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Abstract 
Subjective measures of awareness rest on the assumption that 
conscious knowledge is knowledge that participants know 
they possess. Post-decision wagering, recently proposed as an 
objective measure of awareness, raised a new controversy on 
determining the properties that should characterize the 
objectivity of an awareness measure. Indeed, if the method 
appears objective in many aspects – it does not require 
introspection but rather lies on instinct, it does not affect 
conscious states, it can be learned unconsciously –, it also 
shares some characteristics with subjective measures – it 
involves metacognitive content and particularly, it represents 
a decision about a decision. The lack of consensus on this 
topic leaded us to develop a new approach based on a novel 
theoretical aspect, causality, and to consider a causally 
independent mechanism that would give an agent the 
capability to know what knowledge it possesses. In this 
framework, any measure that would not necessarily rely on 
such mechanism in a given experimental situation should be 
considered as objective. We support our claim with a 
computational model based on metacognitive networks, and 
present three simulation studies in which neural networks 
learn to wager on their own performance. Results demonstrate 
a good fit to human data, although depending on the situation, 
post-decision wagering is implemented either as an objective 
or as a subjective measure of network’s knowledge. We 
discuss implications of our results for defining the nature of 
subjective and objective measures, as well as for our 
understanding of consciousness. 

Keywords: awareness measures; metacognitive networks; 
wagering. 

Objective and Subjective Measures 
Awareness can be assessed by using objective (e.g., cued-
report tests, forced-choice decisions) or subjective (e.g., 
verbal reports and confidence judgments) measures 
(Merikle, 1992). Though this remains controversial 
(Holender & Duscherer, 2004; Tunney & Shanks, 2003), by 
using subjective measures one can conclude that 
performance on some task of interest is guided by 
unconscious knowledge whenever participants claim to be 
guessing while nevertheless performing better than chance – 
the “guessing criterion” (Dienes & Berry, 1997) –, or, 
alternatively, when their confidence appears unrelated to 
their accuracy – the “zero correlation criterion”. Therefore, 

considering an objective threshold determined by an 
accuracy at chance, any gap between an objective and a 
subjective threshold would be considered as a region of 
unconscious processing (Koch & Preuschoff, 2007). This 
reasoning presupposes that when one is conscious of some 
piece of information, one is also conscious that one holds 
this information. This requires metaknowledge – content 
and attitude explicit – about the information (Dienes & 
Berry, 1997). Then a lack of metaknowledge would refer to 
unconscious knowledge, and a dissociation is observable 
between the objective and subjective measures that could 
track that knowledge. 

Post-decision wagering (PDW) was recently introduced as 
a new objective measure of awareness and tested on three 
different situations by Persaud and his colleagues (Persaud, 
McLeod & Cowey, 2007; Persaud & McLeod, 2007). In 
PDW, participants continuously evaluate their performance 
by wagering on each decision in tasks such as visual 
stimulus localization under condition of blindsight (Stoerig, 
Zontanou & Cowey, 2002), string classification in artificial 
grammar learning (AGLT) (Reber, 1967), and deck 
selection in the Iowa Gambling Task (IGT) (Bechara et al., 
1994; Maia & McClelland, 2004). Wagering is intuitive for 
participants and offers a quantitative way of assessing the 
relationship between performance and awareness: Given 
that participants attempt to maximize their earnings, when 
wagering is independent from above-chance performance 
(i.e. below the “zero correlation criterion”), one may 
conclude that the knowledge that drives their performance is 
unconscious (blindsight, implicit learning). On the other 
hand, any positive relationship between wagering and 
accuracy should be taken as reflecting to some extent 
participants’ knowledge about the basis for their decisions 
(suprathreshold stimulus, explicit learning).  

Therefore PDW stands as a measure of awareness. If it 
effectively appears more objective than subjective measures, 
their functioning is equivalent in many aspects: Both PDW 
and subjective measures are supported by metacognitive 
content and may be vulnerable to biases in that they require 
a decision about a decision, leading to the controversy about 
if PDW objectively reflects awareness or not, as it does not 
directly measures sensory consciousness (Seth, 2008a). But 
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still, as for objective measures, it is capable of being learned 
unconsciously. Moreover, it depends on a process that does 
not involve introspection and that does not affect conscious 
states, as verbal reports and confidence judgments usually 
do (Koch & Preuschoff, 2007). 

With this hybrid character of PDW, the line of distinction 
between objective and subjective measures has become 
blurred. However, even by putting aside this new measure 
and by considering only preexisting ones, the line is already 
unclear. Indeed, one can arguably consider that confidence 
judgments are a particular kind of cued-report tests, as they 
considerably relate to accuracy on a binary scale (Tunney & 
Shanks, 2003) and as their discrepancy with performance 
nearly vanishes under the right experimental conditions 
(Holender & Duscherer, 2004). Therefore one can 
reasonably assume that unconscious perception simply 
reflects conscious perception under high uncertainty, 
whereas another would fill the gap between objective and 
subjective thresholds with some sort of partial awareness 
(Kouider & Dupoux, 2004). Subjective measures would 
thus be depicted as mere objective measures at a more 
advanced level of treatment, or alternatively said, of a 
weaker type regarding perceptual awareness and of a 
stronger type regarding conceptual awareness. If this very 
simple idea appears very appealing, we however consider 
that a theory of consciousness that offers a set of measures 
that only vary in terms of their efficiency in tracking 
awareness will never help us to assess whether or not 
unconscious and conscious processes can be dissociated. 
Indeed, we will hardly distinguish cases when one measure 
tracks the same awareness as another but from a more 
indirect, biased or slower process, from when the two 
measures track two different levels of awareness, and may 
be, two different types of awareness. 

It has been proposed that it would be much more 
significant if measures of awareness could show that 
unconscious and conscious processes lead to qualitatively 
different consequences (Merikle, 1992). But focusing only 
on consequences is misleading, since both objective and 
subjective measures are and will ever be only behavioral 
measures, not phenomenal measures. One can say that 
knowledge has indirect effects that can be measured directly 
by objective measures (Dienes & Berry, 1997). But in fact, 
as long as they rely on behavioral expression, both types of 
measures are indirect (Seth, 2008b). For the same reason 
that no task is process-pure (Destrebecqz & Cleeremans, 
2001), no measure should be considered purely objective or 
purely subjective. This mistake might explain why we still 
cannot decide whether unconscious processing exists or not. 

Considering this new theoretical disillusion, we propose 
to detach our attention from objective and subjective 
consequences of knowledge in our measures and, instead, to 
consider a definition of objectivity and subjectivity from a 
causal perspective. Our claim rest on the core assumption 
(Cleeremans, 2008; Cleeremans, Timmermans & Pasquali, 
2007) that evaluating one’s own performance, as involved in 
subjective measures of awareness, requires re-describing 

first-order representations responsible for performance into 
metarepresentations that continuously inform the agent 
about its own success: Knowledge that is in the system must 
become knowledge for the system (Karmiloff-Smith, 1992). 
As previously pointed out (Dienes & Perner, 1996; Dienes 
& Berry, 1997), representing knowledge into 
metarepresentations (content explicit) is not sufficient. One 
must also represent himself as being in the possession of 
that content (attitude explicit). This requires access to the 
relevant first-order knowledge in a manner that is 
independent from the causal chain in which it is embedded. 
A failure in this access would automatically reflect a 
dissociation between performance and awareness measures. 

To achieve the mechanism, we assume that a higher-order 
network continuously monitors the performance of a first-
order network responsible for performing a task, in such a 
way that it is (a) able to discriminate and classify 
information contained in the first-order network in a 
independent manner, and (b) able to use this information to 
perform a secondary task that requires knowledge about 
first-order internal state or performance, such as subjective 
measures do. Without claiming that this mechanism presents 
sufficient or even necessary conditions for awareness in 
general, we intend to show that it can account for 
participants’ wagering behavior as reported in the 
experiments of Persaud et al. (2007). We suggest that more 
complex but similar processes are involved when subjective 
measures are employed. 

Metacognitive networks 
We thereafter present a computational model that will 
illustrate the functioning of such mechanism. For this, we 
conceive neural networks, so called metacognitive 
networks, which can learn to know about their own internal 
representations of some stimulus domain. In these 
experiments, we propose a putative mechanism through 
which some sort of self-knowledge can accrue by exploring 
the performance of metacognitive networks trained to wager 
on their own decisions. We constructed three networks that 
simulate in a minimal way the blindsight, the AGLT, and 
the IGT tasks proposed by Persaud et al. (2007), and that 
reproduce their findings. We created comparable experi-
mental situations; still including several simplifications for 
the only aim is to illustrate our claim. In our simulations, a 
metacognitive network consists of (a) a three-layers 
backpropagation feedforward first-order network (FoN) that 
performs the main task (depending on the task: stimulus 
localization, letter string classification, or deck selection), 
and (b) a second-order network (SoN) that evaluates the 
performance of the FoN on a binary scale, and that consists 
of a hidden unit layer and of two output nodes (high/low 
wager). Because of different task requirements, all three 
networks associated with the three experiments differ 
substantially in terms of (a) the nature of their higher-order 
representations, and (b) the implementation of the “low” and 
“high” awareness conditions.  

The fairly similar blindsight and AGLT architectures have 
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Figure 1: Network architecture for  
Blindsight and AGLT simulations.  

 
in common that the FoN is an autoassociator (Figure 1), 
while the SoN hidden units consist of a comparator matrix, 
representing the match between the input and the output of 
the FoN. The use of comparators in these simulations 
illustrates perfectly what we mean by independent causality 
in that their functioning and performance are independent 
(a) from the first-order task and (b) from the quality of the 
first-order representations. Independency could obviously 
be achieved with many other functions. However, the 
crucial role of such comparators for the emergence of 
conscious percepts has been suggested previously (Frith, 
Blakemore & Wolpert, 2000; Synofzik, Vosgerau & Newen, 
2008; Gallagher, 2004; Mandler, 2004), in that they merge 
internal and external states into unique representations 
(Sperry, 1950; Wolpert & Kawato, 1998; Pacherie, 2008; 
Rizzolatti et al., 1996). In our networks, each of these 
comparators computes the difference between each 
corresponding pair of FoN input and output units, and thus 
represents the FoN’s internal error not as a training signal 
but as an activation pattern that is accessible for the system. 
Here building of metarepresentations is innate and 
unsupervised, but this is only after a period of supervised 
training in the SoN that they can thereafter drive wagering 
advantageously. This means that (a) metarepresentations 
emerge automatically, without requiring any learning, 
whereas (b) access to these patterns for wagering is learned 
over time, independent of specific first-order patterns at the 
current task. Thus in these two first simulations, wagering 
measures reflect the subjective knowledge that the network 
automatically forms about its own internal states. 

On the other hand, the architecture of the IGT does not 
involve neither an autoassociator nor a comparator (Figure 
2). The FoN operates this time a supervised predictive task, 
and the SoN is directly plugged onto the hidden units of the 
FoN. No automatic and independent metarepresentations are 

assumed, but the hidden representations of the SoN that 
have been learned over practice, this time specifically 
depending on the first-order patterns and task. This 
different architecture illustrates another kind of meta-
representations, created by simple reinforcement between 
two tasks of interest, which reflect a dependent access to the 
internal knowledge. With this implementation, meta-
representations lack the attitude explicitness that would be 
necessary for the network in order to know that it possesses 
internal knowledge. Network’s wagering ability is enhanced 
along the learning phase by trial and error, demonstrating a 
mechanism that could have been developed unconsciously 
under experimental conditions. PDW is therefore 
implemented in this third simulation as an objective 
measure of network’s internal knowledge. 

 

 
 

Figure 2: Network architecture for the IGT simulation.  

Simulations and Results 
In their Blindsight experiment, Persaud et al. (2007) showed 
that blindsight subject GY (a patient who, under specific 
circumstances, makes visual discriminations in the absence 
of visual awareness), when presented with subthreshold 
stimuli in his blind field, displayed above chance 
localization performance but failed to maximize his earnings 
through wagering. However, for suprathreshold stimuli 
(both in normal and blind fields), GY maximized 
performance as well as earnings. We simulated these results 
by pre-training 15 networks to discriminate patterns and to 
simultaneously place wagers on their own performance. The 
distinction between subthreshold and suprathreshold visions 
in blindsight situations was only introduced during a 
following testing phase, in which the networks classified the 
patterns they had previously been presented with 
(suprathreshold stimuli), as well as degraded versions of 
these patterns in which stimulus-to-noise ratio was 
manipulated (subthreshold stimuli). If Blindsight is 
commonly associated with lesions in the brain and more 
particularly in V1, we thought that modulating the stimulus-
to-noise in the input of the metacognitive network would 
have more computational interest than cutting connections 
between the FoN and the SoN, since a dissociation would 
obviously have occurred in the latter case. As shown in 
Table 1, the simulations closely capture Persaud et al.’s 
results. Discrimination performance, as simulated by the 
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Table 1: Results of the Blindsight simulation.  
 

Localization with  Experiment   Simulation  

Subthreshold stimuli Correct Incorrect Total Correct Incorrect Total 

High Wager 12 6 18 29 2 31 
Low Wager 62 20 82 49,5 19,5 69 
Total 74 26 100 78,5 21,5 100 
Suprathreshold Stimuli Correct Incorrect Total Correct Incorrect Total 

High Wager 72 2 74 50,5 4,5 55 
Low Wager 18 8 26 29,5 15,5 45 
Total 90 10 100 80 20 100 

 

Percentages of localizations and corresponding wagers in low (subthreshold) and high (suprathreshold) consciousness conditions in Persaud et al.’s 
experiment (reproduced with permission) and in our simulation. Optimal wagers are underlined. 
 

Table 2: Results for the AGLT simulation.  
 

  Experiment   Simulation  

Implicit Condition Correct Incorrect Total Correct Incorrect Total 

High Wager 36 6,5 42,5 36,5 8,5 45 
Low Wager 44,5 13 57,5 35,5 19,5 55 
Total 80,5 19,5 100 72 28 100 
Explicit Condition Correct Incorrect Total Correct Incorrect Total 

High Wager    63,5 0,5 64 
Low Wager    34,5 1,5 36 
Total   100 98 2 100 

 

Percentages of discriminations and corresponding wagers in low (Implicit condition) and high (Explicit condition) consciousness conditions in Persaud et 
al.’s experiment (reproduced with permission; exact explicit condition was not performed but effects were discussed) and in our simulation. Optimal wagers 
are underlined. 
 
FoN, is well above chance both under subthreshold and 
suprathreshold conditions (78.7% and 80.1% correct, 
respectively). However, networks tested in subthreshold 
condition fail to support their correct and incorrect 
discriminations with advantageous wagers (high and low, 
respectively), and instead perform at chance level (48.6% of 
all trials are followed by an advantageous wager). This is 
not the case under suprathreshold condition (65.9% of all 
trials are followed by an advantageous wager). 

In the Artificial Grammar Learning experiment, Persaud 
et al. show that, following exposure to artificial grammar 
strings under incidental learning conditions (i.e., memorize 
"TSXVPP", "PVPXVT", etc.), participants perform above 
chance on subsequent discrimination of novel strings, while 
failing to maximize their earnings though advantageous 
wagering (Implicit condition). When participants were 
thereafter made aware of the grammar rules (Explicit 
condition), they started to wager more advantageously. 
Discrimination performance should also have improved in 
this condition but experimenters maintained it as the same 
level as in the Implicit condition by reducing the time of 
exposure to the strings during the test phase. We simulated 
these results by training two sets of 15 networks to classify 
artificial grammar strings. The metacognitive networks were 
similar to those used in the Blindsight simulation, except 
that we implemented the distinction between high and low 
awareness conditions only by manipulating the FoN training 

phase length (short and long training phases corresponding 
to Implicit and Explicit conditions, respectively). Obviously 
we could not tell the networks what were the grammar rules 
as experimenters did with participants. However, in order to 
illustrate our claim, we only needed to induce the same 
improvements as in the experimental situation. As both 
performance and wagering had to be enhanced in our 
Explicit condition, we just let the FoN learn for a longer 
period in order to obtain the same effects. Nonetheless we 
did not integrate in our simulation their manipulation of the 
duration of subjects’ exposure to the strings that maintained 
performance at the same level in both Implicit and Explicit 
conditions. Therefore we shall not compare our results to 
their Explicit condition, but to the effects that occur when 
exposure’s duration is unchanged. Here again results fit 
Persaud et al.’s data (Table 2). Networks in the Implicit 
condition performed above chance (71.8% correct), but 
failed to optimize their wagering (55.8% of all trials). 
Whereas in the Explicit condition, networks were not only 
better at the discrimination task (98.2% correct) – as a 
longer exposure duration would have predicted experi-
mentally –, but also in placing advantageous wagers above 
chance (64.9% of all trials). 

We performed a simpler implementation of the Iowa 
Gambling Tasks experimented by Maia & McClelland 
(2004) or by Persaud et al. (2007). In Persaud’s version, 
participants’ task is to select one of four decks of cards, each 
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Figure 3: Results for the IGT simulation.  
Performance is plotted across time (epochs) for (a; c) low consciousness, 
and (b; d) high consciousness conditions in Persaud et al.’s experiment 

(reproduced with permission) and in our simulation respectively.  
 

with different pay-offs. After deck selection, but before 
turning over the card (revealing how much was won or lost), 
participants wager on whether the card will be winning or 
losing. Participants typically manage to optimize deck 
selection well before they start wagering advantageously. 
However when participants are made more aware of their 
strategy to determine deck relative pay-offs by asking them 
the specific questions proposed by Maia & McClelland 
(2004) (i.e., “What would you expect your average winning 
amount to be by picking 10 cards from deck 1?”), wagering 
follows performance more closely (Persaud et al., 2007). 
This experiment differs from the two others in three aspects, 
necessitating a different simulation approach. First, the IGT 
required participants to initially explore the material before 
being able to create any representation about the decks’ 
yields. The resulting metarepresentations are thus 
necessarily dependent on this exploration phase. Second, 
participants received feedback on each trial about the 
quality of their wagering, as the turning of the card 
immediately revealed whether and how much they had won. 
As a consequence, participants could have used this 
feedback to unconsciously optimize not only their deck 
selection, but also their wagering. Certainly participants 
effectively became aware of relative pay-offs along the 
experiment, but this makes wagering in the IGT less suitable 
as a subjective measure of awareness since advantageous 
wagering could in principle emerge without subjectivity. 
Third, high awareness condition affected participants’ 
wagering measures but not their performance, as if the 
specific questions revealed clues that were useful for the 
development of a wagering strategy but not for the game’s 
first task. To simulate these results, two sets of 15 networks 
learned to perform the deck selection task while wagering 
on the gain upon each decision. Implementation was 
modified in three main aspects in order to reflect the task’s 
differences. First, the FoN could not be an autoassociator 
since the desired states were not available as inputs as in the 

previous simulations. Indeed the networks had to select one 
out of four card packs at first and received feedback about 
the quality of that selection (win or loss) only after. Second 
and as a consequence, the SoN metarepresentations could 
not rely on a comparator, but instead consisted of a hidden 
layer directly connected to FoN hidden units and feeding 
forward into the (wagering) outputs (Figure 2). Finally, in 
order to modulate only the wagering measures, we 
implemented the distinction between Low Consciousness 
and High Consciousness conditions by setting the SoN 
learning rate low or high, respectively. Figure 3 displays the 
performance at both tasks (desk selection and wagering) 
over time. Like in Persaud et al.’s data, in the Low 
Consciousness condition, wagering performance lags 
advantageous card deck selection. However, under a High 
Consciousness condition, in which in simulation we 
increased the speed with which the SoN could make use of 
the FoN hidden units’ representations, wagering closely 
follows card deck selection.  

Discussion 
The simulations demonstrate three ways of modeling 
wagering behavior such as reported experimentally by 
Persaud et al. (2007). In all three situations metacognitive 
networks can be trained to take advantage of their internal 
states in order to drive an advantageous wagering. Through 
the development of metarepresentations that re-describe 
relevant first-order knowledge, each network is able to 
capture the dissociation between performance and wagering 
under conditions of low and high awareness as it has been 
measured experimentally. However, if wagering measures 
lead to comparable consequences in the three experiments, a 
distinction can now be drawn considering the implemen-
tations of the Blindsight and the AGLT simulations on one 
hand, and that of the IGT simulation on the other. The 
difference of implementation points towards two different 
types of metarepresentations. Though both involve re-
descriptions of first-order representations, for the second 
type (the architecture used for the IGT), emergence of 
metarepresentations occurs through supervised reinfor-
cement by the secondary task, which directly taps into the 
knowledge used in the primary task. Whereas for the first 
type (blindsight and AGLT simulations), metarepresenta-
tions are accessed without learning through an automatic, 
non-supervised re-descriptive process, unrelated a priori to 
any specific secondary task. Therefore the distinction is 
based on the causal nature of the metarepresentations, and 
this nature defines if wagering is an objective or a subjective 
measure of awareness. Thus, the wagering measure can be 
of either type depending on the experiment. This explains 
why PDW elicited so much controversy.  

Though we do not claim that metacognitive networks are 
aware in any sense, we would like to discuss three 
fundamental issues on which we believe these simulations 
shed some light. First, the basic assumption underlying the 
mechanism is that metacognition requires higher-order 
representations, content and attitude explicit, as minimally 

2624



simulated by the SoNs in the first two experiments. This 
means that task-related knowledge must become available 
for the metacognitive agent, outside of the causal chain in 
which it is embedded when performing that task. In other 
words, the knowledge has to become accessible content 
about which one can form metacognitive content, use it and 
possibly become subjectively conscious of it. Second, in 
order to illustrate the mechanism, we used second-order 
comparators that form a representation of the difference 
between the current internal state or prediction of the first-
order network, and the effective external state correspon-
ding to the input it received. As suggested before (Frith, 
Blakemore & Wolpert, 2000; Synofzik, Vosgerau & Newen, 
2008; Gallagher, 2004; Mandler, 2004; Sperry, 1950; 
Wolpert & Kawato, 1998; Pacherie, 2008; Rizzolatti et al., 
1996), such comparators may play a crucial role in the 
emergence of consciousness – and particularly the sense of 
agency – as they inform an agent about the adequacy of its 
own internal states. Large discrepancies between a 
prediction and the corresponding outcome form conscious 
events, and precisely, comparators can detect them. Third, it 
appears that different types of metarepresentations coexist in 
our brain. Even if the descriptions we have made do not 
inform much about the phenomenology of consciousness, 
one might find this causally independent mechanism 
appropriate for operating access consciousness. Moreover, it 
could produce the higher-order representations that render 
their observed content conscious, when they themselves 
become subject of further higher-order representations, as it 
is described by the HOT theory (Rosenthal, 1997). 

In conclusion, the main point raised by our model is that 
metacognitive content can emerge naturally through a 
process of continuous representational redescription 
(Karmiloff-Smith, 1992; Clark & Karmiloff-Smith, 1993) 
that is itself learned over time. This in turn suggests that the 
mind learns to be conscious, as it learns to use knowledge 
from unconscious lower-order processes to develop higher-
order representations that inform it about the geography of 
its own internal states.  
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