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Abstract

Advanced optofluidic devices and signal analysis for point-of-care applications

by

Vahid Ganjalizadeh

Optofluidics as a relatively new field of biomedical detections has become an attractive

technology that combines integrated photonics and microfluidics. This brings together

the best of optical sensing and microfluidic media for biological fluidic compatibility to

attain high sensitivity. Integrated designs with compact and portable footprints are a

unique feature of optofluidics which makes it a great candidate for point-of-care (POC)

applications. Even though there have been outstanding results in terms of sensitiv-

ity and multiplexing capability reported in the past couple of decades, there is still

significant room for innovation to boost performance. The dynamic environment of a

microfluidic channel causes ultrasensitive photonic sensing challenges because of many

variables changing from chip to chip, sample to sample, and even in the course of a

measurement. First, we explore the potential of incorporating microfluidic techniques,

specifically, 3D hydrodynamic focusing (3DHDF) to minimize these variations within

the experiment. With the help of 3DHDF, we are able to focus the biological sample

fluid into a narrow stream where all of the flowing target particles experience similar

light-matter interaction. This, of course, requires a change in the chip design and in-

volves a more complicated fabrication process. Therefore, other alternative approaches

were considered. A robust powerful event detection framework is introduced. It suits

xiii



the multiplexed real-time pathogen detection in the presence of possible background

and noise signals as well as signal variations. The use of continuous wavelet transform

(CWT) in this algorithm alongside the custom wavelet design takes advantage of multi-

scale analysis to detect events across scales. Next, in a different approach, a machine

learning framework with a convolutional neural network (CNN) is used for classifying

PCWA-detected events very efficiently and fast. The framework is further pushed in

terms of compatibility with current trends toward edge devices by a successful imple-

mentation of the full real time event detection and classification on an edge device is

demonstrated. This proves the capacity of edge computing devices for a broad range

of applications such as portable ultrasensitive biomedical diagnosis instruments. Fur-

thermore, the current multiplexing concept is expanded towards the high concentration

range of operation. In this regime (also called analog regime), individual events are

not detectable anymore and the measurement relies on the analog signals recorded from

highly concentrated solutions. Wavelength division multiplexing (WDM) was previously

used successfully for multiplexed detection of individual events by encoding spectral in-

formation into the time domain. Here, a hybrid adaptive scheme adds time division

multiplexing into this recipe to increase the dynamic range of the optofluidic biosensor.

The results show significant (four orders of magnitude) expansion of the multiplexed

detection at higher concentrations while preserving the already established performance

at lower concentrations.
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Chapter 1

Introduction

Disease detection is an essential process in the medical field that allows for the

early identification and treatment of various illnesses. Point-of-care (POC) testing has

emerged as an effective means of disease detection, particularly in resource-limited set-

tings where access to sophisticated laboratory equipment is limited. The development of

portable, easy-to-use, and low-cost diagnostic tools has become increasingly important

in recent years, especially after the global challenges as a result of SARS-CoV2 since

late 2019.

Signal processing and data analysis techniques play a critical role in disease

detection. In the case of POC diagnosis, these techniques help to ensure the accuracy

and reliability of test results. As diagnostic tests become more complex, the need for ad-

vanced signal processing and data analysis methods becomes more pressing. Therefore,

it is important to continue improving these techniques to ensure accurate and reliable

diagnoses.
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Optofluidics is a rapidly growing field that combines optics and microfluidics

to develop novel biosensors. It provides an excellent platform for the development of

point-of-care instruments for disease detection. One of the key advantages of optofluidics

is its ability to integrate multiple components such as light sources, detectors, and

microfluidic channels on a single chip, thereby enabling the development of miniaturized

and portable biosensors. Recent advancements in chip design, particularly the use of

3D hydrodynamic focusing [1, 2, 3], have resulted in significant improvements in the

performance of optofluidic biosensors. This approach has been shown to enhance the

sensitivity and selectivity of biosensors while reducing the complexity of the device. The

ability to improve the performance of biosensors is critical to their adoption in clinical

settings, particularly for the detection of diseases with low biomarker concentrations.

Recent developments in machine learning, particularly the emergence of edge

devices, have the potential to revolutionize optofluidic biosensors. These devices have

the ability to perform complex data analysis tasks on the device itself, thereby reducing

the need for large and complex data analysis systems. Machine learning algorithms can

be used to analyze data generated by biosensors and provide real-time feedback on the

health status of patients. As the field continues to evolve, it is likely that we will see

further developments in these areas, which will continue to improve the accuracy and

reliability of diagnostic tests for public health benefits.
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Figure 1.1: Slab waveguide with TIR guiding and mode field profile.

1.1 Optical waveguides

1.1.1 Slab waveguides

Slab waveguides as one of the simplest optical waveguides, guide light by total

internal reflection (TIR). Fig. 1.1 shows a symmetric slab waveguide with lower and

higher mode examples propagating using rays. Mode field profiles of the same rays are

illustrated on the right indicating the oscillating behavior of the field (here electric field

Ey) with increased evanescent wave penetrating the cladding layer (refractive index n2)

in the higher order mode.

Depending on the angle of incidence for the light, the constructive interference

can be calculated based on the phase difference of incoming and reflected wavefronts

from the boundary. Thus, for wave propagation in layer (n1) along the guide we need

k1 [2d · cosθ]− 2ϕ = m(2π) (1.1)

where k1 = kn1 = 2πn1/λ1, d = 2a is slab thickness, k and λ are the free space
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wavevector and wavelength (see Fig. 1.3). ϕ is the phase change, thus is for certain θ

and ϕ, the equation is valid for integer values of m. In order to find θm and ϕm values

for a corresponding m we divide Eq. 1.1 by 2

[
2πn1(2a)

λ

]
cosθm − ϕm = mπ (1.2)

Eq. 1.2 is called waveguide mode condition and indicates that ϕm is a function

of incident angle θm. Fig. 1.3 shows possible modes in terms of electric or magnetic

field direction with respect to the plane of incidence (here the plane of incidence is the

paper).
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1.1.2 Waveguide modes

Guiding modes in a slab waveguide can be determined by solving the equation

where waveguide condition and Fresnel’s equation f(θm) are equal

k1 [2d · cosθ]− 2ϕ = f(θm)

f(θm) =

√
sin2 θm −

(
n2
n1

)2
cos θm

(1.3)

1.1.3 Multimode interference (MMI) waveguides

A multimode interference (MMI) waveguide is an optical waveguide capable

of guiding light via multiple modes, meaning that the physical dimensions should be

big enough to contain several higher-order lateral modes. The main application of MMI

waveguides is to split power and wavelength demultiplexing (WDM). For a step-index

waveguide with width (wm) and effective refractive indices of nc and ncl for the core

and the cladding parts respectively, there are M supported lateral modes determined
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by the V number defined as

V =
π

λ
wm

√
nc2 − ccl2

M = int

(
2V

π

)
+ 1

(1.4)

An MMI pattern consists of multiple peaks and valleys in between representing

the bright and dark regions of the interference pattern. This has been explained in-depth

in [4]. Optofluidic biosensor chips are designed such that the MMI pattern formed at the

excitation region inside the analyte channel shows different integer numbers of peaks

for the different wavelengths of the input light. The following equation relates the

mentioned variables in a multimode waveguide

Nλ =
ncw

2
eff

L
= cte (1.5)

nc, weff , and L are the core refractive index, effective width and length of the

MMI waveguide respectively. If we neglect the dispersion of the waveguide, the right-

hand side of the equation is a constant at any given wavelength, therefore the left-hand

term should remain constant. This is the key to choosing the design parameters for

our optofluidic sensors. Numerical simulations are used to predict interference patterns

much more accurately based on the waveguide properties and dimensions. Examples of

simulation results for two different wavelengths are shown in Fig. 1.4 (top) in which

the waveguides are simulated based on the anti-resonant reflecting optical waveguides

(ARROW) [5, 6, 7].
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1.1.4 ARROW (anti-resonant reflecting optical waveguide)

Optofluidic biosensors rely on exciting fluorescently-tagged targets and collect

the emission effectively. The fluidic medium for carrying these targets is usually water

with a refractive index of nc = 1.33. This low value of the refractive index in comparison

to the high index values of SiO2 (n ≈ 1.47) makes it impossible to guide emission light

inside the liquid-core channel via TIR.

ARROW waveguide solves this problem by forming an anti-resonant reflecting

layer underneath the liquid channel (Fig. 1.5). A stack of alternating layers of low and

high refractive indices (n1, n2), the thicknesses of each layer ti can be calculated by

ti =
(2N − 1)λ

4ni

√
1− n2

c

n2
i
+ λ2

4n2
i d

2
c

, N = 1, 2, 3, . . . (1.6)

This equation is valid if n1 > n2, nc so that the total phase shift from reflections

becomes ϕ1 +ϕ2 = 2π. In the case of optofluidic devices, the thickness of the core layer
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(dc) is bigger than the ARROW layers, so n2i −n2c ≫ λ2

4d2c
, then Eq. 1.6 can be simplified

as

ti =
(2N − 1)λ

4
√
n2i − n2c

(1.7)

1.2 Optofluidic MMI devices

The principle of the optofluidic biosensors studied in this thesis is based on the

MMI pattern to excite flowing particles inside an analyte channel with different excita-

tion patterns. The patterns include spectral information of excitation wavelengths, thus

encoding unique fingerprints for carefully tagged target molecules. Fig. 1.6 illustrates

the concept of utilizing an MMI waveguide designed with carefully chosen dimensions to

create an integer number of spots also known as multi-spot excitation (MSE) at selected

wavelengths inside the analyte channel.

The integer number of peaks adds redundancy to the events to help with the

confidence in the event detection (repeating pattern distinguishable from random back-

ground noise). Additionally, different number of peaks (from Eq. 1.5) in the collected

signal (via a collection waveguide-CWG) helps us to distinguish which kind of target

created the signals, hence providing multiplexing capability.

Characterizing the MSE is crucial to improve the signal quality of the biosensor.

This can be done by taking a fluorescence microscopy image from the analyte channel

when filled with a fluorescent dye and excited by a proper wavelength. Fig. 1.7 (left)
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Figure 1.7: MSE patterns inside analyte channel (left) and at the facet (right).

is an example image taken from an ARROW device filled with a 25% quantum dot

solution in deionized (DI) water. The clear bright and dark stripes are visible in the

analyte channel with 8 distinct bright lines at λ = 556 nm.

When we cleave the chip somewhere before the channel, we can also look at

the facet and analyze the MSE pattern. Fig. 1.7 shows multiple images taken from

the facet of an ARROW chip at different wavelengths. Hunting the right wavelength

for a distinct number of spots might become a challenge as the location of the cleaving

can vary, therefore we developed a technique to ease this process. In Fig. 1.8 the steps

of automated characterization of the MSE pattern are shown. A tunable laser is butt-

coupled into the single-mode waveguide in an ARROW chip via a single-mode optical

fiber and scans through a range of wavelengths. On the other end, a microscope objective

lens is focused on the facet and a CMOS camera captures the image. The developed
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Figure 1.8: Automated MMI pattern characterization setup.

software converts image frames into 1D arrays by summing up the pixel intensity values

inside a region of interest (ROI) box. This step repeats while the input wavelength is

swept and by stacking those 1D plots, we get a full 2D map of MSE patterns versus

the wavelength. By looking at this 2D map, we can determine the right wavelengths for

integer N spots, as well as study how these patterns can vary from chip to chip.

Optical waveguides and microfluidic channels can be made using other mate-

rials, such as polymers. Polydimethylsiloxane (PDMS) is one of the popular materials

for biosensing applications due to numerous factors such as ease of prototyping and

fabrication, high transparency in the visible spectrum, tunable optical properties, and
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Figure 1.9: SiO2 (left) and PDMS (right) MMI biosensors.

price and availability. Our optofluidic biosensors have been successfully used in several

studies [8, 9, 10]. Fig. 1.9 shows MMI biosensor chips fabricated with silicon diox-

ide standard fabrication process (left) and PDMS soft-lithography fabrication process

(right). The soft-lithography fabrication process requires one (or more) masters with

features created using SU-8 photoresist which then will be used to cast the features

(waveguides, channels, etc) into the PDMS layers. Check [8, 11, 12] for more detail in

PDMS-based optical and optofluidic device fabrication.

After this introduction and background about optofluidic biosensors, we re-

alize that most previous research and studies have evolved the optofluidic biosensor

platform to an outstanding performance by optimizing hardware and device-level op-

timizations. In this thesis, the focus is mostly on data analysis to get more from cur-

rently optimized devices and is outlined as follows. Chapter 2 presents a study done

on 3D hydrodynamic focusing implementation on conventional ARROW optofluidic de-

sign. It covers chip characterization with different practices and presents the analysis

12



results. In Chapter 3, a novel, high-performance signal analysis technique based on

continuous wavelet transform (CWT) is presented and includes comparison results with

previously established methods. It also covers various sensory data types, such as flu-

orescence signals from optofluidic chips, electrical signals from nano-pore devices, and

simulated protein mass spectra to investigate the broad application for the proposed

robust event/pattern detection algorithm. Chapter 4 is about machine learning and

implementing neural network-based classifiers for biosensors application. The benefits

and enhancement achieved by the neural network are compared with previous methods

and a demonstration of a real-time event detection framework on the edge is discussed

at the end. Finally, In Chapter 6 an adaptive closed-loop system is designed and im-

plemented to extend the detection dynamic range for ARROW biosensors to cover a

range of concentrations while maintaining multiplexing capability. Appendix A provides

more detail on the simulation model created for multi-factor statistical analysis of the

fluorescent events from ARROW devices.
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Chapter 2

3D Hydrodynamic focusing in

optofluidic devices

This chapter presents an ARROW biosensor device with three-dimensional

hydrodynamic focusing (3DHDF) functionality. It covers the pros and cons of adding

the 3DHDF feature into an optofluidic design and how we tried to optimize this con-

cept for point-of-care applications. Three different designs are explored with practical

challenges, steps taken to solve those challenges and characterization results with flu-

orescence measurement. We emphasize that this study is done in collaboration with

Brigham Young University (BYU). Chip design, finite element simulation, and fabri-

cation are done in Prof. Aaron Hawkins’ group at BYU and chip characterization via

fluorescence imaging and fluorescent bead time trace analysis is done in Prof. Holger

Schmidt’s lab at UCSC.
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2.0.1 Hydrodynamic focusing in a microchannel

The microfluidic channel in our ARROW biosensors is a micron-scale hollow-

core channel to guide light while flowing the analyte. The liquid inside the ARROW

chip flows in a laminar regime because of a small Reynold’s number Re. The Re for a

circular channel is described by

Re =
inertial forces

viscous forces
=
ρv̄D

µ
(2.1)

where ρ is the density of the fluid, v̄ is the average velocity of the fluid, D is the diameter

of the channel, and µ is the viscosity of the fluid. For a rectangular channel (duct) we

can write the equation by using the hydraulic diameter (Dh) determined as

Dh =
4A

P
(2.2)

where A and P are the cross-section area and perimeters of the rectangular

duct respectively. The Re hence is defined by

ReDh
=
ρv̄Dh

µ
(2.3)

considering the small dimensions of ARROW biosensors, the microfluidic chan-

nels are typically in microns resulting in Re < 2000, therefore the flow of the sample

inside the liquid channel is laminar and forms a parabolic velocity distribution. This

laminar flow means that particles flowing near the wall have the minimum speed (zero

for non-slip wall conditions), and those flowing at the center of the cross-section have

the maximum speed. In terms of particle detection, stretched or compressed events in

the time domain are observed in the fluorescence signal. Excitation spots within the
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Figure 2.1: Fluorescence signal variations as a result of non-uniform excitation, collect-
ing, and velocity profiles inside the excitation volume.

channel follow the mode profile of input light, which for a single-mode input waveguide

resembles the distribution

E(x) = cos(kxx) in core

=


e−γx in cladding for regular WG

oscillation for ARROW

(2.4)

Ideally, the brightest part of excitation is located at the center of the channel

and the intensity tapers off towards the edges. Moreover, the collection efficiency of

fluorescence inside a liquid-core waveguide depends on the particle location [13, 14].

Overall, detecting particles flowing close to the edges becomes a real challenge consid-

ering these distribution-related weakened signals. Fig. 2.1 visualizes these non-uniform

distributions inside an optofluidic excitation volume and expected fluorescence signals

of particles flowing at different locations of the analyte channel. Two-dimensional hy-

drodynamic focusing has already been shown to improve performance [15, 16] which

16



encourages the potential for further improvement by adding the vertical HDF into the

design. 3DHDF, which centers target particles in the cross-section of a fluid chan-

nel, is considered to significantly improve the detection efficiency in a planar chip-scale

biosensor.

2.1 3DHDF designs for ARROW optofluidic devices

Hydrodynamic focusing can be accomplished using buffer fluid to sheath sam-

ple fluid in a microscale channel. When the buffer fluid flows are supplied from the

sides of the sample fluid a two-dimensional focusing is formed and the sample stream is

horizontally compressed [15]. Three-dimensional focusing, in which the sample stream

is surrounded by buffer streams laterally and vertically, is more challenging [17] par-

ticularly, in microfluidic devices with planar architecture as delivering buffer fluid from

above and beneath the sample fluid channel adds complexity and can require multiple

vertically stacked layers. This complexity in fabrication and even in operation, some-

times demands additional fluid ports and channels. Our goal for creating a 3DHDF mi-

crochannel design is to minimize the complexity of this concept and implement 3DHDF

in a chip-scale optofluidic biosensor. Several 3DHDF schemes have been proposed that

utilize interesting flow phenomena but unfortunately, these designs are unusable when

cross-section geometries approach the 10-µm range [18, 19, 20, 21]. Methods that rely

on the secondary-flow vortexes become impractical due to the very high fluid veloci-

ties and enormous fluidic resistance caused by the small cross-section of the microscale

17



(a) (b)

Figure 2.2: Trench chip layout (a) import elements of the chip (b) mask layout.

channels [16]. To address this issue, a low-velocity scheme is required, in which high

flow rates are not required to achieve the desired focusing effect. Here we present a

3DHDF design based on sheath flow that can achieve focusing over a range of fluid

velocities, including low velocities. This design was inspired by earlier demonstrations

at larger scales [22, 23, 24]. The previous designs were complicated and require multiple

precise fabrication steps. Also due to multiple sheath flow channels, several fluid ports

(six) were needed to operate the chip. Here, we explore a scheme requiring only four

fluid ports. The design is called trench design wherein a 3DHDF effect is formed via

enclosing the main sample stream by lateral as well as top and bottom buffer flows. The

trench and nub elements fabricated by two photoresist layers aid with supplying buffer

flows in the vertical dimension.
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2.1.1 Integrated 3DHDF Design

The illustration shown in Fig. 2.2 outlines the general design for our optoflu-

idic chip that incorporates a 3DHDF element. The 8× 8mm2 silicon-based chip shown

in Fig. 2.2a features four fluid ports: one sample port, two buffer ports, and an outlet

port. The ports handle the fluid introduced into the microchannels, flowing from left to

right. Optical waveguides orthogonally intersect the microchannel liquid-core waveguide

to deliver excitation light and collect emitted photons from the target fluorescent parti-

cles. The are several upgrades in this layout compared to the original ARROW design.

Simplification of the fluidic arrangement in this design reduces the chip footprint and

yields a 45% increase in the density of devices per 100 mm wafer (from 52 to 76). The

other upgrades are the extended waveguide design for the collection waveguide (see Fig.

2.2b) as well as marked cutting lines to ease and increase tolerance of the chip cleaving

process. The extended collection waveguide from the neighboring chip is ending at the

sample fluid port. Also, the circular fluid port pads compared to the square pads in the

previous designs, match the circular profiles of fluidic interfaces, thus better sealing for

the fluidic interface. The MMI excitation waveguide is located 100 µm from the trench

part (fluid focusing junction) of the device.

The main part of the trench design is the prismatic plus-shaped fluid junction

(Fig. 2.3) where the 3D hydrodynamic focusing effect happens. Fig. 2.3a shows the

direction of fluidic flow into and out of the trench intersection. The trench and the nub

sections of the intersection make sure that the sample stream is supported by a buffer
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(a) (b)

Figure 2.3: The prismatic plus-shaped junction of the trench design (a) schematic of
the trench part with inlets and outlet ports (b) the CFD simulation of trench design
predicting a nice symmetric 3D focusing.

Feature Height [µm] Width [µm] Length [µm] Velocity [cm/s]

Sample inlet 6 6.76 2,940 1
Buffer inlet 6 20 2,930 1
Trench/Nub 5 10 104 -

Outlet 6 12 3,285 -
Chip edge - 8,000 8,000 -

Table 2.1: Trench design parameters.

in lateral and vertical directions, hence delivering horizontal and vertical focusing. Fig.

2.3b displays the 3D focusing behavior of the trench design simulated by a commercial

computational fluid dynamics (CFD) package called ANSYS Fluent (done by BYU).

The prismatic plus-shaped offers a nice round focused stream inside the rectangular

outlet channel.

Table 2.1 summarizes the design parameters extracted from the CFD simula-

tions. Note that the sample and buffer fluids’ velocities are equal.
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2.1.1.1 Fluorescence imaging

In order to explore the hydrodynamic focusing behavior of the chip fabricated

at BYU, at UCSC a novel approach was developed to enable a 3D measurement by using

only a single 2D top-down imaging setup. This is necessary due to the planar design of

the chip which limits access to the sides of the chip for imaging needs. In this technique,

the chip is driven in the inverted format of the original design, meaning that we swap

the buffer and the sample channel fluids. The simplified cartoon in Fig. 2.4a depicts

the top-down fluorescence microscope imaging configuration exploited to characterize

3DHDF behavior. When the device is filled in the original mode, the sample channel

is filled with a fluorescent dye (here, 10 µM Cy5 dye) and buffer channels are filled

with buffer (here, DI water). All three possible cases, no focusing, 2D focusing, and

3D focusing are visualized in Fig. 2.4b using two different projection planes (side, and

top) to help understand expected fluorescence images from the chip. When there is no

focusing behavior in an optofluidic chip (i.e. when both sample and buffer channels

are filled with fluorescent dyes), a bell-shaped curve is predicted for the fluorescence

signal. The fluorescence signal is the average of pixel intensities from the top-down

image along the z-axis. Notice the similarity of all three scenarios with the original

scheme of operating the 3DHDF chip where all fluorescence signals render a bell-shaped

profile.

The original scheme would not let us distinguish between 2D and 3D focusing

behaviors, so in order to tackle this problem, we devised an unconventional format for

21



side 
view

no focusing 2D focusing

top view
(microscope imaging)

(a)

(b)

side view 
(expected profile)

3D focusing

top 
view

fluorescence
signal

fluorescent dye
buffer

Solid-core
waveguide

Solid-core
waveguide

Liquid-core
waveguide

y

y

z

z

z

x

x

Figure 2.4: Predicted fluorescence signals in original format (a) schematic of excitation-
liquid channel intersection. Unlike the usual setup, here we shine light from the col-
lection waveguide to illuminate the full length of the liquid-core channel. (b) predicted
fluorescence images and intensity signals for three possible cases. The top-down micro-
scope imaging produces very similar intensity profiles for 2D and 3D focusing cases.
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Figure 2.5: Predicted fluorescence signals in inverted format. The intensity signal is
different for each case making it possible to distinguish three possible behaviors by
just single top-down imaging. Peak-to-valley (P2V) is a smaller value in 3D focusing
compared to 2D focusing due to dye presence on the top and bottom of the focusing
stream.

driving HDF chips to introduce the contrast within fluorescence images. In this scheme,

we introduce fluorescent dyes into the buffer inlets and fill the sample channel with

buffer. This inverted scheme is expected to produce profiles shown in Fig. 2.5 by intro-

ducing a new peak-to-valley (P2V) feature in the fluorescence signal. A narrow stream

of dye on the top and bottom of the 3D-focused stream raises the valley decreasing the

P2V value in comparison to the 2D-focusing scenario.

2.1.1.2 3D focusing characterization

In an experiment, we use the inverted scheme to evaluate the hydrodynamic

focusing behavior of a trench chip. The buffer channels are filled with Cy5 fluorescent

dyes with a concentration of 10 µM and excited by a side coupled 633 nm laser source

(NKT SelectBox) exciting the entire analyte channel from the collection waveguide. We

choose a collection waveguide instead of multimode interference (MMI) waveguide so
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that the full length of the analyte channel gets illuminated. Fluorescence images are

taken using a compound fluorescence microscope with a 700 nm long-pass optical filter to

cut off the excitation light. A 20× microscope objective and an sCMOS camera (Andor

Zyla) capture the top-down images. The image shown in Fig. 2.6 is an example of a

top-down fluorescence image taken from a trench 3DHDF chip in the inverted scheme

and the narrowly focused stream of DI water (darker than the surrounding bright Cy5

stream) is visible. A dim backlight was used to illuminate the main parts of the chip

like channels and solid-core optical waveguides. Fig. 2.6 shows the intensity profile of

the fluorescence image with a visible valley proving the 3DHDF effect.

P2Vnormalized described by equation 2.5 is used to plot the P2V changes along

the x-axis.

P2Vnormalized =
P2V

Max(I)−Min(I)
(2.5)

Where P2V is the peak-to-valley measured from the intensity curve (I) of a

fluorescence image within an averaging box (see Fig. 2.7a). The analysis was done with

the inverted scheme and averaging of pixel values along the x-axis within an averaging

box of 30 µm for Fig. 2.7b and 5 µm for Fig. 2.7c. By analyzing the P2V metric

along the analyte channel, we realized that the 3DHDF effect can only last for a limited

distance (<150 µm) and is maximized at a distance 20-30 µm from the trench junction.
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Figure 2.7: P2V analysis along the analyte channel in the inverted scheme.

2.1.1.3 Diffusion characterization

The fading effect observed in Fig. 2.7 is related to hydrodynamic diffusion

and is studied in this section. By switching back to the normal mode of operation for

the trench 3DHDF chip, we analyzed the 3DHDF effect by analyzing the MMI pattern

formed at the excitation volume. The input light is 633 nm and is coupled into the

collection waveguide similar to the previous setup. A narrow stream of dye focused in

the center of the channel is shown in Fig. 2.8. This narrow stream gets diffused and

wider as it flows along the channels and a profile analysis is employed by dividing the

length of the analyte channel into several slices (see Fig. 2.9). We derived equation 2.6

to predict the FWHM by first calculating a concentration, c, as a function of lateral

y position and microchannel length position x (see Fig. 2.9 for x and y axes). The

model is simplified for a 1D semi-infinite diffusion problem with a stream half-width a.
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Figure 2.8: 3DHDF chip operating in normal mode. The sample channel is filled with
dye and the buffers are filled with DI water. A narrowly focused stream of dye is
noticeable, especially in the inset without any backlight.
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Figure 2.9: Focused stream starts to diffuse along the analyte channel.

κ represents diffusivity divided by flow velocity [25].

c(x, y) =
1

2

{
erf

(
a− y√
4κx

)
+ erf

(
a+ y√
4κx

)}
. (2.6)

Equation 2.5 is used to calculate the predicted FWHM shown in Fig. 2.10 to

compare with the FWHM values extracted from the experiment. Measured values are

those drawn out from Fig. 2.9. The predicted FWHM for 1 kilobase pair single-stranded

DNA is of interest in our ARROW biosensors for the detection of biological samples, i.e.
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Figure 2.10: Diffusion of different targets within the 3DHDF channel.

antibiotic-resistant bacteria. The prediction curve for 1 kbp ssDNA shows a negligible

diffusion which is much lower than the diffusion predicted for Cy5 dye [26, 27]

The trench 3DHDF chip incorporates the MMI excitation design and this was

used to further characterize the focusing behavior. This time, we filled the sample chan-

nel with a fluorescent dye and buffer channels with DI water just like in the diffusion

study. By varying applied negative pressure, the pressure difference between inlet chan-

nels and outlet channels is varied and the 3DHDF effect shows a pressure-dependent

focusing behavior. Fig. 2.11 shows a few examples of fluorescence images taken from

the chip driving fluidic sample at four pressures (10 inHg, 15 inHg, 20 inHg, and 35

inHg).

Obviously, by pulling the sample with stronger vacuum pressure, the focused

stream becomes narrower at the excitation volume. The chip was excited by a He-

Ne laser running at 633 nm which produces the expected 7 peaks inside the channel.

We take advantage of this spatial information from the wide MMI excitation pattern

to accurately construct a pressure-dependent focusing curve. The excitation length,
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Figure 2.11: 3DHDF effect on MMI pattern over vacuum pressures range. 3DHDF
effect is stronger at stronger vacuum pressures.

defined as the average FWHM of all 7 spots, versus applied pressure, is plotted in Fig.

2.12. Even a small divergence of the focused stream is visible within 75 µm wide MMI

excitation volume (see Fig. 2.12 left). A 50% narrowing happens at a pressure range of

15-25 inHg and this narrowing effect goes over 65% at 35 inHg.

If we individually analyze the FWHM changes of each spot versus applied

pressure, we see a decrease in the slope (reflecting the drawn envelope in Fig. 2.12 left).

In other words, the MMI spots become more uniform as we improve the focusing effect

by applying stronger vacuum pressure (see Fig. 2.13). This unique spatial information

attained by multi-spot patterns can be helpful for diffusion-based detection methods,

especially at slower flow rates.
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633 nm

Figure 2.12: Excitation length versus applied pressure. The excitation length is the
average of FWHM of 7 peaks for 633 nm excitation.

Figure 2.13: Individual spots’ width versus applied pressure. A similar narrowing trend
is observed for all individual MMI spots. At stronger vacuum pressures, the MMI
pattern is more uniform and the divergence of spots is minimal.
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Figure 2.14: APD traces of control (no focusing) and experiment (3D focusing) of 200
nm crimson fluorescent beads. Detected events are distributed in a much narrower ∆t
range at the lower ∆t axis. Yellow rings indicate detected events in time-∆t space using
CWT analysis.

2.1.1.4 Fluorescent particle detection in 3DHDF chip

Finally, the trench design was validated by applying a solution containing 200

nm fluorescent beads to investigate the digital detection of nanoscale targets. Fig. 2.14

shows APD traces recorded for the sample with 200 nm crimson beads (FluoSpheresTM

Carboxylate-Modified Microspheres, InvitrogenTM) with a diluted concentration of 107

/mL. The control is when all channels are filled by the sample and the experiment is

when buffers are filled with DI water. The inset shows an example event representing

7 distinct peaks from the multi-spot excitation pattern. Events are detected using the

developed PCWA algorithm [28].

Statistical analysis of the detected events reveals a narrowing in fluorescence

signal intensity as well as velocity. The signal intensity for an event is the CWT coef-
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ficient of that detected event. The correlation of fluorescent particle intensity with its

flowing speed can be visualized by plotting a 2D join-histogram as shown in Fig. 2.15.

The column on the left is for the APD trace recorded from the control experiment, where

all channels are filled with dye. As expected, the velocity and intensity histograms are

wide in this case and a broad horseshoe shape is observed in the 2D histogram. The

middle column depicts plots for the experiment trace with narrower histograms. Also,

we tried a 10× higher concentration of the sample (108 /mL) to get a higher count

of events for histogram comparison and saw very similar distributions to the 107 /mL

trace (see Fig. 2.15 right column). Notice the change in the horseshoe shape in the 2D

histogram with shorter legs, especially in the ∆t/velocity axis. Comparing the control

and the experiment (108 /mL) analysis, we see a significant shift and compression in

the velocity distribution, but a minor shift for the average intensity. The increase in

mean velocity is related to the reduced viscosity of the sample pulled through the chip

since the buffer channels are filled by water instead of beads. The average intensity is

reduced in the experiment which is because of misalignments from the fabrication. The

optimal alignment should center the three main elements, the excitation waveguide, the

analyte channel, and the collection waveguide. This plays a significant role in APD trace

signals for 3DHDF chips since there is only a very narrow stream of targets crossing the

excitation volume.

The simulation model developed in Appendix A is used here to seek the effect

of various focusing on 2D joint-histogram shapes. Fig. 2.16 shows a simulated device

by adding excitation and collection profile offsets as:
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control
200 nm beads @ 107 /mL

experiment
200 nm beads @ 107 /mL

experiment
200 nm beads @ 108 /mL

Figure 2.15: Velocity and signal intensity distributions as well as 2D joint-histogram for
control and experiment. The 108 sample produces a higher number of events/second,
thus a better histogram is formed. The 3D focusing effect impacts velocity distribution
more than the intensity distribution.
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• µex,y = 3µm

• σex,y = 0.2× h = 1.2µm

• µc,x = 0µm

• µc,y = −4µm

• σc,x = 0.5× w = 6µm

• σc,y = 0.33× h = 2µm

We simplify the focusing effect by just masking (cropping) the velocity profile in three

different modes: laterally and vertically for 2D focusing, and both for 3D effect (see

upper left insets in Fig. 2.14). The second, third, and fourth columns of the top

row insets represent excitation, collection, and sensitivity profiles respectively. As you

can see in the right 2D joint-histogram (3D focusing), the produced histogram reflects a

similar transformation observed with the experimental data, which confirms the 3DHDF

is indeed at work in the 200 nm fluorescent bead experiment.

2.2 Operating 3DHDF chip with 3D printed manifold

The microfluidic part of a typical ARROW biosensor relies on only a single

fluidic path from one inlet to one outlet. While this simple microfluidic design works

well with conventional single-line fluidic interfacing, it becomes impractical to operate

3DHDF devices with multiple inlet/outlet ports. Fig. 2.17 shows a conventional fluidic

interface for an ARROW chip with a vacuum-driven sealing of the chip reservoir and
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Figure 2.16: Velocity and signal intensity distributions for control and experiment. The
narrowing effect is observed for both distributions in the experiment case.

vacuum line

o-ring

brass reservoirs

Figure 2.17: Conventional ARROW fluidic interface.

outlet vacuum line. The o-ring (in orange) helps with providing air-tight sealing to

avoid pressure drops in the reservoir.

The 3DHDF devices usually host multiple inlets and outlets to aid required

microfluidic streams running in the chip. The small footprint of these chips makes the

fluidic interfacing challenging, thus demanding a new and different mechanism. Fig.

2.18 (top-right) shows an example of a 3DHDF ARROW chip (stacked channel design

[23]) with three inlets and three outlets. There are two sealing o-rings placed on top
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of two outlets to demonstrate how tight space between reservoirs makes it difficult

to connect all outlets into dedicated fluidic handling lines. A new part was designed

and 3D-printed using high-resolution stereolithography (SLA) printers in-house (UCSC

BELS). The CAD file was created in Autodesk Inventor software and is shown in Fig.

2.18. The 3D printed part incorporates two separate parts. The bottom part is to

attach to a post mounted on an X-Y stage (see Fig. 2.17) and hold the chip in place via

a suction mechanism (see Fig. 2.18 top-left). The top part provides access to the inlets

and outlets via a manifold design. The connecting ends of manifolds include o-rings

for tighter sealing into the chip without any need for brass reservoir attachment. The

other end of the manifolds (the vacuum line) has a tapered insert design to provide

tight fitting to the tubings. In a revised version, we extended the manifold part to offer

bigger clearance over the chip for top-down imaging purposes.
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Figure 2.18: Custom-designed 3D printed chip mount for 3DHDF chips provides sealed
access to 6 inlet/outlet channels. Autodesk’s Inventor software was used to draft the
3D model and the part was printed using the Formlabs SLA 3D printer available at
UCSC BELS. The bottom row shows the revised design with a bigger clearance for the
top-down imaging microscope objective.

37



Chapter 3

High-performance signal processing

technique for particle counting

Chip-scale diagnostic devices as the current trend toward affordable and portable

point-of-care (POC) platforms are increasingly incorporating microfluidics in their de-

sign [29, 30]. Microfluidics answers the need for portability, small sample volume, short

processing time, integration, and flexibility. The integration of photonics and microflu-

idics brings biological detection into a chip-scale format [31, 32]. ARROW devices as

one of the successfully developed optofluidic biosensors have been demonstrated at clin-

ically relevant concentration ranges with single nucleic acid, proteins, viral particles

sensitivity and multiplexed detection capability [33, 34]. These devices rely on fluo-

rescence detection of single particles flowing inside a liquid-core waveguide. Detection,

identification, and counting of fluorescently tagged particles in a precise and efficient

way is the subject of this chapter.
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3.1 Fluorescence detection

In this chapter, we discuss a new high-performance event detection technique

developed for ARROW fluorescence biosensors, but the application of this technique

is not limited to these devices. A couple of examples where certain patterns (here

peaks) are asked to be detected are analyzed using this technique to give the reader

an impression of how they can apply and use this tool for their own needs. However,

we have found that it is particularly attractive for a liquid-core waveguide optofluidic

platform on which an intersecting solid- and hollow-core antiresonant reflecting optical

waveguides (ARROW) design introduces some variation of signals requiring special sig-

nal processing techniques. The target particles flowing at different velocities across the

liquid-core channel, alongside the excitation and the collection waveguides’ non-uniform

mode profiles, result in a complex variation of signal properties. Fig. 3.1 demonstrates

a conceptual illustration of orthogonally intersecting solid- and liquid-core waveguides

with a fluorescent particle getting excited while flowing inside the channel. Depend-

ing on the position of the particle, excitation, emission, collecting as well as the time

duration of the signal will vary.

The ARROW chip and simplified experimental setup used for fluorescence de-

tection are shown in Fig. 3.2a. The chip consists of a 5µm×12µmmicrochannel accessed

by fluidic reservoirs to introduce target particles by applied pressure. An external laser

source is coupled into a single-mode optical fiber to inject light into the chip via facet

coupling. As shown, the chip layout features two excitation options: single-spot via a
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Figure 3.1: Cartoon of integrated optofluidic fluorescence detection. Excitation, fluo-
rescence emission, and velocity vectors for a flowing fluorescent bead are illustrated

single-mode (SM) waveguide or multi-spot excitation (MSE) with a multi-mode interfer-

ence (MMI) waveguide. The top-down microscopy image of the excitation region when

the channel was filled with quantum dots in DI water, reflects two possible excitation

regions colored in red and green (Fig. 3.2b). This high-concentration solution creates a

static image of the excitation patterns through which a single target particle moves in

an actual experiment. Single-spot excitation is useful when ultrasensitive singleplex de-

tection is required as demonstrated by amplification-free detection of Ebola virus RNA

[35]. MMI waveguides, on the other hand, create spectrally and spatially varying exci-

tation patterns that have been successfully used for multiplexed single virus and antigen

detection [10, 36, 34]. Figure 3.2c shows fluorescence signals examples corresponding

to single-spot and multi-spot excitation generated by SM and MMI waveguides. They

are recorded from fluorescent nanobeads and labeled bacterial DNAs (Klebsiella pneu-

moniae carbapenemase), respectively. Encoding the spectral information into spatial

information by using the MMI waveguide, embodies additional information into indi-
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(a) (c)(b)

Figure 3.2: Optofluidic fluorescence detection platform. (a) Schematic of the experimen-
tal setup with orthogonal excitation detection paths. Single-peak or multi-peak modes
are selected depending on which waveguide is coupled to the fiber. (b) Microscope image
of detection region excited at 556 nm in the single-mode waveguide and 633 nm in the
MMI waveguide which generates seven distinct spots in the analyte channel (channel
filled with quantum dot-DI water solution for visualization of the excitation patterns).
(c) Examples of generated fluorescence signals: Single-peak signal is from 200 nm di-
ameter fluorescent nanobeads and the multi-peak signal is from a single fluorescently
tagged nucleic acid from a Klebsiella pneumoniae carbapenemase (KPC) bacterium.

vidual events. When the multi-spot signal is analyzed by a shift-multiply algorithm (see

below), a 50, 000× signal-to-noise (SNR) enhancement was demonstrated [37]. Detec-

tion and classification of these temporal events can be challenging when the background

is high SNR is low as a result of a dim target or a particle’s position in the channel [38].

Therefore, an efficient, powerful, and accurate signal analysis method is needed.

3.2 Wavelet transform

The velocity-dependent nature of fluorescence signals encourages us to explore

time-frequency analysis techniques. Wavelet analysis is a widely used technique in time-

frequency studies and has been successfully applied to a broad spectrum of applications,
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including but not limited to denoising, baseline removal, spike detection in noisy sig-

nals, and image compression [39, 40, 41, 42, 43, 44]. Continuous wavelet transform

(CWT) and discrete wavelet transform (DWT) can be used in multi-scale peak and

event detection. DWT decomposes a sampled signal into non-overlapping sub-bands of

frequencies. DWT is generally fast and efficient but lacks a sufficiently high resolution

of scale/frequency. Unlike DWT, CWT provides high scale/frequency resolution which

is one of the key pieces of information used in time-frequency analysis. CWT uses a

convolution operation to compare the signal f(t) to a temporal pattern of finite duration

−the mother wavelet ψ(t)−. The enhancement energy map in CWT transform helps to

identify occurrences of the mother wavelet pattern within the signal. Eq. 3.1 describes

the CWT transform

C(t, s) = ⟨f, ψt,s⟩ =
∫ +∞

−∞
f(t′)

1√
s
ψ∗
(
t− t′

s

)
dt′ (3.1)

where s > 0 is a scaling factor that stretches or compresses the wavelet bases in time.

C(t, s) is, therefore, the correlation of the real signal with a scaled and dilated basis

function which can be visualized in a 2D map of regularity through coefficients. Local

maxima in the 2D map indicate the presence of a particular pattern (similar to the

mother wavelet) and the scaling function, extends the pattern search into a broad range

of scales. This multi-scale pattern recognition behavior is well-suited for fluorescence

particle detection where particles flowing at different velocities produce scaled patterns

detectable in time-scale (t, s) space. It is, therefore, convenient to relabel the scaling

parameter s as ∆t to extract meaningful information for events that can, in turn, be
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easily converted into the velocity of flowing particles due to the direct correspondence

with the known spatial excitation patterns. This is a key advantage over DWT, whose

limited number of scale levels is not sufficient to extract the continuous distribution of

the velocity of flowing particles. We note that the convolution calculation at each scale

can be done independently for CWT whereas in DWT higher-level coefficients depend

on the lower level’s values, which is compatible with parallel processing schemes. Indeed,

the technique has been used in numerous applications such as mass spectroscopy [45],

powder x-ray diffraction [39], seizure detection from EEG signal [40, 41], radar target

detection [42] and trend detection, and estimation in hydrology and climate research

[43]. However, a major challenge lies in dealing with large amounts of data in a fast and

memory-efficient way as well as with more complex signal shapes such as the multi-peak

signal of Fig. 3.2c. Time-frequency resolution of wavelets changes based on the scale,

whereas in short-time Fourier transform (STFT or windowed Fourier) it is fixed. The

wavelet ψu,s has a time support proportional to s and a frequency support proportional

to 1/s. Fig. 3.3. shows two wavelets ψu,s and ψu0,s0 with proportional time and

frequency supports. When s changes depending on the position of the box, the time

and frequency width of the Heisenberg box vary but its area remains constant. The

figure is taken from [46] with permission.

sσt ×
σω
s

= s0σt ×
σω
s0

= σtσω (3.2)

This emphasizes that events detected at higher frequencies/velocities (smaller scales)

have better time localization and poorer frequency localization, and slow-moving parti-
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Figure 3.3: Heisenberg uncertainty boxes.

cles show better frequency, but poor time localization resolution.

3.3 Event detection using wavelet transform

Figure 3.4a shows a fluorescence signal recorded with the optofluidic chip of

Fig. 3.2 with the single-mode waveguide for excitation. A solid-state diode neodymium-

doped yttrium aluminum garnet; Nd:Y3Al5O12 (SSD Nd:YAG) laser (Shanghai Dream

Laser Technology Co.) coupled into the optical fiber, excites 0.1 pM of 200 nm polystyrene

beads (Fluospheres�) that are pulled through the chip by a vacuum pressure-driven

flow. The emitted photons from the beads were collected off the chip and after passing

through a penta-bandpass optical filter (FF01- 440/521/607/694/809-25, Semrock) to

remove excitation light, were detected by an avalanche photodiode (APD, Excelitas). A
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(a)

threshold
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Figure 3.4: Parallel cluster wavelet analysis (PCWA) for single-peak analysis. (a) A
cropped window of fluorescence signal taken from 200 nm fluorescent beads excited by
single-mode (SM) waveguide (inset: Ricker wavelet used with PCWA algorithm). (b)
CWT coefficients in time-∆t space (where a scaled and dilated version of the mother
wavelet is convolved with raw data) with square markers indicating selected local max-
ima points found by the PCWA event detector algorithm.

single-photon-counting-module (TimeHarp 260 nano SPCM, Picoquant) records times-

tamps of the detected photons and stores them into a *.ptu file. A developed script

adapted from [47] bins timestamps in 10 µs bins for further analysis and, therefore,

large amounts of data points are generated in the memory. The two-second long trace

displayed in Fig. 3.4a contains 200,000 points, and a 5 min acquisition time produces

over 30 million points.

The signal height and width vary due to different particle positions in the

fluidic channel [38] and fluctuations in flow speed, respectively. Previously, events were

detected by setting a threshold of photon counts (background level) and signals above

the background were counted as a particle [33]. While this works with bright targets and

good chips, CWT analysis offers significant advantages in terms of accuracy, robustness,

and information content. A Ricker mother wavelet (Mexican hat) is used to generate

the 2D CWT coefficient map and is displayed as a color map in Fig. 3.4b. Only the

positive part of the absolute value of CWT coefficients is kept to simplify the event
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localization step. Fluorescence signals in the real-time trace are now represented as

bright streaks, and the ∆t locations with the largest CWT coefficient correspond to the

actual events and are highlighted with white boxes.

Fig. 3.5 illustrates a zoomed-in part of the trace to better understand how

events are picked from the CWT map. First, local maxima (black dots with white

borders in Fig. 3.5b) in the CWT map are identified at each scale (∆t value) with

a conventional peak finding (with a user-defined threshold) process. This threshold

is now in CWT space which is different from the threshold level shown in Fig. 3.4a.

We first sort all CWT maxima by time and then define macro clusters (MC) local

maxima that are separated by gaps along the t-axis by more than a predefined value

(extent × 0.5 × (Nj∆tj + Nk∆tk) for nearby j,k events). The ‘extent’ parameter is

used to tune the threshold of MC formation and N is one for single-peak events. We

then examine all clusters in parallel by calculating the distance values around the local

maximum with the largest C(t,∆t) value which is the first candidate for an event. This,

too, is done in a parallel and vectorized fashion to speed up the event detection process.

The overlap OL with other maxima within the cluster is

OL(i, 0) = sgn
(
(ri + r0)

2 − d2(i, 0)
)

d2(i, o) = (ti − t0)
2 + (∆ti −∆t0)

2

ri =
whNi∆ti

√
Ci√

w2Ni
2 sin2 θi + h2 cos2 θi

, r0 =
whN0∆t0√

w2Ni
2 sin2 θi + h2 cos2 θi

,

C ′
i =

Ci −min(C)

max(C)−min(C)

(3.3)
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Figure 3.5: (a) Zoomed-in window of three events with circle markers showing the
adjusted location of peaks. (b) CWT map of (a) including local maxima points (black
dots). The clustering algorithm utilizes Euclidean distance and adjusted ellipses around
each local maximum to search for links. The overlap of an ellipse with the centroid point
defines a link. (c) Macro and micro-clusters (MC and µC): local maxima are first
grouped into MC highlighted by blue circles by simplified 1D overlap calculation. The
clustering algorithm finds µC for each MC in parallel. A µC is a star graph containing a
minimum of links with the largest CWT coefficient maximum as the centroid (red-filled
circles).
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Figure 3.6: Flowchart of the clustering algorithm.

where r is the radius of the ellipses in Fig. 3.5b, d is the Euclidean distance, and w

and h are adjustable spreading parameters that define the refinement sensitivity in time

and scale, respectively. N represents the number of peaks in a multi-peak signal (here

for a single-peak event N = 1). The addition of normalized CWT coefficient weights

into (ri + r0)
2 helps detect weak events near strong ones. We then look for overlapping

ellipses. If the number of points connected to the original largest maximum (centroid)

is higher than a user-defined number (selectivity×len(scales)), it is taken as a micro

cluster (µC) in which the actual event is immediately identified. The unconnected

points form a new, smaller macro cluster where a new centroid is picked. The analysis

repeats until no more clusters can be formed with a minimal, user-defined number of

candidate points.
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Figure 3.7: Run time comparison of clustering algorithm with established CWT peak
finders, showing orders of magnitude faster speed and run times below the real-time
limit (gray dashed line).

The outlined flowchart is rendered in Fig. 3.6. We call this algorithm parallel

custom wavelet analysis (PCWA) due to the highly parallel fashion of processing data

and customizable wavelet functions to match any shape of the signal [48].

Figure 3.7 compares the run time of the PCWA algorithm with the ridge-based

CWT methods [45, 49] as a function of both the number of data points in the signal

trace and the actual run time of the experiment. The comparison was done by running

implementations of the algorithms in Python with 100 logarithmic scale values on a

single desktop computer (Intel® Core� i9-900 CPU with 32 GB of RAM). PCWA shows

O(N) complexity, where N is the number of data points. Consequently, it is orders of

magnitude faster than other techniques and, most notably, PCWA always runs faster

than the experiment itself (dotted line), e.g., 40 s of analysis for a 42 s trace, while
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other methods are impractical for real-time applications. This benchmark highlights

the PCWA’s capability for real-time analysis of time-dependent particle sensors.

3.3.1 Single-peak event detection

Single-peak event detection also called peak finding, is a very basic need in

many applications. There are numerous tools developed to find peaks, and here we

explore how PCWA can fulfill the peak-finding needs as well. In Fig. 3.8a, a zoomed-

in window of a long APD trace is shown with five distinct peaks. These are 200 nm

fluorescent beads. Here, we translate the scale to ∆t value (see Fig. 3.8a inset) which

is the full-width-half-max (FWHM) of the Ricker wavelet. This is comparable to the

FWHM of the optical excitation spot inside the channel, thus directly convertible to the

velocity of the detected particle. The join histogram visualized in Fig. 3.8c displays the

correlation between the velocity and intensity of detected events. Since the intensity

and velocity of flowing particles are tightly related to the position of the particle inside

the channel, this joint plot helps to model the excitation region, as well as weeding out

outliers as false events. Indeed, when compared to a conventional amplitude-based peak

finder (with optimal threshold level set as seen as a dashed line in Fig. 3.8a), 5.7% more

events were detected. In addition, the particles’ velocity is also extracted from the scale

values corresponding to the temporal widths of the fluorescence peaks.

We note again that the PCWA method is widely applicable to other sensor

types. The example of single DNA detection with nanopore electrical sensor chips is

discussed next. The particle dynamics are different in nanopore signals in comparison to
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Figure 3.8: Single-peak event detection. (a) The zoomed-in window of fluorescence APD
signal. (b) CWT coefficient scalogram with detected peaks shown as square boxes. (c)
The joint plot of the intensity and ∆t. (d) Time-varying information of events reflecting
experiment dynamics. Error bars represent standard deviation.

pressure-driven fluorescence detection because the ionic current here is the driving force

for particles [38]. Despite the source of the driving force, PCWA with a proper mother

wavelet should enhance and detect matching events in a (t, s) space. Nanopore sensors

as ultrasensitive tools for the detection and analysis of individual nanoparticles are well-

known for next-generation sequencing [50, 51, 52]. Individual particles moving through

a nanoscopic membrane generate a characteristic change of an ionic current across the

membrane. Similar to fluorescent signals, a time-dependent signal is produced where

individual particles show up as a positive/negative peak also called translocation. The

optofluidic chip with a modification is used as a nanopore sensor. Fig. 3.9a illustrates

the experimental setup for the experiment where single SARS-CoV-2 RNAs were pulled

through the nanopore by an applied voltage VNP .

SARS-CoV-2 RNAs bounded to microbeads flow from reservoir 1 through the

hollow-core waveguide and to the nanopore capture region by the applied electrokinetic

voltage (VEK). A trap-assisted capture rate enhancement (TACRE) technique [53] em-
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Figure 3.9: PCWA analysis of single-molecule nanopore sensor. (a) Schematic of the
experimental setup to detect SARS-CoV-2 nucleic acids. (b) Full trace with ∼ 2,000
events detected in 2.6 s long trace. (c-d) Zoomed-in windows to show the location of
the detected events using PCWA.

ploys the optical force from a light beam in the liquid-core waveguide to trap a group

of microbeads underneath the nanopore. This increases the target concentration at

the nanopore location and the rate of detection upon thermal release from the beads.

Translocations of individual released nucleic acid molecules through the nanopore are

detected from the current change between reservoirs (2) and (3). Signal shape, more

specifically, blockade duration and depth depend on many factors such as the shape and

location of DNA molecules. This variation of event signal is a time-frequency problem

where a multi-scale CWT technique can improve detection accuracy significantly. Figs.

3.9b-d show how the PCWA algorithm detects the blockade events successfully with-

out any additional pre-processing of the raw data such as baseline removal which is a
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major problem in nanopore signal processing. The high speed of the PCWA algorithm

fits well for time-sensitive applications of nanopore sensing such as feedback-controlled,

on-demand delivery of DNA molecules [54]. The accuracy of the PCWA method is

benchmarked by the receiver operating characteristic (ROC) curve to incorporate true

and false-positive events. In order to carry out a ROC curve analysis, a dataset with

known positive events is required. Unfortunately, there is no ground truth event in-

formation for fluorescent- or nanopore-based signals. Therefore, we used a set of 75

mass spectrometry traces from a simulated protein spectra dataset [55]. Fig. 3.10

shows an example from the simulated spectra with a peak detection comparison of our

PCWA with two other CWT-based methods. Gray vertical line markers indicate the

true location of peaks and colored markers indicate the location of peaks detected by

corresponding CWT-based peak finder methods. PCWA detected 84% of peaks cor-

rectly (62% for Du et al [45] and 86% for Zhang et al [49]) with 1% FDR (32% for Du

et al and 7% for Zhang et al).

This dataset provides simulated protein spectra with noisy raw data alongside

the true location of the peaks, which can be easily used to calculate the ROC curve.

A ROC curve is a tool to visualize and compare the performance of a detector across

a range of threshold parameters for the detector. The x and y axes of a ROC curve

correspond to the true positive rate (TPR or recall) and false positive rate (FPR),

respectively. A perfect detector is a single point in the top-left corner of the ROC space

(TPR=1, FPR=0), detecting all true events (no false detection) independent from the

set threshold. The area under the curve (AUC) for a ROC curve is a number between 0
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Figure 3.10: Mass spectroscopy peak detection. An example of peak detection done by
three CWT methods on a simulated protein spectrum.

and 1 for normalized FPR and TPR and a higher AUC value means a better detector.

The TPR and the FPR are calculated as

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
,

TP : true positive, FP : false positive,

TN : true negative, FN : false negative

(3.4)

We define a false positive as a detected peak that is not located within ±1%

of the mass-to-charge ratio (m/z) value of the true peak. Fig. 3.11 shows the average

of ROC curves for 75 randomly selected simulated spectra and Table 3.1 summarizes

the runtime comparison of the three methods. The typical size of an MS spectrum is

∼ 20,000 data points and 50 levels of logarithmic scale values were used for analysis.

We observed that PCWA maintains excellent performance with significantly accelerated
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Figure 3.11: ROC plot generated by varying the threshold (minimum SNR for Du et
al and Zhang et al methods). Each spectrum has ∼ 20,000 data points and 50 levels of
logarithmic scale values are used to calculate CWT.

method runtime [s]

Du et al [45] 0.96±0.12
Zhang et al [49] 0.44±0.04
PCWA [48] 0.23±0.15

Table 3.1: Runtime comparison of three CWT-based peak finders run on simulated
mass spectra dataset.

analysis time.

3.3.2 Multi-peak event detection

Multi-peak signals offer significant advantages for practical sensing applica-

tions. With the addition of redundancy and encoding of temporal information to the

signal, more reliable identification of events from a noisy background can be achieved.

Multi-peak signals also enable multiplex detection if different targets produce different

signal patterns which are particularly desirable for biomedical applications. This is

usually done by the use of spatial excitation patterns using masks [56] or waveguides
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[37, 57] that result in time modulation of the signal created by a particle crossing the

excitation region. These can then be analyzed using Fourier transform analysis, shift-

multiply algorithms (see below)[37], or matched filters. For example, signal-to-noise

ratio (SNR) enhancement via multi-spot excitation implemented with Y-splitters and

multi-mode interference (MMI) waveguides has shown up to 50, 000× SNR improve-

ment [37, 57]. Signal analysis improvement with spatially encoded excitation has been

explored in [58, 59, 60]. Here, we expand the application of the PCWA algorithm to

multi-peak signals created by fluorescently tagged plasmid molecules corresponding to

the Klebsiella pneumonia carbapenemase that cross the multi-spot excitation pattern

inside the analyte channel. The chip design and experiment methodology are based on

the multi-mode-interference (MMI) waveguide optofluidic biosensor discussed in [36, 4].

In this experiment, a HeNe laser (Melles Griot) working at 633 nm was coupled into a

single-mode optical fiber-coupled (F-SA, Newport) and then into the chip. The single-

mode waveguide guides light from the optical fiber and launches into the MMI waveguide

(see Fig. 3.2a) while the rest of the setup is the same as the single-peak detection ex-

periment. Figure 3.12a shows an example of a multi-peak signal from a single DNA

molecule that consists of seven peaks representing the MMI waveguide excitation pat-

tern defined at 633 nm. The Fourier transform of this signal shows a strong peak at ∼

4.5 kHz which is related to the uniform spacing ∆t of the seven subsequent peaks. In

addition, the second harmonic at 9 kHz and strong content at very low frequencies are

visible. Previously, multi-peak signals were detected and classified (by peak number)

for multiplex detection using a shift-multiply algorithm [37, 57, 60] with good results.
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The shift-multiply formula can be described as

S(t,∆tC)C =

{
NC−1∏
i=0

F (t− i ·∆tC)

} 1
NC−1

(3.5)

F (t) is the fluorescence signal and NC is the number of spots generated by the MMI

waveguide at different wavelengths. This algorithm requires the detection of events and

extracting approximate ∆tC value for each event. Then, the properly cropped window

of the event is shifted by ∆tC for N − 1 times and multiplied by the original cropped

signal to calculate S(t) value for different Ns [61]. This is illustrated in Fig. 3.12b. The

resulting product is large for a correct signal and very small for incorrect peak numbers

or temporal spacing, resulting in significant SNR improvement compared to purely

threshold-based counting [37, 57]. Despite the huge SNR improvement, this technique

suffers from some practical challenges, such as, accurately determining the start and end

of an event, or getting a larger value for bigger Ns in the presence of high background,

which emphasizes the need for a robust multi-scale event detection algorithm. PCWA as

our universal event detector, when combined with custom-designed wavelets exhibits a

significant improvement in multi-peak event detection. We start with a mother wavelet

that is commonly used in CWT data analysis for periodic patterns, the Morlet wavelet

(Fig. 3.12c). It is a Gabor windowed (Gaussian function) sinusoidal (real Morlet) or

exponential (complex Morlet) function defined as

ψ(t,∆t) =


1√
σ
exp(

−t2

2σ2
) cos(

2π

∆t
t) real Morlet

1√
2σ

exp(
−t2

2σ2
) exp(j

2π

∆t
t) complex Morlet

(3.6)
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(a) (b)

(d)(c)

Figure 3.12: (a) Time and frequency domain representation of a fluorescence signal
taken from single K. pneumoniae carbapenemase DNA molecules. (b) Shift-multiply
algorithm previously used to find and classify multi-peak signals. (c) Time and frequency
information of Morlet wavelet with single component aligned to the first harmonic of
multi-peak signal. 2D map of positive CWT coefficients with white boxes indicating
approximate certainty of time and scale localization. (d) Multi-spot Gaussian (MSG)
wavelet designed to match the multi-peak signal as well as the full frequency spectrum;
CWT coefficients map shows precise event localization.
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where σ ∝ ∆t defines the with of the Gabor window. The frequency spectrum from FFT

calculation reveals a single and confined frequency component for the Morlet wavelet

(Fig. 3.12c, top right) and if we use it with PCWA on the fluorescence signal, the main

frequency is precisely localized as seen in the CWT map (Fig. 3.12c bottom). Multiple

bright spots in the CWT map mean poor time localization. An approximate uncertainty

box is drawn to reflect this problem for temporal information. On the other hand, we

create a custom mother wavelet that resembles the signal pattern to be detected, here,

the 7-peak MMI signal of Fig. 3.12a. This custom wavelet function is named Multi-

Spot Gaussian (MSG) wavelet (Fig. 3.21d, top left) and is constructed by the sum

of N Gaussians separated by ∆t and encapsulated by two negative skewed peaks and

mathematically described by

ψN (t,∆t) =

N−1∑
n=0

exp

(
−
[
t−

(
n− N−1

2

)
∆t
]2

2∆t2σ2+

)

−
∑
k=±1

2a

∆tσ−
ϕ

(
t+ k

(
σ−m0 − N

2

)
∆t

∆tσ−

)
Θ

(
kα

t+ k
(
σ−m0 − N

2

)
∆t

∆tσ−

)
(3.7)

here, the σ+ parameter for positive peaks is fitted to those measured from multi-peak

signals normalized to ∆t. a and σ− are calculated according to positive peaks to achieve

optimal temporal compactness and sensitivity. For higher sensitivity of the wavelet to N

(specificity in multiplexed detection), the maxima (m0) of the skewed Gaussian functions

at both ends are placed at ∆t from the first and last positive peaks. This ensures that

the zero mean condition applies [46], and the wavelet is scaled for a square norm of one.
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The parameters of the skewed Gaussian functions are explained in Eq. 3.8.

ϕ(t) =
1√
2π

exp

(
− t

2

2

)
,Θ(t) =

∫ t

−∞
ϕ(u)du =

1

2

[
1 + erf

(
t√
2

)]
m0(α) ≈ µz −

γ1σz
2

− sgn(α)

2
exp

(
− 2π

|α|

)

δ =
α√

1 + α2
, µz =

√
2

π
, σz =

√
1− µ2z, γ1 =

4− π

2

(
δ
√

2
π

)3
(
1− 2δ2

π

)3/2
(3.8)

The Fourier transform of the MSG wavelet is shown in Fig. 3.12d (top, right) and shows

excellent qualitative agreement with the FFT of the multi-peak signal from the KPC

target. The improved time localization can be seen in the CWT map obtained with

the MSG wavelet. It shows a single bright spot (black box) with a compact uncertainty

box in time and ∆t axes (white boxes), meaning that multi-peak events can be detected

precisely. Figure 3.13a depicts again a subset of cropped windows from a 20-min long

APD trace of the KPC sample. Using the MSG mother wavelet, we are able to detect

multi-peak events by accurately locating them in time and frequency. The frequency

(or scale) information is related to the velocity of the detected particles similar to

single-peak event detection. The CWT map (Fig. 3.13b) shows clean identification of

these signals and also illustrates the variation in ∆t due to the different velocities of

the molecules. Note that the gaps in the time axis of Fig. 3.13a, b were added solely

to enable visualization of multiple plasmid detection events, which are very sparse at

low concentrations. The ridge-based CWT methods would fail if we use our MSG

wavelet applied to multi-peak signals. The issue can be seen in Fig. 3.13c where the

local maxima (equivalent to Fig. 3.5c) around a single seven-peak event are shown.

There are multiple maxima at each ∆t level, creating multiple ridges and we will end
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(a)

(c) (d) (e)

(b)

Figure 3.13: Multi-peak event detection. (a) Concatenated 10 ms cuts of detected single
KPC molecules in a 9 s window. Inset is the multi-spot Gaussian (MSG) wavelet used
to analyze the trace. (b) Corresponding time-∆t CWT scalogram with white squares
showing detected multi-peak events across a range of ∆t values. (c) Local maxima for
a single example event render conventional ridge-line methods impractical. (d) Scatter
plot for particle intensity and speed, showing a cluster in the predicted region (white
line); dashed line: confidence region for event identification as DNA molecules. (e)
Time-varying information of events during the measurement for dynamic determination
of the flow characteristics. Intensity and velocity plots are the average value for events
within a bin from the histogram plot. Error bars represent standard deviation.
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up with multiple event detection for a single particle. In contrast, the cluster-based

PCWA algorithm addresses this problem. A single micro cluster will be formed for

these local maxima and can be quickly identified as a single event. In Fig. 3.13d,

the intensity and ∆t (velocity) of all 300 detected molecules are visualized in a 2D

histogram to give joint information in a single plot. The distribution is determined by

the waveguide mode profiles and the (parabolic) velocity profile inside the microchannel.

The predicted distribution of the majority of events for the chip under consideration is

shown as a white line and matches the data well (see Appendix A for more detail). This

helps to further polish the detection list by rejecting those sitting outside the kernel.

Figure 3.13e shows the progress and dynamics of the particles inside the fluidic channel

during the experiment. Good agreement of velocity fluctuations and detection rate is

observed. Real-time analysis was explored in different experiments by utilizing PCWA

to implement the event detection algorithm on a sliding window of the buffered signal

during data acquisition. Such real-time statistics can help monitor proper experimental

operation, e.g., maintaining constant vacuum pressure. The comparison of three main

methods for multi-peak event detection, Shift-Multiply, PCWA (Morlet), and PCWA

(MSG), is done by evaluating the detection rates and their accuracy. Individual events

are inspected manually to tell true from false detections. The accuracy is defined by the

algorithms’ ability to classify the correct number of peaks (here: seven). This is useful

in multiplexed detection with MMI waveguides [36, 4]. Three numbers (6, 7, 8) are

selected as the possible output of classifiers. For PCWA, the output N is determined by

applying all three MSG- wavelets (MSG-6, MSG-7, MSG-8) simultaneously and letting

62



Shift-multiply PCWA (Morlet) PCWA (MSG)

Detection rate [×104 events/mL] 1.03 1.84 4.60
Accuracy [%] 66.37 37.04 94.03

Table 3.2: Detection rate and accuracy comparison of Multi-peak event detection
methods.

the clustering algorithm pick the strongest candidate. In the beginning, a series of

threshold values were scanned for a random small part of the fluorescence signal to find

the optimal compromise between accuracy and detection rate. The methods comparison

is presented in Table 3.2 and the significant improvement achieved by the MSG mother

wavelet outperforms the other two methods.

With over 4×more identified events and 6× fewer errors than the shift-multiply

algorithm, PCWA is advised to be used instead of shift-multiply in optofluidic fluores-

cence single-particle detection. The lack of ground truth in this experiment pushed us

to generate a similar time series with a known list of events. This simulation trace, just

like the simulated mass spectra, increases confidence with the benchmarking analysis.

Figure 3.14 shows examples of two data traces, Fig. 3.14a for the KPC fluorescence

signal, and Fig. 3.14b simulated trace to mimic similar signal characteristics. Sim-

ulated events are first carefully created by placing 7 Gaussian functions with spacing

and width similar to the real KPC signals. Next, these template multi-peak signals,

are randomly stretched and amplified to fit with the joint distributions data extracted

from the KPC data trace. Eventually, a constant background signal is added and the

entire signal is passed to a Poisson function. Poisson function mimics the behavior of

the SPCM detector [62, 63]. The insets show a random multi-peak event picked for each
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Figure 3.14: Experiment and simulated traces. (a) The fluorescence signal recorded
from the KPC detection experiment (Fig. 4, main manuscript). Inset shows a randomly
selected event. (b) The simulated trace with similar joint amplitude-velocity distribution
with added noise. Inset shows a zoomed-in window of one of the 239 events.

64



signal. The benchmark results presented in Table 3.3 for the simulated data show a close

match with the real-world data. This demonstrates the ability of the PCWA method to

instantly extract additional valuable information from the sensor data. Because the op-

tical excitation patterns are generated by lithographically defined waveguides according

to the MMI principle, they have well-defined physical spacing.

In Figs. 3.15a-c, a 100 s window of the simulation trace is shown with detected

events shown as upside-down triangles. Ground truth events are unfilled circles and a-c

are the results of event detection for PCWA (MSG), PCWA (Morlet), and shift-multiply

respectively. We can see a bigger population of red markers (true events) for PCWA

(MSG) with 204 out of 236 detected events identified correctly. The other methods

detect only a small count of events from a total of 239 randomly distributed events

in the simulation trace. Figs. 3.15d-f shows a zoomed-in window as an example of

the weak signal at the background level and successfully detected and identified by

PCWA (MSG). Shift-multiply fails to even detect the event due to a higher background

threshold set to avoid random background signals getting picked as events. PCWA

(Morlet), even though it detects weak signals, fails to correctly identify the N because

of vanishing sides and less sensitivity to N .

3.3.3 Multi-speed multiplexing in PDMS devices

In another MMI-based multiplexing approach, we utilized a multi-channel con-

cept to flow two separate solutions at different velocities [10]. A planar waveguide

device was fabricated using polydimethylsiloxane (PDMS) elastomer using a standard
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Figure 3.15: Performance comparison of three methods on the simulated trace. (a)
Events detected using PCWA with MSG wavelet. Most of the events (>98%), even those
buried in the background were accurately identified (86%). Only one false event from
noise was picked as an event. (b) Detection was done by PCWA with a Morlet wavelet.
Compared to MSG wavelets, significantly less accurate localization of events with more
FDR is observed. The accuracy of identifying the type of target is the worst when using
a Morlet wavelet. (c) Detected events using the Shift-Multiply technique. Comparable
background level to weak events prevents accurately locating and identifying events.
(d-f) examples of a weak signal analyzed by three methods; only PCWA (MSG) is able
to precisely locate and identify it.

Shift-Multiply PCWA(Morlet) PCWA(MSG)

total detected 49 189 236
TPR 0.205 0.782 0.983
FDR 0.000 0.011 0.004
accuracy(%) 69.4 27.5 86.4

Table 3.3: Performance comparison of Shift-Multiply and PCWA methods with simu-
lated fluorescence signal. The metrics are measured based on the ground truth event
list.
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soft-lithography recipe [64, 65]. By controlling base:curing agent ratio during the fab-

rication, we can alter the optical properties of PDMS, specifically the refractive index

[65]. The other technique to control refractive index is by controlling curing tempera-

ture and period [11], however, we used the former method due to the simplicity of the

process. Fig. 3.16a shows the cartoon of a double-channel device featuring a liquid-core

MMI waveguide (75µm wide and 1.86 mm long) for excitation and a solid-core collec-

tion waveguide to collect emitted photons from fluorescent particles. The input light

from an optical fiber gets coupled into a single-mode waveguide which then launches

into the MMI waveguide. The MMI waveguide is filled with ethylene glycol (≈ 1.431

[66]) which has a refractive index slightly higher than 5:1 PDMS (≈ 1.415 [65]) to pro-

vide optical guiding. All waveguide dimensions are derived from numerical simulations

(using FIMMWAVE/FIMMPROP) such that integer numbers of bright spots form in

Ch1 and Ch2 at three wavelengths of interest (λin = 633 nm, 556 nm, and 488 nm).

Fig. 3.16b shows an example of the simulation result for λin=633 nm offering 7 bright

spots. 8 and 9 spots are expected at green and blue lasers. The optical microscopy

image shown in Fig. 3.16c is from the fabricated device at the Jack Baskin School

of Engineering (JBSOE) at UCSC. Figs. 3.16d-f are fluorescence images taken from

the analyte channel when Ch1 and Ch2 are both filled by a mixture of DI water and

quantum dots. The colormaps are set according to the input laser light. We can see

predicted N bright bands at Ch1 extend to Ch2, meaning that fluorescent beads flowing

in Ch1 and Ch2 will create the same number of peaks in the APD signal. We pulled a

solution with a mixture of polystyrene beads through the analyte channels at different
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rates, -35 inHg and -10 inHg for Ch1 and Ch2 respectively. Figure 3.16 is adapted from

[10] with permissions.

The fluorescence signals are collected by an SPCM and recorded on a disk for

post-processing. Photon timestamps are binned at 0.01 ms bins and visualized in Fig.

3.16g with four sections corresponding to four excitation scenarios. The colored bars

on the top of each section indicate the laser used to excite flowing fluorescent beads.

We choose the last section where all three lasers were turned on, therefore, all possible

events exist in this section making the data analysis challenging. The PCWA program

with three mother wavelets (MSG-7, MSG-8, and MSG-9 manually tuned to match

the shape of events of each color) was applied to the selected window to detect and

identify present events. Fig. 3.17a shows a zoomed-in part of the APD signal where

we can see a few examples of multi-peak events from both channels. Events from Ch1

are narrow in the time domain, because of their high velocity (fast events), and events

from Ch2 are much wider due to slow flowing speed (slow events). The multi-scale event

detection with PCWA was able to locate most of the events in time-scale space (see Fig.

3.17b) with precise time and scale localization. Events from Ch1 and Ch2 are easily

distinguished by looking at separate ranges of scale, fast events populating at the lower

region, and slow events populating at the upper part of the scalogram. The matched

filter behavior paired with the multi-scale localization of CWT offered in PCWA as a

single fast data analysis framework is well suited for this velocity multiplexing concept.

Since ∆t and the intensity of detected events are extracted inherently during

event detection, we can do some more statistical analysis such as a joint histogram
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Figure 3.16: (a) Cartoon of the device layout. Input light from optical fiber (λin) gets
coupled into the chip through the single-mode solid-core waveguide. λin is guided to
an ethylene glycol-filled MMI waveguide, which creates a wavelength-dependent spot
pattern at analyte channels (Ch1 and Ch2). Fluorescent particles are pulled through
the excitation volume via variable negative pressures (vacuum) allowing control of the
particle velocities. λemit is collected via a perpendicular multimode solid-core waveguide
(black). (b) Numerical simulation predicts N=7 pattern at Ch1 and Ch2 for λin = 633
nm. The pattern seen at Ch1 is preserved for Ch2. (c) Optical microscope image of an
unfilled device with a 50 µm wide MMI waveguide. (d-f) shows top-down fluorescent
images to characterize the MMI waveguide performance at various wavelengths, Ch1
and Ch2 are filled with quantum dots (emission wavelength 665 nm with λin = 488,
556, and 633 nm). (g) APD trace from 1 µm diameter fluorescence polystyrene beads
flowing through Ch1 and Ch2 simultaneously by -35 inHg and -10 inHg vacuum pressure
respectively. Four sections marked by colored bars on top indicate the active laser
source(s) λin(s).
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Figure 3.17: (a) A cropped window of APD signal shown in Fig. 3.16g when all three
lasers are on. There are multiple fast and slow events corresponding to fluorescent beads
from Ch1 and Ch2 respectively. (b) CWT scalogram of the cropped window for MSG-7
wavelet (only one scalogram can be visualized at a time) is shown for a large ∆t range
(0.1-10 ms). Different events from different colors of fluorescent beads are accurately
located and identified using the PCWA algorithm when we apply three corresponding
wavelets (MSG-7, MSG-8, MSG-9) shown with red, green, and cyan boxes. The CWT
coefficient of individual events is printed next to each box and the width of the box is
the approximate time length of the event (N × ∆t). The white dashed line separates
the scale band for slow and fast events making multiplexed detection of events from
separate channels possible.
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Figure 3.18: 2D joint histogram visualizes the scatter plot of detected events in velocity
and intensity (CWT coeff.) space. The velocity histogram depicts two easily separable
populations of events for Ch1 and Ch2. The number of events for Ch2 is significantly
smaller than for Ch1 because of the slower flow rate.

(Fig. 3.18) to explore more information about the sample. The 2D joint histogram

plot for detected events reveals that velocity distributions for fluorescent beads flowing

in Ch1 and Ch2 are almost a couple of orders of magnitude apart and, thus, easily

separable. The average velocities are 8.67±1.77 cm/s and 0.167±0.05 cm/s for Ch1 and

Ch2 respectively (± standard deviation). The total number of slow events is 16 (R:5,

G:5, B:6) while we see 427 (R:140, G:127, B:160) for the fast ones which makes sense

with the velocity differences between the two channels.

71



3.4 Toolboxes to use PCWA (script and GUI)

In order to ease the analysis for end-user, especially during an experiment

and when there is a need to do a quick analysis, we have developed a couple of tools.

The base source code is written in an objective-oriented programming (OOP) scheme,

to support any future development and embedding of PCWA in our projects. PCWA

repository at GitHub (https://github.com/vganjali/PCWA) includes the source code

and instructions to install and use in a Python script. Below are the required packages

with minimum versions tested to run PCWA:

• Python ≥ 3.8.5

• numpy ≥ 1.19.2

• scipy ≥ 1.6.2

• matplotlib ≥ 3.3.4

• h5py ≥ 2.10.0

• pandas ≥ 1.2.1

PCWA is published and maintained at the Python Package Index (PyPI) repository

and can be installed on a machine by using Python’s PIP package manager and calling

pip3 install --upgrade pcwa in the terminal. The example below shows how to

use the PCWA event detector to detect peaks in mass spectroscopy data.

1 import numpy as np

2 import pandas as pd
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3 import pcwa as pcwa

4 import matplotlib.pyplot as plt

5

6 # read the raw mass spectroscopy data and truth values

7 df_raw = pd.read_csv('n100sig66_dataset_1_25/Dataset_14/RawSpectra/noisy22.txt',sep=

' ')↪→

8 df_true = pd.read_csv('n100sig66_dataset_1_25/Dataset_14/truePeaks/truth22.txt',sep=

' ')↪→

9

10 # create pcwa_analyzer object and set the desired parameters

11 pcwa_analyzer = pcwa.PCWA()

12 pcwa_analyzer.trace = df_raw['Intensity']

13 pcwa_analyzer.dt = 1

14 pcwa_analyzer.scales = [10,100,100]

15 pcwa_analyzer.wavelet = ['ricker']

16 pcwa_analyzer.keep_cwt = False

17 pcwa_analyzer.w, pcwa_analyzer.h = 0.2, 1

18 pcwa_analyzer.show_wavelets = False

19 pcwa_analyzer.use_scratchfile = False

20

21 # detect events (peaks)

22 events = pcwa_analyzer.detect_events(threshold=200)

23

24 # fine tune the location of detected peaks

25 loc = [int(e-events['scale'][n]+np.argmax(df_raw['Intensity'][int(e-events['scale'][

n]):int(e+events['scale'][n])])) for n,e in enumerate(events['loc'])]↪→

26

27 fig, ax = plt.subplots(3,1,figsize=(16,4),dpi=96,sharex=True,gridspec_kw={

'height_ratios': [12,1,1]})↪→

28 plt.subplots_adjust(hspace=0,wspace=0)

29 l0, = ax[1].plot(df_true['Mass'],df_true['Particles']*0, '|',markersize=10,color=

'gray',label='Truth')↪→

30 ax[0].plot(df_raw['Mass'],df_raw['Intensity'],color='blue')

31 l1, = ax[2].plot(df_raw['Mass'].iloc[loc],[0]*len(loc),'|',markersize=10,color='red'

,label='PCWA')↪→

32 ax[1].set_yticks([])

33 ax[1].set_ylim(0,0)

34 ax[2].set_yticks([])

35 ax[2].set_ylim(0,0)

36 ax[0].set_ylabel('Intensity')

37 ax[-1].set_xlabel('m/z')

38 plt.legend(handles=[l0,l1], bbox_to_anchor=(1.0, 4), loc='upper left')

39 plt.show()
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Calling this snippet plots the graph shown in Figure 3.19 with raw data, ground truth,

and detected peaks all in one view. Despite the unlimited flexibility attainable by using

scripts and generating any kind of plots, sometimes, especially during the experiment, a

robust and easy-to-use tool is preferred. A graphical user interface (GUI) has also been

developed to be used during the experiment, this allows for quick analysis of recorded

data traces. The application is named single-molecule-detection (SMD) Analysis and

the main parts of the program are shown in Fig. 3.20. The time trace view plots the

binned data trace (bin size can be changed at the bottom of the control panel), as

well as the detected markers with colored markers. At the bottom, there is a window

to visualize the CWT time-scale 2D plot, also called a scalogram, in which enhanced

events show up as bright regions depending on the wavelet used for analysis. Events

are localized in the time-scale space by colored markers for better insight into detected

events. The control panel on the left includes the necessary tools and configurations

for PCWA analysis. At this time, the most updated features and recent changes are

only available in the non-GUI version explained earlier, but the GUI helps to explore

parameter effects and fine-tune the analysis settings. The control panel shown in Fig.

3.21 gathers four main tabs: File Explorer, Target, Wavelet, and Analyzer to configure

and run the analysis. File Explorer provides a navigator to explore and select data traces

(see Fig. 3.21a). In the target tab, the user can add/delete target types with related

properties such as name and color for multiplexed target detection and identification

purpose (see Fig. 3.21b). In Fig. 3.21c, wavelet settings can be adjusted with a preview

of the wavelet assigned for a target. The wavelet shape can be customized via input
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Figure 3.19: Mass spectroscopy peak detection using PCWA with example Python
script.

widgets accessible in this tab. Finally, the PCWA event detection parameters such as

scale range, threshold, resolution, and selectivity can be set in the Analyzer tab (Fig.

3.21d) and Detect Event button will start the analysis. If the “Show CWT checkbox” is

checked, the CWT 2D plot will be displayed for the selected target (see “Show CWT for”

dropdown box). Once the analysis is completed, the results are generated at the Results

tab in addition to the markers of detected events in data trace and CWT viewboxes.

In Fig. 3.22 different statistical graphs are depicted to help with the insight into the

experiment. Detected events can be saved into a *.csv file for further studies in different

programs like Matlab, MS Excel, etc.

These tools and GUIs are developed with open-source design and users can

change the source to fit any specific problem and experiment.
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time trace view

CWT (scalogram) view

events

events

control panel

logo and splash image

Figure 3.20: GUI developed using PCWA Analysis for single-model-detection experi-
ments (SMD Analysis). Time trace and CWT views provide access to the data trace
with the zoom feature. The binning for *.ptu files can be set via the “Binning” input
box at the bottom of the “control panel”. Other settings and analyses are accessible
in the control panel. The file menu can help with saving and loading settings and
configurations.

(a)

(b) (c) (d)

Figure 3.21: Important parts of SMD Analysis. (a) File Explorer: navigate and browse
files. (b) Target: define target properties such as name, color, and some additional
notes. (c) Wavelet: choose and customize the wavelet for every target. (d) Analyzer:
here you enter the PCWA event detector settings.
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(b) (c)(a)

Figure 3.22: Important parts of SMD Analysis. (a-c) Results: various statistical infor-
mation for all detected events can be discovered here. For further analysis, you can save
events into a *.csv file via the “Save As” button in the “Events List” tab (see (c)).
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Chapter 4

Machine learning-based pathogen

identification

In this chapter, we will explore the use of machine-learning techniques to im-

prove optofluidic-based pathogen detection and identification. This includes dataset

preparation from real-world experiments, support vector machine and neural network

classification models, training and testing models, and implementing a trained neural

network on an edge device.

4.1 Introduction

The concepts and theories of machine learning and artificial intelligence (AI)

have been around for many decades, if not a century, with the model of nonlinear

neurons forming a network back in the mid-1990s [67]. Better learning theories were

developed in the late 1990s, making it a functional tool in pattern recognition [68, 69].
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Although the ML concept is not new, the field has exploded in the last two decades due

to large-scale high-performance computation, which can handle ever-larger amounts of

data. AI has become a part of our daily life and is used in numerous areas, including

agriculture, environmental studies [70], autonomous vehicles, economics [71], marketing

[72], drug development [73], entertainment [74], and medical diagnosis [75]. In biomedi-

cal diagnosis, artificial intelligence-assisted methods at different levels, from large-scale

population data down to sensory data analysis, have been developed, underscoring the

advantages of novel machine-learning over classical techniques [76, 77, 78]. Moreover,

AI-assisted approaches have shown great potential in noninvasive automated diagnosis

[79] and segmentation of multimodal brain images [80].

All these techniques rely on the fundamental idea of fitting a very complex

mathematical model into the problem of interest without doing the complicated study

and analysis of the model. Classically, problems were modeled by studying the under-

lying physics and finding the mathematical expression relating the inputs of the system

to the outputs. With the bloom of machine learning, any given system can now easily

be fitted into a model which is capable to do the same input-output mapping. This

has become possible by access to gigantic datasets (or collecting and generating a new

dataset) to train a model by use of powerful computational infrastructures. If we want

to simplify the machine-learning problems, we can list them as

Supervised learning: training is done with labeled datasets.

• Classification
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Figure 4.1: Examples of supervised and unsupervised learning.

• Regression

Unsupervised learning: training is done with unlabeled datasets.

• Clustering

• Dimensionality reduction

• Anomaly detection

Fig. 4.1 shows a couple of examples from supervised and unsupervised learning

(adapted from [81]). In this chapter, we focus on supervised learning for classification

applications to classify detected events from time series.
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4.2 Dataset preparation

Data, as a fundamental element of machine learning, should be properly gath-

ered and labeled. Here, we create the dataset from cropped events detected from fluo-

rescence signals.

4.2.1 Experiment

Fluorescence signals are collected from tagged biomolecules and converted

into electrical signals using an avalanche photodiode (APD). We use the same single-

molecule-detection (SMD) setup discussed earlier in 3. Fig. 4.2b shows the experimental

SMD setup used for this chapter with just a change in the lasers in comparison to the

setup used in Chapter 3. Fig. 4.2a, illustrates the sandwich assay used as the target for

detection. Our framework can be applied to any time-series signal that features differ-

ent time signatures for different targets. We introduce it using a fluorescence detection

assay for Klebsiella pneumoniae bacteria nucleic acid biomarkers.

The assay for event detection involves a sandwich design, where the target

DNA strands are bound to a pulldown sequence on a streptavidin-coated microbead

and then labeled with fluorescent probes in two colors, enabling detection under both

red and green excitation wavelengths. This allows for three possible fluorescence signals

(red only, green only, and red + green) depending on the excitation wavelengths used.

To prepare the sample, 10 µL of 3 µM synthetic nucleic acid strands corresponding to

the antibiotic-resistant bacterial target are mixed with 10 µL of 10 µM target-specific
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(a) (b)

Figure 4.2: Experimental setup for multiplexed signals from Klebsiella Pneumonia.

fluorescent probe oligomers obtained from IDT DNA Inc. The resulting mixture is

brought up to a final volume of 30 µL with 1XT50 buffer and incubated at 95 oC

for 5 minutes, followed by 3 hours of incubation. Table 4.1 shows the sequences of the

oligomers used for tagging the Klebsiella pneumoniae synthetic nucleic acid and binding

to biotinylated capture probes.

Streptavidin-coated magnetic beads with a diameter of 1 µm, functionalized

with target-specific biotinylated capture oligomers, are then mixed with the hybridized

target-probe structure in a rotator mixer for one hour. The magnetic beads with the

captured target-probe complex are then pulled down using a magnet and any unbound

nucleic acid strands are washed off, after which the beads are resuspended. The final

assay structure is shown in Fig. 4.2a (inset), and it has been previously demonstrated
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Target name Capture oligomer Fluorescent probe oligomer Color code

Klebsiella
pneumoniae

/5BiotinTEG/
GTCGCCAGGC-
CGCTG-
GCGCGCTTG-
GTCATAAAGT-
TATCG-
GTCTGGGCAGA3’

/5Alex546N/
CGCCGCCGAATTCCGGGAA-
CATATCGGTCCAG3’
5’CGTACAGGGCGC-
CAAGGTTACGACCG-
TAGTC/3AlexF750N/

Green-Red

Table 4.1: Oligomers used for fluorescent tagging of K. pneumoniae.

that this labeling technique is highly specific to the target sequence [33].

Figure 4.2b reviews the fluorescence single-molecule detection setup based on

ARROW (Anti-Resonant Reflecting Optical Waveguides) technology discussed in Chap-

ter 3. The setup employs two lasers, operating at 738 nm (Ti: Sapphire, Del Mar Pho-

tonics) and 556 nm (SSD Nd:YAG, Shanghai Dream Laser Technology Co.), which are

coupled into a single-mode optical fiber (F-SA, Newport) via a 60×microscope objective

(Newport). Two modified PC cooling fans serve as mechanical shutters (MS1, MS2)

to switch the optical paths for each color. The optofluidic chip is fixed on a custom

3D-printed stage using double-sided tape, and two brass cylindrical fluid reservoirs are

attached to the liquid channel ends with wax. Negative pressure for sample flow inside

the ARROW chip is provided by connecting the vacuum line to the outlet reservoir. The

fluorescence signal from labeled targets is guided through the collection waveguide and

collected from the side-facet using a 60× objective (Newport). The excitation light is

eliminated by a penta-bandpass optical filter (FF01-440/521/607/694/809-25, Semrock)

before coupling the collected light with a multi-mode fiber optic patch cable with an FC
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connector. A single-photon counting module (SPCM-AQRH, Excelitas Technologies)

converts fluorescence photons into electrical pulses, and a time-correlated single-photon

counting (TCSPC) board (TimeHarp 260 nano, PicoQuant) records time-tagged pho-

ton events onto the computer storage disk. The experiment is done in three stages,

first with only 738 nm excitation (MS1=Open, MS2=Closed), second with only 556 nm

(MS1=Closed, MS2=Open), and third with both 738 nm and 556 nm excitations active

simultaneously (MS1=Open, MS2=Open). The sample containing the fluorescent tar-

gets is introduced into the chip by applying negative pressure to one of the reservoirs

and then introducing the sample into the other reservoir using a pipette. The recorded

fluorescence time trace from the chip is stored on a desktop computer (Fig. 4.2b).

The multi-mode interference excitation waveguide produces different spot patterns for

the two wavelengths in the intersecting fluidic channel with the number of spots N

determined by equation (4.1)

N × λ =
ncw

2

L
(4.1)

Where λ is the respective input wavelength, w is the effective waveguide width,

nc is the refractive index nc, and L is the length of the MMI waveguide [4]. These spatial

excitation patterns are transformed into the time domain as particles flow through the

channel at a given velocity and fluorescence. Events from the first stage have six peaks,

events from the second stage have eight peaks, and events from the third stage contain

both 6 and 8 peaks. We named these events by splitting the word KPneu into two

parts (“KPn” for six peaks and “eu” for eight peaks) to represent which probe has
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KPn KPneueu

Figure 4.3: Fluorescence signal and example events from KPn, eu, and KPneu.

been excited in the detected event and will use these labels throughout the chapter.

This approach effectively creates a 3× multiplex assay with three distinct signal shapes

corresponding to the excitation wavelength selections.

Fig. 4.3 shows example events for each stage which illustrate the different

fluorescence patterns and the nonidealities present in this configuration. These include

finite background signal, peak-to-peak amplitude variations due to fabrication imper-

fections, and different peak-to-peak spacing ∆t due to velocity variations from pressure

fluctuations and position in the channel. A coefficient of variation of 44.85% is observed

in the velocity distribution of 1,544 detected particles. Minimizing these nonidealities

would require raising the production cost to increase the precision of the microfabrica-

tion processes. Some nonidealities, such as cross-section fluid flow speed variations, are
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Figure 4.4: Wavelets used to detect events. MSG wavelets are used to detect and
identify 6,8, and 6&8 peak signals.

simply due to the nature of the microfluidic channels being used. Point-of-care devices,

meant to be low-cost and compact, must always deal with signal imperfections. A natu-

ral strategy is, therefore, to adapt to these imperfections by employing machine learning

to recognize the signal pattern for a given device and detect and identify fluorescence

events with good sensitivity and accuracy.

To begin our process of identifying signals, we first detect events from the

fluorescence signal that has been recorded. In order to accomplish this, we employ

our multi-scale event detection algorithm PCWA, which was introduced in Chapter 3.

This algorithm utilizes multi-spot-Gaussian (MSG) basis functions to match the signals

associated with events at each stage (as shown in Figure 4.4). The time location of

detected events reveals which stage the event was recorded at so we can easily label

them accordingly.
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4.2.2 Preprocessing and polishing

Once events have been located within the time trace, a collection of cropped

windows comprising 1024 data points centered on the time location of each event is

generated to create a dataset for neural network analysis and classification. Events are

then rescaled between 0 and 1 prior to feeding them into the classification model.

This paragraph describes a process for performing a multi-factor signal quality

check. It presents an example of two overlapping KPn events and shows the extracted ∆t

parameter from the PCWA analysis on the left graph. On the right graph, a normalized

cumulative summation of a down-sampled version of the signal on the left is shown,

and a 3-segment piecewise function is fitted to it using a DE optimizer. The W and

H parameters are annotated and extracted for quality check purposes. In (b), scatter

plots of the extracted quality metrics demonstrate how outliers are rejected from the

training dataset by setting threshold lines.

To ensure the accuracy of our neural network model’s training, we remove

any falsely identified or overlapping events from the dataset using a multi-factor signal

quality check (see Fig. 4.5). The entire process of event detection, cropping, filtering,

and annotation is automated, and does not require any user intervention. Fig. 4.6

shows a shuffled subset of events from the created dataset.

87



(a)

(b)

Figure 4.5: Multi-factor signal quality check to polish the dataset.
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Figure 4.6: Examples from the labeled dataset.
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4.3 Classification

Once we have created a labeled dataset, we can train a classification model

and apply it to real tests. The entire dataset is usually divided into a train and test set

with a split ratio of 20% (20% for testing and 80% for training). To get into machine

learning, we start exploring neural networks (NN) by building a multi-layer perceptron

(MLP) and then move to the convolutional neural network (CNN). The compatibility

of NNs with AI accelerators is a special interest for the internet-of-things (IoT) and

inferencing on the edge.

4.3.1 Multilayer perceptron (MLP)

Inspired by the brain, multilayer perceptrons are the very basic form of neural

networks where a stack of connected layers is used to map inputs to the outputs in a

feedforward fashion. Each layer consists of neurons, biases, and an activation function

which can be described as

alj = σ(
∑
k

wl
jka

l−1
k + blj) (4.2)

l, j are the layer number and neuron number in layer l respectively. a is the

value of neurons connected to the next layer’s neurons with connection weight w. Each

layer has an optional bias value b and a linear or non-linear activation function σ. Fig.

4.7 visualizes an MLP structure with input and output layers and a hidden layer in

between. Values of weights and neurons in the hidden layer(s) are randomly assigned
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input layer hidden layer output layer

Figure 4.7: A simple MLP architecture.

at the beginning and during a process called training, these values converge to optimal

values.

4.3.1.1 Designing and training an MLP model

Here, we demonstrate how to create and train an NN model using Python and

TensorFlow. We define a very small and simple MLP using a ‘sequential’ model from

Keras backend (inside TensorFlow):

neural_net = keras.Sequential([

keras.layers.InputLayer(input_shape=(180,)),

keras.layers.Dense(128, activation='relu'),

keras.layers.Dense(3, activation='softmax')

])
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This snippet defines an MLP neural network consisting of a single hidden layer

of 128 neurons and a ‘relu’ activation function. The input shape is determined by the

events data shape (here, 180 data points) and the output size is determined by the

number of classes we want to identify (here, 3). The output layer uses the ‘softmax’

activation function described as

σ(x) = x+ = max(0, x), ‘relu’

σ(xc) =
exc∑k
i=0 e

xi
, for c = 0, ..., k, ‘softmax’

(4.3)

The model is then compiled with the optimizer, loss function, and tracking

metrics for later evaluation. The Python snippet below shows how to compile our

neural network model

neural_net.compile(

optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy']

)

We use the ‘Adam’ optimizer which is named from adaptive moment estimation

as a popular optimizer for gradient-based optimization of stochastic objective functions

[82]. The optimizer passes training data through the model in a process called forward

propagation and calculates the output. The output from the NN is then compared to the

true values (labels) via a loss function, and then this error propagates backward through

the network in a backpropagation process. Backpropagation utilizes the derivatives of

activation functions to adjust and update weights and neuron values of hidden layers.
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This is done in TensorFlow by simply calling the fit() method. We pass training data

x, and y (labels) plus a number of iterations (epochs) we want the neural network to

get exposed to these data.

neural_net.fit(x_train, y_train, epochs=50)

Once the training step is completed, loss and other metrics (i.e. accuracy) can

be plotted versus the epochs to check how training was done. Fig. 4.8 includes a few

examples of training plots for the number of neurons of 10, 100, and 1000 for the hidden

layer. Here, the number of neurons is called a hyperparameter and there are usually

several hyperparameters that can be optimized for a NN model. Obviously, the higher

number of neurons increases the capacity of the neural network and can fit better to

the training dataset, however, this will lead to an increase in model size, longer training

time, slower inferencing, and the possibility of overfitting.

Dropout is a regularization technique to avoid overfitting and prevent neural

networks from getting optimized to local maxima instead of global maxima [83]. We

notice that adding a dropout layer as below can significantly improve the robustness of

the model.

neural_net = keras.Sequential([

keras.layers.InputLayer(input_shape=(180,)),

keras.layers.Dense(128, activation='relu'),

keras.layers.Dropout(0.2),

keras.layers.Dense(3, activation='softmax')

])

There are two curves per color, solid and dashed for training and validation
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dropout = 0 dropout = 0.2

Figure 4.8: Training of MLP models and hyperparameter.
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data respectively. The validation curve is a portion of training data held by the optimizer

for validating the model at every epoch. This is different from the final test set because

the neural network gets exposed to validation data during training, whereas test data

will be kept unseen.

In order to test and evaluate the trained model with unseen test data, we use

the following snippets

pred = neural_net.predict(x_test)

predict() method returns the output values of the MLP network, while evaluate() takes

additional y test value to return loss and accuracy.

test_loss, test_acc = neural_net.evaluate(x_test, y_test)

We showed, step-by-step, how to implement an MLP for our dataset and even

though the results are great, the MLP models suffer from translational and temporal

stretch errors in the data. This problem is a major issue because the nonidealities in

multi-spot signals result in inaccurate localization of events in the time domain. Also,

target particles flowing at different velocities result in stretched or compressed signals

in the time axis, thus leading us to explore a powerful and better-suited architecture of

neural networks called convolutional neural networks (CNN).

4.3.2 Convolutional neural network (CNN)

The main difference between MLP and CNN is the filters. CNN utilizes layer(s)

of filters (kernels) for the convolutional operation and these filters get trained during

95



CNNMLP

Figure 4.9: MLP vs. 1D CNN layers.

the training step to match with specific features of the input signal. For example, one

filter will extract positive slopes, the other filter will detect peaks, and so on. The other

approach can be using bigger filters (length comparable to the input signal) and trying

to fit filters to the entire signal, similar to what we did in Chapter 3.

A pooling (max or average) layer is usually followed after convolutional to

keep only the enhanced part of the convolution result, reducing the internal layers’ size.

Multiple layers of convolution+pooling can be stacked to go deeper and draw out high-

level features. Once features are extracted by the convolutional layer, a fully connected

classifier is used to map these features into the output classes (similar to MLP, see Fig.

4.9). There are some benefits to using a convolutional layer, the first is gaining some

tolerance to translational variations, the second is a reduction in the size of parameters,

and the third is faster training.
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filter 0 filter 1

Figure 4.10: 1D CNN classification model working principle.
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As a comparison, to achieve an accuracy of over 99% with a single hidden

layer MLP model, we use 500 nodes for the hidden layer and a total of 162k trainable

parameters is required. On the other hand, a CNN model with 6 filters with a length

of 310 is capable of achieving similar performance with only ∼ 2k trainable parameters.

This type of 1D-CNN model can be visualized as shown in Fig. 4.10.

The input signals to the CNN model can be a spectrogram instead of the raw

1D signal to include temporal and spectral information in a 2D image. This tends to

be more interesting when the distribution of velocity for events becomes broader. A

concept of a multi-layer CNN model where deeper features are conveyed is illustrated

in Fig. 4.11. A DNN model consisting of multiple convolutional layers and a fully

connected (dense) classification layer at the end. Based on PCWA analysis, most of

the MSG signals collected from labeled targets sit in a 0.1 ms < ∆t < 1.0 ms scale

range. A window size of 1024× 0.01 ms = 10.24 ms is big enough to enclose even very

slow-moving particles with the number of peaks (N) below 10 (1.0 ms×N < 10.24 ms).

The input signals are first converted into a 128 × 128 spectrogram using a short-time

Fourier transform (STFT) and then fed into layers of a 2D convolutional network. In

the end, a fully connected layer uses the extracted features from filters for classification

purposes. A summary of the layers used in the DNN model for event classification is

presented in Table 4.2.

This model is relatively small and takes less than an hour to train on a desktop

machine with Nvidia Quadro P1000 GPU. The training was stopped after 100 epochs

to avoid overfitting. Fig. 4.12 plots the metrics of the model over the training epochs.
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Figure 4.11: DNN model for event classification.

Layer type Output shape Param #

Input (None,128,128,1) 0
AveragePooling2D (None,64,64,1) 0
Conv2D (None,62,62,9) 90
BatchNormalization (None,62,62,9) 36
MaxPooling2D (None,20,20,9) 0
Dropout (None,20,20,9) 0
Conv2D (None,16,16,25) 5650
MaxPooling2D (None,3,3,25) 0
Dropout (None,3,3,25) 0
Flatten (None,225) 0
Dense (None,3) 678

Total params: 6,454
Trainable params: 6,436
Non-trainable params: 18

Table 4.2: Summary of DNN model layers for event classification.
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Figure 4.12: Training progress for DNN model.

A categorical cross-entropy loss function L defined by Eq. 4.4 is minimized by an Adam

optimizer and the loss value drops below 0.1 after 90 epochs. The final output layer

with a softmax function (k = 2) as described in Eq. 4.5 returns the probability of three

possible classes (pc) for a given event.

L = − 1

N

N−1∑
i=0

2∑
c=0

yi,clog(pi,c) (4.4)

pc = σ(xc) =
exc∑2
i=0 e

xi
, c = 0, 1, 2 (4.5)

In this experiment, we use events detected from ∼ 250 nL of the sample with

an approximate concentration of 106/mL which is about 300 events/class to train the

model. This was enough to get the model converged accuracy of over 99%.

4.4 Transfer learning and detection on the edge

With the rise of the Internet of Things (IoT) and edge technology [84], the

demand for powerful devices at the edge is more crucial. The edge users are usually
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Figure 4.13: Examples from the training dataset.

end-users and the traditional way of communication with a cloud-based server is grad-

ually moving towards end-user side processing of data for many reasons such as limited

network access in a certain area, bandwidth usage, privacy, etc [84]. Here, we explore

how we can stretch the current pathogen detection platform toward the new growing

edge technology. For this purpose, an AI-specific edge computing device, Google Coral

Dev board [85], is selected for a few reasons: it is relatively cheap ($140 by the time of

this study), small footprint (Raspberry Pi size), power efficient (2 TOPS/watt for Edge-

TPU), integrated ARM processor and running a linux-based operating system. Also,

the availability of libraries and resources to develop custom models was another impor-

tant factor to choose the Coral Dev board over other options. Table 4.3 summarizes

some of the important specifications for the Coral Dev board:
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Edge TPU System-on-Module (SoM)
- NXP i.MX 8M SoC (Quad-core Arm Cortex-A53, plus Cortex-M4F)

- Google Edge TPU ML accelerator coprocessor

Memory
- 1 or 4 GB LPDDR4 SDRAM (4-channel, 32-bit bus width)

- 8 or 16 GB NAND eMMC flash memory

Network
- 10/100/1000 Mbps Ethernet/IEEE 802.3 networks

- Wi-Fi 2x2 MIMO (802.11a/b/g/n/ac 2.4/5GHz)

- Bluetooth 4.2

Baseboard
- 40-pin I/O header

- Gigabit Ethernet

- HDMI 2.0a (full size)

- MicroSD slot

Supports Mendel Linux (a derivative of Debian)

Table 4.3: Coral Dev Board features.

The compatibility of TensorFlow with Coral board makes the transfer of the

trained model from the desktop machine to the Edge-TPU device an easy process. The

original TF model is based on 32-bit floating point digits, whereas Edge-TPU works with

8-bit integer numbers. One of the steps done in transfer learning is to convert models

and operations to compatible data types and operations. There is a list of supported

layers and operations by Edge-TPU accelerator [86] and we make sure that our DNN

model is built by only these supported elements. The rest of the framework and if

there is any unsupported operation/data type by Edge-TPU, will run on the main CPU

(ARM Cortex-A53). Fig. 4.14 illustrates the key blocks of the developed real-time edge

inferencing framework with arrows indicating the data flow direction.

The stream of incoming APD (sensory) data gets stored in a memory-mapped
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Figure 4.14: Real-time edge inferencing framework.

file in the storage device (MicroSD card). This data file then is accessed by the CPU

for two purposes: stream out to the user for visualization and to the event detection

and identification process for analysis. The visualization is done by running a Plotly

Dash app in a separate process to take advantage of multiprocessing for minimal delay.

In parallel, another process runs the PCWA code on chunks of input data to detect

events using a non-specific general square wavelet (see Fig 4.15). Here, the wavelet will

match best with the entire multi-peak signal without extracting any information about

individual peak spacing or the number of peaks.

After locating events with PCWA, a cropped window centered at the center

of the event is pushed into the events queue. The queue is a first-in-first-out (FIFO)

queue and it is used to help with synchronizing multiple processes accessing a shared

list. Here, for instance, a separate process running in parallel to PCWA, takes cropped

events from the queue, calculates STFT and runs inference on the Edge-TPU unit.
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Figure 4.15: Square wavelet used for multi-peak event detection.

This prevents any possible propagation delay from one process to another process and

they can generate/take data from the queue in an asynchronous fashion. The result of

the inference on Edge-TPU (identified class of the event) is then stored in the events

dataset for storage and visualization purposes. The Dash app visualizes both the raw

input signal and identified events as colored markers in a dashboard in real-time. Dash

app runs as a server and a user can access the dashboard on any web browser by pointing

to the Coral IP address and port number (here, 169.233.225.137:8050) specified in the

Dash app configurations (see Fig. 4.16). The entire framework is implemented in Python

3 and runs locally on the Coral Dev board. After manual inspection of detected events,

we found over 99% of events getting picked correctly by the PCWA algorithm.

As mentioned, the PCWA takes input data stream in smaller chunks (1 s) and

we found this a reasonably fast way of updating results every second in the dash. This,
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Figure 4.16: Real-time Dashboard developed in Plotly’s Dash.
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Figure 4.17: Real-time performance running on Coral Dev.

however, adds an overhead delay of ∼ 1 s, but since the data flow in the framework is

pipelined and runs in parallel processes, there is no accumulation of delay. The ∼ 45◦

slope of events detection time versus the actual events time location in APD data trace

reflects the real-time performance achievable in a compact, cheap, low-power edge device

(Fig. 4.17).

Finally, we compare the accuracy of the developed model and compare it to

our previously used shift-and-multiply (SaM) event identification algorithm [87] both

on a desktop machine and on the edge device with a quantized version of the model. As

shown in Fig. 4.18, the DNNmodel is capable of forming linearly separable clusters when

tested on the test dataset. On the other side, SaM suffers from the poor classification

of KPneu events. A minor drop in performance is visible in the quantized model which
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Figure 4.18: Classification performance.

is inevitable with a lower data precision (8-bit integer versus 32-bit floating). Principle

component analysis (PCA [88, 89]) and t-distributed stochastic neighbor embedding

(t-SNE [90]) are two of the most famous linear and non-linear dimensionality reduction

techniques and are used here to help to visualize higher dimensional output data.

Confusion matrices and the receiver’s operating characteristic curves (ROC)

are shown in Fig. 4.19 and Fig. 4.20 respectively. As expected, DNN models (CPU and

Edge-TPU) versions outperform the SaM in classification accuracy with over 40% higher

area under the curve (AUC). Out of a total of 485 detected events by PCWA, 99.8% of

them (484) are correctly classified by the 2D-DNN model and a combined accuracy of

99% is reported when undetected events are taken into account (488 manually inspected

ground truth events).

The Edge-TPU accelerator chip in the Coral Dev board is optimized for in-

ferencing and in this study, we found 2× faster inferencing when done on Edge-TPU
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Figure 4.19: Confusion matrices for different classifiers.

Figure 4.20: ROC curves for different classifiers.
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compared to ARM CPU on the board. This is ∼2 ms inference time on average for

each event with an event window length of ∼ 10 ms thus emphasizing the real-time

performance.
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Chapter 5

Time-wavelength division multiplexing

(TWDM) for broad dynamic range

In this chapter, we will propose and investigate a novel experimental configu-

ration and data analysis platform for high dynamic range detection of pathogens.

5.1 Detection dynamic range in ARROWs

The ultrasensitive ARROW biosensors as one of the successful optofluidic

platforms have shown promising results in amplification-free fluorescence detection of

biomolecules down to single molecule [33] with simultaneous multiplexed detection of

upto 7× kinds of targets [36, 87]. These sensors are designed to detect and count indi-

vidual target molecules (digital detection) and work only if there is no more than one

target crossing the excitation volume. Fig. 5.1 illustrates two possible scenarios in an

ARROW device depending on the sample concentration. The analog regime is where
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Figure 5.1: Digital and analog detection regimes.

multiple target particles get excited at different locations inside the excitation volume

and create a superimposed (analog) signal.

If we have only one type of target flowing inside the channel (singleplex detec-

tion), there are two approaches to measuring the concentration:

• dilute the sample to work in the digital regime

• convert analog signals intensity to concentration

These solutions are very simple and require no additional change in the system,

however, they will fail in multiplex detection. Diluting approach can be still used for

multiplex detection if target molecules have similar concentrations. Diluting the sample

is not very feasible because, for an unknown concentration of target molecules within

a sample, we may have to do multiple steps of dilution + measurement until the time

signal shows digital events. On the other hand, the analog signal doesn’t contain any

spectral or temporal information of target types, therefore, not useful for multiplex

detection of two or more highly concatenated targets.
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5.1.1 Concentration estimation: digital regime

We can calculate the digital concentration limit (upper limit) based on the chip

dimensions and flow rate for a given ARROW chip. Fig. 5.2 illustrates an excitation

volume inside an ARROW chip. Eq. 5.1 is used to calculate the concentration based

on channel dimensions and flow rate calculated from the APD signal.

c =
N

Qt
[particles/m3] =

N

v̄hexcdt
[particles/m3] =

N

NAv̄hexcdt× 103
[M ] (5.1)

where N is the number of events in time window t, NA is Avogadro’s constant

(6.022 × 1023mol−1), and Q is the flow rate calculated using the average velocity of

detected events, v, and the excitation volume dimensions (hexc, d). hexc is the full-width-

half-maximum (FWHM) of the excitation mode and d is the length of the excitation

spots (see Fig. 5.2). As the target concentration increases, we will eventually reach the

point where multiple targets occupy the excitation region and individual events cannot

be identified any longer. We can estimate the limit of the digital range cD,max from the

excitation volume (Vexc) using Eq. 5.2

Vexc = dhw[m3] = dhw × 103[L],

cD,max <
1

NAVexc[L]

(5.2)

The chip used in this research has a diameter (d) of 12 mm, a hexagonal

chamber size (hexc) of 3 mm, and a width (w) of 100 mm. The maximum fluorescence

signal that can be obtained from this chip is cD,max = 462fM . If the concentration
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Figure 5.2: MMI excitation volume.

exceeds this limit, a continuous and analog fluorescence signal will be detected, the

intensity of which will depend on the concentration.

5.2 Time division multiplexing (TWDM) concept

In this section, we propose a time-wavelength division multiplexing (TWDM)

scheme to address the mentioned problems. First, we explore the concept by devising a

simple experiment and minimal change in the current setup. The conventional single-

molecule-detection (SMD) setup with two laser sources running at 633 nm (HeNe, Melles

Griot) and 488 (LuxX® 488-60, Omicron-Laserage Laserprodukte GmbH) is shown in

Fig. 5.3. The main change is the addition of two chopper blades to modulate the input

lights.

By placing chopper blades at individual laser paths and running at different

frequencies (6 Hz and 16 Hz), we are able to modulate input laser lights. The modulation

is a square pulse modulation with a 100% peak-to-valley ratio and 50% pulse width (50%

on cycle, 50% off cycle). Fig. 5.4 shows an APD time trace recorded from a time-division
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Figure 5.3: Modified setup for time-wavelength division multiplexing.

multiplexing setup with a mixture of 200 nm crimson and yellow-green fluorescent beads

(FluoSphere� carboxylate polystyrene beads, ThermoFisher Scientific). The solution is

in a digital regime with a Concatenation of∼ 83 fM (below cD,max). Individual events

are detected by running a PCWA algorithm with a complex Morlet wavelet and the

individual events are shown as bright spots in the D-band. The scale range is divided

into two regions, analog band (A-band) and digital band (D-band). Depending on

which lasers are on, there are bright bands observed in A-band reflecting the chopper

modulation frequencies.

By looking into the zoomed-in window of the signal, we notice digital events

detectible in the ‘on’ states of the lasers and there are parts that are missing events due

to ‘off’ states of the lasers. This is a big concern at the lower end of the concentration

range where individual events should be detected to estimate concentration in a short
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Figure 5.4: APD trace from the TWDM signal (chopper modulation) for the digital
regime (83 fM).

time.

At the higher concentration working regime (analog regime), the overlapping

signals form an analog signal similar to the modulated input pulses. Fig. 5.6 shows

a similar APD trace recorded for a sample of 100× higher concentration at ∼ 8.3 pM

(above cD,max). Obviously, there is no event detectable (see Fig. 5.6 and Fig. 5.7) and

the analog bands are much brighter. In the digital regime, most of the analog bands

are coming from the background signal and random digital fluorescent events do not

contribute to the bright bands at certain frequencies.

We confirm that the TWDM concept is capable to provide concentration-

related information at higher concentrations beyond the digital detection limit. There

are however certain problems and limitations with the chopper blades. The first and
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Figure 5.5: Zoomed-in view of APD trace from the time-division multiplexing signal
(chopper modulation) for the digital regime (83 fM).
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Figure 5.6: APD trace from the time-division multiplexing signal (chopper modulation)
for the analog regime (8.3 pM).
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Figure 5.7: Zoomed-in view of APD trace from the time-division multiplexing signal
(chopper modulation) for the analog regime (8.3 pM).

main one is the total blocking of beams and forming ‘on’ and ‘off’ states in which

there will be missing events for the ‘off’ periods. The other problem is the fluctuation

of chopper blades spinning frequencies due to mechanical fluctuations. In the next

section, we will explore another modulation scheme based on the analog modulation of

laser diodes to tackle this problem.

5.3 Analog modulation of laser diodes

We replace the HeNe cavity laser with a 633 nm 100 mW diode laser (HL63163DG,

Ushio Inc) driven by a laser diode driver (TLD001, Thorlabs). The LuxX 488 nm laser

supports analog modulation but requires rewiring in the connector.

To provide access to the analog modulation of the LuxX laser, we made a
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Figure 5.8: Control port connector for LuxX DL.
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Figure 5.9: Pinout of the connector for LuxX DL.
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SUB-D HD
15pol female

Function

1 +5V out Interlock Loop (fused with polyswitch 1A fuse)

2 Interlock Loop Return

3 Key switch (Laser ON/OFF)

4 +5V out (fused with polyswitch 1A fuse)

5 GND

6 Laser enable input (TTL)

7 Digital (TTL) GND for use with Laser enable input

8 RxD / RS232

9 AUX (TTL) (used for CDRH)

10 TxD / RS232

11 Emission LED out (20mA)

12 Error LED out (20mA)

13 Interlock LED out (20mA)

14 Analogue Modulation In (0..5V high impedance)

15 Analogue Modulation GND

Shield PE / Screen

Table 5.1: Control port pin descriptions.

custom connector cable with two additional wires shown as green rows in Table 5.1.

The yellow rows are the wirings from the original cable provided with the laser. This

pair of analog modulation wires are connected to a BNC cable to plug into a function

generator to provide modulation waveforms. Similarly, we connect the TLC001 driver

box to another channel on the function generator via a BNC cable to have modulation

of both lasers done via a single 2-channel function generator (33522A, Agilent).

Fig. 5.10 shows the modified version of the TWDM setup with two laser diodes

replacing the previous lasers and a function generator to generate analog modulation

signals. We use an offset of 95% for the analog modulation pulses for both channels so

that we can have lasers on all the time. We found that 10% peak-to-valley modulation
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Figure 5.10: TWDM setup with analog modulation.

is enough to form bright bands in the analog regime.

Unlike the chopper blades, with the analog modulation setup, there will be

no ‘off’ state for the lasers. As shown in Fig. 5.11, the function generator generates

square pulses with specific frequencies for each channel (f1, f2) and a DC offset. This

DC offset ensures exciting any possible flowing fluorescent bead at any time during

the experiment, which tackles the problem of missing events in the chopper setup.

Through experiment, we realized that a 10% peak-to-peak modulation is enough to

create frequency components in higher concentrations.

Fig. 5.11 illustrates three modes of operation. We consider an intermediate

regime where the number of fluorescent beads inside the excitation volume is more

than one but less than the analog regime. In this mode, the APD signal can have big

fluctuations from zero to a summation of multiple events. The APD signals from three
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Figure 5.11: Operation regimes in analog modulation TWDM setup.

different concentrations representing three possible modes of operation are shown in

Fig. 5.11 with the corresponding spectrogram. The sample used is 200 nm crimson

fluorescent beads that are excited by a 633 nm modulated laser diode. As seen, in the

digital regime, individual events are detected without any ‘off’ state and no modulation

component in the analog band. The analog regime, on the other hand, features a distinct

bright band at the modulation frequency (150 Hz). The events detected in the analog

regime are not valid and are random local maxima from the square pulse edges. As

expected, the intermediate regime behaves partially similar to the digital and partially

similar to the analog regimes. The detected events are not as random as in the analog

regime but are not quite clear, and the modulation band is not constant and uniform,

therefore a hybrid estimation should be considered in the intermediate regime.
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5.3.1 Concentration estimation: analog regime

In order to derive an equation for concentration approximation in the analog

regime, we start with writing the CWT transform formula for the recorded APD signal.

C(t,∆t) =

∫ +∞

−∞
S(t′)

1√
∆t

ψ∗
(
t− t′

∆t

)
dt′ (5.3)

we can break down the APD signal into a product of the input laser modu-

lation (M(t)) with the summation of the background and fluorescence emission signals

(B(t), E(t)). Then the Eq. 5.3 can be rewritten as

C(t,∆t) =

∫ +∞

−∞

[
M(t′)×

(
B(t′) + E(t′)

)] 1√
∆t

ψ∗
(
t− t′

∆t

)
dt′ (5.4)

we can assume that B and E are constant in the analog regime so they will

come out of the integral. Since the emission signal E depends linearly on the target

concentration c, we can relate the CWT coefficient at modulation frequency f , Cf , to

the sample concentration by

C(t,∆t) = B

∫ +∞

−∞
M(t′)

1√
∆t

ψ∗
(
t− t′

∆t

)
dt′ + E

∫ +∞

−∞
M(t′)

1√
∆t

ψ∗
(
t− t′

∆t

)
dt′

= b+ cE0

∫ +∞

−∞
M(t′)

1√
∆t

ψ∗
(
t− t′

∆t

)
dt′

= b+ ca

C(t, f) = Cf = ac+ b

(5.5)
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c =
Cf − b

a
(5.6)

a and b are slopes and background offset parameters, respectively. They are

tuned from the calibration experiment by running a series of known concentrations

into the chip and mapping Cf values to the expected concentration values. We found

a = 5× 10−8 and b = 0.1 for the fluorescence signals used in this study and kept them

fixed throughout all analyses.

If we use both digital and analog concentration values calculated using equa-

tions 5.1 and 5.6, we end up creating a concentration curve shown in Fig. 5.12. There

are two independent curves plotted for digital and analog data and the way that we

relate these values to the final estimated concentration is based on the CD,max and

calibration experiment. The CD,max determines up to which concentration the digital

calculation is valid (plotted as a vertical dashed line in the bottom plot). The horizontal

dashed line in the bottom plot represents the threshold where any CWT value above

that will be valid and the analog calculation will be considered as the final estimated

concentration (highlighted by yellow). As seen previously in Fig. 5.11, there are digital

events and Cf values for all regimes and the way that we estimate the concentration.

The calibration curve shows how digital concentration data points get saturated after

CD,max and how analog values can be used to extend the working range. The analog

values in the lower concentration range (digital regime), are mostly from the background

signal and remain constant up to CD,max level. The intermediate regime is defined once

from the calibration experiment by finding the overlapping region of digital and analog
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Figure 5.12: High dynamic range concentration estimation via analog TDM modulation.

curves. There is saturation seen in the upper bound of the analog curve which is related

to the APD saturation. The detector used in the study is a single-photon-counting

module (SPCM-AQRH, Excelitas Technologies) with typical saturation happening at

around 5 Mcps.

We repeated the same experiment with a different sample, this time 100 nm

yellow-green fluorescent beads. Similar digital limit and analog extension are observed

with better performance in the upper bound. This is due to the fact that 100 nm

yellow-green beads are less brighter than 200 nm crimson beads and the analog signal,
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Figure 5.13: High dynamic range curves for singleplex blue and red channels.

even at very high concentrations, does not saturate the SPCM (see Fig. 5.13).

5.4 Multiplexed detection

We investigate the multiplexing capability by introducing a mixture of two

target particles, 200 nm crimson, and 100 nm yellow-green fluorescent beads. Fig. 5.14

depicts a multiplexing detection test on a digital regime with both targets sitting in

lower concentrations (106 beads/mL). As seen, individual events are easily picked and

identified with a combination of PCWA event detector and DNN classifier illustrated

in Fig. 5.15 (more detail discussed in Chapter 4). In higher concentrations (1010
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Figure 5.14: Multiplexed detection in digital regime with analog modulation.

beads/mL) analog bands form at modulation frequencies 150 Hz and 250 Hz for red

and blue channels respectively.

With the discussed configuration we face some limitations. One was discussed

in the crimson detection at higher concentrations and the SPCM saturation. The other

one is when the mixed sample includes some highly concentrated targets alongside some

low concentrated targets making it hard to see digital events for the lower concentration.

In the next section, we introduce an adaptive mechanism to make the system robust

and linear in a wider dynamic range.

5.5 Adaptive modulation

In this section, we explore an adaptive design for multiplexed TWDM multi-

plexed detection. The design utilizes a real-time closed-loop feedback system to analyze
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Figure 5.15: DNN classifier for multiplexed detection in digital.
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Figure 5.16: Multiplexed detection in analog regime with analog modulation.

the fluorescence signal and adjust the input laser power accordingly. Unlike the pre-

vious setup where a time trace was recorded during the experiment and the analysis

was carried out later, the adaptive configuration estimates concentration based on the

adjusted powers of the laser, hence the real-time feedback is a key element of the sys-

tem. The adaptive TWDM setup is shown in Fig. 5.17 with a minor structure change

of controlling function generator via PC.

The photodetector used in the single-molecule detection setup comes with a

high-resolution time-correlated single photon counting module (TCSPC). TimeHarp

260nano (PicoQuant) records timestamps of any detected photons from a single photon

detector into a *.tpu file in T2 mode with 250 ps time resolution [91]. We developed a

Python GUI program (see Fig. 5.18) to acquire, analyze, and provide feedback signals

in real-time for adaptive TWDM purpose. There are visualization, experiment control,

and result plot elements implemented into the GUI by the PySide6 library built on
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Figure 5.17: Adaptive TWDM setup.

top of Qt6. Even though the program works fine with low-concentration samples, it

freezes in high concentrations samples due to buffer overflow from timeharp260 DAQ

library. This is the bottleneck of binning all incoming photon event timestamps for

further data analysis. To solve this problem, we implement a binning unit using a field

programmable gate arrays (FPGA) development board.

5.5.1 Real-time photon-counting with FPGA

The idea of using an FPGA instead of timeharp260 card is to offload the

binning of photon events from the main CPU into an FPGA. The binned time trace

is then transferred to the PC via ethernet (socket protocol) and the Python GUI will

receive and analyze the incoming packets in real-time. Another benefit of using FPGA

over other solutions like GPU is that this solution is not limited to a PC as the host and

can be connected to any other portable host device (i.e. a Raspberry or Google Coral
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dev board) as long as they have an ethernet interface. Fig. 5.18 shows the schematic of

the developed binning algorithm for the Arty-A7 FPGA board [92]. The program shown

in Fig. 5.18 is part of a bigger logic, but the key parts are highlighted and explained

with red circles.

In Fig. 5.19 we see the experimental setup with fundamental parts highlighted.

ARROW devices are prone to analyte channel clogging and this problem is

more likely to happen in higher concentrations, requiring unclogging the chip with

solvent. We replace the conventional wax-based reservoir bonding with the thermoplas-

tic bonding of silicone tubings to prevent wax contamination and additional clogging

caused by leftover waxes inside the channel (Fig. 5.20). The silicone tubing pieces also

are more flexible, hence a better sealing to the 3D-printed chip adapter without the risk

of breaking the analyte channel or optical waveguides.

5.6 A/D mixed concentrations and adaptive TWDM

Real-time adaptive mechanism monitors spectral information at modulation

frequencies (channels) through short-time Fourier transform (STFT) and maintains

their absolute value around a set point. Fig. 5.21 explains the cycle of power ad-

justment inside the closed-loop system through phases a, b, and c. In this example, at

time t0 feedback system is engaged and a high value of frequency component at f1 is

immediately observed (C2). This introduces a negative control signal by a proportional-
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Figure 5.18: Real-time photon counting via FPGA.
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Figure 5.20: 3D printed chip mount.
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integral-derivative (PID) system shown in Fig. 5.21b and reduces the laser power at the

corresponding channel (Ch2).

When operating in adaptive mode, Eq. 5.6 for determining concentration in the

analog regime requires modification. Specifically, a PID-normalized power adjustment

factor, denoted as pi, is introduced for each channel i. During the experiment, the

closed-loop feedback control unit continuously adjusts the modulation pulses of the

function generator to ensure the frequency component of each channel remains close to

a predetermined setpoint. As a result, the value of pi varies over time.

C =
Ci − api
bpi

(5.7)

The APD signal, and thus Ci, is proportional to the input laser power pi, which

means that the same derived values for a and b parameters from the analog regime can

be used in the adaptive mode. However, if there are changes in the experimental setup

or fluorescence properties of the targets, these values may need to be updated.

When the concentration series in Fig. 5.13 was re-evaluated using the adaptive

feedback circuit, previous results were reproduced at low and intermediate concentra-

tions. However, at the high concentration end, saturation effects were removed, and

linearity was restored over the entire 8-log concentration range. The impact of the

adaptive circuit is illustrated in Fig. 5.22 (bottom), which shows a reduction in excita-

tion laser power (purple highlighted by the yellow box) at high powers to maintain the

CWT amplitudes safely outside the saturation range (blue curve).

The PID controller is followed by a non-linear system that can respond quickly

133



Figure 5.21: Real-time photon counting via FPGA.
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Figure 5.22: Adaptive method to estimate concentrations in high-dynamic range.
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to sudden changes in the concentration and maintain the CWT amplitude by dynami-

cally adjusting the power level. It is also capable of recovering back to the digital mode

by itself if the concentration decreases.

In an analysis of a challenging mixture of crimson and yellow-green fluorescent

nanoparticles at low and high concentrations, respectively, adaptive modulation was

used (Fig. 5.23). Initially (t < 9 s), the adaptive feedback circuit was off, and a large

fluorescence signal by the high-concentration yellow-green beads did not allow for the

reliable detection of any red beads. As soon as the adaptive mode was activated, the

blue excitation power was adjusted within a few seconds, and the fluorescence trace

displayed individual signals from crimson beads in the digital range while still allowing

for determining the yellow-green bead concentration. This is also illustrated by the

power attenuation and confidence traces at the bottom panel of Fig. 5.23.

Fig. 5.24 shows how both the yellow-green and crimson bead concentrations

were correctly identified, matching their respective singleplex curves, even though their

concentration differed by > 10, 000× in the mixture. The estimated concentrations from

the mixed solution are shown with start markers and they align nicely with the digital

and analog curves from the singleplex data. The digital events in each section of the

time trace are classified using the previously trained DNN model.

Overall, the use of adaptive modulation and the closed-loop feedback control

unit has allowed for a more accurate and reliable determination of concentration, es-

pecially at high concentrations where saturation effects can occur. Additionally, the

ability of the system to adapt to changes in concentration quickly and efficiently makes
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Figure 5.23: A/D mixed sample time trace.
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Figure 5.24: A/D concentration estimation.

it a powerful tool in a variety of analytical applications.
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Chapter 6

Conclusion

In conclusion, hardware advances as well as incorporating available data anal-

ysis and developing new tools to suit the optofluidic needs, result in outstanding per-

formance, especially for biomedical diagnosis and point-of-care applications.

Hydrodynamically focusing the stream of targets inside the ARROW chip was

investigated by a trench design and a successful 3D-HDF was reported. Challenges re-

garding the characterization and analysis of focusing behavior inside the analyte chan-

nel, lead to elaborating novel techniques of determining 3D focusing effect based on

2D fluorescence imaging. Also, multiple-channel access within an integrated chip foot-

print requires a special interfacing mechanism. Advancements in 3D printing technology

solved the problem of complex channel routing within small, compact, and custom con-

figurations to drive a 3D-HDF chip.

A fast CWT-based event detection algorithm helped with efficiently detecting

more events with higher accuracy not only in fluorescence detection but also applicable
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to other kinds of signals. The speedup gained in comparison to previous CWT tools,

emphasizes the lack of well-developed tools in the field and will demand further ad-

vancements to tackle time-frequency analysis in any form of data origin. This tool has

been widely used as a daily data analysis gear for optofluidic event detection needs.

Machine learning undoubtedly has surprised science and technology in the past

decades by solving previously unsolvable problems. Taking advantage of this growing

field in optofluidic biosensing is another big goal achieved in this thesis. The highest

accuracy and unmatched performance were demonstrated on an inexpensive, low-power,

portable device. Google Coral Dev board was selected for this project as the AI acceler-

ator for inferencing purposes and the results confirm a negligible drop in performance by

switching from a desktop PC to this compact device. The benefits of using edge devices

in biomedical diagnosis, such as data privacy concerns, lower bandwidth requirement,

and on-demand test results and monitoring to the user are discussed.

Finally, an innovative scheme for driving ARROW chips was introduced to

increase the dynamic range of detection. The results show a 104× increase in the higher

concentration range of detection without any sacrifice observed in the lower end. In order

to attain this goal, several modifications in the current single-molecule-detection setup

were introduced. For example, real-time acquisition and analysis of fluorescence signals

from the SPCM module were needed for a closed-loop system and therefore an FPGA

program was developed to do this task. The real-time adjustment of input laser modules

independently for two channels was demonstrated to solve another challenging limit of a

conventional biosensor which is concentration estimation for a mixture of low- and high-
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concentration samples. Multiplexing achieved by time and wavelength division of the

sensory signal (TWDM) was presented with results highlighting successfully estimating

the concentration of two target types with the 4-order difference in concentrations.

Optofluidics is a new technology that blends photonics and microfluidics into

an integrated platform for bio-detection. Along with all the unique features and bene-

fits borrowed from optics and microfluidics, it also creates new challenges by blending

the ancestor’s challenges. Ultrasensitive photonic components functioning within an

everchanging dynamic fluidic environment demand novel techniques in science and en-

gineering.
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Appendix A

Simulation model for optofluidic particle

detection

We developed a simplified model of an optofluidic biosensor to simulate de-

tected event distribution in terms of important metrics such as velocity (∆t in PCWA

analysis) and fluorescence signal intensity. The model takes predicted profiles for veloc-

ity, excitation and collection into account to generate a dataset of events.

Fig. A.1 shows the scanning electron microscopy (SEM) images of an ARROW

chip with important optical waveguides highlighted in Fig. A.1a and a cross-section of

the excitation waveguide taken at the chip facet in Fig. A.1b. In Fig. A.2, the chip

was milled right at the SM excitation waveguide and analyte channel intersection using

focused ion beam (FIB) milling technique. There are possible offsets between waveguides

caused by fabrication errors and are shown by guidelines. Fig. A.2a shows the horizontal

offset seen between the analyte channel (HC waveguide) and the collection waveguide.
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Figure A.1: SEM images of ARROW optofluidic biosensor with key optical and fluidic
components.

The vertical offset between the excitation waveguide and the HC waveguide is annotated

in Fig. A.2b.

In order to model the conditions each flowing particle can experience, we break

down the physics of the system into independent profiles illustrated in Fig. A.3. First,

we assume that the particles flowing inside the analyte channel have a parabolic velocity

distribution, u(x, y) described as

u(x, y) = G

[
1−

( x
w

)2] [
1−

(y
h

)2]
(A.1)

w and h are the width and height of the channel respectively and G is the

maximum velocity at the center of the channel (x = 0, y = 0, see Fig. A.3 top-left).

Next, we consider a Gaussian approximation of the optical mode profiles for excitation

and collection waveguides. For the collection waveguide a 2D version of the Gaussian
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Figure A.2: SEM images of an ARROW chip with possible waveguide offsets.

distribution is applied and for the excitation waveguide, since the information along the

z axis is already included in the velocity information (from the velocity profile), a 1D

Gaussian distribution is been used.

Exc(y) = e−[(y−µ)2/2σ2],

Col(x, y) = e−[(x−µx)
2/2σ2

x+(y−µy)
2/2σ2

y]

(A.2)

The intensity of the fluorescent events in an ARROW device depends on how

strong the excitation volume excites particles, and how well the fluorescence emission is

collected through the collection waveguide. In mathematics, this means a multiplication

operation, and we call the result “sensitivity profile”. Fig. A.4 visualizes how 1D

excitation and 2D collection profiles are multiplied to produce sensitivity distribution.

The sensitivity profile will be used directly as the intensity information.

By knowing the velocity and intensity of every possible particle flowing through
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Figure A.3: Simulation model to predict flowing particles event distribution from the
APD time trace.
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Figure A.4: Sensitivity profile for an ARROW device based on excitation and collection
mode profiles.
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the channel we can generate a 2D-joint histogram as previously used throughout this

thesis. Here, we need to populate events based on where they are positioned inside

the channel. For example, if they are closer to the center of the channel, there is a

higher chance of having more events collected, because the stream is faster and more

particles per time unit is crossing the excitation volume. This helps to add the necessary

statistical information to the model. Fig. A.5 shows an example of a simulated model

for a chip with corresponding profile information. Here, ex : y(0, 0.3h) means the

excitation profile parameters are µ = 0, σ = 0.3 × h. Similarly, horizontal (x) and

vertical (y) parameters of the collection profile are described under the plot.

By varying the excitation and collection profile parameters, we can generate a

grid of expected distributions as depicted in Fig. A.6. This technique was used in this

thesis to fit events distribution from the experimental data into the model by comparing

the 2D histograms, and gives the insight about possible errors from the fabricated chip

without FIBing and destroying the chip. Ideally, we want the event to sit in the top-left

corner of the 2D histogram where the intensity and velocity have no variations and have

the maximum values.

The following code includes the entire algorithm to calculate distributions,

overlap the profiles, and generate the plots.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import pandas as pd

4

5 h,w = 6,12 # height and width of channel

6 dy, dx = .1, .1 # y, x resolution

7 Y = np.arange(-h/2,h/2+dy,dy)
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Figure A.5: Simulated event distribution for arbitrary excitation and collection
distributions.
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Figure A.6: Excitation and collection profile variations effect on event distribution.
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8 X = np.arange(-w/2,w/2+dx,dx)

9 XX, YY = np.meshgrid(X,Y) # create x-y (channel cross-section) plane

10 repeat = 10 # simulates longer experiment (xN events per pixel)

11 bins = 50 # histogram bins

12 G = 7 # Parabolic dist. constant

13 ex_mu, ex_s = 0, 0.3 # exc. profile params (mu, sigma)

14 c_mux, c_sx, c_muy, c_sy = 1, 0.3, -1, 0.3

# col. profile params (mu_x, sigma_x, mu_y, sigma_y)↪→

15 ex_modes = [[ex_mu,ex_s*h]] # single-mode exc.

16 # ex_modes = [[-h/4,h/4],[h/4,h/4]] # double-lobe mode exc.

17 U_profile = G*(1-((YY-0)/h*2)**2)*(1-((XX-0)/w*2)**2)

18 # uncomment to simulate 3D-HDF effect

19 # (limit locations a bead can be present by cropping velocity dist)

20 # U_profile[np.where(XX<-2)] = 0

21 # U_profile[np.where(XX>2)] = 0

22 # U_profile[np.where(YY<-1.5)] = 0

23 # U_profile[np.where(YY>1.5)] = 0

24 Ex_profile = 0

25 for ex_mode in ex_modes:

26 Ex_profile += np.exp(-0.5*((YY+ex_mode[0])/ex_mode[1])**2)

27 c_modes = [[c_muy,c_sy*h,c_mux,c_sx*w]] # single-mode col.

28 C_profile = 0

29 for c_mode in c_modes:

30 C_profile += np.exp(-0.5*((YY+c_mode[0])/c_mode[1])**2-0.5*((XX-c_mode[2])/c_mode[

3])**2)↪→

31 Sens_profile = np.multiply(C_profile,Ex_profile) # sensitivity dist.

32 # create figure and configure subplots

33 fig = plt.figure(figsize=(4,5),dpi=200)

34 gs_summaryplot = fig.add_gridspec(2, 4, height_ratios=[1,6])

35 ax = [0]*5

36 ax[0] = fig.add_subplot(gs_summaryplot[0,0])

37 ax[1] = fig.add_subplot(gs_summaryplot[0,1])

38 ax[2] = fig.add_subplot(gs_summaryplot[0,2])

39 ax[3] = fig.add_subplot(gs_summaryplot[0,3])

40 ax[4] = fig.add_subplot(gs_summaryplot[1,:])

41 plt.subplots_adjust(wspace=0.1,hspace=0.00)

42 # show velocity dist.

43 ax[0].matshow(U_profile,extent=[X[0],X[-1],Y[0],Y[-1]],cmap='hot',vmin=0)

44 ax[0].tick_params(axis='both',direction='in',which='both',color='c',bottom=True,

right=True,labelleft=False,labeltop=False, length=5)↪→

45 ax[0].set_title("velocity",fontsize=10)

46 # show exc. dist.

47 ax[1].matshow(Ex_profile,extent=[X[0],X[-1],Y[0],Y[-1]],cmap='hot',vmin=0)
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48 ax[1].tick_params(axis='both',direction='in',which='both',color='c',bottom=True,

right=True,labelleft=False,labeltop=False, length=5)↪→

49 ax[1].set_title("excitation",fontsize=10)

50 # show col. dist

51 ax[2].matshow(C_profile,extent=[X[0],X[-1],Y[0],Y[-1]],cmap='hot',vmin=0)

52 ax[2].tick_params(axis='both',direction='in',which='both',color='c',bottom=True,

right=True,labelleft=False,labeltop=False, length=5)↪→

53 ax[2].set_title("collection",fontsize=10)

54 # show sens. dist.

55 ax[3].matshow(Sens_profile,extent=[X[0],X[-1],Y[0],Y[-1]],cmap='hot',vmin=0)

56 ax[3].tick_params(axis='both',direction='in',which='both',color='c',bottom=True,

right=True,labelleft=False,labeltop=False, length=5)↪→

57 ax[3].set_title("sensitivity",fontsize=10)

58 # convert velo. to 'dt (scale)' and use sens. value as intensity of time signal

59 df = pd.DataFrame({'scale':U_profile.flatten()**(-1), 'coeff':Sens_profile.flatten

()})↪→

60 # probability is proportional to velocity of a particle

61 # determines how many events can be expected to come from a certain location of channel

62 df['probability'] = 1/df['scale']

63 df['probability'] = df['probability']/df['probability'].max() # normalize

64 # repeat events from high velocity locations to have

65 # more events of that part of stream in the dataset

66 df = df.iloc[np.array([range(len(df))]).T.repeat(df['probability']*repeat).flatten

()]↪→

67 # prepare logscale axis values for 2D-hist (similar to PCWA analysis in Ch3)

68 xlogbins = np.logspace(np.log10(0.1),np.log10(1.0),bins)

69 hist, ybins = np.histogram(df['coeff'],bins)

70 ylogbins = np.logspace(np.log10(0.9*ybins[0]),np.log10(1.1*ybins[-1]),len(ybins))

71 ax[4].hist2d(df['scale'],df['coeff'],cmap='hot',bins=[xlogbins, ylogbins])

72 ax[4].loglog()

73 ax[4].tick_params(axis='both',direction='in',which='both',color='c',top=True,right=

True,labelleft=False,labelbottom=False, length=5)↪→

74 ax[4].set_ylabel("intensity [a.u.]")

75 ax[4].set_xlabel(f"\u0394t [ms]\nex:y({ex_mu:.2g},{ex_s:.2g}h), c:x({c_mux:.2g},{

c_sx:.2g}w) y({c_muy:.2g},{c_sy:.2g}h)")↪→

76 plt.show()
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