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Abstract  

Scenes are composed of numerous objects, textures and colors 

which are arranged in a variety of spatial layouts. This presents the 

question of how visual complexity is represented by a cognitive 

system. In this paper, we aim to study the representation of visual 

complexity for real-world scene images. Is visual complexity a 

perceptual property simple enough so that it can be compressed 

along a unique perceptual dimension? Or is visual complexity 

better represented by a multi-dimensional space? Thirty-four 

participants performed a hierarchical grouping task in which they 

divided scenes into successive groups of decreasing complexity, 

describing the criteria they used at each stage. Half of the 

participants were told that complexity was related to the structure 

of the image whereas the instructions in the other half were 

unspecified. Results are consistent with a multi-dimensional 

representation of visual complexity (quantity of objects, clutter, 

openness, symmetry, organization, variety of colors) with task 

constraints modulating the shape of the complexity space (e.g. the 

weight of a specific dimension). 

 

Introduction 
 

Real-world scenes are composed of numerous objects, 

textures and colored regions, which are arranged in a variety 

of spatial layouts. Although natural images are visually 

complex, we are able to form a coherent percept amid 

numerous regions, and identify a complex scene at a glance 

(Potter, 1976), even in the face of visually degraded 

conditions (Schyns & Oliva, 1994). This presents the 

question of how a cognitive system may represent the level 

of complexity of a scene. Specifically, the following 

question motivated the experiment presented in this paper: 

can visual complexity be conceptualized along a single 

dimension? Or is visual complexity better represented as a 

multi-dimensional space where the axes might correspond 

to meaningful perceptual dimensions? 

Visual complexity 
 

The perception of visual complexity has been studied with 

natural texture images (e.g. Heaps & Handel, 1999; Rao & 

Lohse, 1993) and simple patterns (see Palmer, 1999 for a 

review). Heaps and Handel had participants rank texture 

images along several perceptual dimensions including 

complexity, connectedness, depth, orientation, 

repetitiveness, and structure. The authors defined 

complexity as “the degree of difficulty in providing a verbal 

description of an image”. They observed that the complexity 

of a texture could be estimated along a one dimensional axis 

representing the degree of perceivable structure: textures 

with repetitive and uniform oriented patterns were judged 

less complex than disorganized patterns.  This finding 

correlates with results in the domain of perceptual grouping 

by acknowledging that the presence of regularities (e.g., 

symmetry, repetition, similarity) simplifies a visual pattern 

(Feldman, 1997; Palmer, 1999; Van der Helm, 2000). 

 

How can we represent the complexity of a stimulus like a 

scene, which has a high variability of parts and spatial 

layout organization? According to Heylighen (1997), the 

perception of complexity is correlated with the variety in the 

visual stimulus. Figure 1 illustrates two instances of variety. 
First, the perceived visual complexity can increase as a 

function of the quantity and range of objects. Second, the 

perceived visual complexity can increase as a function of 

the variety of materials and surface styles while the number 

of objects and surfaces remain constant. The representation 

of a real-world scene is likely to combine both levels of 

varieties (parts and surface styles). Intuitively, complex 

scenes should contain a larger variety of parts and surfaces 

styles, as well as more relationships between these regions 

than do simpler scenes.  

 

A visual pattern is also seen complex if its parts are difficult 

to identify and separate from each other. Yet, paradoxically, 

when the parts are separated or conceptualized as a whole, 
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the valence of the complexity changes and the pattern 

becomes simpler (Heylighen, 1997). This suggests that the 

perceived complexity of an image also depends on the 

amount of perceptual grouping, a characteristic independent 

of the quantity of parts, an observer perceives in the scene. 

Additionally, the perception of visual complexity is likely to 

be dependent on the scale of observation (e.g. looking at a 

bookshelf or the books level), preexisting schemas and 

familiarity with the scene. 

 

 
 

Figure 1: Illustration of how visual complexity evolves as a 

function of object variety (top) and surface variety (bottom). 

 

If the perception of visual complexity is an interaction 

between the information in the image and task constraints, 

can we still identify a set of perceptual properties that 

participants consistently use to characterize visual 

complexity of real world scenes?  The shape of the visual 

complexity representation could take three forms:  

(1) Unique Perceptual Dimension: the properties of 

complexity are combined into one principal dimension, 

robust to subjectivity and task constraints. This is the case 

of the naturalness dimension in real world scenes (e.g. 

judging if a scene image is a natural or a man-made 

environment, Oliva & Torralba, 2001). 

(2) Multi-dimensional Space Representation: most of visual 

complexity variability is explained by an identifiable 

number of perceptual dimensions. The weight of each 

dimension may vary with task constraints, but the principal 

dimensional vocabulary remains the same (Gardenfors, 

2000). This seems to be the case of the representation of 

basic-level scene categories (e.g., beach, street, Oliva & 

Torralba, 2001). 

(3) Flexible Space Representation: the properties that 

human observers use to represent the visual complexity of a 

particular scene vary with image characteristics (e.g., 

structure, clusters), tasks constraints, and attentional 

mechanisms. There is no specific vocabulary that is used for 

representing visual complexity. 

These three levels of representation are not incompatible: 

for a particular task, the visual complexity space could be 

skewed towards a line (e.g. one perceptual property is 

dominant), but for a different task, the space of visual 

complexity might take into account multiple dimensions. 

The experiment presented below evaluates the format and 

content of the representation of visual complexity with the 

aim to tease apart the three levels of representation 

suggested above. 

 

Experiment 
The goal of the experiment is to study the representation of 

visual complexity while two groups of participants are told 

different definitions of visual complexity. Both groups 

performed a hierarchical grouping task with images of 

various levels of visual complexity. A hierarchical grouping 

task allows for identifying the explicit criteria participants 

used to perform a grouping task (see Oliva & Torralba, 

2001) and helps to give a psychological interpretation of the 

axes provided by a multi-dimensional scaling algorithm (see 

Results section).  

 

Method 
Subjects Thirty-four students from an introduction to 

psychology course at Michigan State University participated 

in the study for course credits. Half were in the control 
group and the other half in the structure group. 

 

Materials The present study used 100 pictures of indoor 

scenes. This subset was selected at random from a database 

of 1000 scenes previously ranked on their subjective visual 

complexity. The subset had the constraints to represent all 

levels of complexity along a scale from 1 to 100. The 

general scene database was originally composed from 

sources such as the web, magazines and various image 

databases. Since the volume of the space that a scene image 

represents is correlated with a given range of clutter 

(Torralba & Oliva, 2002), only scenes of a small volume 

range (indoors) were kept for this present study. Moreover, 

indoor scenes contain a greater variety of colors and objects 

in a variety of layouts compared to larger scaled 

environments (e.g. natural space, Oliva & Schyns, 2000). 

 

Procedure The hierarchical grouping task was performed as 

follows (see Figure 2): starting with 100 pictures shown in a 

grid on a 23” Apple monitor, participants were asked to 

separate images into two groups on the screen, 

corresponding respectively to the most complex vs. the 

simplest scenes. In a second step, they were asked to split 

each group into two more subdivisions, and in a third step, 

split the four groups into two groups each, leading to a total 

of eight groups. For each subdivision, they were asked to 

follow a criterion corresponding to visual complexity 
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(simplicity) and give a verbal description of it. Participants 

could move each picture across boundaries at any stage, and 

see an enlarged version of the image by double clicking on 

it. Similarly to Heaps and Handel (1999), our Control group 

was told the following instruction: “Visual simplicity is 

related to how easy it will be to remember the image after 

seeing it for a short time. Visual complexity is related to 

how difficult it will be to give a verbal description of the 

image and how difficult it will be to remember the scene 

after seeing it for a short time.” For the Structure group, the 

following instructions were given in addition to the control 

instructions: “Visual complexity is related to the structure of 

the scene and therefore, is not merely related to color or 

brightness. Simplicity is related to how you see that objects 

and regions are going well together. Complexity is related to 

how difficult it is to make sense of the structure of the 

scene”. Both groups were forbidden to use a criterion 

related to the semantic class of the scene (e.g. kitchen) or 

the presence of a specific object or color. 

 

Results 
 
Table 1 summarizes a taxonomy corresponding to the most 

common criteria from the descriptions given by participants 

at the primary and secondary divisions. Each verbal 

description was recoded as a class of concepts. Some 

descriptions were a composition of concepts (e.g. pictures 

on the left seemed more cluttered whereas the ones on the 

right seemed more open in space), others were unique (e.g. 

quantity of objects). The percentage in Table 1 should be 

seen as an indicator of the strength of a perceptual property 

(most of the time used, often used or almost never used) and 

not as a fixed value, as variability among individual 

descriptions was high. 

 
Table 1:  Criteria of visual complexity used for the primary 

and secondary divisions and their % for both groups. 
 

Criteria Group:Structure Group:control 
Quantity of:   
    object 19    32 
    detail 8        8 
    color 2       19 
Quantity total 29       59 
Clutter 18    5 

Symmetry 15      2.5 

Open Space 18      10 

Organization 13        7 

Contrast <1        8 
 

For the control group, where complexity was defined as a 

difficulty of verbal and visual recording, the criteria 

corresponding to variety and quantity of objects and color 

dominated the representation of complexity. In the second 

group where complexity was defined as relating to the 

structure of the scene, participants evenly used a set of 

criteria that the control group mentioned less frequently. 

The primary criterion of the structure group still concerns 

the quantity and variety of parts, participants referring either 

to the quantity of objects per se (19%), or the relationship 

between quantity of objects and spatial arrangement (18%, 

clutter). The other criteria were mostly concerned with 

spatial layout (symmetry, open space and organization {e.g. 

grid, centralized, cluster}). 

 

For each condition, we investigated the consistency of the 

complexity ratings for the 100 images across subjects by 

computing a Spearman's rank-order correlation for each 

possible pairing of subjects (images within each subgroup 

were given the same complexity value, from 1 to 8). If 

participants were consistent, correlations among 

participants’ rankings should be high. In both groups, 

Spearman's correlations were all statistically significant (p < 

.01) and were moderate to large in magnitude. Mean 

correlations of all the pair-wise comparisons were the same 

in the control and structure group, respectively, r = 0.62 and 

r=0.61; (stdev = 0.15 and 0.14).  

 

Next, we applied a nonlinear dimensional reduction method 

(Isomap, Tenenbaum, de Silva, & Langford, 2000) onto a 

dissimilarity matrix constructed from participants’ grouping 

for each condition (control and structure). To do so, a 

symmetric 100 x 100 matrix was constructed for each 

participant. Pairs of images placed in the same group versus 

in a different group were given respectively a score of 0 or a 

score of 1. Dissimilarity matrices from all participants from 

each condition were summed to create two pooled 

dissimilarity matrices. The Isomap analysis uses the 

dissimilarities of judgments given by human observers and 

provides a low dimensional visual representation of the 

mapping of proximities (i.e., distances) existing between 

images of various levels of complexity.  

 

Figure 3 shows a two dimensional projection of the 100 

images given by Isomap for the Structure group. The 

representation corresponds to the number of independent 

ways in which visual scenes can be perceived to resemble or 

differ in visual complexity. Although the dimensions per se 

are difficult to interpret and further experiments will be 

needed to assess more accurately the underlying dimensions 

of the space shown in Figure 3, it shows indeed a first 

principal direction corresponding to increasing “clutter” and 

quantity of objects. The second axis, illustrated in Figure 4, 

suggests an ordering along mirror symmetry and layout 

organization.  

 

Albeit the correlation between the two first axes given by 

the Isomap representation for the structure and control 

group is nearly identical (0.98), the correlation between the 

ranks of images along the two second axes drops to 0.33 

(see Figure 4), suggesting that participants used a different 

combination of criteria beside quantity while ranking the 

visual complexity of scenes. In the control group, 

participants were told that complexity was related to the 

difficulty of verbally describing an image. Consequently, 
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they estimated complexity almost exclusively based on the 

quantity and variety of objects and colors. In the structure 

group, participants were sensitive to spatial layout criteria, 

such as symmetry and open space. 

 

 
 

Figure 4: Sample of images projected onto the second 

principal dimension of Isomap for the structure group (top) 

and the control group (bottom). For the structure group, the 

images are organized from the top-left to the bottom-right 

following a property that resembles mirror symmetry.  For 

the control group, the images are organized following a 

different combination of properties. These projections 

illustrate the differences in the criteria used between the two 

groups. 

 

Discussion  
The high correlations across participants for both groups 

(average of 0.61) suggest that participants used a same (or 

similar) set of holistic perceptual dimensions to represent 

complexity. The dimensions of visual complexity listed in 

Table 1 are not exhaustive: one can imagine that the 

perceived complexity of scenes of a larger volume of space 

(e.g., urban environments) might require new dimensions 

better suited to representing these spaces (e.g., perspective). 

However, the fact that there exists a set of defined properties 

that most people are sensitive to is appealing for modeling 

the visual complexity, where each dimension would be 

represented as a combination of low-level (e.g. contours, 

junctions) and medium-level features (e.g. connectedness, 

symmetry, Mack & Oliva, 2004). Furthermore, finding the 

true meaningful axes in the space generated by a multi-

dimensional scaling algorithm, as well as the status of these 

dimensions (separable, integral, Garner, 1974; Gardenfors, 

2000; Maddox, 1992) will be the subject of a follow-up 

study.  

Conclusion  
The goal of this study was to characterize the representation 

of visual complexity and its modulation by task constraints. 

The complexity ratings provided by observers on 100 

pictures of (indoor) real-world scenes are consistent with a 

multi-dimensional representation of visual complexity. 

While the contribution of the dimensions are modulated by 

task constraints, visual complexity is principally represented 

by the perceptual dimensions of quantity of objects, clutter, 

openness, symmetry, organization, and variety of colors.  
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Figure 2: Illustration of the hierarchical grouping task after completion (organization made by subject 1 in the Structure 

group). Most complex scenes are in the top left corner, and most simple scenes are the bottom right corner. 
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Figure 3: Representation given by Isomap for the structure group. The space shows on the arrow axis, a principal direction 

corresponding to increasing quantity of objects and clutter. The images that are far away from that direction are images that 

exhibit the highest amount of variability in how they were grouped in relation to other images. Scenes of medium and low 

level of clutter exhibit more variations along a second direction, possibly related to symmetry and spatial arrangement (cf. 

Figure 4). 
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