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Abstract

Individual differences in brain functional networks may be related to complex personal iden-

tifiers, including health, age, and ability. Dynamic network theory has been used to identify

properties of dynamic brain function from fMRI data, but the majority of analyses and find-

ings remain at the level of the group. Here, we apply hypergraph analysis, a method from

dynamic network theory, to quantify individual differences in brain functional dynamics.

Using a summary metric derived from the hypergraph formalism—hypergraph cardinality—

we investigate individual variations in two separate, complementary data sets. The first

data set (“multi-task”) consists of 77 individuals engaging in four consecutive cognitive

tasks. We observe that hypergraph cardinality exhibits variation across individuals while

remaining consistent within individuals between tasks; moreover, the analysis of one of the

memory tasks revealed a marginally significant correspondence between hypergraph car-

dinality and age. This finding motivated a similar analysis of the second data set (“age-

memory”), in which 95 individuals, aged 18–75, performed a memory task with a similar

structure to the multi-task memory task. With the increased age range in the age-memory

data set, the correlation between hypergraph cardinality and age correspondence becomes

significant. We discuss these results in the context of the well-known finding linking age

with network structure, and suggest that hypergraph analysis should serve as a useful tool

in furthering our understanding of the dynamic network structure of the brain.

Author Summary

Complex patterns of activity in each individual human brain generate the unique range of
thoughts and behaviors that person experiences. Individual differences in ability, age, state
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of mind, and other characteristics are tied to differences in brain activity, but determina-
tion of the exact nature of these relationships has been limited by the intrinsic complexity
of the brain. Here, we apply dynamic network theory to quantify fundamental features of
individual neural activity. We represent functional connections between brain regions as a
time varying network, and then identify groups of these interactions that exhibit similar
behavior over time. The result of this construction is referred to as a hypergraph, and each
grouping within the hypergraph is called a hyperedge.We find that the number of these
hyperedges in an individual’s hypergraph is a trait-like metric, with considerable variation
across the population of subjects, but remarkable consistency within each subject as they
perform different tasks. We find a significant correspondence between this metric and the
subject’s age, indicating that the dynamics of functional brain activity in older individuals
tends to be more dynamically segregated. This new insight into age-related changes in the
dynamics of cognitive processing expands our knowledge of the effects of age on brain
function and confirms our methods as promising for quantifying and examining individ-
ual differences.

Introduction

Functional connectivity (FC) analyses based on fMRI data are effective tools for quantifying
and characterizing interactions between brain regions. Many approaches borrowmethods
from the field of graph theory, in which FC is used to build graphs that model the brain as a
complex network, treating brain regions as nodes and using functional connections (pairs of
nodes with significantly related BOLD signal dynamics) to determine the edge structure of the
network [1, 2]. Individual differences in both underlying FC and the complex network struc-
ture resulting from graph theory approaches have been investigated for a variety of task states,
developmental stages, and clinical diagnoses [3–5].
Certain characteristics of FC have been found to vary consistently over the course of normal

human aging. The loss of clear segmentation between neural systems is widely reported:many
intrinsic functional connectivity networks in the brain tend to become less internally coherent
with age, and the functional differences between these intrinsic networks generally become less
pronounced [6–8]. These changes are most commonly reported in the default mode network
(DMN) [9–15], although they have also been observed in other networks, including those asso-
ciated with higher cognitive functions [9, 11, 14–16]. In addition, inter-network connectivity
between the DMN and other regions of the brain has been found to increase, diminishing the
ability to discriminate between networks based on FC [13, 15]. There are some intrinsic func-
tional networks, however, that show no changes or even increased intra-network connectivity
with age, such as sensory networks [10, 12, 14].
The bulk of studies on age-related changes and other individual differences in FC, including

those that use methods from complex networks and graph theory to represent FC patterns, are
performed using static FC analysis, which represents the similarities of brain region activity (or
some other measure of concordance) aggregated across an entire data set. In the present inves-
tigation, we build upon recent advances in network science to study individual differences in
human brain activity and behavior from a dynamic network science perspective [17]. Dynamic
functional connectivity (DFC) extends FC to examine how functional organization evolves
over time [18, 19], allowing investigation of the changes in FC during the course of a cognitive
task or scanning session. Efforts to probe the dynamics of functional brain networks have
revealed that functional structure reconfigures over time in response to task demands [20–24]
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and spontaneously at rest [18, 25]. DFCmethods have also been used to inform understanding
of individual differences related to aging. In particular, dynamic community structure was
found to vary significantly with age [26] and amplitude of low-frequency fluctuations of FC
(ALFF-FC) was used to show age-dependent changes in the dynamics of interactions between
networks [27]. Both studies imply that functional dynamics should be considered when investi-
gating how aging affects brain network organization.
To address this, we use hypergraph analysis, a method from dynamic graph theory, to

examine individual differences in DFC network structure in fMRI data acquired as subjects
perform cognitively demanding tasks. The method is based on a generalization of standard
graph theoretical techniques. In particular, by defining the standard node-node FC graph in
successive temporal epochs, we construct a set of edge timeseries—that is, a vector of how the
edge changes over time. The edge-edgeDFC graph is constructed by treating these edge time-
series analogously to the node timeseries in the first step, and computing the relationship
between every edge pair. Finally, we focus on “hyperedges,” which are connected components
of the absolute valued edge-edgeDFC graph (described in more detail in Methods) [28]. To
contextualize hypergraph analysis, we define the graph theoretic elements used to construct
hypergraphs as follows:

Node: As in the FC literature, nodes denote brain regions, or groups of voxels.
Edge: Also corresponding to the FC literature, edges denote correlations in activity between

pairs of nodes over time. A node-node graph G = {V, E} on N nodes will have
N

2

 !

edges,

because each pair is considered. Unlike the majority of FC analyses, the edges are not thre-
sholded for significance in the hypergraph analysis.

Links: Links denote significant correlations in activity between pairs of edges over time. An

edge-edge graph G0 = {V0, E0} on
N

2

 !

edges will have

N

2

 !

2

0

B
B
@

1

C
C
A possible links, but tends to

be sparse in practice.
Hyperedge: A hyperedge denotes a group of links connecting two or more edges with signifi-

cantly correlated temporal profiles. Hyperedges are the simplest form of link community, since
they are simply the connected components of the edge-edge graph G0 = {V0, E0}, whereV is the
set of edges and E is the set of links.

Hypergraph: A hypergraph is a set of hyperedges.
The hypergraph analysis is a simple first step toward understanding the structure of func-

tional dynamics. Hyperedges are the connected components of the edge-edge graph, and so
avoid the introduction of additional unconstrained parameters, unlikemany common FC and
DFCmethods such as community detection.
The groups of brain regions that comprise hyperedges are not necessarily strongly active or

strongly interconnected brain regions. Rather, correlations in the dynamic connectivity of
these regions are the defining characteristics that determine hyperedge structure. As a result,
hyperedge analysis is able to identify groups of dynamic connections that change from strong
to weak (or vice versa) cohesively together over time, providing complementary information to
other DFCmethods that focus on only the strongest node-node correlations, such as dynamic
community detection [26, 29, 30]. Note that our choice of hyperedge metrics, as opposed to
any other graph theoretic measure, is due to the simplicity of the hyperedge. Although it is
beyond the scope of the present investigation, other graph properties of the edge-edge graph
are likely to provide insight into dynamic brain network structure along other relevant
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dimensions. Nonetheless, hyperedges have some appealing intuitive validity in terms of the
neural properties they might uncover—that is, in defining collections of nodes (or more techni-
cally, edges) on the basis of their similar dynamics.
In previous work, we demonstrated that hyperedges discriminate between diverse task states

in a group-level analysis of an fMRI data set spanning four tasks, which we refer to as the
“multi-task” data set [24]. We also observednotable variation in descriptive hypergraph mea-
sures across individuals. However, given the level of abstraction involved in the construction of
the hypergraph, an important first question is whether the method is able to capture well-
known phenomena. In this paper, we investigate the relationship between the variability in
hypergraph cardinality and other individual differencemeasures.We develop and employ
hypergraph measures that capture individual differences in functional brain dynamics to deter-
mine correspondences between dynamics and specific demographic and behavioral measures.
In the multi-task data set, we find that hypergraph cardinality—the number of distinct hyper-
edges within a subject’s hypergraph—exhibits marked variation across individuals. At the same
time, we find this measure is consistent within individuals, across overall hypergraphs and
those associated with specific tasks.
To elucidate the drivers of this striking variation in hypergraph metrics observedacross sub-

jects, we explore systematic relationships between hypergraph cardinality and individual differ-
ence measures spanning distinct domains such as demographics, cognitive strategy, and
personality. In the multi-task data set, we find a suggestive relationship between hypergraph
cardinality and participant age. This relationship is confirmedwith an independent analysis of
a data set with participants who range in age from 18 to 75, which we refer to as the “age-mem-
ory” data set.We report a strong positive relationship between age and hypergraph cardinality:
older participants are significantlymore likely to have a larger number of distinct hyperedges
in their hypergraph. This agrees with the widely reported phenomenon of the loss of cohesion
within intrinsic functional brain systems, because an increase in the number of distinct hyper-
edges linking various brain regions points to interconnections between functional groups
evolving in time [13, 15]. Thus, the hypergraph method agrees with previous descriptions of
age-related brain changes, while capturing information about dynamics that adds a novel
dimension to previous studies. This work further recommends the hypergraph as a useful tool
in studying structure in dynamic functional connectivity.

Methods

Ethics Statement

Informed written consent was obtained from each participant prior to experimental sessions
for the multi-task and age-memory experiments. All procedures were approved by the Univer-
sity of California, Santa Barbara Human Participants Committee.

Background and Multi-task Methods

Multi-task experimental design. Participants were scanned at rest (task-free) and while
engaging in three distinct tasks designed to elicit distinct cognitive functions: an attention-
demanding task, a memory task with lexical stimuli, and a memory task with face stimuli. Par-
ticipants were instructed to lie still and look at a blank screen for the duration of the rest period.
During the attention task, participants were instructed to attend to sequences of images on a
screen and detect the presence or absence of a target stimulus in designated test displays. Prior
to the test display, a cue arrow provided probabilistic information on whether and where the
target stimulus might appear. The test display was flashed for approximately 50 ms, after
which participants chose whether or not the target stimulus had been present. Attention trials
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were separated by inter-stimulus intervals between 1200ms and 3200ms. In both memory
tasks, participants were presented with 180 previously examined stimuli and 180 novel stimuli
and were asked to discriminate between the two. The stimuli in the word and face memory
tasks were 1.5 s or 1 s in duration, respectively, with a 1 s inter-stimulus interval. The memory
tasks also included probabilistic cues indicating the probability that the stimulus was novel. For
additional experimental details, see [31] and [32].
After completing the scans described above, the following individual differencemeasures

were obtained for study participants: self-reported demographic information, self-reported
state of mind (including physical and mental comfort) information, results from the Beck
Depression Inventory II [33], tests for cognitive style (Santa Barbara Learning Style Question-
naire [34], Object Spatial Imagery Questionnaire [35], The Need for CognitionQuestionnaire
[36], Verbalizer-Visualizer Questionnaire [37], Card Rotation and Paper Folding Tests [38]),
personality tests (Big Five Inventory [39] BIS/BAS scales [40], and PANAS mood assessment
[41]). More individual differencemeasures were also collected, but do not match the individual
differencemeasures collected from subjects in the age-memory study.

Image acquisition and processing. TheMRI data were acquired from 116 participants at
the UCSB Brain Imaging Center using a phased array 3T Siemens TIM Trio with a 12 channel
head coil. In addition to functional data, a three dimensional high-resolutionT1-weighted struc-
tural image of the whole brain was obtained for each participant. FunctionalMRI data were col-
lected from 116 healthy adult participants over the four states described above in a block design
format. Due to various sources of attrition, only 77 participants completed the functional scan
and accompanying survey of detailed in [32]. The sampling period (TR) was 2 s for the rest and
attention tasks and 2.5 s for bothmemory tasks (TE = 30ms, FA = 90). The rest task consisted of
146 acquired brain volumes (for a total of 292 s), each attention task consisted of 240 scanned
volumes (480 s), and each memory task consisted of 540 volumes (1350 s).
The functional data is parcellated into regions using a “hybrid” adaptation of the multi-reso-

lution Lausanne2008 atlas registered to MNI space [42] in order to apply the hypergraph analy-
sis. This 194 region “hybrid” anatomical atlas minimizes variability in region size between
subjects and brain regions [24].
The functional data are preprocessed using FSL [43], AFNI [44] and Matlab [45]. Head

motion was corrected for with MCFLIRT and voxelwise despiking was performedwith AFNI
3dDespike [46]. Other preprocessing steps include non-brain removal with AFNI 3dAuto-
mask, slice-timing correctionwith AFNI 3dTshift, and additional motion artifact correction
with AFNI 3dDetrend. Additionally, each participant’s time-averaged fMRI image is aligned to
their structural T1 scan using FSL’s FLIRT with boundary-basedregistration [46, 47]. The
inverse of this transformation is applied to all participants’ parcellation scales (generated in
structural space) and parcellations are down-sampled into functional space with AFNI 3dfrac-
tionize. The mean signal across all voxels within a given brain region is calculated to produce a
single representative time series. An integer number of minute-long intervals is taken from the
beginning of the time series for each task, and these are concatenated to produce a single time
series, 3840 s in length, for each brain region.

Constructionof temporal graphs. For each subject, we construct a dynamic graph model
of brain function that accounts for changes in connectivity over time. Each of theN = 194
brain regions in the hybrid atlas is a node in the graph. The BOLD signal time series from each
brain region is bandpass filtered to obtain data in the 0.06–0.125 Hz frequency range that con-
tains task-related brain activity [48–51]. Node-node adjacencymatrices of sizeN × N are con-
structed by taking Pearson’s correlations between each pair of theN = 194 nodes for each
consecutive 60 s window of the bandpassed time series. Each node-node adjacencymatrix rep-
resents the state of the functional network over that period of 60 s. Previous work found robust
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hyperedge size and spatial distributions for temporal window lengths between 40 to 120 s, and
we choose a 60 s length consistent with previous analyses [24]. Furthermore, the variation in
TR between tasks and corresponding variation in number of data points in the 60 s windows
was shown to have minimal effects on the size and spatial hyperedge distributions [24].
Given the duration of each scan, this windowing yields four rest, 18 attention, 18 word

memory, and 18 face memory node-node adjacencymatrices. The set of node-node adjacency
matrices, one for each one-minute segment, represents the dynamic functional connectivity
graph; each edge, or pairwise connection between nodes, has an edge weight time series
describing its temporal evolution across time windows, as depicted in Fig 1(B).

Hypergraph construction. Hyperedges are groups of edges that have related temporal
profiles, so hypergraph structure is determined from the correlations between the time-evolv-
ing weights of edges [28] (See Fig 1 for a schematic illustration of hypergraph construction).
These are represented in an edge-edge adjacencymatrixX, of size E × E, where E = N(N − 1)/2
is the total number of possible edges in one time window of the DFC graph. Each entry in X is
given by the Pearson correlation between the corresponding pair of edge weight time series in
the DFC graph. The p-values from these correlations are thresholded by a false discovery rate
correction, which is more sensitive than other corrections for multiple comparisons and is thus
effective for such neuroimaging network analyses [52]. When the correlation between edges i
and j is significant (p< 0.05), we set ξij = Xij, to form the thresholdedmatrix ξ. All other ele-
ments of ξ are set to zero. We binarize this thresholdedmatrix and obtain x

0

ij, where

x
0

ij ¼
1; if xij 6¼ 0;

0; if xij ¼ 0:

(

ð1Þ

Each connected component in the thresholded edge-edge correlation matrix ξ0—that is,
each set of edges with correlations between any two edges in the set but no significant correla-
tion with edges in any other set—forms a hyperedge. Taken together, all hyperedges in ξ form a
hypergraph. Since the edge weight time series are never thresholded and both high and low
edge weights are preserved, hypergraphs provide information about edge dynamics without
restricting the analysis to strong correlations in regional time series. Hypergraphs are con-
structed from significant positive and negative correlations to incorporate a broad definition of
whether two edges are “related.” By definition, this approach precludes pairs of hyperedges
that are anti-correlated. An alternative mechanism for constructing hypergraphs would treat

Fig 1. Hypergraph construction. An illustration of hyperedge identification on a representational set of

edges. Edge weights are computed separately for each time window (A) and joined together to form edge

weight time series (B). Significantly correlated edge time series are cross-linked to form a hyperedge, a group

of nodes that are linked by correlated edges (C). The group of hyperedges for an individual, with singletons

removed, forms a hypergraph (D).

doi:10.1371/journal.pcbi.1005178.g001
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positive and negative correlations separately, but here we only consider absolute valued
relationships.

In this analysis, we consider a system with 194 nodes, and
194

2

 !

possible edges. Hyper-

edges are collections of edges, which results in a high dimension for this system. As such, we
illustrate an schematic hypergraph on a smaller number of nodes for visualization purposes,
seen in Fig 2.
Our results are compared with a null model designed to ensure that hyperedges identified in

our analysis can be attributed to system dynamics, rather than overall statistical properties of
the data [29]. To destroy temporal correspondences between edges but retain the mean and
variance of each edge weight time series, the null model randomly reorders each edge time
series individually and calculates correlations between the reordered edges.
Once hypergraphs are identified for each individual in the multi-task data set, hyperedges

are classified according to whether the correlation in a cognitive state (i.e., rest or one of three
cognitive tasks) is significant compared to a permutation null model over all states [24]. The
hyperedges that satisfy these requirements are denoted as task-specific hyperedges, which we
combine to form task-specific hypergraphs.

Hypergraphmetrics. In this analysis, we examine several complementary measures on
individual hypergraphs and focus on one of the most straighforward and transparent of these
measures to extract meaningful information from the overall hyperedge distribution.

Hyperedge size: The size, s(h), of a hyperedge h, is defined by

sðhÞ ¼
X

i;j2h

x
0

i;j; ð2Þ

Fig 2. Example ξ 0. Two depictions of a representative hypergraph on 20 nodes. The hypergraph with singletons removed is shown in (A), where

edge color represents hyperedge assignment. The size of a particular hyperedge is the number of edges in it, as in Eq 2. This illustrative

hypergraph is comprised of six distinct hyperedges of various sizes. An alternative hypergraph representation is depicted in (B), where colors

directly correspond to (A). Each hyperedge in the hypergraph is represented by a single vertex. Vertex labels correspond to hyperedge size, and

edges are drawn when hyperedges connect to at least one common node.

doi:10.1371/journal.pcbi.1005178.g002
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where the sum is over the upper triangular elements of ξ0, the binarized edge-edge adjacency
matrix defined above. This is equivalent to the number of edges that are designated as part of
this hyperedge. An illustration of a hypergraph with hyperedges of varying sizes can be seen in
Fig 2.

Singletons: Singletons are hyperedges with s(h) = 1, edges with no significant correlation
with any other edge in the graph. We exclude singletons from the following analyses.

Hypergraph cardinality: The cardinality of an individual hypergraph is the number of non-
singleton hyperedges present in the hypergraph. The cardinality of the representative hyper-
graph in Fig 2 is six.

Hyperedge node degree: The hyperedge degree of a node is the total number of hyperedges
that contain that node.

Task-specific hyperedges: Hyperedges that exhibit a significantly higher correlation within
one particular task are grouped into task-specific sets. The sets are calculated by using a permu-
tation test to compare the correlation between edge time series for groups of edges in hypereges
in a single task to the same correlation with edge time series data chosen randomly from all
tasks. A Bonferroni correction for false positives due to multiple comparisons is employed to
select task-specific hyperedges using the most stringent requirements [53].

Regression procedure. To investigate possible correlates of variability in individual hyper-
graph metrics, we perform a series of regression analyses. In each analysis, we use the hyper-
graph metric as the dependent variable and factors representing individual differencemeasures
from the psychometric tests as the independent variables.

Behavioral data categorization: Behavioral and performance data for the multi-task study
consist of 231 measures, while there are 115 measures for the age-memory study participants.
There are 42 individual differencemeasures common to both studies, which we group into five
categories, given in Table 1. These categories are comprised of differing numbers of individual
differencemeasures, which are summarized in S1 Table.

Singular value decomposition: Once the individual differencemeasures have been catego-
rized, we demean all measures and perform a singular value decomposition (SVD) separately
for each category. We choose the minimum number of factors from the SVD for each category
that retain at least 75% of the variance across the category of measures from the multi-task
study. Results from this process are presented in Table 1.

R2 change: The number of factors retained is not constant across categories, so we imple-
ment an adapted multivariate hierarchical regression [54, 55] to establish the comparative
informativeness of each category. To assess the explanatory power of a given category, all fac-
tors in that category are held out for a “control” regression, and the difference in model R2

between this reducedmodel and the full model is denoted as the contribution for that category.
This corresponds to repeatedly performing a hierarchical regression with each category

Table 1. Information retained for multi-task study. Categories, number of factors for each, and how

much overall variance from the multi-task individual difference data was retained for each category. Each cat-

egory represents a subset of the 42 individual difference measures and the factors represent a percentage of

the variance contained in the category for the multi-task data.

Category Factors Information Retained

Performance 2 91.41%

Demographics 2 92.62%

State of Mind 3 80.45%

Cognitive Factors 4 77.64%

Personality 6 77.79%

doi:10.1371/journal.pcbi.1005178.t001
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computed last, which gives a conservative estimate for the amount of variance attributable to
the category [55].

Significance test: To determine the significance of the regression coefficients,we use the p-
values from t-tests on each multiple regression performed. The Bonferroni procedure for cor-
recting for false positives due to multiple comparisons is used to adjust the t-test p-values over
all regressions performed in this study [53]. We employ the Bonferroni correction for multiple
comparisons in all regression analyses because it is the most stringent test for significance.

Age-Memory Methods

The majority of the methods are identical to those discussed for the multi-task data set. Below,
we point out aspects that differ between the two analyses.

Age-memory experimental design. The word memory task in the age-memory study is
constructed similarly to the word memory task in the multi-task data set. In addition to the
memory task, participants completed a resting state scan and diffusion-tensor imaging, which
we do not analyze further. Participants did not complete the face memory or attention tasks
described in the first data set. The BOLD data were acquired while adult participants per-
formed a recognitionmemory task with probabilistic cues. Prior to the scanning session, the
participants studied 153 common English words, which were mixed with 153 novel lexical sti-
muli during the task. Participants were asked to determine whether the stimuli were studied or
unstudied, with font color cues indicating whether the word had a 70% probability or a 30%
probability of having been previously studied [56].

Image acquisition and processing. Functional and structural data were collected from
126 healthy participants engaged in the word memory task. All functional data was acquired
with a 3T Siemens TIM Trio MRI system with a 12-channel head coil. Scans consisted of T2�-
weighted single shot gradient echo, echo-planar sequences sensitive to BOLD contrast
(TR = 1.6 s; TE = 30 ms; FA = 90) with generalized autocalibrating partially parallel acquisi-
tions (GRAPPA). Subjects were scanned performing the task, with a total of 948 brain volumes
acquired (1516.8 s). In additon to the functional scans, high-resolution anatomical scans were
performed for each participant using an MPRAGE sequence (TR = 2.3 s; TE = 2.98 ms; FA = 9;
160 slices; 1.1 mm thickness). Study participants also underwent behavioral assessments and
psychological testing. Functional data from 31 participants were excluded due to technical
issues, metal screening issues, claustrophobia, attrition, or lack of a complete individual differ-
ences survey. The results presented here are from 95 participants with usable functional and
individual difference data.
The functional data are preprocessed using FSL [43], AFNI [44], and Matlab [45]. Prepro-

cessing includes head motion correction (MCFLIRT) [46], non-brain removal (BET) [57],
high-pass temporal filtering (σ = 50s), spatial smoothing, and grand mean intensity normaliza-
tion (FEAT) [58]. Each voxel’s time series is further denoised using a nuisance regression. The
nuisance regression includes regressors for the six motion correction terms returned by
MCFLIRT, their temporal derivatives, and the mean signal time series from the cerebrospinal
fluid. The denoised data is registered to MNI space using FLIRT [59, 60]. The T1 scan is first
registered to the MNI template (12 df affine transformation), the functional data are registered
with the T1 image (6 df affine transformation, trilinear interpolation), and the transformations
are combined. As in the multi-task study, the mean BOLD signal across all voxels within a
given brain region is calculated to produce a single representative time series.

Constructionof temporal networks. Time series are demeaned and concatenated across
the three functional runs of the word memory task to produce a single time series for each
brain region. DFC graphs are constructed here analogously to the multi-task study, with one

Individual Differences in Dynamic Brain FC across the Lifespan

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005178 November 23, 2016 9 / 29



key difference. In the age-memory analysis, we remove a single node-node adjacencymatrix
(i.e., a single time window) from the beginning and end of each functional run. This is to coun-
teract edge effects from processing and ensure continuity across runs.We address this choice
further in the Methodological Considerations section of the Discussion.

Regression procedure. The regression procedure is similar to the analysis performed on
the multi-task data. The individual difference data is kept in the common format, where only
the 42 measures common to both studies are used and the categories are the same. Further-
more, the R2 change and significance tests are calculated as above.

Singular value decomposition:We demean all measures and perform a singular value
decomposition (SVD) on the combined multi-task and age-memory data separately for each
category. This differs from the multi-task analysis, where we only consider the variance
retained over the multi-task data. We choose the minimum number of factors from each SVD
that retain at least 75% of the variance across both studies. Results from this process are pre-
sented in Table 2.

Results

As mentioned above, the hyperedge method has been applied to the multi-task data set in a
previous study [24]. Here, we first recapitulate the key findings from that investigation and
provide results of exploratory analyses that motivate the followup analyses on the age-memory
data set. We then present results from the age-memory analysis.

Summary of Prior Results

A previous study of the multi-task data identifiedmeasures that capture significant differences
in population-level hypergraph structure across tasks [24]. Furthermore, extensive variation
was observed in several hypergraph measures, including hypergraph cardinality, across indi-
viduals. These results emphasize that hypergraph structure can be used to differentiate between
task states and motivates our investigation of the correspondence between hypergraph struc-
ture and individual differencemeasures.
Fig 3 depicts the empirical cumulative hyperedge size distributions for all hyperedges found

across all subjects in the multi-task data set. As a null test, we shuffle the data over time and
find no hyperedges of size greater than one. There is a rough power law for the smaller sizes
(s< 100), followed by a gap in the distribution from about 100 to 1000 and a sharp drop at the

system size (s ¼
194

2

 !

¼ 18721). The shape of the distribution is due to the consistent

hypergraph structure across individuals; the majority of subjects in this study have a hyper-
graph composed of one large hyperedge and many small hyperedges.While this characteristic

Table 2. Factors common to the multi-task and age-memory trials. Categories, number of factors

assigned to each, and how much of the overall variance was retained in each category. Each category repre-

sents a subset of the 42 individual difference measures and the factors represent a percentage of the vari-

ance contained in the category.

Category Factors Information Retained

Performance 1 87.18%

Demographics 1 86.14%

State of Mind 3 77.09%

Cognitive Factors 3 81.25%

Personality 4 78.56%

doi:10.1371/journal.pcbi.1005178.t002
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structure is common to most subjects in the study, the size of the largest hyperedge varies
across individuals. This size is closely related to the hypergraph cardinality, defined as the
number of hyperedges in a hypergraph, a measure which also exhibits large variation.
Fig 3 also depicts task-dependent differences in the cumulative size distributions of task-

specific hyperedges. Memory-specific hyperedges tend to be more numerous than those spe-
cific to the rest and attention tasks. However, the total number of task-specific hyperedges for
any task is at least ten times fewer than the total number of hyperedges. Our strict definition of
task specificity includes only hyperedges specific to a single task and discards those associated
with more than one task. This approach is conservative, and likely leaves somemeaningfully
task-related hyperedges unclassified.However, it reduces the dimension of the task-specific
results, and provides greater confidence that any hyperedges classified as task-specific are
indeed providing truly task-driven information due to coherence within that task alone, rather
than coherence due to an unrelated driver that is common to several tasks.
There are significant differences in the spatial organization of task-specific hyperedges over

all individuals that are visualized in Fig 4. The plots depict task-specific hyperedge degree
across the brain for each of the four tasks. In addition to the differences in magnitude between
word memory and the other tasks, the locations of high hyperedge concentration vary with
task.
These significant differences in hypergraph structure between the tasks confirm that hyper-

graph structure varies between task states. However, persistent variability in hypergraph mea-
sures across individuals indicates that the hypergraph method reflects innate differences
beyond the current task state. The work presented here follows this line of inquiry, beginning
with an analysis of individual differences in the multi-task data set.

Fig 3. Multi-task cumulative size distribution. The empirical cumulative distribution function of hyperedge

sizes for all subjects in the multi-task study. Also shown are traces for the empirical cumulative distribution

functions of hyperedge sizes over all subjects for each of the four task-specific hypergraphs. The

distributions for both word and face memory tasks tend to have more large hyperedges, while the attention

and rest tasks have similar hypergraph cardinality to the memory tasks over all subjects, but exhibit far fewer

large hyperedges.

doi:10.1371/journal.pcbi.1005178.g003
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Multi-task Results: Individual Differences

Here, we illustrate and quantify the wide variation in hypergraph measures across individuals
in the multi-task data. In brief, we identify a particularmeasure, hypergraph cardinality, that
demonstrates large variance across all individuals but is consistent within individuals. Follow-
ing this, we investigate relationships between the variation in individual differencemeasures
and the variation in hypergraph cardinality. The results from this study are not statistically sig-
nificant due to the limited variation in individual differencemeasures and strict corrections for
multiple comparisons. However, we report a marginally significant result relating demograph-
ics and word-memory hyperedge cardinality that motivates further analyses on the age-mem-
ory data set.

Individual variability and consistency in hypergraphmetrics. Although our previous
study focused on group-level properties of hypergraphs across tasks, notable individual differ-
ences in functional dynamics were also seen [24]. Here, we confirm those preliminary observa-
tions by investigating the hypergraph cardinality measure and finding that it displays extreme
variations across subjects in the multi-task data set, as shown in panel (A) of Fig 5. These indi-
vidual variations in hypergraph cardinality span several orders of magnitude.
Despite this large variation between participants, hypergraph cardinality follows a consis-

tent pattern within each participant across tasks. Panel (B) of Fig 5 depicts individual measures
of hypergraph cardinality for hyperedges specific to each task, with subjects sorted by rest
hypergraph cardinality. Within participants, the task-specific hypergraph cardinality is consis-
tent across task states and follows the distribution for rest-specific hyperedges, which further
emphasizes the consistency of hypergraph cardinality within individuals.
Consistent hypergraph cardinality within participants over all tasks indicates that there are

characteristics specific to individuals that drive hypergraph properties, even in designated task-
specific hypergraphs. These patterns imply the existence of driving influences on hypergraph
structure that are independent of performance on a specific task. To investigate this further, we
examine how individual differencemeasures from demographic and behavioral data relate to
hypergraph cardinality.

Drivers of individual variability. To investigate possible sources of the large variation in
hypergraph cardinality seen above, as well as to quantify the extent of the consistency of hyper-
edge cardinality across tasks, we perform a series of multiple regression analyses on the multi-
task data, as described in Methods.
First, using the cardinality of task-specific hypergraphs as the dependent variable, we per-

form a regression analysis for each non-resting task (attention, word memory, and face mem-
ory) that includes the cardinality of the rest-specific hypergraph and the factors shown in

Fig 4. Node degree spatial distribution. Here, the average hyperedge node degree, or number of hyperedges that include each node over all

individuals in the multi-task study is plotted on the brain. The scale is logarithmic, and higher values in a region indicate that there are more hyperedges

that include the region. There are some regional differences in hyperedge concentration, and the face-specific hypergraph shows a global increase in

hyperedges across the brain.

doi:10.1371/journal.pcbi.1005178.g004
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Table 1 as independent variables. Table 3 gives the R2 change values and p-values associated
with the rest predictor for each task-specific regression. In all three tasks, the rest predictor
alone significantly explains the variance in task-specific hypergraph cardinality. This confirms
and quantifies our observation in Fig 5 that hypergraph cardinality is consistent across each
individual’s task-specific hypergraphs—i.e., it is trait-like. The individual differencemeasures
used as independent variables are not significant after the Bonferroni correction for multiple
comparisons over all tests. However, including the rest-specific hypergraph cardinality, which
is closely linked to overall hypergraph cardinality, as an independent variable in the regression
accounts for the variation across individuals that is consistent across tasks.
To identify possible drivers of this individual variation, we perform another regression anal-

ysis, using the individual differencemeasures from Table 1 as independent variables and over-
all hypergraph cardinality as the dependent variable. Fig 6 depicts the R2 changes from this
analysis for each category of factors. The t-test identifies no factors with significant correspon-
dence to hypergraph cardinality, but we observe that the demographics category has the largest
R2 change. The t-test p-value for one of the factors in the demographics category is p< 0.05
and is by far the lowest p-value in this stage of the analysis. However, due to our stringent
requirements for correcting for multiple comparisons and the number of tests we performed,
this correlation is not statistically significant. The marginally significant demographics factor

Fig 5. Individual variability. Hypergraph cardinality for individual overall multi-task hypergraphs is shown in panel (A), sorted by increasing overall

cardinality. Individual task-specific hypergraph cardinality is shown atop the overall cardinality for comparison, and is also sorted by increasing

overall cardinality. Panel (B) depicts the cardinality for task-specific hyperedges, sorted by rest cardinality. The number of hyperedges across tasks

is fairly consistent within individuals, in contrast to the range of hyperedge number across individuals.

doi:10.1371/journal.pcbi.1005178.g005

Table 3. Rest regression R2 values. R2 values for the regression between rest-specific hyperedge cardinality and hyperedge cardinality for each of the

other three tasks.

Attention Word Memory Face Memory

R2 change 0.72 0.58 0.68

p-value p < 0.0001 p < 0.0001 p < 0.0001

doi:10.1371/journal.pcbi.1005178.t003
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has a loading of −0.95 for the age measure and −0.31 for the years of educationmeasure; the
loading for sex and handedness demographic measures are comparatively negligible, with mag-
nitudes less than 0.02.

Summary of multi-task results. On the basis of our previous results applying hyperedge
analysis to this data set, which hints at substantial variability across individuals in hypergraph
structure (Fig 3), we carry out several regression analyses designed to identify individual drivers
of this variability. There were two key results. The first result is that overall and task-specific
hypergraph cardinality show notable variation between subjects, but remarkable consistency
within subjects for all tasks (Fig 5).
The second key result from this exploratory analysis is the finding of a marginally significant

relationship between the demographics category and hyperedge cardinality. Limits to the
explanatory power of the multi-task data set may be determined by limited variation in some
demographic measures—particularly the small range (27–45) and standard deviation (4.24) in
subject age, which poorly represents the ages observed in the entire population.We thus extend
our analysis to a complementary data set collected on a longer study of the word memory task
with participants aged 18–75, with a standard deviation of 22.11. In the next section, we report

Fig 6. Multi-task R2 changes. Normalized R2 changes with respect to hypergraph cardinality are shown for individuals in the multi-task study. R2

changes are calculated from the regression procedure outlined in Methods, with five distinct categories common to the multi-task and age-memory

studies. The largest normalized R2 change is from the demographics factor, but no factors exhibit a signficant correspondence with hypergraph

cardinality.

doi:10.1371/journal.pcbi.1005178.g006
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the results of our independent analysis of this age-memory data set, which confirm the rela-
tionship between age and hypergraph cardinality suggested by the multi-task results.

Age-Memory Results

To supplement the findings from the multi-task data set, we perform a parallel set of analyses
on the age-memory data set. The data set includes participants with ages ranging from 18 to
75, a range three times larger than the range of ages in the multi-task study. Furthermore, the
age-memory study uses an almost identical task to the multi-task word-memory task. In this
section, we combine hypergraph results for all participants in the age-memory data set and
obtain a distribution of hyperedge size over all participants with similar features to the hyper-
edge size distribution from the word-memory task of the multi-task data. We then identify and
test specific drivers of individual variation in hypergraph cardinality for the age-memory study
participants.We find a strong correspondence between age and hypergraph cardinality that
confirms the preliminary result from the multi-task study.

Hypergraph statistics. The cumulative size distribution of hyperedges for all individuals
in the age-memory study is depicted in blue in Panel (A) of Fig 7. To compare these age-mem-
ory hyperedges with the word memory portion of the multi-task study, we identify a new set of
hyperedges using only the portion of the multi-task functional time series recorded during the
word-memory task for each subject; the distribution of sizes for these hyperedges are plotted in
pink. Note that these new word-memory hyperedges from the multi-task data are fundamen-
tally different from the “word memory-specific” hyperedges depicted in Fig 3. The “word
memory-specific” hyperedges are those hyperedges computed over all tasks, but classified to be
driven by correlations in the word memory task alone. In contrast, the new word-memory
hyperedges in Fig 7 are found by using just the word-memory subset of the multi-task data,
with no further classification applied.
The distributions of sizes are similar at smaller size scales, but differ somewhat at larger size

scales. There are many more hyperedges close to the system size in the age-memory task, while
the word-memory hyperedges from the multi-task data set tend to be smaller. The length of
the multi-task word-memory time series is shorter than the age-memory time series, which
may contribute to this effect [61]. To investigate the size distributions without the effect of full-
brain hyperedges, we remove the largest hyperedge from each subject’s hypergraph and plot
the resulting distribution in Panel B of Fig 7. With this adjustment, the distribution of age-
memory hyperedge sizes has a striking agreement with the size distribution of hyperedges con-
structed from the multi-task word memory data. In both distributions, there is power law
behavior for small sizes, similar to that observed in Fig 3. Furthermore, the distributions with-
out the largest hyperedges are almost identical; the power of the fit to multi-task word memory
data is −2.21 and the intercept is 7.91 × 104, while the power of the fit to the age-memory data
is −2.37 and the intercept is 1.46 × 105.
We construct a null model, as detailed in the multi-task Methods section, by temporally

shuffling the data and find no hyperedges with size greater than one, indicating that the hyper-
edges identified in the unshuffled data are capturing statistically significant aspects of brain
dynamics. In addition, the close correspondence between these two distributions of word-
memory hyperedges suggests that the analysis captures aspects of brain dynamics that are
robust across imaging sessions and populations.
The inter-subject variability in multi-task hypergraph cardinality spanned several orders of

magnitude and followed consistent patterns within subjects for differing cognitive states. We
compare the individual hypergraph cardinality for the age-memory and multi-task word-only
studies in Fig 8. In the age-memory data, hypergraph cardinality ranges from 0 to 1817, which is
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a similar range of variability as that observed for the complete overall multi-task data set in Fig 5.
There are 79 subjects with nonzero hyperedge cardinality, indicating that significant non-single-
ton hyperedges are present in less than two thirds of the subjects. For the remaining analyses, we
only consider the 79 subjects with nonzero hypergraph cardinality. For the overall hypergraphs,
hypergraph cardinality ranges from 0 to 1832. The maximum hypergraph cardinality for the
multi-task word-only data is 1408, which is markedly less than that observed for the age-memory
data and may be a result of the shorter time series for the multi-task word task. The presence of
near-system size hyperedges, whichmay also be due to the shorter multi-task word time series,
affects hypergraph cardinality by resulting in hypergraphs with cardinality near one.

Fig 7. Comparison of cumulative size distribution. Panel (A) depicts the cumulative distribution of hyperedge sizes over all individuals in the age-

memory study compared with the sizes of the set of hyperedges constructed from only the word-memory task of the multi-task data set. Differences in

the number of large hyperedges can be observed between the two tasks, but both contain a similar number of hyperedges over all individuals. Panel

(B) illustrates the cumulative distribution of sizes for all individuals in both studies with the largest hyperedge for each individual subject removed.

When this is done, the distributions overlap and are well described by a power law with close alignment in slope and magnitude across studies.

doi:10.1371/journal.pcbi.1005178.g007
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Age-memoryhypergraph correspondence with age. Having confirmed that hypergraph
composition is similar for the multi-task word study and the age-memory study, we investigate
whether the individual variability in hypergraph cardinality seen in Fig 8 corresponds to indi-
vidual difference factors for the age-memory study.
We perform a multiple regression on the 12 factors distributed across five categories in

Table 2. Head motion has been found to induce correlations in FC analyses [62], and a previ-
ous study using this data found a significant correlation between age and amount of head
motion during the experiment [56]. To ensure that excessive head motion is not contributing
to our result in any way, we include head motion (operationalized as the average relative move-
ment as computed by MCFLIRT) as a predictor in this regression.
The overall R2 value for the multiple regression analysis was 0.3452, indicating that the pre-

dictors explain about a third of the variance in the overall data. After a Bonferroni correction

Fig 8. Sorted hypergraph cardinality. Increasing hyperedge cardinality for individual multi-task word-only and age-memory hypergraphs.

The variability for both studies is similar to the variability in multi-task overall hypergraph cardinality, depicted in Panel (A) of Fig 5. The range

of hypergraph cardinalities for subjects in the word-only data is smaller than either the overall multi-task study or age-memory study.

doi:10.1371/journal.pcbi.1005178.g008
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for multiple comparisons across all regression studies included in this paper [53], the demo-
graphics factor is the only significant predictor of hyperedge cardinality. The normalizedR2

changes for hypergraph cardinality can be seen in Fig 9; the demographics factor has the largest
normalizedR2 change and the only significant p-value (p< 0.005) in the regression. These
results correspond with the marginal result from the multi-task data set, where the demograph-
ics factor is a marginally significant predictor.
Much of the variation in the demographics factor (73.5%) is directly attributable to age. We

attempt to isolate the specific relationship between age and hypergraph cardinality by perform-
ing a separate regression. In this regression, hypergraph cardinality is the dependent variable
and the independent variables are age and head motion. The relationship between age and
hypergraph cardinality is significant, with the t-test p-value well below the Bonferroni correc-
tion over all regression analyses presented in this work, at p< 0.001.
This is a positive relationship, indicating that older individuals tend to have higher hyper-

graph cardinality, while younger participants tend towards lower hypergraph cardinality. An
illustration of this correspondence between hypergraph cardinality and age is presented in

Fig 9. Age-memory R2 changes. Normalized R2 changes with respect to hypergraph cardinality across individuals in the age-memory study. The

largest normalized R2 changes are from the demographics factor and head motion measure, but the demographics factor is the only significant

predictor of hypergraph cardinality. In this figure, prediction significance is denoted with a bold outline. The composition of R2 changes for the age-

memory task is consistent with that seen for the multi-task data in Fig 6, in that the normalized R2 change is largely due to the demographics

factor.

doi:10.1371/journal.pcbi.1005178.g009
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Fig 10. As age increases, the number of hyperedges in a participant’s hypergraph increases as
well. We verify that this relationship holds beyond this particular study by reintroducing the
word-memory data from the multi-task study and performing a correlation between hyper-
graph cardinality and age over both studies. Age and hypergraph cardinality have a Spearman
correlation coefficient of ρ = 0.32, and the p-value for this correlation, p< 10−5, is significant
when we use the Bonferroni correction over all analyses presented in this paper.

Spatial distribution of hyperedges. Given the positive relationship between age and
hypergraph cardinality, we next identify how the spatial organization of hyperedges reflect the
increase in cardinality. We group subjects from the age-memory study into three age ranges
based on the age-memory task data distribution: 18 years old (39 subjects), 25–33 years old (34
subjects), and 60–75 years old (35 subjects). For each set of subjects, we calculate the average
hyperedge node degree for each region and depict them on the brain in Fig 11. The plots for
the two younger populations exhibit few differences, although there is a slight increase in

Fig 10. Hypergraph cardinality and age. Hypergraph cardinality is shown as a function of age for the age-memory data set (blue) and word

memory task of the multi-task data set (pink). Three distinct age groups are present for the age-memory data, while the multi-task ages

overlap with the middle age-memory group. The correspondence between increasing age and larger hypergraph cardinality can be

observed, where few older subjects have low hypergraph cardinalities, but the majority of the youngest subjects have cardinalities lower than

500.

doi:10.1371/journal.pcbi.1005178.g010
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degree for the middle population. Hypergraphs in the oldest population exhibit higher hyper-
edge node degree across the brain, although regions of relatively high hyperedge node degree
are consistent with those in the other populations.
Thus, the increased cardinality is due to global changes, with regions of relative high and

low degree that are stable across ages. The number of hyperedges that include each region
increases by about a factor of five over the age range studied.We conduct a paired t-test for
each brain region in the youngest and oldest populations and found that each region has a sig-
nificantly higher hyperedge node degree in the oldest population.

Discussion

Improving our understanding of the drivers of individual differences in functional brain imag-
ing data can give insight into the dynamic mechanisms that lead to individual behavior.
Dynamic FC has been used over groups to explain changes in the brain attributed to individual
differences in learning [30, 49, 63]. Hypergraphs in particular have been used to analyze how
long-term learning impacts the functional network structure [30] and how the brain switches
between cognitive states [24]. A previous DFC study found task-dependent hypergraph prop-
erties at the level of the group, indicating that hypergraphs can be used to describe how func-
tional dynamics differ between tasks [24]. Here, we develop new hypergraph metrics to
investigate individual differences in hypergraph structure and possible drivers of these varia-
tions. Our primary goal in the present investigation is to continue validating the hypergraph
approach by demonstrating its ability to reproduce a well-known phenomenon in the FC
literature.
Hypergraphs are constructed from correlations between edges, providing a method of anal-

ysis complementary to static and dynamic graph theoretic methods including dynamic com-
munity detection and ALFF-FC [26, 27]. In this method, hyperedges are defined as connected
components of the edge-edge graph. A natural extension of the hyperedge formalism would be
to perform edge-based community detection on the edge-edge adjacencymatrix, which would
further partition the connected components of the edge-edge graph [64, 65]. Similarly, any
graph theoretic measure that can be computed on the standard node-node graph—clustering
coefficient, assortativity, global efficiency, et cetera—can be computed with respect to the edge-
edge graph, although the interpretation would of course be quite different.

Fig 11. Spatial distribution of hyperedges for three age groups. Average hyperedge node degree for three discrete age groups in the age-memory

study. Regions of relative high node degree are consistent across the three groups, but the overall node degree is about five times larger in the group with

ages from 60–75. This corresponds to previous observations of increasing cardinality with age and illustrates how the increase in cardinality is spread

across the brain.

doi:10.1371/journal.pcbi.1005178.g011
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The hypergraph method provides a rigourous graph theoretical formalism to study network
dynamics. Throughout this study, we investigate hypergraph cardinality as a dependent vari-
able. However, future investigations should be performed to determine whether hypergraph
cardinality is a useful independent variable with predictive power.

Disparate Sources of Variability in Hypergraph Structure

As we showed in the Multi-Task Analysis, the hypergraph cardinality varies widely across indi-
viduals, but is consistent between task states. Previous work on the multi-task data set found
that the probability for hypergraphs to appear in a particular network configuration over indi-
viduals was significantly different depending on task state [24]. Consistent spatial organization
rules for each task existed at the level of the group. There were similarities in the spatial
arrangement of hyperedges in the brain for differing tasks, but certain properties were found to
vary significantly between tasks. Brain areas in the occipital lobe in particularwere highly likely
to participate in the hypergraph across individuals and across tasks, likely due to the visual
nature of most of the cognitive tasks studied.
Here, we study hypergraph cardinality, which displays high variability across individuals

and consistency across tasks within individuals (Fig 5). This indicates that hypergraph cardi-
nality serves as an individual signature of a subject’s brain dynamics. The similarities across
subjects in the spatial distributions of hypergraphs described in [24] capture information
orthogonal to the information summarized by hypergraph cardinality. For example, there are
some individuals for whom the visual brain regions are linked by many hyperedges, and some
for whom those same regions are linked by relatively few hyperedges, but these regions are
more likely than others to be included in hypergraphs in the majority of subjects. This suggests
that, for some subjects, brain regions tend to be more dynamically integrated in general, with
co-varying functional relationships across many brain circuits; in other subjects, connectivity
dynamics are more fragmented across the brain.
The high degree of variability in hypergraph cardinality across subjects and consistency within

subjects, combined with the significant differences in spatial hyperedge arrangement across tasks,
indicate that hypergraphs are a useful analysis tool for investigating both individual and task-
based differences in brain function in a variety of settings. At the same time, hypergraphs can
provide a view of dynamic patterns that complements other commonly usedDFCmethods. For
example, many FCmethods exclusively investigate the structure of strong correlations in func-
tional data [29, 66–68]; hypergraph analysis captures information about both strongly and
weakly correlated dynamics and how sets of brain regions transition between them [28].
Although they are highly informative, many of the hypergraph metrics we study here are

representative measures that greatly reduce the dimension of the hypergraph and only reveal a
small part of the information contained in its structure. Further development of methods to
utilizemore of the information that hypergraphs provide will allow characterization of the con-
sistency of particular hyperedges and dynamic modes, an understanding of which are impor-
tant for behavior, or influenced by demographics or disease. Future work is also needed to
further quantify the spatial differences in hypergraph arrangement across both individuals and
tasks, to clarify the extent of overlap between the two types of information, and to determine
whether the individual variability in cardinality can bemapped to individual spatial differences
in hypergraph structure.

Relationship between Age and Changes in DFC Networks

FC studies have established clear trends associated with aging, including a decrease in connec-
tivity within functional networks and an increase in connectivity across different functional
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networks in resting and task states [15, 69–72]. Many of these studies have considered resting-
state FC, because the absence of task stimulus provides a simple and reliable setting for com-
parison between subjects [73], although recent studies have successfully used FC networks to
study various cognitive proceses [74]. The default mode network (DMN) and similar resting-
state analyses may miss functional changes evoked by task states; while the DMN FC decreases
with age, task-related sensorimotor network FC has been shown to increase with age [12, 14].
Similarly, FC in memory tasks shows increased segmentation with age [75]. Extending these
analyses to incorporate the dynamics of functional interactions is a necessary step towards
quantifying individual changes in functional brain dynamics associated with age.
Several efforts have beenmade to capture individual age-related differences with methods

from dynamic FC. Dynamic community structure and amplitude of low-frequency fluctuation
of FC were both found to be strongly correlated with age, illustrating that functional dynamics
are closely linked with aging [26, 27]. In the dynamic community detection analysis, functional
communities were found to be more fragmented with age, which agrees with the hypergraph
cardinality result presented here [26]. A multi-scale community detection analysis uncovered
similar fragmentation with age for small scales [76]. Our finding that hypergraph cardinality
also increases with age aligns with this result and provides further information based upon its
ability to capture higher-order dynamic patterns across larger ensembles of brain regions. Not
only do the functional similarities of communities of brain regions themselves become less dis-
tinct as humans age, but the temporal profiles of these functional similarities also become less
integrated across brain regions. The agreement of this result with known age-related changes
in FC [6–8, 13, 15] demonstrates the ability of hypergraph methods to capture and quantify
major brain changes. Moreover, since the hypergraph analysis is not limited to strong correla-
tions, our analysis further suggests that age is related not only to the organization of functional
activity in groups of brain regions with strongly coherent activity, but also to the coordination
between groups of regions that transition from being strongly to weakly correlated over time
(or vice versa).
The reported correspondence between age and hypergraph cardinality is significant in the

age-memory data set, but our analysis did not include data that could verify this relationship
for cognitive tasks other than the word memory task. Althoughmemory is a cognitive ability
known to decline with age in many individuals, it is unlikely that the specific task studied in the
age-memory data set drives this result. Rather, the consistency of hypergraph cardinality across
tasks seen in the multi-task data set in Fig 5(B) suggests that similar hypergraph cardinalities
may be found during other tasks in data sets with higher age variability, and that the relation-
ship between age and cardinality is unlikely to depend primarily on the behavioral task. Further
investigation is needed to determine whether individual differences in hyperedge structure
have any significant relationship to behavioral or cognitive performance on any particular task.

Methodological Considerations

Atlas-based variations. In this work, we use the hybrid atlas described in the methods sec-
tion for all analyses. However, several studies have reported variation in graph topologywith
differing choices of atlas in both structural [77–79] and functional imaging studies [80, 81]. It
is possible that use of a variety of atlases may produce variation in the results presented here,
which could be verified in future work.

Edge effects in task concatenation. In this paper, we investigate dynamic functional con-
nectivity changes across multiple cognitive tasks and two separate imaging data sets. In order
to capture changes across tasks in the multi-task data set, we concatenate the time series for all
tasks, as in [24]. In our analysis of the age-memory data, we concatenate time series from three
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functional runs of the word memory task, and remove time windows from the ends of the time
series of each task to reduce edge effects. Edge effects appear to be confined to the data points
adjacent to the beginning and end of each run, but we remove the fullN × N adjacencymatrix
to ensure we are not including any edge effects in the analysis. The resulting change in the
cumulative size distribution is depicted in S1 Fig. With the edge blocks removed, there are
fewer system-size hyperedges and more small hyperedges.
S1 Fig includes a comparison with another method for treating edge effects. In this case, the

time series data for each of the three tasks is filtered separately before concatenation. This
approach dramatically reduces the number of hyperedges. If filtering is responsible for introduc-
ing edge effects that drive hyperedges, the number of hyperedges are likely to increase when we
employ this method. Instead, only 13 subjects had non-singleton hyperedges.We choose to not
analyze these results further because there are too few subjects with hyperedge data.
Two further efforts to understand the effects of concatenating across functional runs on the

cumulative size distribution are depicted in S2 Fig. In the trial-by-trial analysis, we performed
the hypergraph method separately on each edge time series (10 data points each) for the three
trials. Only 30 subjects have significant non-singleton hyperedges in at least one of the three
trials and the number of large hyperedges is much lower than the original result. This decrease
may be a result of our removal edge effects, but it is likely the shorter task length is driving the
difference, as we discuss in the next section. To explicitly investigate the effect on the size distri-
bution caused by each transition, we also split the time series data into three sets of 18 edge
time series data points. The first includes the transition between the first and second trials, the
last includes the transition between the second and third trials, and the middle includes both
transitions. These distributions are also plotted in S1 Fig. We see that the overall number of
hyperedges is greater than both the original age-memory hypergraph over all individuals,
which is driven by a decrease in the number of system-size hypergraphs in the 18-split analysis.
The distributions for all three follow similar patterns, indicating there is not a large discontinu-
ity in the pattern of the distribution when we include both transitions.

Edge time series length in hypergraph construction. When we construct hypergraphs
from the much shorter single task measurements within the multi-task data set, the number of
large hyperedges is greatly reduced, with fewer hyperedges in the population near the system
size (see Panel A of Fig 7). We see a similar effect when we compare the distributions seen in S2
Fig for the split data sets. The trial-by-trial hypergraphs contain fewer hyperedges overall and
far fewer system-size hyperedges than the 18-split hypergraphs. However, this increase is not
driven by inclusion of the transitions alone, since the middle 18-split hypergraph contains
approximately half the number of system-size hyperedges when compared to the full analysis.
Since both hypergraphs are constructed across both transitions, this indicates that the edge time
series length is more influential to population-level hypergraph properties than concatenation.
Further work is needed to elucidate the relationships between hyperedge size and the overall

length and composition of the data set. Additionally, it remains to be determinedwhether there
is an analogue to the scan length proposed for reliable FC estimates [61]; an edge time series
length that ensures minimal fluctuations in the size distributions for longer scans. However, the
very close correspondence between small-size hyperedges found during the word memory task
in both data sets suggests that these hyperedges are capturing important characteristics of the
dynamics within this task that are robust across imaging sessions and populations.

Conclusion

Here, we have shown that the considerable differences in functional connectivity dynamics
across individuals are closely linked with age. The hypergraph method is presented as an
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analysis tool that captures information about group-level similarities that differ between task
states as well as individual differences that are consistent within individuals, across tasks. Fur-
ther investigation into a single hypergraph metric (hypergraph cardinality) that varies across
individuals uncovers a significant relationship between hypergraph cardinality and age. Specifi-
cally, there are a greater number of hyperedges in older individuals’ hypergraphs, suggesting
that there are more small groups of regions with cohesively evolving dynamics and indicating a
loss of coherence across larger, spatially distributed intrinsic functional connectivity networks.
This complements widely reported relationships between FC and human aging by providing
new insight into how FC activity and the co-evolution of FC activity are altered with increasing
age, including the loss of large groups of co-evolving brain regions in older individuals. The
correspondencewith and extension of classic FC results to new dynamic regimes, along with
the unique capacity of hypergraphs to probe multiple dimensions of both strong and weak
dynamic variability, show that hypergraph analysis is a valuable tool for understanding age-
related changes and other individual differences in dynamic brain function.

Supporting Information

S1 Fig. Edge compensation comparison.Cumulative size distributions for the original age-
memory data set (with no changes to remove effects of the edges) and two methods for remov-
ing potential effects from the edges. The “edge blocks removed” method is used in all analyses
in the main text.
(TIF)

S2 Fig. Trial separation comparison.Cumulative size distributions for two different methods
for separating edge effects. In the trial-by-trialmethod, hypergraphs are constructed separately
for each trial, while in the 18-split analysis, hypergraphs are constructed from the first, middle,
or last 18 edge time series data points.
(TIF)

S3 Fig. Task-specific multi-taskR2 changes.Normalized R2 changes with respect to task-spe-
cific hypergraph cardinality for each of the four task-specific hypergraphs. Rest-specific hyper-
graph cardinality is included as an independent variable for the other three tasks and is the
only significant predictor, which is denoted with a bold outline.
(TIF)

S1 Table. Common behavioralmeasures in both data sets.Categories containing measures
of interest (42). For the state of mind measures, (Y/N) indicates measures where participants
were asked whether they had performed the activity in the past 24 hours.
(PDF)

S2 Table. Additional behavioralmeasures in multi-task data. Categories containing mea-
sures of interest. For the state of mindmeasures, (Y/N) indicates measures where participants
were asked whether they had performed the activity in the past 24 hours.
(PDF)

S3 Table. Additional behavioral and brain measures in age-memorydata. Categories con-
taining measures of interest. For the state of mind activity measures, yes indicates measures
where participants were asked whether they had performed the activity in the past 24 hours.
Questions about daily, weekly, and monthly amounts of activity, including whether activity in
the past 24 hours were more or less than usual were also recorded for all (Y/N) state of mind
activities in the age-memory study.
(PDF)
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