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Abstract

Open-population spatial capture–recapture (OPSCR) models use the spatial

information contained in individual detections collected over multiple consec-

utive occasions to estimate not only occasion-specific density, but also

demographic parameters. OPSCR models can also estimate spatial variation in

vital rates, but such models are neither widely used nor thoroughly tested.

We developed a Bayesian OPSCR model that not only accounts for spatial

variation in survival using spatial covariates but also estimates local

density-dependent effects on survival within a unified framework. Using simu-

lations, we show that OPSCR models provide sound inferences on the effect of

spatial covariates on survival, including multiple competing sources of mortal-

ity, each with potentially different spatial determinants. Estimation of local

density-dependent survival was possible but required more data due to the

greater complexity of the model. Not accounting for spatial heterogeneity in

survival led to up to 10% positive bias in abundance estimates. We provide an

empirical demonstration of the model by estimating the effect of country and

density on cause-specific mortality of female wolverines (Gulo gulo) in central

Sweden and Norway. The ability to make population-level inferences on

spatial variation in survival is an essential step toward a fully spatially explicit

OPSCR model capable of disentangling the role of multiple spatial drivers of

population dynamics.

KEYWORD S
mortality, nimbleSCR, population dynamics, population-level inferences, wolverines
(Gulo gulo)

INTRODUCTION

Spatial capture–recapture (SCR) models are hierarchical
models that use the spatial information contained in

repeated individual detections to account for imperfect
detection and estimate density (Borchers & Efford, 2008;
Efford, 2004; Royle et al., 2014). Because SCR models are
spatially explicit and accommodate various types of data

Received: 10 August 2022 Accepted: 7 October 2022

DOI: 10.1002/ecy.3934

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecology. 2023;104:e3934. https://onlinelibrary.wiley.com/r/ecy 1 of 11
https://doi.org/10.1002/ecy.3934

https://orcid.org/0000-0002-8563-981X
https://orcid.org/0000-0001-6270-2356
https://orcid.org/0000-0002-7438-7995
https://orcid.org/0000-0003-3795-891X
https://orcid.org/0000-0002-1453-1908
https://orcid.org/0000-0002-8329-6796
https://orcid.org/0000-0002-1267-9183
mailto:cyril.milleret@gmail.com
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecy
https://doi.org/10.1002/ecy.3934


(e.g., physical capture, photographic, noninvasive
genetic, or acoustic detection), they are now routinely
used to analyze wildlife monitoring data. When data are
collected over several consecutive occasions,
open-population SCR (OPSCR) models can be used to
estimate demographic rates and movement of individuals
between occasions in addition to densities (Bischof,
Milleret, et al., 2020). Modeling individual movement
between occasions helps return unbiased estimates of
survival (Gardner et al., 2018), but see Efford and
Schofield (2022). These properties make OPSCR models
well suited for drawing population-level inferences about
the drivers of demographic processes.

Demographic rates, such as survival, are known to
vary over time (Gaillard et al., 2000), with individual
attributes (de Valpine et al., 2014), and across space
(DeCesare et al., 2014). Temporal and individual
variation of demographic parameters can be readily
integrated into OPSCR models (Bischof, Milleret,
et al., 2020), and the possibility of inferring spatial het-
erogeneity in survival using OPSCR models has been
suggested (Royle et al., 2014) and applied (Chandler
et al., 2018). However, the performance of models that
estimate spatially variable survival has not been thor-
oughly tested, and such models’ potential remains
underexploited. Estimation of spatially varying vital
rates is a key step in the development of OPSCR models
because it will lead to a better understanding of the pro-
cesses driving the spatial distribution of individuals
(Royle et al., 2014).

At their core, OPSCR models account for imperfect detec-
tion using an observation process that assumes that an indi-
vidual’s detection probability is a function of distance from its
activity center (AC) (Borchers & Efford, 2008; Royle
et al., 2014). The location of individual ACs is a latent variable
and represents the center of an individual’s home range. AC
locations are a key quantity of OPSCR models because they
allow for the estimation of density and interannual move-
ment. ACs also provide the spatial information necessary to
characterize the environment surrounding individuals and,
therefore, its influence on survival (Chandler et al., 2018).

Density is a key driver of survival (Gaillard
et al., 2000), but studies on density-dependent survival
have often been limited to estimating the average popula-
tion response to variation in overall population size
through time (Bonenfant et al., 2009). However, variation
in density is a spatiotemporal process, and individuals
within a population may not experience the same den-
sity. By estimating spatiotemporal variation in density,
OPSCR models offer a unique opportunity to study den-
sity dependence in survival at the local scale, while
accounting for variation and uncertainty in both density
and survival within a unified framework.

Here, we present a Bayesian OPSCR model that
accounts for spatial variation in survival as a function of
spatial covariates (e.g., characteristics of the landscape,
resource availability) and density. We model survival
using a hazard rate formulation to allow for inferences
on spatial variation in competing risks of mortality
(Ergon et al., 2018). We quantify model performance by
simulating OPSCR data sets for a wide range of scenarios.
In addition, we quantify the consequence of ignoring spa-
tial heterogeneity in mortality for OPSCR inferences. As
an empirical demonstration, we use the model to esti-
mate the effect of density and country on cause-specific
mortality of female wolverines (Gulo gulo) in central
Sweden and Norway. All functionalities are made avail-
able in the R package nimbleSCR, which provides tools
for fitting efficient Bayesian (Markov chain Monte Carlo
[MCMC]) models (Bischof, Turek, et al., 2020; de Valpine
et al., 2017; NIMBLE Development Team, 2019; Turek
et al., 2021).

METHODS

OPSCR model

To estimate spatial variation in mortality from live
encounters and dead recoveries collected over several
consecutive occasions (hereafter “years”), we built a
Bayesian hierarchical state-space OPSCR model. The
model is composed of four submodels for (1) density and
interannual movement, (2) demography, (3) live detec-
tions, and (4) dead recoveries (Bischof, Milleret,
et al., 2020; Dupont et al., 2021; Milleret et al., 2020,
2021; Sun et al., 2014). We created two versions of the
model. The first version can distinguish between two spa-
tially variable and competing causes of mortality. For
example, it is possible to distinguish between legal culling
and other causes of mortality in cases where all individ-
uals culled are recovered dead (Bischof, Milleret,
et al., 2020). The second model only considers one cause
of mortality. This reflects a realistic limitation because
dead recoveries are not always available in OPSCR data
sets, and distinguishing between multiple causes of death
may not be possible.

Spatial distribution and movement submodel

In SCR models, the location of individuals is represented
by their ACs within the spatial domain (S). We used a
Bernoulli point process with spatial intensity λ sð Þ to
model the distribution of ACs, where si,t is the vector of
x and y spatial coordinates of individual i’s AC at time t
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(Zhang et al., 2022). For t>1, the probability density of
si,t is conditional on the Euclidean distance to si,t�1:

si,tjsi,t�1,τð Þ/ e�
si,t�si,t�1k k2

2τ2 , ð1Þ

where τ is the standard deviation of a bivariate normal
distribution centered on si,t�1 and represents movement
between t – 1 and t (Gardner et al., 2018).

Demographic submodel

We used a multistate formulation (Lebreton & Pradel,
2002) where each individual life history is represented
by a succession of up to four discrete states zi,t: (1) “unborn”
if the individual has not been recruited in the population,
(2) “alive” if it is alive, (3) “culled” if it was culled
and recovered dead between the start of the previous
and current occasion, or (4) “dead” if it has died but was
not recovered dead or died earlier, regardless of the cause.
We used data augmentation, whereby additional,
undetected individuals are available for inclusion in the
population at each time step (Royle et al., 2007).

During the first year, individuals can only be desig-
nated as “unborn” (zi,1 = 1) or “alive” (zi,1 = 2) so that
zi,1 � dcat(1 � γ1, γ1,0,0), where γ1 represents the proba-
bility of being “alive” at time t= 1.

For t ≥ 2, zi,t is conditional on the state of individual
i at t � 1:

1. If zi,t–1 = 1, individual i can be recruited (i.e., transition
to state 2) with probability γt or remain unborn with
probability 1� γt, so zi,t� dcat(1�γt,γt,0,0Þ.

2. If zi,t–1 = 2, individual i can survive with probability
ϕi and remain zi,t= 2. If it does not survive, it can
either die due to culling and be recovered (transition
to zi,t= 3) with probability hi or die from other
causes without being recovered (transition to zi,t= 4)
with probability wi, so that zi,t� dcat(0,ϕi, hi,wi),
where Φi= 1� hi�wi.

3. All individuals in dead states (zi,t–1 = 3 or 4) transition
to zi,t–1 = 4, the absorbing state, with probability 1, so
that zi,t � dcat(0, 0, 0, 1)

Abundance estimates are obtained by bNt ¼
PM

i¼1 I zi,t ¼ 2ð Þ,
where I zi,t ¼ 2ð Þ is an indicator function to count alive
individuals, and M is the number of detected and aug-
mented individuals.

Mortality hazard rates
When an individual dies from a specific cause, it is no
longer available to die from another cause. Mortality

causes are competing and nonindependent; we therefore
parameterized the model using mortality hazard rates
(Ergon et al., 2018). We expressed individual survival and
mortality probabilities as functions of the culling hazard
rate (mhi ) and the hazard rate associated with all other
causes of mortality (mwi). For simplicity, we assumed that
the hazard rate from culling and other causes remained
proportional within time intervals

ϕi ¼ exp � mhi þmwið Þð Þ, ð2Þ

hi ¼ 1�ϕið Þ mhi

mwi þmwi

� �
, ð3Þ

wi ¼ 1�ϕið Þ mwi

mhi þmwi

� �
: ð4Þ

Spatial variation in mortality
We accounted for spatial variation in cause-specific
mortality by modeling individual mortality hazard rates
(mhi and mwi ) as functions of a spatial covariate
SpatialCovsi,t at the location of the individual AC si,tð Þ:

log mhi,t

� �¼ log m0hð Þþβh�SpatialCovsi,t , ð5Þ

log mwi,t

� �¼ log m0wð Þþβw�SpatialCovsi,t : ð6Þ

Here βh and βw are the coefficients of the relationship
between the spatial covariate on culling and other mortal-
ity, respectively. Parameters m0h and m0w represent the
baseline culling and other mortality hazard rates,
respectively.

Density dependent survival
At each occasion t, local density within any habitat
cell r of S (r = 1, …, R) can be obtained as dr,t =

PM
i¼1

I zi,t ¼ 2, si,t ¼ rð Þ, where I zi,t ¼ 2, si,t ¼ rð Þ is an indicator
function denoting whether the individual is alive and its
AC falls within cell r.

By replacing the SpatialCov in Equations (5) and (6)
with the logarithm of the local density, log(dsi,t ,tÞ, we can
estimate the effect of local density dependence on indi-
vidual mortality between occasion (t� 1) and t. Note that
since Equations (5) and (6) are on the log scale, transfor-
mation of dr,t, such as d0r,t ¼ f dr,tð Þ¼ dr,tþ1, is necessary
to avoid cdr,t ¼ 0.

Live detection submodel

We used the half-normal function to model the detection
probability of individuals alive, whereby the probability
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pi,j,t of detecting individual i at detector j and time
t decreases with distance between the location x of detec-
tor j and AC (si,t):

pi,j,t ¼ p0� exp � 1
2σ2

si,t� xj
�� ��2� �

, ð7Þ

where p0 is the baseline detection probability, and σ is
the scale parameter. The detection yi,j,t of alive individual
i at detector j on time t is modeled as the realization of a
Bernoulli process conditional on both the “alive” individ-
ual state (i.e., zi,t = 2) and the individual and
detector-specific detection probability pi,j,t:

yi,j,t �Bernoulli pi,j,t� I zi,t ¼ 2ð Þ
� �

: ð8Þ

Dead recovery model

We used a Bernoulli point process with a bivariate nor-
mal model to model dead recoveries within S:

λ y:deadi,tjsi,t, zi,t, σð Þ/ e�
y:deadi,t�si,tk k2

2σ2 � I zi,t ¼ 3ð Þ, ð9Þ

where y.deadi,t is the vector of spatial coordinates of the
dead recovery location for individual i at time t. The indi-
cator function conditions the occurrence of dead recover-
ies when the individual was culled and recovered dead.
The detection probability function represents space use;
we therefore assume that σ, the scale parameter of the
detection probability function, is identical for live detec-
tions and dead recoveries.

OPSCR model with a single cause
of mortality

When dead recoveries (y.dead) are not available and
cause-specific mortality is not estimable, we can
model three demographic states z instead of four.
Individuals could be unborn (zi,t ¼ 1), alive (zi,t ¼ 2), or
dead (zi,t ¼ 3). For t>1, alive individuals (zi,t�1 ¼ 2) can
survive with probability ϕi,t�1 and remain zi,t ¼ 2 or die
with probability (1�ϕi,t�1) and transition to zi,t ¼ 3, the
dead absorbing state. We modeled the effect of density at
occasion t on individual survival between occasion t and
t+ 1:

log mi,tð Þ¼ log m0ð Þþβd� log dtsi,t þ1
� �

, ð10Þ

ϕi,t ¼ 1� exp �mi,tð Þ: ð11Þ

Simulations

We conducted simulations to quantify the performance
of (1) the OPSCR model in estimating spatial variation in
cause-specific mortalities with a deterministic spatial
covariate and (2) the OPSCR model with integrated
density-dependent survival. Finally, we studied the con-
sequences of ignoring spatial variation in survival for
abundance estimates.

Using deterministic covariate

We created a spatial domain (S) of 28 � 28 distance units (du)
subdivided into R = 49 cells of 4 � 4 du. We centered in S a
16 � 16 detector grid (with a minimum distance of 1 du
between detectors). This left a 6 du buffer around the detector
grid where individuals cannot be detected alive. We set
p0 = 0.1, σ= 2, and τ¼ 3 and considered five consecutive
occasions. This setup led to an average of two (95%
quantiles= 1.5–2.3) detections per individual detected
and on average 43% (95% quantiles= 34%–51%) of indi-
viduals alive detected on each occasion (Appendix S1:
Table S1). We created a spatially autocorrelated covariate
following a diagonal gradient (SpatialCov), ranging from
�2 to 2 (Figure 1A). We set M= 650 and N1= 250 indi-
viduals on the first occasion, leading to γ1 ¼ N1

M ¼ 250
650. For

t>1, we assumed a constant 0.3 per capita recruitment
rate. We set the baseline mortality hazard rates to
m0h =�2.25 and m0w=�1.75 and created four different
scenarios with all combinations of βh ¼ c(1, �1) and
βw ¼ {1, �1}.

We repeated the simulation scenarios described
previously, but with (1) lower population size,
N1 = 120 (M = 370), and (2) a spatially random covar-
iate SpatialCovr�Uniform(�1, 1) (Appendix S1:
Table S1). We expected estimation performance for
such scenarios to be more challenging due to
(1) sparser OPSCR data sets and (2) lower level of spa-
tial autocorrelation and overall variation in mortality.
In total, we simulated 100 replicated OPSCR data sets
from each of the 16 scenarios (Appendix S1: Table S1).
We used NIMBLE’s simulation feature (de Valpine
et al., 2017; NIMBLE Development Team, 2019) to sim-
ulate OPSCR data sets directly from the nimble OPSCR
model.

Using density-dependent survival

To illustrate how to estimate density-dependent survival,
we used the OPSCR model with a single source of
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F I GURE 1 (A) Maps depicting simulated spatial variation in cause-specific mortality (h and w) within the spatial domain (S) for the

scenario with a gradient covariate βh = �1 and βw = 1 (Appendix S1: Table S5). White points represent detectors. Violin plots show the

distribution of the relative error (left; points: relative bias) and coefficient of variation (CV; right; points: median) in (B) occasion-specific

abundances, and (C) cause-specific mortality parameters obtained after fitting the open-population spatial capture–recapture model

accounting for spatial variation in mortality to 100 replicated data sets for small (N1 = 120) and large (N1 = 250) population size.

ECOLOGY 5 of 11



mortality. Preliminary analyses showed that, computation-
ally (convergence, mixing), OPSCR models performed
more poorly when survival was modeled as dependent on
latent density rather than deterministic spatial covariates.
To counter this, we used a larger spatial domain (S) to
increase the number of habitat cells (R) and, thus, provide
the model with more variable latent density points to serve
as a covariate on the mortality hazard rate. This led to a
habitat of 40 � 40 du subdivided into R = 64 cells of
dimension 5 � 5 du in which we centered a 30 � 30 detec-
tor grid. We set M = 650 and N1 = 250. We set m0 = 1.6
and βd ¼�1 to simulate negative density dependence on
survival and simulated 100 replicated OPSCR data sets
(Appendix S1: Table S12).

Ignoring spatial heterogeneity in mortality

To evaluate whether ignoring spatial variation in mortal-
ity led to biased parameter estimates, especially abun-
dance (bN), we fitted all simulated data sets described
earlier with OPSCR models that assumed constant sur-
vival across space and time. As in the earlier simulations,
we fitted models with two competing risks for the deter-
ministic spatial covariate scenarios and a single cause of
mortality for the density-dependent scenario.

Model fitting

We fitted the Bayesian OPSCR models using MCMC sim-
ulation with NIMBLE in R version 4.1.0 (R Core
Team, 2021). We used the R package nimbleSCR
(Bischof, Turek, et al., 2020; Turek et al., 2021), which
implements the local evaluation approach (Milleret
et al., 2019), to increase MCMC efficiency. For each simu-
lation, we ran three chains of 30,000 (60,000 for
density-dependent survival) iterations, including a
2000-iteration burn-in. We considered models as con-
verged when the Gelman-Rubin diagnostic (bR, Gelman &
Rubin, 1992) was <1.1 for all parameters and by visually
inspecting traceplots from a randomly selected subset of
simulations. Following Gimenez et al. (2009), we also
computed the prior-posterior distribution overlap and
used overlap ≥35% as an indicator of weak identifiability.

Evaluation of model performance

We summarized the posterior bθ for each parameter and
each simulation using the relative error of the mean pos-
terior ðθ�θ

θ Þ and relative precision as the coefficient
of variation ðCV¼ SDðbθÞ

jθj Þ, where θ is the true (simulated)

parameter value, θ the mean of the posterior, and SDðbθÞ
the standard deviation of the posterior. We quantified the
accuracy of the estimators across many simulations using
the relative bias of the average of the mean posteriors
and a coverage accuracy of 95% credible intervals (CI).
The latter was determined as the rate of correct infer-
ences, which is the probability that the 95% credible
interval of the parameter estimate contains the true value
of that parameter. In addition, we used results from a few
of the simulated scenarios with a deterministic covariate
(as described previously) to quantify the ability of the
model to predict the spatial pattern in mortality (see fur-
ther details in Appendix S1, Figure S12).

Empirical example

We obtained data from the noninvasive genetic moni-
toring of wolverines collected during seven consecutive
winters (2014–2020) in central Sweden and Norway
(Bischof, Milleret, et al., 2020). We used 2443
genotyped samples (429 individuals) and 126 dead
recoveries of ≥1 year old female wolverines (Figure 3A,
see Appendix S2: Tables S1–S3 for further details on
the sampling). We fitted an OPSCR model, as described
in OPSCR model, where individuals can either die from
culling (all culling events are known and reported;
n = 118) or from other causes that mostly remain
unknown (only eight females were reported to be dead
due other causes). We modeled spatial variation in
culling βh and other causes βw of mortalities as a function
of country (Norway= 0, Sweden= 1) and local den-
sity (βDensw , βDensh):

log mhi,t

� �¼ log m0hð Þþβh�Countrysi,t þβDensh
� log dtsi,t þ1

� �
, ð12Þ

log mwi,t

� �¼ log m0wð Þþβw�Countrysi,t þβDensw
� log dtsi,t þ1

� �
: ð13Þ

Wolverine detections were aggregated to the closest
detector in a grid of detectors. To account for spatiotem-
poral heterogeneity in detection probability, we used dif-
ferent covariates, such as the recorded search effort, the
presence of snow, and distance to roads (see Appendix S2
and [Bischof, Milleret, et al., 2020] for further details).
We ran four chains of 32,500 iterations, including a
10,000-iteration burn-in, and followed the same proce-
dure to assess model performance as we did in the simu-
lation study. We present the cause-specific mortality
hazard rates back-transformed to probabilities to ease the
interpretation.
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RESULTS

Spatial heterogeneity using a deterministic
spatial covariate

Scenarios with a spatially random covariate and low pop-
ulation size (N1 = 120) led to the poorest parameter con-
vergence and identifiability (28%–57% of simulations),
whereas all models converged with a spatial gradient
covariate and large population size (N1 = 250;
Appendix S1: Table S2). All model parameters had low
bias (≤6% relative bias) for all scenarios with a large pop-
ulation size and a gradient covariate (Figure 1,
Appendix S1: Tables S3–S6). Accurate estimates were
more challenging to obtain for scenarios with a low pop-
ulation size and a spatially random covariate
(Appendix S1: Tables S3–S6). For example, the relative
bias of βw reached 44% for the scenario with low popula-
tion size (N1= 120), whereas there was virtually no bias
(RB= 2%) with a larger population size (N1= 250;
Appendix S1: Table S5). Coverage remained relatively
high (>90%) for all scenarios (Appendix S1:
Tables S3–S6).

Density-dependent survival

Across the 100 replicated data sets, 86 models
reached convergence and showed no identifiability
issues (Appendix S1: Table S13). We detected a 13%
positive relative bias in ϕ0 and βd, but coverage was
>92% for all parameters (Figure 2A, Appendix S1:
Table S14).

Ignoring spatial heterogeneity in mortality

Apart from not being able to provide robust inferences
on mortality, not accounting for spatial heterogeneity in
mortality can lead to bias in abundance estimates. The
relative bias (up to 10% for our simulated scenarios) and
lower coverage were especially pronounced for scenarios
with a spatial gradient in mortality (Figure 2B,
Appendix S1: Tables S7–S11).

Wolverine empirical example

We found that culling mortality of female wolverines was
lower in Sweden than in Norway (βh ¼�2:76; 95%CI :
�2:08; �3:56½ �), but mortality due to other causes was
not significantly different between the countries
(βw ¼ 0:18; �0:36; �0:65½ �; Figure 3, Appendix S2: Figure

S4). Mortality due to culling (βDensh ¼ 0:70; �0:75;2:08½ �)
and to other causes (βDensh ¼ 0:24; �1:26;1:67½ �) did not
seem to be related to density (Appendix S2: Figure S4).

DISCUSSION

We show that OPSCR models can account for and esti-
mate spatial variation in survival. Survival can be
modeled as a function of any spatial covariate, including
local density estimated within the same model. Using
simulations, we show that the model produces sound
inferences on the role of spatial covariates and density
dependence in explaining spatial variation in survival.
The model can also integrate spatial dead recoveries
(Dupont et al., 2021) and estimate multiple competing
sources of mortality with potentially different spatial
determinants. The model is efficient and overcomes a
challenge faced by other methods, namely, to obtain
population-level assessment of spatial determinants of
variation in survival. The wolverine case study revealed
country- and cause-specific estimates of mortalities,
highly relevant for the conservation and management of
transboundary populations.

Despite the recognized potential of OPSCR models
to estimate spatial variation in vital rates (Royle
et al., 2014), few studies have attempted to use them for
this purpose (Chandler et al., 2018). We are not aware of
any study that evaluated the performance of OPSCR
models that include spatially explicit vital rates. Our sim-
ulations showed that sound inferences in the spatial vari-
ation of cause-specific mortality could be obtained when
survival was modeled as a function of a deterministic spa-
tial covariate, even with relatively small OPSCR data sets
(5 occasions, ≈50 individuals detected per occasion).
OPSCR model performance (convergence, precision) was
significantly higher for simulations with spatially
autocorrelated survival (gradient) compared with spatially
random survival (Appendix S1: Tables S3–S6).

So far, it has only been possible to estimate the
strength of density-dependent survival within the same
capture–recapture model using the overall density esti-
mates (Schofield & Barker, 2008; Tenan et al., 2019). The
approach described in this paper now makes it possible
to estimate the strength of density-dependent survival
given the local density experienced by individuals.
Although density is only a proxy to describe the interac-
tions that occur between individuals, using local density
is relevant to describe the conditions experienced by
individuals within their home range. Simultaneous esti-
mation of density and its link with survival within the
same model propagates the uncertainty in both the num-
ber of individuals alive and their location to mortality
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estimates. Because density is both a latent variable and a
covariate used to explain variation in survival, it is com-
putationally challenging (i.e., due to the increased num-
ber of model dependencies) to fit density-dependent
survival OPSCR models. In Milleret (2022), we showcase

how centering the density covariate (d) can improve the
mixing of MCMC chains of different model parameters.

The lower survival of female wolverines in Norway
linked with higher hunting mortality was expected given
the Norwegian culling policy. However, in this study,

F I GURE 2 (A) Violin plots (points: medians = relative bias) representing the distribution of the relative error in occasion-specific

abundances (N̂) and parameters controlling for the effect of density in survival (βφ,φ0). Abundance estimates and associated relative error

were obtained by fitting an open-population spatial capture–recapture (OPSCR) model that did not account for spatial variation in survival

(“without”) and a model that accounted for density-dependent survival (“with”) to 100 replicated data sets simulated with a negative effect

of density on survival βφ = �1. (B) Violin plots of distribution of relative error (left; points: medians = relative bias) and coverage (right) of

occasion-specific abundances obtained by fitting an OPSCR model that accounted for spatial variation in mortality (“with”) and a model did

not (“without”). Results are presented for 100 replicated data sets simulated with a spatial gradient in mortality, βh = �1, βw = 1, and

N1 = 250.
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mortality did not seem to be density-dependent, in con-
trast to previous findings in this population (Brøseth
et al., 2010), which could be because only the female part
of the population was considered and because the
OPSCR model estimates the effect of local density and
not the effect of overall population density.

Future research should focus on building and
testing models that estimate spatial variation in other
demographic parameters, that is, recruitment, emigration,
and immigration, because this is an essential step toward
a complete understanding of the mechanisms driving
spatial heterogeneity in density and, therefore spatial pop-
ulation dynamics (Chandler et al., 2018). In general, we

lack methods for assessing violations of assumptions of
Bayesian OPSCR models; this is a field that requires devel-
opment (Dey et al., 2022). The Bayesian model written in
NIMBLE and the set of features available in the
nimbleSCR package allows users to fit efficient and flexi-
ble OPSCR models. This development represents an essen-
tial step toward a fully spatially explicit OPSCR model
(Chandler et al., 2018).
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