133], this suggests
log10(MBH/M�) ∼ 9.35 or MBH ∼ 2.25×109M�. This is an order of magnitude smaller than
the value found in our dynamical models described in the previous section (log10MBH/M� ∼
10.34). The intrinsic scatter in that relation is estimated to be 0.34 dex, so this measurement
indeed lies far above the relation.

Our modelling of H15 suggests that its SMBH is among most massive BH dynamically
measured to date. The prior measurement of H15* in Mehrgan et al. [138] placed its mass
at nearly twice that of the next largest SMBH (NGC4889 with MBH = (21± 15)× 109M�;
[135]). Our revised measurement lies near NGC4889’s central value though with substantially
smaller errorbars which allow it to anchor the upper end of the MBH–σ relation. The M�–σ
relation is thought to ’saturate’ in the high-mass regime as dry major mergers simply combine
the black hole masses but gradually raise velocity dispersion [112]. The overmassive SMBH
in H15 supports this picture.

In light of the systematically overmassive black holes in these systems, potential sources of
bias in modelling must be explored. Li et al. examines a sample of of massive galaxies within
the Illustris simulation, finding that for galaxies in their sample some degree of triaxiality
is common [117]. Especially for the most massive systems in their sample (M∗ > 1012M�),
prolate system where p− q < 0.2 are common. The stellar halo in our preferred model has
M∗ = 1012.3M�. Beyond the scope of the MGE fit and deprojection, the stellar density will
tend to be underestimated in our modelling, so this should be understood as an underestimate
of H15’s true stellar mass. Similarly, Ene et al. found that for slowly rotating galxies
within the MASSIVE survey sample, some degree of kinematic misalignment is common,
suggesting non-axisymmetric intrinsic shapes [54]. As described in Sec. 6.2.1, we find such
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Figure 6.8: Enclosed mass, local density, and enclosed mass fraction for H15. For the curves
from this work, we draw mass models from the posterior shown in Fig. 6.7, then mark the
median and 68% credible regions with a solid curve and shaded region, respectively. For
the stellar mass and dark matter mass components, the shaded region is comparable to the
width of the solid line. The stellar mass and halo components from Figure 15 of Mehrgan
et al. [138] are reproduced here (red and blue shaded regions).
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a misalignment for H15. Of the six SMBH’s with MBH > 5 × 109M� whose masses have
been measured through stellar dynamical observations, only one (NGC4486, [120]) has been
determined in models which include triaxial symmetry. Only a small handful of galaxies have
now been explored with both axisymmetric and triaxial Schwarzschild modelling, sometimes
resulting in very different black hole masses: M32 and NGC1453’s masses were consistent
with the two methods [157, 199]; NGC4486, PGC 046832, and NGC2693 [120, 42, 153] have
smaller masses when triaxiality is allowed; and NGC3379 has a larger mass with triaxiality
[199]. This work finds that the inferred mass of H15’s central SMBH while using triaxial
models is nearly halved compared to the previous measurement which assumed axisymmetry.
Of course, there are a multitude of other differences between our data and modelling and
that of Mehrgan et al., so further analysis will be necessary to determine whether these
differences are due to differences in modelling, observations, or both.

As shown in Fig 6.8, the black hole’s sphere of influence, defined to be the radius where
the enclosed stellar mass matches the central SMBH mass, is rSOI = 3.19 ± 0.13 kpc or
2.96±0.12′′. The rSOI–rγ and rSOI–rb relations from Thomas et al. [192] relate this sphere of
influence to the Nuker cusp radius and break radius from a sample of galaxies with 15 core
galaxies with dynamically measured black hole masses. López-Cruz et al. performed Nuker
fits to KPNO and CFHT images of H15, finding rγ = 4.57 kpc for both fits with rb = 18.48
and 20.50, respectively. Madrid and Donzelli [128] performed a Nuker fits to the Gemini
image used in this Chapter (see Section 6.2.1), finding rγ = 5.02 kpc and rb = 11.56 kpc.

These relations slightly over-estimate the size of the sphere of influence of H15’s SMBH.
The two cusp radii noted above predict rSOI to be 4.79 kpc and 5.23 kpc (for rγ = 4.57
kpc and 5.02 kpc, respectively). These over-estimates are 1.1 and 1.3 times the intrinsic
scatter in the relation. Similarly, the three break radii predict rSOI = 12.2, 13.5, and 7.6 kpc
(for rb = 18.48, 20.50, and 11.56 kpc), which lie above our measured value by 3.6, 3.0, and
2.4 times the intrinsic scatter. Notably, the relations in Thomas et al. [192] were fit to a
sample with 0.05 . rSOI/kpc . 1, so the exceptionally large sphere of influence of H15 lies
nearly half a dex beyond the sample. Given this, it’s perhaps surprising that the relations
(especially rSOI–rγ) continue to coarsely hold under such an extrapolation.

Interestingly, theMBH–rb andMBH–rγ relations for Nuker fits substantially over-estimate
the SMBH mass for H15, estimating log10MBH = 11.16–11.70 for the Nuker fits from [123]
and [128], while our dynamical modelling suggests a value which is an order of magnitude
smaller at log10MBH = 10.34.

6.6.3 Implications for IC1101
Dynamical modelling of IC1101 is ongoing and the results of that modelling will be re-
ported in future work, but we can apply the scaling relation behaviors from H15 to estimate
reasonable parameters for IC1101.

Dullo et al. [47] found the core-Sérsic core radius of IC1101 to be 4.2 kpc. The core-Sérsic
rSOI − rb relation from Thomas et al. [192] suggests rSOI ∼ 3.8 kpc. If the overestimation in
this relation is similar to that of the cusp radius relation when applied to H15 we would ex-
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pect rSOI ∼ 2.3–2.5 kpc for IC1101. The isophotes in this central region are relatively circular,
so the enclosed light within these radii in deprojections of the MGE parameterization of the
light profile depend only slightly on the assumed viewing angles. The enclosed light within
2.3-2.5 kpc in an edge-on axisymmetric deprojection of our MGE is 3.8–4.6 × 109LF702W,�.
For M�/LF702W,� = 5–7, this in turn suggests MBH ∼ 19–32× 109M�. This is substantially
smaller than the mass one would infer from the MBH–rb relation, ∼ 1011M�.

6.7 Conclusions
In this chapter we’ve used the Keck Cosmic Web Imager to construct detailed maps of the
stellar kinematics of the brightest cluster galaxies H15 and IC1101. These two galaxies
have exceptionally large and diffuse central regions, which have been speculated to harbor
exceptionally massive central supermassive black holes. The stellar kinematic maps for both
galaxies extend to roughly 50 kpc from the galaxy center. In the central regions, the small
slicer configuration of KCWI is used to achieve a high spatial resolution at the scale of the
black holes’ spheres of influence.

For both galaxies, we find intriguing kinematic features. H15’s velocity field has a sub-
stantial kinematic misalignement, where beyond 20” the kinematic axis which describes the
sense of net rotation is roughly 28◦ misaligned with the photometric minor axis, suggest-
ing that H15’s intrinsic shape is neither oblately or prolately axisymmetric. The measured
velocity dispersion σ in our work is somewhat smaller than that of Mehrgan et al. [138],
but when the higher moment h4 is taken into account the overall widths of the velocity
distributions are comparable. However, the shapes of the distributions are very different,
potentially resulting in different inferred model parameters.

We find IC1101 to have the same rising velocity dispersion profile which was first de-
scribed by Dressler [45]. Our data is the first integral field unit exploration of IC1101,
linking the small and large scale kinematic behaviors with high spatial resolution and high
signal-to-noise. Our observations agree with the prior measurements by Dressler [45], Fisher
[67], and Loubser [125]. The rising σ profile in our data extends to our outermost data
points, from ∼ 350 km s−1 at 3” to 500–600 km s−1 beyond 15”.

We’ve used the TriOS triaxial orbit superposition code to model the kinematics of H15.
We perform over 23,000 models, simultaneously exploring the central supermassive black
hole mass, the stellar mass-to-light ratio, the halo scale density, and three parameters which
specify the three-dimensional intrinsic shape. We find that the mass of the central super-
massive black hole is 21.7+1.8

−1.9 × 109M�. This is roughly half the previous value measured
by Mehrgan et al., though we find that models with substantially larger black holes are in-
compatible with our data. H15 is found to be highly triaxial with the triaxiality parameter
T = 0.352+0.027

−0.025.
The various scaling relations between H15’s black hole and other parameters yield a wide

range of inferred MBH, in part due to uncertainties in prior parameterizations of the light
profile. We find that the size of the black hole’s sphere of influence is well predicted from
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H15’s Nuker cusp radius by the relation described in Thomas et al. [192], but the MBH–rγ
relation over-estimates the black hole mass by an order of magnitude. Similarly, the MBH–σ
relation for early-type galaxies from McConnell and Ma [133] underestimates the black hole
mass by about an order of magnitude.

Finally, we consider the implications of these over and under-estimates to IC1101, whose
data will be modelled in future work. The MBH–rγ and MBH–σ relations continue to predict
black hole masses which differ by roughly an order of magnitude. However, if IC1101 deviates
from the rSOI − rb relation in a similar manner to H15, we should expect it to have a central
supermassive black hole with MBH = 19 − 32 × 109M�, which would be amongst the most
massive black holes to be measured through stellar dynamical observation and modelling.

Appendix

6.A Multi-Gaussian Expansion Parameters
The Multi Gaussian Expansion (MGE) fits to the surface brightness profiles described in
Sec 6.2 are presented in Tables 6.1 and 6.2. The MGE parameterization is has the form

Σ(R′, θ′) =
N∑
j=1

Lj
2πσ2

j q
′
j

exp

[
− 1

2σ2
j

(
x′2j +

y′2j
q′2j

)]
, (6.2)

which is presented as Eqn 1 in Cappellari 2002 [24]. R′ and θ′ are polar coordinates on
the sky plane and x′j = R′ sin(θ′ − ψj) and y′j = R′ cos(θ′ − ψj). The MGE consists of N
components, each with a corresponding σj, q′j, and ψj. We choose a parameterizations where
ψj is fixed for all components, which keeps a constant photometric position in the fit. We
use ψ = −34◦ for H15 and ψ = 20◦ for IC1101. For H15, the data is very well fit within
70” with residuals of less than 10% and there is no clear photometric twist in the data. For
IC1101, Dullo et al. [47] finds evidence of a slight photometric twist. In their two-dimension
fits which included core-Sérsic, Sérsic, and exponential components, they found that the
central core-Sérsic spheroid had a position angle of 18.4◦ and the Sérsic component had
21.1◦, while the outer exponential halo was roughly twenty degrees misaligned with a PA of
38◦. Indications of this slight twist appear in our fits, where surface brightness isophotes near
the edge of the PC1 chip of the WFPC2 image are apparently oriented slightly clockwise of
the MGE fit isophotes (see lower left panel of Fig 6.2). Despite this slight twist, fits with
the position angle fixed to 20◦ are still relatively good, with < 10% residuals within 10”, a
∼ 15% light deficit along the major axis and a ∼ 15% light surplus along the minor.
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Ik [L�/pc
2] σ′

k [arcsec] q′k
11.219 0.96 0.955
35.767 0.96 0.911
129.90 2.969 1.000
125.53 6.531 0.735
110.40 11.46 0.792
28.854 24.43 0.639
7.0301 36.89 0.802
1.5427 95.15 1.000

Table 6.1: Best-fit MGE parameters for the surface brightness of H15. For each of the 8
two-dimensional Gaussian components, the first column lists the central surface brightness
density, the middle column lists the dispersion of the Gaussian, and the last column lists the
axis ratio, where primed variables denote projected quantities.

Ik [L�/pc
2] σ′

k [arcsec] q′k
138.96 0.400 1.000
207.73 1.403 1.000
170.61 2.130 0.778
230.89 3.449 0.746
89.652 6.234 0.666
56.690 11.07 0.558
41.694 21.82 0.498
11.985 56.46 0.415
2.6436 87.50 0.936

Table 6.2: Best-fit MGE parameters for the surface brightness of IC1101. For each of the 9
two-dimensional Gaussian components, the first column lists the central surface brightness
density, the middle column lists the dispersion of the Gaussian, and the last column lists the
axis ratio, where primed variables denote projected quantities.
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Chapter 7

Closing Discussion and Future
Directions

This dissertation has broadly explored the development of a number of techniques and strate-
gies for performing Schwarzschild orbit modelling of galaxies with central supermassive black
holes and triaxial stellar halos with the goal of simultaneously measuring the mass of the
central black hole and the intrinsic three-dimensional triaxial shape.

A number of background topics were discussed in Chapter 1.
Chapters 2 and 3 described our first usage of the TriOS triaxial orbit superposition code

in the axisymmetric limit to make the first Schwarzschild modelling measurement of the
mass of the black hole in NGC1453 (2.9 × 109M�). To do this, we needed to establish the
conditions under which the TriOS code would build robust models near the axisymmetric
limit. Along the way we also found a number of issues with previous prescriptions for usage
of the code, including, for example, that the line-of-sight velocity distributions of the stars
tended to be under-constrained.

Chapter 4 discussed the usage of the TriOS for models with full-fledged triaxiality. We
identified a set of shape parameters that conveniently describe the transformation between
the intrinsic coordinate system of the galaxy and the projected coordinate system while also
describing the relative values of the three intrinsic axis lengths. We also found a number
of major issues relevant to robust modelling of triaxial galaxies: we fixed an error in the
application of a mirroring symmetry that exists in static triaxial potentials; we improved the
orbit sampling density to reduce artifacts from the discrete orbit initial conditions; and we
fixed a number of smaller bugs. We applied the improved code again to NGC1453 and found
that our measurement of the black hole mass was essentially unchanged as the symmetry
was relaxed from axisymmetry to triaxiality.

Chapter 5 presented new measurements of the stellar kinematics of M87 and performed
triaxial Schwarzschild modelling of that data with TriOS. We found that the intrinsic shape
of M87 is indeed highly triaxial and that the data is fully incompatible with axisymmetry.
This is in large part related to our detection of a prominent kinematic misalignment in
the velocity field of M87, where the apparent axis of rotation is about halfway between
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both principal photometric axes. The mass of M87* as inferred from our data with triaxial
TriOS models is somewhat smaller than measured in previous work that used axisymmetric
Schwarzschild modelling at 5.37× 109M�.

Chapter 6 expands on the previous chapter by presenting new measurements of the stellar
kinematics of Holmberg 15A and IC1101 using observations from the Keck Cosmic Web
Imager. These two galaxies have extremely diffuse central cores, suggesting that they should
have extremely massive central supermassive black holes. We perform triaxial Schwarzschild
modelling of Holmberg 15A using TriOS, finding an intrinsically triaxial shape and a black
hole whose mass is only half of that from a prior measurement that used axisymmetric
Schwarzschild modelling (21.7× 109M�).

There are a number of astrophysical motivations which underlaid this work. First, the
total number of dynamically measured black hole masses in the regime explored in this
work is still quite small – only 6 black hole masses above 5 × 109M� have been measured
dynamically. This work adds a new mass measurement just below this threshold (NGC1453,
2.9× 109M�) and revises two prior measurements above this threshold (M87, 5.4× 109M�;
Holmberg 15A, 21.7× 109M�).

Beyond simply adding additional counts to the high-mass black hole census, the mea-
surements presented in this work are among the first assuming full-fledged triaxiality in the
stellar potential and fully exploring the space of allowed intrinsic shapes while modelling.
This is significant for a number of reasons. First, the very massive galaxies that are tar-
geted by both this work and the MASSIVE survey more broadly are likely to be intrinsically
triaxial. Though this triaxiality only slightly changes the shape of the galaxy, compressing
the intermediate axis of all three galaxies we’ve explored here by . 15%, it fundamentally
changes the sense of symmetry of the underlying potential. Under triaxial potentials addi-
tional orbit families are allowed that don’t exist in axisymmetry, including a second family
of loop orbits and box orbits that have no net sense of rotation and tend to be highly radially
anisotropic near the origin of the potential. The additional nuances associated with triaxial
potentials make robust triaxial Schwarzschild modelling technically difficult, as described in
Chapter 4.

A primary advantage of Schwarzschild modelling over other simpler techniques is its
ability to reproduce the internal orbital structure of the galaxy. A major difficulty in relating
the observed motion of the stars and the potential is the fact that only motion along the
line of sight is observable, so the three-dimensional motion must be inferred assuming some
velocity anisotropy. Schwarzschild modelling avoids explicit assumptions on the velocity
anisotropy by explicitly constructing self-consistent three-dimensional velocity distributions
from integrated orbits in the potential. However, this advantage may be partially lost when
the Schwarzschild models cannot reproduce the true symmetry associated with the galaxy
under consideration as the velocity anisotropies may differ significantly and consequentially
from the true anisotropy and orbital structure. In particular, since triaxial models include
box and box-like orbits which can be centrophilic and highly radial near the central black hole
those models may have additional flexibility to be more radially anisotropic near the origin
than axisymmetric models. The central anisotropy has long been understood to be strongly
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related to the inferred enclosed mass. Famously, the first black hole mass measurement of
M87* from stellar kinematics by Sargent et al [170] was disputed by Binney and Mamon who
re-fit the data without a black hole by allowing for a highly anisotopic velocity dispersion
[10].

A major open question that this dissertation has begun to address is whether the appar-
ently overmassive black hole mass measurements in the highest mass regime (& 5× 109M�)
in the various scaling relations (e.g., MBH–σ) is in part due to systematic biases associated
with assumptions of axisymmetry instead of triaxiality. To present there are 7 cases where
both axisymmetry and triaxiality have been used to measure the black hole mass of the same
galaxy. Of these, three are presented in this dissertation (NGC1453 in Chapters 2 and 4;
M87 in Chapter 5; Holmberg 15A in Chapter 6) and a fourth is presented in adjacent work
[153]. For these seven cases, two have consistent masses in the two measurements (M32,
[199]; NGC1453, Chapters 2 and 4 [119, 157]), one has a larger mass when triaxiality is
assumed (NGC3379, [199]), and four have smaller masses when triaxiality is allowed (PGC
046832, [42]; NGC2693, [153]; M87, Chapter 5 [77, 120]; Holmberg 15A, Chapter 6 [138]).
Both of these cases which lie above 5 × 109M� (M87 and Holmberg 15A) have a smaller
black hole in work using triaxial models rather than axisymmetry, though the multitude of
differences between the prior works which assumed axisymmetry and the new work which
assumes triaxiality make these comparisons inexact.

Several of the scaling relations between the central black hole mass and other galaxy
properties are expected to have different slopes in the high-massive regime for a number
of reasons, including the increased importance of dry mergers in forming the host galaxies
[8, 61, 145], shifts in the types of galaxies in the mergers [112] and in the environments
surrounding the mergers [16]. In light of this, it’s vitally important to ensure that the most
massive measured black hole masses are accurate in order to produce the most meaningful
constraints on models for evolution and merging of the most massive galaxies in our universe.
The work presented in this dissertation lays the groundwork for substantial movement along
this axis. In addition to the data presented in this dissertation, we have collected a KCWI
observations on a number of other distant galaxies with ultra diffuse cores, which are expected
to hold similarly massive black holes to Holmberg 15A. These, along with the observations
taken as part of the MASSIVE survey, present us now with both plentiful data and robust
tools to greatly expand our current supermassive black hole census.



154

Bibliography

[1] C. P. Ahn et al. “The Black Hole in the Most Massive Ultracompact Dwarf Galaxy
M59-UCD3”. In: Astrophys. J. 858, 102 (May 2018), p. 102. doi: 10.3847/1538-
4357/aabc57. arXiv: 1804.02399.

[2] Pau Amaro-Seoane et al. “Astrophysics with the Laser Interferometer Space An-
tenna.” In: 2203.06016 (Mar. 2022), Preprint at https://arxiv.org/abs/2203.06016.

[3] F. Annibali et al. “Nearby early-type galaxies with ionized gas. III. Analysis of line-
strength indices with new stellar population models”. In: Astron. & Astrophys. 463
(Feb. 2007), pp. 455–479. doi: 10.1051/0004-6361:20054726. eprint: arXiv:astro-
ph/0609175.

[4] Stephen Bailey. “Principal Component Analysis with Noisy and/or Missing Data”.
In: Pub. Astron. Soc. Pacific 124.919 (Sept. 2012), p. 1015. doi: 10.1086/668105.

[5] A. J. Barth, L. C. Ho, and W. L. W. Sargent. “A Study of the Direct Fitting Method
for Measurement of Galaxy Velocity Dispersions”. In: Astron. J. 124 (Nov. 2002),
pp. 2607–2614. doi: 10.1086/343840. eprint: astro-ph/0209564.

[6] M. C. Begelman, R. D. Blandford, and M. J. Rees. “Massive black hole binaries in
active galactic nuclei”. In: Nature 287 (Sept. 1980), pp. 307–309. doi: 10 . 1038 /
287307a0.

[7] R. Bender. “Unraveling the kinematics of early-type galaxies. Presentation of a new
method and its application to NGC 4621.” In: Astron. & Astrophys. 229 (Mar. 1990),
pp. 441–451.

[8] Ralf Bender, David Burstein, and S. M. Faber. “Dynamically Hot Galaxies. I. Struc-
tural Properties”. In: Astrophys. J. 399 (Nov. 1992), p. 462. doi: 10.1086/171940.

[9] J. Binney. “On the rotation of elliptical galaxies”. In: Mon. Not. R. Astron. Soc. 183
(May 1978), pp. 501–514.

[10] J. Binney and G. A. Mamon. “M/L and velocity anisotropy from observations of
spherical galaxies, of must M 87 have a massive black hole ?” In: Mon. Not. R.
Astron. Soc. 200 (July 1982), pp. 361–375. doi: 10.1093/mnras/200.2.361.

[11] J. Binney and D. Spergel. “Spectral stellar dynamics. II - The action integrals”. In:
Mon. Not. R. Astron. Soc. 206 (Jan. 1984), pp. 159–177. doi: 10.1093/mnras/206.
1.159.



BIBLIOGRAPHY 155

[12] J. J. Binney, Roger L. Davies, and Garth D. Illingworth. “Velocity Mapping and
Models of the Elliptical Galaxies NGC 720, NGC 1052, and NGC 4697”. In: Astrophys.
J. 361 (Sept. 1990), p. 78. doi: 10.1086/169169.

[13] James Binney. “Testing for triaxiality with kinematic data”. In: Mon. Not. R. Astron.
Soc. 212.4 (Feb. 1985), pp. 767–781. issn: 0035-8711. doi: 10.1093/mnras/212.4.
767. eprint: http://oup.prod.sis.lan/mnras/article-pdf/212/4/767/3792766/
mnras212-0767.pdf. url: https://doi.org/10.1093/mnras/212.4.767.

[14] Jams Binney and Scott Tremaine. Galactic Dynamics, 2nd edition), p. 75. 2008.
[15] Paolo Bonfini, Bililign T. Dullo, and Alister W. Graham. “Too Big to Be Real? No

Depleted Core in Holm 15A”. In: Astrophys. J. 807.2, 136 (July 2015), p. 136. doi:
10.1088/0004-637X/807/2/136. arXiv: 1506.08560 [astro-ph.GA].

[16] M. Boylan-Kolchin, C.-P. Ma, and E. Quataert. “Dissipationless mergers of elliptical
galaxies and the evolution of the fundamental plane”. In: Mon. Not. R. Astron. Soc.
362 (Sept. 2005), pp. 184–196. doi: 10.1111/j.1365-2966.2005.09278.x. eprint:
astro-ph/0502495.

[17] Avery E. Broderick et al. “The Photon Ring in M87*”. In: Astrophys. J. 935.1, 61
(Aug. 2022), p. 61. doi: 10.3847/1538-4357/ac7c1d.

[18] M. Cappellari. “Measuring the inclination and mass-to-light ratio of axisymmetric
galaxies via anisotropic Jeans models of stellar kinematics”. In: Mon. Not. R. Astron.
Soc. 390 (Oct. 2008), pp. 71–86. doi: 10.1111/j.1365-2966.2008.13754.x. arXiv:
0806.0042.

[19] M. Cappellari et al. “The ATLAS3D project - I. A volume-limited sample of 260 nearby
early-type galaxies: science goals and selection criteria”. In: Mon. Not. R. Astron. Soc.
413 (May 2011), pp. 813–836. doi: 10.1111/j.1365-2966.2010.18174.x. arXiv:
1012.1551 [astro-ph.CO].

[20] M. Cappellari et al. “The SAURON project - IV. The mass-to-light ratio, the virial
mass estimator and the Fundamental Plane of elliptical and lenticular galaxies”. In:
Mon. Not. R. Astron. Soc. 366 (Mar. 2006), pp. 1126–1150. doi: 10.1111/j.1365-
2966.2005.09981.x. eprint: arXiv:astro-ph/0505042.

[21] M. Cappellari and Y. Copin. “Adaptive spatial binning of integral-field spectroscopic
data using Voronoi tessellations”. In: Mon. Not. R. Astron. Soc. 342 (June 2003),
pp. 345–354. doi: 10.1046/j.1365-8711.2003.06541.x. eprint: astro-ph/0302262.

[22] M. Cappellari and E. Emsellem. “Parametric Recovery of Line-of-Sight Velocity Dis-
tributions from Absorption-Line Spectra of Galaxies via Penalized Likelihood”. In:
Pub. Astron. Soc. Pacific 116 (Feb. 2004), pp. 138–147. doi: 10.1086/381875. eprint:
arXiv:astro-ph/0312201.

[23] M. Cappellari et al. “The Counterrotating Core and the Black Hole Mass of IC 1459”.
In: Astrophys. J. 578.2 (Oct. 2002), pp. 787–805. doi: 10.1086/342653. url: https:
//doi.org/10.1086%2F342653.



BIBLIOGRAPHY 156

[24] Michele Cappellari. “Efficient multi-Gaussian expansion of galaxies”. In: Mon. Not. R.
Astron. Soc. 333.2 (2002), pp. 400–410. doi: 10.1046/j.1365-8711.2002.05412.x.
eprint: /oup/backfile/content_public/journal/mnras/333/2/10.1046_j.1365-
8711.2002.05412.x/2/333-2-400.pdf. url: http://dx.doi.org/10.1046/j.
1365-8711.2002.05412.x.

[25] Michele Cappellari. “Efficient solution of the anisotropic spherically aligned axisym-
metric Jeans equations of stellar hydrodynamics for galactic dynamics”. In: Mon. Not.
R. Astron. Soc. 494.4 (June 2020), pp. 4819–4837. doi: 10.1093/mnras/staa959.
arXiv: 1907.09894 [astro-ph.GA].

[26] Michele Cappellari. “Improving the full spectrum fitting method: accurate convolution
with Gauss-Hermite functions”. In: Mon. Not. R. Astron. Soc. 466.1 (Apr. 2017),
pp. 798–811. doi: 10.1093/mnras/stw3020. arXiv: 1607.08538 [astro-ph.GA].

[27] Michele Cappellari. “Improving the full spectrum fitting method: accurate convolution
with Gauss–Hermite functions”. In: Mon. Not. R. Astron. Soc. 466.1 (Nov. 2016),
pp. 798–811. issn: 0035-8711. doi: 10.1093/mnras/stw3020. eprint: http://oup.
prod.sis.lan/mnras/article-pdf/466/1/798/10865080/stw3020.pdf. url:
https://doi.org/10.1093/mnras/stw3020.

[28] Michele Cappellari et al. “Testing Mass Determinations of Supermassive Black Holes
via Stellar Kinematics”. In: AIP Conference Proceedings 1240.1 (2010), pp. 211–214.
doi: 10.1063/1.3458489. eprint: https://aip.scitation.org/doi/pdf/10.1063/
1.3458489. url: https://aip.scitation.org/doi/abs/10.1063/1.3458489.

[29] Michele Cappellari et al. “The mass of the black hole in Centaurus A from SINFONI
AO-assisted integral-field observations of stellar kinematics”. In: Mon. Not. R. Astron.
Soc. 394.2 (2009), pp. 660–674. doi: 10.1111/j.1365-2966.2008.14377.x. eprint:
/oup/backfile/content_public/journal/mnras/394/2/10.1111/j.1365-
2966.2008.14377.x/2/mnras0394-0660.pdf. url: http://dx.doi.org/10.1111/
j.1365-2966.2008.14377.x.

[30] A. J. Cenarro et al. “Empirical calibration of the near-infrared Ca ii triplet - I. The
stellar library and index definition”. In: Mon. Not. R. Astron. Soc. 326 (Sept. 2001),
pp. 959–980. doi: 10.1046/j.1365-8711.2001.04688.x. eprint: astro-ph/0109157.

[31] Patrick Côté et al. “Dynamics of the Globular Cluster System Associated with M87
(NGC 4486). II. Analysis”. In: Astrophys. J. 559.2 (Oct. 2001), pp. 828–850. doi:
10.1086/322347.

[32] Patrick Côté et al. “The ACS Fornax Cluster Survey. II. The Central Brightness
Profiles of Early-Type Galaxies: A Characteristic Radius on Nuclear Scales and the
Transition from Central Luminosity Deficit to Excess”. In: Astrophys. J. 671.2 (Dec.
2007), pp. 1456–1465. doi: 10.1086/522822. arXiv: 0711.1358 [astro-ph].



BIBLIOGRAPHY 157

[33] N. Cretton et al. “Axisymmetric Three-Integral Models for Galaxies”. In: Astrophys.
J. Suppl. Ser. 124.2 (Oct. 1999), pp. 383–401. doi: 10.1086/313264. arXiv: astro-
ph/9902034 [astro-ph].

[34] Nicolas Cretton and Eric Emsellem. “On the reliability of the black hole mass and
mass-to-light ratio determinations with Schwarzschild models”. In: Mon. Not. R. As-
tron. Soc. 347.2 (Jan. 2004), pp. L31–L35. doi: 10.1111/j.1365-2966.2004.07374.
x. arXiv: astro-ph/0312307 [astro-ph].

[35] A. C. Crook et al. “Groups of Galaxies in the Two Micron All Sky Redshift Survey”.
In: Astrophys. J. 655 (Feb. 2007), pp. 790–813. doi: 10.1086/510201. eprint: arXiv:
astro-ph/0610732.

[36] T. A. Davis et al. “The MASSIVE survey - III. Molecular gas and a broken Tully-
Fisher relation in the most massive early-type galaxies”. In: Mon. Not. R. Astron. Soc.
455 (Jan. 2016), pp. 214–226. doi: 10.1093/mnras/stv2313. arXiv: 1510.00729.

[37] T. A. Davis et al. “The MASSIVE survey - XI. What drives the molecular gas proper-
ties of early-type galaxies”. In: Mon. Not. R. Astron. Soc. 486 (June 2019), pp. 1404–
1423. doi: 10.1093/mnras/stz871. arXiv: 1903.08884.

[38] Stefano de Nicola et al. “Non-parametric triaxial deprojection of elliptical galaxies”.
In: Mon. Not. R. Astron. Soc. 496.3 (Aug. 2020), pp. 3076–3100. doi: 10.1093/
mnras/staa1703. arXiv: 2006.05971 [astro-ph.GA].

[39] G. de Vaucouleurs. “Photoelectric photometry of the Andromeda Nebula in the UBV
system.” In: Astrophys. J. 128 (Nov. 1958), p. 465. doi: 10.1086/146564.

[40] Gerard de Vaucouleurs. “Recherches sur les Nebuleuses Extragalactiques”. In: Annales
d’Astrophysique 11 (Jan. 1948), p. 247.

[41] Tim de Zeeuw and Marijn Franx. “Kinematics of Gas in a Triaxial Galaxy”. In:
Astrophys. J. 343 (Aug. 1989), p. 617. doi: 10.1086/167735.

[42] Mark den Brok et al. “Dynamical modelling of the twisted galaxy PGC 046832”. In:
Mon. Not. R. Astron. Soc. 508.4 (Dec. 2021), pp. 4786–4805. doi: 10.1093/mnras/
stab2852. arXiv: 2109.14640 [astro-ph.GA].

[43] Jared L. Deutsch and Clayton V. Deutsch. “Latin hypercube sampling with mul-
tidimensional uniformity”. In: Journal of Statistical Planning and Inference 142.3
(2012), pp. 763–772. issn: 0378-3758. doi: https://doi.org/10.1016/j.jspi.
2011.09.016. url: https://www.sciencedirect.com/science/article/pii/
S0378375811003776.

[44] Tuan Do et al. “Relativistic redshift of the star S0-2 orbiting the Galactic Center
supermassive black hole”. In: Science 365.6454 (Aug. 2019), pp. 664–668. doi: 10.
1126/science.aav8137. arXiv: 1907.10731 [astro-ph.GA].

[45] A. Dressler. “The dynamics and structure of the cD galaxy in Abell 2029.” In: Astro-
phys. J. 231 (Aug. 1979), pp. 659–670. doi: 10.1086/157229.



BIBLIOGRAPHY 158

[46] Alan Dressler and Douglas O. Richstone. “New Measurements of Stellar Kinematics
in the Core of M87”. In: Astrophys. J. 348 (Jan. 1990), p. 120. doi: 10.1086/168218.

[47] Bililign T. Dullo, Alister W. Graham, and Johan H. Knapen. “A remarkably large
depleted core in the Abell 2029 BCG IC 1101”. In: Mon. Not. R. Astron. Soc. 471.2
(Oct. 2017), pp. 2321–2333. doi: 10 . 1093 / mnras / stx1635. arXiv: 1707 . 02277
[astro-ph.GA].

[48] G. Efstathiou, R. S. Ellis, and D. Carter. “Spectroscopic observations of three elliptical
galaxies.” In: Mon. Not. R. Astron. Soc. 193 (Dec. 1980), pp. 931–946. doi: 10.1093/
mnras/193.4.931.

[49] E. Emsellem et al. “The SAURON project - IX. A kinematic classification for early-
type galaxies”. In: Mon. Not. R. Astron. Soc. 379 (Aug. 2007), pp. 401–417. doi:
10.1111/j.1365-2966.2007.11752.x. eprint: arXiv:astro-ph/0703531.

[50] E. Emsellem, D. Krajnovic, and M. Sarzi. “A kinematically distinct core and minor-
axis rotation: the MUSE perspective on M87.” In: Mon. Not. R. Astron. Soc. 445
(Nov. 2014), pp. L79–L83. doi: 10.1093/mnrasl/slu140.

[51] E. Emsellem, G. Monnet, and R. Bacon. “The multi-gaussian expansion method: a
tool for building realistic photometric and kinematical models of stellar systems I.
The formalism”. In: Astron. & Astrophys. 285 (May 1994), pp. 723–738.

[52] E. Emsellem et al. “The SAURON project - III. Integral-field absorption-line kine-
matics of 48 elliptical and lenticular galaxies”. In: Mon. Not. R. Astron. Soc. 352
(Aug. 2004), pp. 721–743. doi: 10.1111/j.1365-2966.2004.07948.x. eprint:
astro-ph/0404034.

[53] I. Ene et al. “The MASSIVE Survey XIII. Spatially Resolved Stellar Kinematics in
the Central 1 kpc of 20 Massive Elliptical Galaxies with the GMOS-North Integral
Field Spectrograph”. In: Astrophys. J. 878, 57 (June 2019), p. 57. doi: 10.3847/1538-
4357/ab1f04. arXiv: 1904.08929.

[54] Irina Ene et al. “The MASSIVE Survey - X. Misalignment between kinematic and
photometric axes and intrinsic shapes of massive early-type galaxies”. In: Mon. Not.
R. Astron. Soc. 479.2 (Sept. 2018), pp. 2810–2826. doi: 10.1093/mnras/sty1649.
arXiv: 1802.00014 [astro-ph.GA].

[55] Irina Ene et al. “The MASSIVE Survey XIV – Stellar Velocity Profiles and Kinematic
Misalignments from 200 pc to 20 kpc in Massive Early-type Galaxies”. In: (2020).
arXiv: 2001.11046 [astro-ph.GA].

[56] Peter Erwin. “IMFIT: A Fast, Flexible New Program for Astronomical Image Fitting”.
In: Astrophys. J. 799.2, 226 (Feb. 2015), p. 226. doi: 10.1088/0004-637X/799/2/226.
arXiv: 1408.1097 [astro-ph.IM].



BIBLIOGRAPHY 159

[57] Event Horizon Telescope Collaboration et al. “First M87 Event Horizon Telescope
Results. I. The Shadow of the Supermassive Black Hole”. In: Astrophys. J. Lett.
875.1, L1 (Apr. 2019), p. L1. doi: 10.3847/2041-8213/ab0ec7. arXiv: 1906.11238
[astro-ph.GA].

[58] Event Horizon Telescope Collaboration et al. “First M87 Event Horizon Telescope
Results. V. Physical Origin of the Asymmetric Ring”. In: Astrophys. J. Lett. 875.1,
L5 (Apr. 2019), p. L5. doi: 10.3847/2041-8213/ab0f43. arXiv: 1906.11242 [astro-
ph.GA].

[59] Event Horizon Telescope Collaboration et al. “First M87 Event Horizon Telescope
Results. VI. The Shadow and Mass of the Central Black Hole”. In: Astrophys. J. Lett.
875.1, L6 (Apr. 2019), p. L6. doi: 10.3847/2041-8213/ab1141.

[60] Event Horizon Telescope Collaboration et al. “First Sagittarius A* Event Horizon
Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of
the Milky Way”. In: Astrophys. J. Lett. 930.2, L12 (May 2022), p. L12. doi: 10.3847/
2041-8213/ac6674.

[61] S. M. Faber et al. “The Centers of Early-Type Galaxies with HST. IV. Central Pa-
rameter Relations.” In: Astron. J. 114 (Nov. 1997), p. 1771. doi: 10.1086/118606.
eprint: arXiv:astro-ph/9610055.

[62] S. M. Faber et al. “Spectroscopy and Photometry of Elliptical Galaxies. VI. Sample
Selection and Data Summary”. In: Astrophys. J. Suppl. Ser. 69 (Apr. 1989), p. 763.
doi: 10.1086/191327.

[63] J. Falcón-Barroso and M. Martig. “BAYES-LOSVD: A Bayesian framework for non-
parametric extraction of the line-of-sight velocity distribution of galaxies”. In: Astron.
& Astrophys. 646, A31 (Feb. 2021), A31. doi: 10.1051/0004-6361/202039624. arXiv:
2011.12023 [astro-ph.GA].

[64] J. Falcón-Barroso et al. “An updated MILES stellar library and stellar population
models”. In: Astron. & Astrophys. 532, A95 (Aug. 2011), A95. doi: 10.1051/0004-
6361/201116842. arXiv: 1107.2303.

[65] A. Feldmeier-Krause et al. “Triaxial orbit-based modelling of the Milky Way nuclear
star cluster”. In: Mon. Not. R. Astron. Soc. 466.4 (2017), pp. 4040–4052. doi: 10.
1093/mnras/stw3377. eprint: /oup/backfile/content_public/journal/mnras/
466/4/10.1093_mnras_stw3377/4/stw3377.pdf. url: http://dx.doi.org/10.
1093/mnras/stw3377.

[66] L. Ferrarese et al. “The ACS Virgo Cluster Survey. VI. Isophotal Analysis and the
Structure of Early-Type Galaxies”. In: Astrophys. J. Suppl. Ser. 164 (June 2006),
pp. 334–434. doi: 10.1086/501350.

[67] David Fisher, Garth Illingworth, and Marijn Franx. “Kinematics of 13 brightest clus-
ter galaxies”. In: Astrophys. J. 438 (Jan. 1995), pp. 539–562. issn: 0004-637X. doi:
10.1086/175100.



BIBLIOGRAPHY 160

[68] L. M. R. Fogarty et al. “The SAMI Pilot Survey: stellar kinematics of galaxies in
Abell 85, 168 and 2399”. In: Mon. Not. R. Astron. Soc. 454 (Dec. 2015), pp. 2050–
2066. doi: 10.1093/mnras/stv2060. arXiv: 1509.02641.

[69] L. M. R. Fogarty et al. “The SAMI Pilot Survey: the kinematic morphology-density
relation in Abell 85, Abell 168 and Abell 2399”. In: Mon. Not. R. Astron. Soc. 443.1
(Sept. 2014), pp. 485–503. doi: 10.1093/mnras/stu1165. arXiv: 1406.3899 [astro-
ph.GA].

[70] Duncan A. Forbes et al. “Keck Cosmic Web Imager (KCWI) spectra of globular
clusters and ultracompact dwarfs in the halo of M87”. In: Mon. Not. R. Astron. Soc.
497.1 (Sept. 2020), pp. 765–775. doi: 10.1093/mnras/staa1924.

[71] C. Foster et al. “The SAMI Galaxy Survey: the intrinsic shape of kinematically se-
lected galaxies”. In: Mon. Not. R. Astron. Soc. 472.1 (Nov. 2017), pp. 966–978. doi:
10.1093/mnras/stx1869. arXiv: 1709.03585 [astro-ph.GA].

[72] C. Foster et al. “The SAMI Galaxy Survey: the intrinsic shape of kinematically se-
lected galaxies”. In: Mon. Not. R. Astron. Soc. 472.1 (Nov. 2017), pp. 966–978. doi:
10.1093/mnras/stx1869.

[73] M. Franx, G. Illingworth, and T. de Zeeuw. “The ordered nature of elliptical galaxies
- Implications for their intrinsic angular momenta and shapes”. In: Astrophys. J. 383
(Dec. 1991), pp. 112–134. doi: 10.1086/170769.

[74] Marijn Franx. “The projection of galaxy models with a Staeckel potential”. In: Mon.
Not. R. Astron. Soc. 231 (Mar. 1988), pp. 285–308. doi: 10.1093/mnras/231.2.285.

[75] K. Gebhardt and J. Thomas. “The Black Hole Mass, Stellar Mass-to-Light Ratio,
and Dark Halo in M87”. In: Astrophys. J. 700 (Aug. 2009), pp. 1690–1701. doi:
10.1088/0004-637X/700/2/1690. arXiv: 0906.1492 [astro-ph.CO].

[76] K. Gebhardt et al. “Axisymmetric Dynamical Models of the Central Regions of Galax-
ies”. In: Astrophys. J. 583 (Jan. 2003), pp. 92–115. doi: 10.1086/345081. eprint:
astro-ph/0209483. url: http://adsabs.harvard.edu/abs/2003ApJ...583...
92G.

[77] K. Gebhardt et al. “The Black Hole Mass in M87 from Gemini/NIFS Adaptive Optics
Observations”. In: Astrophys. J. 729, 119 (Mar. 2011), p. 119. doi: 10.1088/0004-
637X/729/2/119. arXiv: 1101.1954 [astro-ph.CO].

[78] Karl Gebhardt, R. M. Rich, and Luis C. Ho. “A 20,000 Msolar Black Hole in the
Stellar Cluster G1”. In: Astrophys. J. Lett. 578.1 (Oct. 2002), pp. L41–L45. doi:
10.1086/342980. arXiv: astro-ph/0209313 [astro-ph].

[79] Karl Gebhardt et al. “Axisymmetric, Three-Integral Models of Galaxies: A Massive
Black Hole in NGC 3379”. In: Astron. J. 119.3 (Mar. 2000), pp. 1157–1171. doi:
10.1086/301240. arXiv: astro-ph/9912026 [astro-ph].



BIBLIOGRAPHY 161

[80] Ortwin E. Gerhard and James J. Binney. “On the deprojection of axisymmetric bod-
ies”. In: Mon. Not. R. Astron. Soc. 279 (Apr. 1996), p. 993. doi: 10.1093/mnras/
279.3.993. arXiv: astro-ph/9508116 [astro-ph].

[81] Nicholas I. M. Gould, Dominique Orban, and Philippe L. Toint. “GALAHAD, a
Library of Thread-safe Fortran 90 Packages for Large-scale Nonlinear Optimization”.
In: ACM Trans. Math. Softw. 29.4 (Dec. 2003), pp. 353–372. issn: 0098-3500. doi:
10.1145/962437.962438. url: http://doi.acm.org/10.1145/962437.962438.

[82] A. D. Goulding et al. “The MASSIVE Survey. IV. The X-ray Halos of the Most
Massive Early-type Galaxies in the Nearby Universe”. In: Astrophys. J. 826, 167 (Aug.
2016), p. 167. doi: 10.3847/0004-637X/826/2/167. arXiv: 1604.01764.

[83] Charles F. Goullaud et al. “The MASSIVE Survey. IX. Photometric Analysis of 35
High-mass Early-type Galaxies with HST WFC3/IR”. In: Astrophys. J. 856, 11 (Mar.
2018), p. 11. doi: 10.3847/1538-4357/aab1f3.

[84] Alister W. Graham et al. “A New Empirical Model for the Structural Analysis of
Early-Type Galaxies, and A Critical Review of the Nuker Model”. In: Astron. J.
125.6 (June 2003), pp. 2951–2963. doi: 10.1086/375320. arXiv: astro-ph/0306023
[astro-ph].

[85] Gravity Collaboration et al. “A geometric distance measurement to the Galactic cen-
ter black hole with 0.3% uncertainty”. In: Astron. & Astrophys. 625, L10 (May 2019),
p. L10. doi: 10.1051/0004-6361/201935656. arXiv: 1904.05721 [astro-ph.GA].

[86] Jenny E Greene et al. “THE MASSIVE SURVEY. II. STELLAR POPULATION
TRENDS OUT TO LARGE RADIUS IN MASSIVE EARLY-TYPE GALAXIES”.
In: Astrophys. J. 807.1 (2015), p. 11. issn: 15384357. doi: 10.1088/0004-637X/807/
1/11.

[87] Jenny E. Greene et al. “The MASSIVE Survey. XII. Connecting Stellar Populations
of Early-type Galaxies to Kinematics and Environment”. In: Astrophys. J. 874.1 (Mar.
2019), p. 66. doi: 10.3847/1538-4357/ab01e3. url: https://doi.org/10.3847%
2F1538-4357%2Fab01e3.

[88] Jorrit H. J. Hagen, Amina Helmi, and Maarten A. Breddels. “Axisymmetric Schwarzschild
models of an isothermal axisymmetric mock dwarf spheroidal galaxy”. In: Astron. &
Astrophys. 632, A99 (Dec. 2019), A99. doi: 10.1051/0004-6361/201936196. arXiv:
1907.00156 [astro-ph.GA].

[89] N. Häring and H.-W. Rix. “On the Black Hole Mass-Bulge Mass Relation”. In: Astro-
phys. J. Lett. 604 (Apr. 2004), pp. L89–L92. doi: 10.1086/383567. eprint: astro-
ph/0402376.

[90] Richard J. Harms et al. “HST FOS Spectroscopy of M87: Evidence for a Disk of
Ionized Gas around a Massive Black Hole”. In: Astrophys. J. Lett. 435 (Nov. 1994),
p. L35. doi: 10.1086/187588.



BIBLIOGRAPHY 162

[91] G. Heiligman and M. Schwarzschild. “On the nonexistence of three-dimensional tube
orbits around the intermediate axis in a triaxial galaxy model.” In: Astrophys. J. 233.3
(Nov. 1979), pp. 872–876. doi: 10.1086/157449.

[92] Lars Hernquist. “An Analytical Model for Spherical Galaxies and Bulges”. In: Astro-
phys. J. 356 (June 1990), p. 359. doi: 10.1086/168845.

[93] G. J. Hill et al. “Design, construction, and performance of VIRUS-P: the prototype
of a highly replicated integral-field spectrograph for HET”. In: Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series. Vol. 7014. Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Aug. 2008. doi:
10.1117/12.790235.

[94] J. G. Hoessel. “The photometric properties of brightest cluster galaxies. II. Sit and
CCD surface photometry.” In: Astrophys. J. 241 (Oct. 1980), pp. 493–506. doi: 10.
1086/158364.

[95] Erik Holmberg. “A Study of Double and Multiple Galaxies Together with Inquiries
into some General Metagalactic Problems”. In: Annals of the Observatory of Lund 6
(Jan. 1937), pp. 1–173.

[96] I. M. Hook et al. “The Gemini-North Multi-Object Spectrograph: Performance in
Imaging, Long-Slit, and Multi-Object Spectroscopic Modes”. In: Pub. Astron. Soc.
Pacific 116 (May 2004), pp. 425–440. doi: 10.1086/383624.

[97] E. P. Hubble. “A spiral nebula as a stellar system, Messier 31.” In: Astrophys. J. 69
(Mar. 1929), pp. 103–158. doi: 10.1086/143167.

[98] E. P. Hubble. “Extragalactic nebulae.” In: Astrophys. J. 64 (Dec. 1926), pp. 321–369.
doi: 10.1086/143018.

[99] E. P. Hubble. “NGC 6822, a remote stellar system.” In: Astrophys. J. 62 (Dec. 1925),
pp. 409–433. doi: 10.1086/142943.

[100] E. P. Hubble. “The classification of spiral nebulae”. In: The Observatory 50 (Sept.
1927), pp. 276–281.

[101] Joseph B. Jensen et al. “Infrared Surface Brightness Fluctuation Distances for MAS-
SIVE and Type Ia Supernova Host Galaxies”. In: arXiv e-prints, arXiv:2105.08299
(May 2021), arXiv:2105.08299. arXiv: 2105.08299 [astro-ph.CO].

[102] Yunpeng Jin et al. “Evaluating the ability of triaxial Schwarzschild modelling to
estimate properties of galaxies from the Illustris simulation”. In: Mon. Not. R. Astron.
Soc. 486.4 (July 2019), pp. 4753–4772. doi: 10.1093/mnras/stz1170. arXiv: 1904.
12942 [astro-ph.GA].

[103] Yunpeng Jin et al. “SDSS-IV MaNGA: Internal mass distributions and orbital struc-
tures of early-type galaxies and their dependence on environment”. In: Mon. Not. R.
Astron. Soc. 491.2 (Jan. 2020), pp. 1690–1708. doi: 10.1093/mnras/stz3072. arXiv:
1911.00777 [astro-ph.GA].



BIBLIOGRAPHY 163

[104] C. L. Joseph et al. “The Nuclear Dynamics of M32. I. Data and Stellar Kinematics”.
In: Astrophys. J. 550.2 (Apr. 2001), pp. 668–690. doi: 10 . 1086 / 319781. arXiv:
astro-ph/0005530 [astro-ph].

[105] Paul Knysh and Yannis Korkolis. “Blackbox: A procedure for parallel optimization
of expensive black-box functions”. In: arXiv e-prints, arXiv:1605.00998 (May 2016),
arXiv:1605.00998. arXiv: 1605.00998 [cs.MS].

[106] J. Kormendy and R. Bender. “A Proposed Revision of the Hubble Sequence for El-
liptical Galaxies”. In: Astrophys. J. 464 (June 1996), p. L119. doi: 10.1086/310095.

[107] J. Kormendy and R. Bender. “Correlations between Supermassive Black Holes, Ve-
locity Dispersions, and Mass Deficits in Elliptical Galaxies with Cores”. In: Astrophys.
J. Lett. 691 (Feb. 2009), pp. L142–L146. doi: 10.1088/0004-637X/691/2/L142.
arXiv: 0901.3778 [astro-ph.GA].

[108] J. Kormendy and L. C. Ho. “Coevolution (Or Not) of Supermassive Black Holes and
Host Galaxies”. In: Ann. Rev. Astron. Astrophys. 51 (Aug. 2013), pp. 511–653. doi:
10.1146/annurev-astro-082708-101811. arXiv: 1304.7762 [astro-ph.CO].

[109] J. Kormendy et al. “Structure and Formation of Elliptical and Spheroidal Galaxies”.
In: Astrophys. J. Suppl. Ser. 182 (May 2009), pp. 216–309. doi: 10.1088/0067-
0049/182/1/216. arXiv: 0810.1681.

[110] D. Krajnović et al. “A quartet of black holes and a missing duo: probing the low end
of the MBH-σ relation with the adaptive optics assisted integral-field spectroscopy”.
In: Mon. Not. R. Astron. Soc. 477 (July 2018), pp. 3030–3064. doi: 10.1093/mnras/
sty778. arXiv: 1803.08055.

[111] Davor Krajnović et al. “Determination of masses of the central black holes in NGC
524 and 2549 using laser guide star adaptive optics”. In: Mon. Not. R. Astron. Soc.
399.4 (2009), pp. 1839–1857. doi: 10.1111/j.1365-2966.2009.15415.x. eprint:
/oup/backfile/content_public/journal/mnras/399/4/10.1111/j.1365-
2966.2009.15415.x/2/mnras0399-1839.pdf. url: http://dx.doi.org/10.1111/
j.1365-2966.2009.15415.x.

[112] T. R. Lauer et al. “The Masses of Nuclear Black Holes in Luminous Elliptical Galaxies
and Implications for the Space Density of the Most Massive Black Holes”. In: Astro-
phys. J. 662 (June 2007), pp. 808–834. doi: 10.1086/518223. eprint: arXiv:astro-
ph/0606739.

[113] T. R. Lauer et al. “The Centers of Early-Type Galaxies with HST.I.An Observational
Survey”. In: Astron. J. 110 (Dec. 1995), p. 2622. doi: 10.1086/117719.

[114] Tod R. Lauer et al. “The Centers of Early-Type Galaxies with Hubble Space Tele-
scope. V. New WFPC2 Photometry”. In: Astron. J. 129.5 (May 2005), pp. 2138–2185.
doi: 10.1086/429565. arXiv: astro-ph/0412040 [astro-ph].



BIBLIOGRAPHY 164

[115] Gigi Y. C. Leung et al. “The EDGE-CALIFA survey: validating stellar dynamical
mass models with CO kinematics”. In: Mon. Not. R. Astron. Soc. 477.1 (June 2018),
pp. 254–292. doi: 10.1093/mnras/sty288. arXiv: 1803.02259 [astro-ph.GA].

[116] Chao Li et al. “A discrete chemo-dynamical model of M87’s globular clusters: Kine-
matics extending to ∼400 kpc”. In: Mon. Not. R. Astron. Soc. 492.2 (Feb. 2020),
pp. 2775–2795. doi: 10.1093/mnras/staa027.

[117] H. Li et al. “The origin and properties of massive prolate galaxies in the Illustris
simulation”. In: Mon. Not. R. Astron. Soc. 473 (Jan. 2018), pp. 1489–1511. doi:
10.1093/mnras/stx2374. arXiv: 1709.03345.

[118] Hongyu Li et al. “SDSS-IV MaNGA: The Intrinsic Shape of Slow Rotator Early-type
Galaxies”. In: Astrophys. J. Lett. 863.2, L19 (Aug. 2018), p. L19. doi: 10.3847/2041-
8213/aad54b.

[119] Christopher M. Liepold et al. “The MASSIVE Survey. XV. A Stellar Dynamical
Mass Measurement of the Supermassive Black Hole in Massive Elliptical Galaxy NGC
1453”. In: Astrophys. J. 891.1 (Feb. 2020), p. 4. doi: 10.3847/1538-4357/ab6f71.

[120] Emily R. Liepold, Chung-Pei Ma, and Jonelle L. Walsh. “Keck Integral-field Spec-
troscopy of M87 Reveals an Intrinsically Triaxial Galaxy and a Revised Black Hole
Mass”. In: Astrophys. J. Lett. 945.2, L35 (Mar. 2023), p. L35. doi: 10.3847/2041-
8213/acbbcf. arXiv: 2302.07884 [astro-ph.GA].

[121] Mathias Lipka and Jens Thomas. “A novel approach to optimize the regularization
and evaluation of dynamical models using a model selection framework”. In: Mon.
Not. R. Astron. Soc. (Apr. 2021). doi: 10.1093/mnras/stab1092. arXiv: 2104.10168
[astro-ph.GA].

[122] A. Longobardi et al. “Kinematics of the outer halo of M 87 as mapped by planetary
nebulae”. In: Astron. & Astrophys. 620, A111 (Dec. 2018), A111. doi: 10.1051/0004-
6361/201832729.

[123] O. López-Cruz et al. “The Brightest Cluster Galaxy in A85: The Largest Core Known
So Far”. In: Astrophys. J. Lett. 795.2, L31 (Nov. 2014), p. L31. doi: 10.1088/2041-
8205/795/2/L31. arXiv: 1405.7758 [astro-ph.GA].

[124] S. I. Loubser and P. Sánchez-Blázquez. “The ultraviolet upturn in brightest cluster
galaxies”. In: Mon. Not. R. Astron. Soc. 410.4 (Jan. 2011), pp. 2679–2689. issn:
0035-8711. doi: 10.1111/j.1365-2966.2010.17666.x. eprint: https://academic.
oup.com/mnras/article-pdf/410/4/2679/6297232/mnras0410-2679.pdf. url:
https://doi.org/10.1111/j.1365-2966.2010.17666.x.

[125] S. I. Loubser et al. “Radial kinematics of brightest cluster galaxies”. In: Mon. Not. R.
Astron. Soc. 391.3 (Dec. 2008), pp. 1009–1028. doi: 10.1111/j.1365-2966.2008.
13813.x. arXiv: 0808.1521.



BIBLIOGRAPHY 165

[126] C.-P. Ma et al. “The MASSIVE Survey. I. A Volume-limited Integral-field Spectro-
scopic Study of the Most Massive Early-type Galaxies within 108 Mpc”. In: Astro-
phys. J. 795, 158 (Nov. 2014), p. 158. doi: 10.1088/0004-637X/795/2/158. arXiv:
1407.1054.

[127] F. Macchetto et al. “The Supermassive Black Hole of M87 and the Kinematics of
Its Associated Gaseous Disk”. In: Astrophys. J. 489.2 (Nov. 1997), pp. 579–600. doi:
10.1086/304823. arXiv: astro-ph/9706252 [astro-ph].

[128] Juan P. Madrid and Carlos J. Donzelli. “The Abell 85 BCG: A Nucleated, Coreless
Galaxy”. In: Astrophys. J. 819.1, 50 (Mar. 2016), p. 50. doi: 10.3847/0004-637X/
819/1/50. arXiv: 1603.00078 [astro-ph.GA].

[129] J. Magorrian et al. “The Demography of Massive Dark Objects in Galaxy Centers”.
In: Astron. J. 115 (June 1998), pp. 2285–2305. doi: 10.1086/300353. eprint: astro-
ph/9708072.

[130] John Magorrian. “Constraining black hole masses from stellar kinematics by summing
over all possible distribution functions”. In: Mon. Not. R. Astron. Soc. 373.1 (Nov.
2006), pp. 425–434. doi: 10.1111/j.1365-2966.2006.11054.x. arXiv: astro-
ph/0609238 [astro-ph].

[131] John Magorrian. “Kinematical signatures of hidden stellar discs”. In: Mon. Not. R.
Astron. Soc. 302.3 (Jan. 1999), pp. 530–536. doi: 10.1046/j.1365-8711.1999.
02135.x. arXiv: astro-ph/9902033 [astro-ph].

[132] Roeland P. van der Marel and Marijn Franx. “A new method for the identification
of non-Gaussian line profiles in elliptical galaxies”. In: Astrophys. J. 407 (Apr. 1993),
p. 525. issn: 0004-637X. doi: 10.1086/172534. url: http://adsabs.harvard.edu/
doi/10.1086/172534.

[133] N. J. McConnell and C.-P. Ma. “Revisiting the Scaling Relations of Black Hole Masses
and Host Galaxy Properties”. In: Astrophys. J. 764, 184 (Feb. 2013), p. 184. doi:
10.1088/0004-637X/764/2/184. arXiv: 1211.2816 [astro-ph.CO].

[134] N. J. McConnell et al. “The Black Hole Mass in the Brightest Cluster Galaxy NGC
6086”. In: Astrophys. J. 728, 100 (Feb. 2011), p. 100. doi: 10.1088/0004-637X/728/
2/100. arXiv: 1009.0750 [astro-ph.CO].

[135] N. J. McConnell et al. “Two ten-billion-solar-mass black holes at the centres of gi-
ant elliptical galaxies”. In: Nature 480 (Dec. 2011), pp. 215–218. doi: 10 . 1038 /
nature10636. arXiv: 1112.1078 [astro-ph.CO].

[136] Nicholas J. McConnell et al. “Dynamical measurements of black hole masses in four
brightest cluster galaxies at 100 Mpc”. In: Astrophys. J. 756.2 (2012). issn: 15384357.
doi: 10.1088/0004-637X/756/2/179. arXiv: 1203.1620. url: http://iopscience.
iop.org/article/10.1088/0004-637X/756/2/179/pdf.



BIBLIOGRAPHY 166

[137] M. D. McKay, R. J. Beckman, and W. J. Conover. “A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a Computer
Code”. In: Technometrics 21.2 (1979), pp. 239–245. issn: 00401706. url: http://
www.jstor.org/stable/1268522.

[138] Kianusch Mehrgan et al. “A 40 Billion Solar-mass Black Hole in the Extreme Core of
Holm 15A, the Central Galaxy of Abell 85”. In: Astrophys. J. 887.2, 195 (Dec. 2019),
p. 195. doi: 10.3847/1538-4357/ab5856. arXiv: 1907.10608 [astro-ph.GA].

[139] Kianusch Mehrgan et al. “Detailed Shapes of the Line-of-sight Velocity Distributions
in Massive Early-type Galaxies from Nonparametric Spectral Models”. In: Astrophys.
J. 948.2, 79 (May 2023), p. 79. doi: 10.3847/1538-4357/acbf2e. arXiv: 2303.01495
[astro-ph.GA].

[140] Simona Mei et al. “The ACS Virgo Cluster Survey. XIII. SBF Distance Catalog and
the Three-dimensional Structure of the Virgo Cluster”. In: Astrophys. J. 655.1 (Jan.
2007), pp. 144–162. doi: 10.1086/509598. arXiv: astro-ph/0702510 [astro-ph].

[141] F. Mertens et al. “Kinematics of the jet in M 87 on scales of 100-1000 Schwarzschild
radii”. In: Astron. & Astrophys. 595, A54 (Oct. 2016), A54. doi: 10.1051/0004-
6361/201628829. arXiv: 1608.05063 [astro-ph.HE].

[142] Patrick Morrissey et al. “The Keck Cosmic Web Imager Integral Field Spectrograph”.
In: Astrophys. J. 864.1, 93 (Sept. 2018), p. 93. doi: 10.3847/1538-4357/aad597.

[143] Sahil Moza. sahilm89/lhsmdu: Latin Hypercube Sampling with Multi-Dimensional
Uniformity (LHSMDU): Speed Boost minor compatibility fixes. Version 1.1.1. July
2020. doi: 10.5281/zenodo.3929531. url: https://doi.org/10.5281/zenodo.
3929531.

[144] J. D. Murphy, K. Gebhardt, and J. J. Adams. “Galaxy Kinematics with VIRUS-P:
The Dark Matter Halo of M87”. In: Astrophys. J. 729 (Mar. 2011), pp. 129–+. doi:
10.1088/0004-637X/729/2/129. arXiv: 1101.1957 [astro-ph.CO].

[145] Thorsten Naab, Sadegh Khochfar, and Andreas Burkert. “Properties of Early-Type,
Dry Galaxy Mergers and the Origin of Massive Elliptical Galaxies”. In: Astrophys.
J. Lett. 636.2 (Jan. 2006), pp. L81–L84. doi: 10.1086/500205. arXiv: astro-ph/
0509667 [astro-ph].

[146] Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White. “The Structure of Cold
Dark Matter Halos”. In: Astrophys. J. 462 (May 1996), p. 563. doi: 10.1086/177173.
arXiv: astro-ph/9508025 [astro-ph].

[147] L. J. Oldham and M. W. Auger. “Galaxy structure from multiple tracers - II. M87
from parsec to megaparsec scales”. In: Mon. Not. R. Astron. Soc. 457.1 (Mar. 2016),
pp. 421–439. doi: 10.1093/mnras/stv2982.

[148] Lindsay Oldham and Matthew Auger. “Galaxy structure from multiple tracers - III.
Radial variations in M87’s IMF”. In: Mon. Not. R. Astron. Soc. 474.3 (Mar. 2018),
pp. 4169–4185. doi: 10.1093/mnras/stx2969.



BIBLIOGRAPHY 167

[149] Viraj Pandya et al. “The MASSIVE Survey VI: The Spatial Distribution and Kine-
matics of Warm Ionized Gas in the Most Massive Local Early-type Galaxies”. In:
Astrophys. J. 837 (2017), pp. 1–16. doi: 10 . 3847 / 1538 - 4357 / aa5ebc. arXiv:
1701.08772.

[150] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[151] Reynier F. Peletier et al. “The SAURON project – XI. Stellar populations from
absorption-line strength maps of 24 early-type spirals”. In: Mon. Not. R. Astron.
Soc. 379.2 (July 2007), pp. 445–468. issn: 0035-8711. doi: 10.1111/j.1365-2966.
2007.11860.x. eprint: http://oup.prod.sis.lan/mnras/article-pdf/379/2/
445/3372070/mnras0379-0445.pdf. url: https://doi.org/10.1111/j.1365-
2966.2007.11860.x.

[152] D. Pfenniger. “The velocity fields of barred galaxies.” In: Astron. & Astrophys. 141
(Dec. 1984), pp. 171–188.

[153] Jacob D. Pilawa et al. “The MASSIVE Survey. XVII. A Triaxial Orbit-based Deter-
mination of the Black Hole Mass and Intrinsic Shape of Elliptical Galaxy NGC 2693”.
In: Astrophys. J. 928.2, 178 (Apr. 2022), p. 178. doi: 10.3847/1538-4357/ac58fd.

[154] Adriano Poci et al. “Combining stellar populations with orbit-superposition dynami-
cal modelling: the formation history of the lenticular galaxy NGC 3115”. In: Mon. Not.
R. Astron. Soc. 487.3 (Aug. 2019), pp. 3776–3796. doi: 10.1093/mnras/stz1154.
arXiv: 1904.11605 [astro-ph.GA].

[155] Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Dynami-
cal Modeling of Galaxies and Supermassive Black Holes: Axisymmetry in Triaxial
Schwarzschild Orbit Superposition Models”. In: Astrophys. J. Suppl. Ser. 254.2, 25
(June 2021), p. 25. doi: 10.3847/1538-4365/abe6a0. arXiv: 2005.00542 [astro-
ph.GA].

[156] Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Dynami-
cal Modeling of Galaxies and Supermassive Black Holes: Axisymmetry in Triaxial
Schwarzschild Orbit Superposition Models”. In: Astrophys. J. Suppl. Ser. 254.2, 25
(June 2021), p. 25. doi: 10.3847/1538-4365/abe6a0. arXiv: 2005.00542 [astro-
ph.GA].

[157] Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Triaxial Orbit-
based Dynamical Modeling of Galaxies with Supermassive Black Holes and an Ap-
plication to Massive Elliptical Galaxy NGC 1453”. In: Astrophys. J. 926.1, 30 (Feb.
2022), p. 30. doi: 10.3847/1538-4357/ac3e68.



BIBLIOGRAPHY 168

[158] Matthew E. Quenneville, Christopher M. Liepold, and Chung-Pei Ma. “Triaxial Orbit-
based Dynamical Modeling of Galaxies with Supermassive Black Holes and an Appli-
cation to Massive Elliptical Galaxy NGC 1453”. In: The Astrophysical Journal 926.1
(Feb. 2022), p. 30. doi: 10.3847/1538-4357/ac3e68. url: https://doi.org/10.
3847/1538-4357/ac3e68.

[159] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. 2006.

[160] D. O. Richstone and S. Tremaine. “A general method for constructing spherical galaxy
models”. In: Astrophys. J. 286 (Nov. 1984), pp. 27–37. doi: 10.1086/162572.

[161] D. O. Richstone and S. Tremaine. “Dynamical models of M 87 without a central black
hole.” In: Astrophys. J. 296 (Sept. 1985), pp. 370–378. doi: 10.1086/163455.

[162] Hans-Walter Rix et al. “Dynamical Modeling of Velocity Profiles: The Dark Halo
around the Elliptical Galaxy NGC 2434”. In: Astrophys. J. 488.2 (Oct. 1997), pp. 702–
719. doi: 10.1086/304733. arXiv: astro-ph/9702126 [astro-ph].

[163] Aaron J. Romanowsky and Christopher S. Kochanek. “Dynamics of Stars and Glob-
ular Clusters in M87”. In: Astrophys. J. 553.2 (June 2001), pp. 722–732. doi: 10.
1086/320947.

[164] S. P. Rusli et al. “The Influence of Dark Matter Halos on Dynamical Estimates of
Black Hole Mass: 10 New Measurements for High-σ Early-type Galaxies”. In: Astron.
J. 146, 45 (Sept. 2013), p. 45. doi: 10.1088/0004-6256/146/3/45. arXiv: 1306.1124
[astro-ph.CO].

[165] R. P. Saglia et al. “The SINFONI Black Hole Survey: The Black Hole Fundamental
Plane Revisited and the Paths of (Co)evolution of Supermassive Black Holes and
Bulges”. In: Astrophys. J. 818, 47 (Feb. 2016), p. 47. doi: 10.3847/0004-637X/818/
1/47.

[166] P. Sánchez-Blázquez et al. “Medium-resolution Isaac Newton Telescope library of
empirical spectra”. In: Mon. Not. R. Astron. Soc. 371 (Sept. 2006), pp. 703–718. doi:
10.1111/j.1365-2966.2006.10699.x. eprint: astro-ph/0607009.

[167] P. Sánchez-Blázquez et al. “Medium-resolution Isaac Newton Telescope library of
empirical spectra”. In: Mon. Not. R. Astron. Soc. 371 (Sept. 2006), pp. 703–718. doi:
10.1111/j.1365-2966.2006.10699.x. eprint: astro-ph/0607009.

[168] Jason L. Sanders and James Binney. “A fast algorithm for estimating actions in
triaxial potentials”. In: Mon. Not. R. Astron. Soc. 447.3 (Mar. 2015), pp. 2479–2496.
doi: 10.1093/mnras/stu2598. arXiv: 1412.2093 [astro-ph.GA].

[169] Giulia Santucci et al. “The SAMI Galaxy Survey: The Internal Orbital Structure and
Mass Distribution of Passive Galaxies from Triaxial Orbit-superposition Schwarzschild
Models”. In: Astrophys. J. 930.2, 153 (May 2022), p. 153. doi: 10 . 3847 / 1538 -
4357/ac5bd5.



BIBLIOGRAPHY 169

[170] W. L. W. Sargent et al. “Dynamical evidence for a central mass concentration in the
galaxy M87.” In: Astrophys. J. 221 (May 1978), pp. 731–744. doi: 10.1086/156077.

[171] W. L. W. Sargent et al. “Velocity dispersions for 13 galaxies.” In: Astrophys. J. 212
(Mar. 1977), pp. 326–334. doi: 10.1086/155052.

[172] Marc Sarzi et al. “MUSE observations of M87: radial gradients for the stellar initial-
mass function and the abundance of sodium”. In: Mon. Not. R. Astron. Soc. 478.3
(Aug. 2018), pp. 4084–4100. doi: 10.1093/mnras/sty1092.

[173] M. Schwarzschild. “A numerical model for a triaxial stellar system in dynamical equi-
librium”. In: Astrophys. J. 232 (Aug. 1979), pp. 236–247. doi: 10.1086/157282.

[174] Martin Schwarzschild. “Self-consistent Models for Galactic Halos”. In: Astrophys. J.
409 (June 1993), p. 563. doi: 10.1086/172687.

[175] J. L. Sérsic. “Influence of the atmospheric and instrumental dispersion on the bright-
ness distribution in a galaxy”. In: Boletin de la Asociacion Argentina de Astronomia
La Plata Argentina 6 (Feb. 1963), pp. 41–43.

[176] Anil C. Seth et al. “A supermassive black hole in an ultra-compact dwarf galaxy”. In:
Nature 513.1 (2014), p. 398. doi: 10.1038/nature13762. url: https://doi.org/
10.1038/nature13762.

[177] Kristen L. Shapiro et al. “The black hole in NGC 3379: a comparison of gas and
stellar dynamical mass measurements with HST and integral-field data”. In: Mon.
Not. R. Astron. Soc. 370.2 (Aug. 2006), pp. 559–579. doi: 10.1111/j.1365-2966.
2006.10537.x. arXiv: astro-ph/0605479 [astro-ph].

[178] J. Shen and K. Gebhardt. “The Supermassive Black Hole and Dark Matter Halo of
NGC 4649 (M60)”. In: Astrophys. J. 711 (Mar. 2010), pp. 484–494. doi: 10.1088/
0004-637X/711/1/484. arXiv: 0910.4168 [astro-ph.CO].

[179] Christos Siopis et al. “A STELLAR DYNAMICAL MEASUREMENT OF THE
BLACK HOLE MASS IN THE MASER GALAXY NGC 4258”. In: Astrophys. J.
693.1 (Mar. 2009), pp. 946–969. doi: 10.1088/0004-637x/693/1/946.

[180] Kurt T. Soto et al. “ZAP – enhanced PCA sky subtraction for integral field spec-
troscopy”. In: Monthly Notices of the Royal Astronomical Society 458.3 (Mar. 2016),
pp. 3210–3220. issn: 0035-8711. doi: 10.1093/mnras/stw474.

[181] Joshua S. Speagle. “DYNESTY: a dynamic nested sampling package for estimating
Bayesian posteriors and evidences”. In: Mon. Not. R. Astron. Soc. 493.3 (Apr. 2020),
pp. 3132–3158. doi: 10.1093/mnras/staa278.

[182] S. Sridhar and J. Touma. “Stellar dynamics around black holes in galactic nuclei”. In:
Mon. Not. R. Astron. Soc. 303.3 (Mar. 1999), pp. 483–494. doi: 10.1046/j.1365-
8711.1999.02218.x. arXiv: astro-ph/9811304 [astro-ph].



BIBLIOGRAPHY 170

[183] S. Sridhar and Jihad Touma. “Stellar dynamics around a massive black hole – I. Sec-
ular collisionless theory”. In: Mon. Not. R. Astron. Soc. 458.4 (Mar. 2016), pp. 4129–
4142. issn: 0035-8711. doi: 10.1093/mnras/stw542. eprint: http://oup.prod.sis.
lan/mnras/article-pdf/458/4/4129/18509203/stw542.pdf.

[184] Antony A. Stark. “Triaxial Models of the Bulge of M31”. In: Astrophys. J. 213 (Apr.
1977), pp. 368–373. doi: 10.1086/155164.

[185] Thomas S. Statler, Herwig Dejonghe, and Tammy Smecker-Hane. “The Three-Dimensional
Mass Distribution in NGC 1700”. In: Astron. J. 117.1 (Jan. 1999), pp. 126–139. doi:
10.1086/300688. arXiv: astro-ph/9810046 [astro-ph].

[186] Jay Strader et al. “Wide-field Precision Kinematics of the M87 Globular Cluster
System”. In: Astrophys. J. Suppl. Ser. 197.2, 33 (Dec. 2011), p. 33. doi: 10.1088/
0067-0049/197/2/33.

[187] Stephen R. Taylor. “The Nanohertz Gravitational Wave Astronomer”. In: arXiv e-
prints, arXiv:2105.13270 (May 2021), arXiv:2105.13270.

[188] S. Thater et al. “A low upper mass limit for the central black hole in the late-type
galaxy NGC 4414”. In: Astron. & Astrophys. 597 (2017), A18. doi: 10.1051/0004-
6361/201629480. url: https://doi.org/10.1051/0004-6361/201629480.

[189] Sabine Thater et al. “Six new supermassive black hole mass determinations from
adaptive-optics assisted SINFONI observations”. In: A&A 625 (2019), A62. doi: 10.
1051 / 0004 - 6361 / 201834808. url: https : / / doi . org / 10 . 1051 / 0004 - 6361 /
201834808.

[190] J. Thomas et al. “Mapping stationary axisymmetric phase-space distribution func-
tions by orbit libraries”. In: Mon. Not. R. Astron. Soc. 353.2 (Sept. 2004), pp. 391–
404. issn: 0035-8711. doi: 10.1111/j.1365-2966.2004.08072.x. eprint: http:
//oup.prod.sis.lan/mnras/article-pdf/353/2/391/3858810/353-2-391.pdf.

[191] J. Thomas et al. “The Dynamical Fingerprint of Core Scouring in Massive Elliptical
Galaxies”. In: Astrophys. J. 782, 39 (Feb. 2014), p. 39. doi: 10.1088/0004-637X/
782/1/39. arXiv: 1311.3783 [astro-ph.GA].

[192] Jens Thomas et al. “A 17-billion-solar-mass black hole in a group galaxy with a diffuse
core”. In: Nature 532 (Apr. 2016), pp. 340–342. doi: 10.1038/nature17197.

[193] Paul Tiede et al. “Measuring Photon Rings with the ngEHT”. In: Galaxies 10.6 (Dec.
2022), p. 111. doi: 10.3390/galaxies10060111. arXiv: 2210.13498 [astro-ph.HE].

[194] J. Tonry and M. Davis. “A survey of galaxy redshifts. I. Data reduction techniques.”
In: Astron. J. 84 (Oct. 1979), pp. 1511–1525. doi: 10.1086/112569.

[195] B. Tremblay and D. Merritt. “Evidence From Intrinsic Shapes for Two Families of
Elliptical Galaxies”. In: Astron. J. 111 (June 1996), p. 2243. doi: 10.1086/117959.
eprint: astro-ph/9601038.



BIBLIOGRAPHY 171

[196] Francisco Valdes et al. “The Indo-US Library of Coudé Feed Stellar Spectra”. In:
Astrophys. J. Suppl. Ser. 152.2 (June 2004), pp. 251–259. doi: 10.1086/386343.
arXiv: astro-ph/0402435 [astro-ph].

[197] Monica Valluri, David Merritt, and Eric Emsellem. “Difficulties with Recovering the
Masses of Supermassive Black Holes from Stellar Kinematical Data”. In: Astrophys.
J. 602.1 (Feb. 2004), pp. 66–92. doi: 10.1086/380896. arXiv: astro-ph/0210379
[astro-ph].

[198] Monica Valluri et al. “A Unified Framework for the Orbital Structure of Bars and
Triaxial Ellipsoids”. In: Astrophys. J. 818.2, 141 (Feb. 2016), p. 141. doi: 10.3847/
0004-637X/818/2/141. arXiv: 1512.03467 [astro-ph.GA].

[199] R. C. E. van den Bosch and P. T. de Zeeuw. “Estimating black hole masses in triaxial
galaxies”. In: Mon. Not. R. Astron. Soc. 401 (Jan. 2010), pp. 1770–1780. doi: 10.
1111/j.1365-2966.2009.15832.x. arXiv: 0910.0844 [astro-ph.CO].

[200] R. C. E. van den Bosch and P. T. de Zeeuw. “Estimating black hole masses in triaxial
galaxies”. In: Mon. Not. R. Astron. Soc. 401 (Jan. 2010), pp. 1770–1780. doi: 10.
1111/j.1365-2966.2009.15832.x.

[201] R. C. E. van den Bosch et al. “An over-massive black hole in the compact lentic-
ular galaxy NGC1277”. In: Nature 491 (Nov. 2012), pp. 729–731. doi: 10.1038/
nature11592. arXiv: 1211.6429 [astro-ph.CO].

[202] R. C. E. van den Bosch et al. “Triaxial orbit based galaxy models with an application
to the (apparent) decoupled core galaxy NGC 4365”. In: Mon. Not. R. Astron. Soc.
385 (Apr. 2008), pp. 647–666. doi: 10.1111/j.1365-2966.2008.12874.x. arXiv:
0712.0113.

[203] Remco C. E. van den Bosch and Glenn van de Ven. “Recovering the intrinsic shape of
early-type galaxies”. In: Mon. Not. R. Astron. Soc. 398.3 (Sept. 2009), pp. 1117–1128.
doi: 10.1111/j.1365-2966.2009.15177.x. arXiv: 0811.3474 [astro-ph].

[204] R. P. van der Marel. “Velocity profiles of galaxies with claimed black holes - III.
Observations and models for M 87.” In: Mon. Not. R. Astron. Soc. 270 (Sept. 1994),
pp. 271–297. doi: 10.1093/mnras/270.2.271.

[205] Roeland P. van der Marel, James Binney, and Roger L. Davies. “Models of Elliptical
Galaxies - NGC3379 NGC4261 NGC4278 and NGC4472”. In: Mon. Not. R. Astron.
Soc. 245 (Aug. 1990), p. 582. doi: 10.1093/mnras/245.4.582.

[206] Roeland P. van der Marel et al. “Improved Evidence for a Black Hole in M32 from
HST/FOS Spectra. II. Axisymmetric Dynamical Models”. In: Astrophys. J. 493.2
(Jan. 1998), pp. 613–631. doi: 10.1086/305147. arXiv: astro-ph/9705081 [astro-
ph].

[207] Pieter van Dokkum et al. “Spatially Resolved Stellar Kinematics of the Ultra-diffuse
Galaxy Dragonfly 44. I. Observations, Kinematics, and Cold Dark Matter Halo Fits”.
In: Astrophys. J. 880.2, 91 (Aug. 2019), p. 91. doi: 10.3847/1538-4357/ab2914.



BIBLIOGRAPHY 172

[208] Eugene Vasiliev and Monica Valluri. “A New Implementation of the Schwarzchild
Method for Constructing Observationally Driven Dynamical Models of Galaxies of
All Morphological Types”. In: Astrophys. J. 889.1, 39 (Jan. 2020), p. 39. doi: 10.
3847/1538-4357/ab5fe0. arXiv: 1912.04288 [astro-ph.GA].

[209] Melanie Veale et al. “The MASSIVE Survey - V. Spatially resolved stellar angular
momentum, velocity dispersion, and higher moments of the 41 most massive local
early-type galaxies”. In: Mon. Not. R. Astron. Soc. 464 (Jan. 2017), pp. 356–384.
doi: 10.1093/mnras/stw2330. arXiv: 1609.00391 [astro-ph.GA].

[210] Melanie Veale et al. “The MASSIVE Survey - VII. The relationship of angular mo-
mentum, stellar mass and environment of early-type galaxies”. In: Mon. Not. R. As-
tron. Soc. 471 (Oct. 2017), pp. 1428–1445. doi: 10.1093/mnras/stx1639. arXiv:
1703.08573 [astro-ph.GA].

[211] Melanie Veale et al. “The MASSIVE survey - VIII. Stellar velocity dispersion profiles
and environmental dependence of early-type galaxies”. In: Mon. Not. R. Astron. Soc.
473 (Feb. 2018), pp. 5446–5467. doi: 10.1093/mnras/stx2717. arXiv: 1708.00870
[astro-ph.GA].

[212] G. van de Ven, P. T. De Zeeuw, and R. C. E. Van Den Bosch. “Recovery of the internal
orbital structure of galaxies”. In: Mon. Not. R. Astron. Soc. 385.2 (Feb. 2008), pp. 614–
646. issn: 0035-8711. doi: 10.1111/j.1365-2966.2008.12873.x. eprint: http:
//oup.prod.sis.lan/mnras/article-pdf/385/2/614/18226009/mnras0385-
0614.pdf.

[213] E. K. Verolme et al. “A SAURON study of M32: measuring the intrinsic flattening
and the central black hole mass”. In: Mon. Not. R. Astron. Soc. 335 (Sept. 2002),
pp. 517–525. doi: 10.1046/j.1365-8711.2002.05664.x. arXiv: astro-ph/0201086
[astro-ph].

[214] R. Anthony Vincent and Barbara S. Ryden. “The Dependence of Galaxy Shape on Lu-
minosity and Surface Brightness Profile”. In: Astrophys. J. 623.1 (Apr. 2005), pp. 137–
147. doi: 10.1086/428765. arXiv: astro-ph/0501221 [astro-ph].

[215] G. M. Voit et al. “A General Precipitation-limited L X-T-R Relation among Early-
type Galaxies”. In: Astrophys. J. 853, 78 (Jan. 2018), p. 78. doi: 10.3847/1538-
4357/aaa084. arXiv: 1708.02189.

[216] R. Craig Walker et al. “The Structure and Dynamics of the Subparsec Jet in M87
Based on 50 VLBA Observations over 17 Years at 43 GHz”. In: Astrophys. J. 855.2,
128 (Mar. 2018), p. 128. doi: 10.3847/1538-4357/aaafcc. arXiv: 1802.06166
[astro-ph.HE].

[217] J. L. Walsh et al. “A 5 x 109 Msun Black Hole in NGC 1277 from Adaptive Optics
Spectroscopy”. In: Astrophys. J. 817, 2 (Jan. 2016), p. 2. doi: 10.3847/0004-637X/
817/1/2. arXiv: 1511.04455.



BIBLIOGRAPHY 173

[218] J. L. Walsh et al. “A Black Hole Mass Determination for the Compact Galaxy Mrk
1216”. In: Astrophys. J. 835, 208 (Feb. 2017), p. 208. doi: 10.3847/1538-4357/835/
2/208. arXiv: 1612.02015.

[219] J. L. Walsh et al. “A Stellar Dynamical Mass Measurement of the Black Hole in NGC
3998 from Keck Adaptive Optics Observations”. In: Astrophys. J. 753, 79 (July 2012),
p. 79. doi: 10.1088/0004-637X/753/1/79. arXiv: 1205.0816.

[220] J. L. Walsh et al. “The Black Hole in the Compact, High-dispersion Galaxy NGC
1271”. In: Astrophys. J. 808, 183 (Aug. 2015), p. 183. doi: 10.1088/0004-637X/808/
2/183. arXiv: 1506.05129.

[221] J. L. Walsh et al. “The M87 Black Hole Mass from Gas-dynamical Models of Space
Telescope Imaging Spectrograph Observations”. In: Astrophys. J. 770, 86 (June 2013),
p. 86. doi: 10.1088/0004-637X/770/2/86. arXiv: 1304.7273 [astro-ph.CO].

[222] A.-M. Weijmans et al. “The ATLAS 3D project - XXIV. The intrinsic shape distribu-
tion of early-type galaxies”. In: Mon. Not. R. Astron. Soc. 444 (Nov. 2014), pp. 3340–
3356. doi: 10.1093/mnras/stu1603. arXiv: 1408.1099.

[223] Michael J. West and John P. Blakeslee. “The Principal Axis of the Virgo Cluster”.
In: Astrophys. J. Lett. 543.1 (Nov. 2000), pp. L27–L30. doi: 10.1086/318177. arXiv:
astro-ph/0008470 [astro-ph].

[224] T. B. Williams and M. Schwarzschild. “A photometric determination of twists in
three early-type galaxies.” In: Astrophys. J. 227 (Jan. 1979), pp. 56–63. doi: 10.
1086/156703.

[225] Xiaoan Wu and Scott Tremaine. “Deriving the Mass Distribution of M87 from Globu-
lar Clusters”. In: Astrophys. J. 643.1 (May 2006), pp. 210–221. doi: 10.1086/501515.

[226] Meng Yang et al. “Mapping the dark matter halo of early-type galaxy NGC 2974
through orbit-based models with combined stellar and cold gas kinematics”. In: Mon.
Not. R. Astron. Soc. 491.3 (Jan. 2020), pp. 4221–4231. doi: 10.1093/mnras/stz3293.
arXiv: 1911.11058 [astro-ph.GA].

[227] Tim de Zeeuw. “Elliptical galaxies with separable potentials”. In: Mon. Not. R. As-
tron. Soc. 216.2 (Sept. 1985), pp. 273–334. issn: 0035-8711. doi: 10.1093/mnras/
216.2.273. eprint: http://oup.prod.sis.lan/mnras/article-pdf/216/2/273/
3500591/mnras216-0273.pdf.

[228] Hong-Xin Zhang et al. “The Next Generation Virgo Cluster Survey. VI. The Kine-
matics of Ultra-compact Dwarfs and Globular Clusters in M87”. In: Astrophys. J.
802.1, 30 (Mar. 2015), p. 30. doi: 10.1088/0004-637X/802/1/30.

[229] Ling Zhu et al. “Orbital decomposition of CALIFA spiral galaxies”. In: Mon. Not. R.
Astron. Soc. 473.3 (Jan. 2018), pp. 3000–3018. doi: 10.1093/mnras/stx2409. arXiv:
1709.06649 [astro-ph.GA].



BIBLIOGRAPHY 174

[230] Ling Zhu et al. “The stellar orbit distribution in present-day galaxies inferred from
the CALIFA survey”. In: Nature Astronomy 2 (Jan. 2018), pp. 233–238. doi: 10.
1038/s41550-017-0348-1. arXiv: 1711.06728 [astro-ph.GA].




