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Summary

In a previous paper [1] a modified Hu-Washizu variational formulation has been used to derive an
accurate four node plane strain/stress finite element denoted QE2. For the mixed element QE2 two
enhanced strain terms are used and the assumed stresses satisfy the equilibrium equations a priori for
the linear elastic case. In this paper an alternative approach is discussed. The new formulation leads
to the same accuracy for linear elastic problems as the QE2 element; however it turns out to be more
efficient in numerical simulations, especially for large deformation problems. Using orthogonal stress
and strain functions we derive B functions which avoid numerical inversion of matrices. The B-strain
matrix is sparse and has the same structure as the strain matrix B obtained from a compatible displace-
ment field. The implementation of the derived mixed element is basically the same as the one for a
compatible displacement element. The only difference is that we have to compute a B-strain matrix
instead of the standard B-matrix. Accordingly, existing subroutines for a compatible displacement
element can be easily changed to obtain the mixed-enhanced finite element which yields a higher

accuracy than the Q4 and QM6 elements.

1. Introduction

Several methods have been developed to improve the performance of the standard four-node compati-
ble displacement element which yields poor results for problems with bending and, for plane strain

problems, at the nearly incompressible limit. Among the improvements we like to cite the following
methods:

i) Selected reduced integration [2] and the so called B-bar method [3] of Hughes.

i1) The QMé6-element of Taylor/Beresford/Wilson [4] who used four incompatible quadratic
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displacement functions to calculate an approximated displacement gradient.

iii) The method of "enhanced strains" introduced by Simo and Rifai [5]. Simo and Rifai also
demonstrated that the QM6 element can be viewed as an enhanced strain element with four

enhanced strain terms.
1v) The hybrid stress elements of Pian and Sumihara [6] and Yuan/Huang/Pian [7].

v) The mixed finite element QE2 of Piltner and Taylor [1] using a modified Hu-Washizu varia-
tional formulation with bilinear displacement interpolations, seven strain and stress terms in

cartesian coordinates, and two enhanced strain modes.

The enhanced strain concept became quite popular in recent years and has been used for both linear
and non-linear problems by several researchers, e.g. Simo/Armero (8], Simo/Armero/Taylor [9],
Andelfinger/Ramm [10], Crisfield/Moita/Jelenic/Lyons [11], Freischliger/Schweizerhof [12],
Glaser/Armero [13, 14], Korele/Wriggers [15, 16], Nagtegaal/Fox [17], Roehl/Ramm [18], de Sausa
Neto/Peric/Huang/Owen [19], Wriggers/Reese [20].

In reference [1], the stress functions for the QE2 element were chosen such that the homogeneous
equilibrium equations are satisfied a priori. Therefore the linear version of the QE2 element can also
be considered as a Trefftz-type element (e.g. [21-26]). For the QE2 element a matrix H has to be

computed and inverted. The matrix H has the following block diagonal structure:

Hy; o

0 Ho (1)

H=

where H); is a 3x3 diagonal matrix. So with the assumed stresses of reference [1] we are left at the
element level to invert the 4x4 symmetric sub-matrix Hy,. In this paper we consider a method to avoid
numerical inversion (except the one needed for the static condensation of the unknowns associated to

the enhanced strain functions).

In addition to the improvement in efficiency of the mixed four-node finite element we address the sub-
ject of non-physical instabilities of non-linear versions of enhanced finite elements [8, 9] which have
been observed by Wriggers and Reese [20] and discussed by Crisfield et al. [11] and De Sousa Neto et
al. [19].

A mixed finite element with four enhanced strain terms has been tested in a series of numerical exam-
ples. The element is denoted B—QE4. In several numerical tests for linear problems it is shown that
the elements ﬁ—-QE4 and QE2 give identical results. The possibility of coding the E«QE4 element
like a displacement element and its excellent performance make it attractive for non-linear applica-

tions.
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2. Finite element formulation for the linear elastic case

As in reference [1] we use the following modified Hu-Washizu variational formulation:

I(u, £, &, ) = | —%ETES dV - [uTfdV - [uT TdS - [T (e~ Du—-¢€')dV )

\% y s Y
where €' is the enhanced strain field satisfying an orthogonality condition with respect to properly
chosen reference stresses. Details about the choice of enhanced strain terms are given in reference [1].

Carrying out the variation in (2) we obtain the following equations:

—i&:ﬂ' [emDu—ei] dv=0 3)
\jfagT [Ee—«o} dv=0 (4)
l su) o dv = i SuTfdv + i SuTT ds (5
\j/ (6o dv=0 6)

The displacement, strain and stress fields are chosen in the following form:

u=Ng
£=8Sa
Sp (7
g =
g =BA.

where N = N(&,1) is the matrix of compatible shape functions and q contains the nodal displacements
of the finite element. The vectors «,B,A are strain, stress and enhanced strain parameters, respec-
tively. The strain field obtained from the compatible displacement field u can be written as

Du=Bgq < (8)

where D is a linear differential operator matrix. The discretization of equations (3)-(6) with arbitrary
variations 8B, 8c, dq and A leads to the following system of equations at the element level:

0o "HLL|[B 0

-H Hr 0 0 |0 ©)
LT 0 00 q  |fext
LT 0 00 0
where
H:js"fsav
A\’

L=[STBdV
A\



L'=[s"B'dv (10)

A%
Hy=[STESdV

v

fo = | NTEAV + [NTT dS

\ 5

From the first two equations of (9) we obtain the strain and stress parameters as

o=H1Lg+HLA (11)

B=H'Hroa=H'H;H'Lq+H'HH LA (12)

Substitution of (11) and (12) into (9) gives us the following system of equations:

s
xe

K=LTH'H;H 'L

[ LTH'H H'L LTH'H;H'L
LTH'H;H'L LTH'H B 'L

or

where

I=LiTH'H;HIL (15)
Q=LTH'H;HIL!.
Using a static condensation process with respect to the enhanced strain parameters A we finally get the

element stiffness matrix in the form
k=K-I7Q7r (16)

In order to avoid calculating the matrices L, H, Ht, L, L! as well as performing the numerical inver-
sion of H and matrix multiplications in (15), we seek a more efficient way to compute the matrices K,
I" and Q. The key for an efficient implementation of the mixed finite element is to exploit the struc-
ture of the matrices H, L, L for a proper choice of stress and strain functions collected in the matrix

S.

In order to achieve high accuracy with our finite element we choose the strain and stress functions in
cartesian coordinates. This choice is motivated by the good numerical results of the element QE2 and
the Trefftz-type finite elements from references [21-26] for which stresses in cartesian coordinates
have been chosen such that the equilibrium equations are satisfied a priori. The disadvantage of the
set of assumed stresses for element QE2 (see equ. (77) in [1]) is that the matrix of assumed stresses is
full and did not lead to a diagonal matrix H. In reference [1] a block diagonal matrix with one 3x3
diagonal sub-matrix and a 4x4 fully populated sub-matrix was constructed.
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For the present element we do not require that the assumed stresses satisfy equilibrium at the element
level a priori for arbitrary stress parameters B, as was the case in reference [1]. Instead we require only
that the stresses can satisfy the equilibrium equations for proper relations between the stress parame-
ters f3; collected in the vector B. This implies that we now need more stress terms than in reference [1],

where seven stress terms have been used.

For the mixed two dimensional element we can assume the stress field in the form

Oxx 5/5,S 00 0 0 0 0
G=|0ul={ 0 0 0 5,5 5 0 0 O =8B 17
Tyy 0 00 00 05 5 S;
where the S; are linearly independent functions in cartesian coordinates. For the strain field we use the
same matrix S as for the stress trial field. Unlike the assumed stresses for element QE2 (see equ. (77)
in reference [1}) the assumed stress components of (17) are not coupled. The resulting matrix H has

the following block diagonal structure:

HO o
H=|0 H O (18)
00pQg
If our linearly independent trial functions §; (j = 1, 2, 3) do not satisfy the orthogonality condition
T =0 fori#]
{SideV 20 fori=j (19)

we will get a fully populated 3x3 matrix H. Since the matrix H has to be inverted it is better to

orthogonalize a set of linearly independent functions so that H and therefore H become diagonal.

Possible choices for our initial (non-orthogonal) set of linearly independent trial functions S; are
Sl-"'»l, Sz :E, S3 =y, (20)
and

Sy =1, S, =¢&, S3=m, . 2D

where X, ¥y are cartesian coordinates with origin at the center of the quadnlateral finite element. The

coordinates E, ﬁ are obtained as a linear combination of the cartesian coordinates X, y from the rela-

E 1] by — X
14335

The relationship between the global cartesian coordinates x, y and the local coordinates X, y is given

tionship

as
X=x-ag, y=y—bo 23)

where
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1 1
g =X +X2+ X3+ %), bo=r{y1 +y2 +ys+Ya), (24)
The coefficients of the linear mapping (22) are given as

1 1
a = Z("m +X +X3-X4), b= "4'("“)/1 +Y2 +¥3—Ya)

i 1
a; = Z("Xx —X;+X3+X4), bp= Z"(*"Yx ~Y2 +¥3+Ys), (25)
JO = albz - azbl

Finally we can express the local element coordinates X, y and E ﬁ through the natural element coordi-

nates £, 1) via

x=a,&+an +a3&n

(26)
yzblg“}*bzﬂ +b3én
and
— I,
£=8+-8n
0
(27)
- 5
n=n+7-tn
0
where
1 1 ‘
a3 :Z(XI — Xz + X3 = X4), b; :'Z(YI —¥2 +¥3—Ya) (28)
and
Jl :a1b3 mb1a3
(29)

J, =a3b, —ayby

Since the expressions (27) are simpler than (26) we choose [ §1 =1, §2 :E, §3 = ﬁ ] as initial .set of
linearly independent trial functions to construct an orthogonal set of linearly independent functions
[S;, Sz, S3)

This can be achieved by a Gram-Schmidt-orthogonalization process through the formula

[§Scdv
~ j-
§j=8j~ ¥ ~— Sk (30)
kol [ Sy dV
v

Sy =f——— G1)



S =m_ 2 g5
3= 1 37, 2
where
21,

and &, 1) are obtained from equation (27).

With the choice of functions [ S;, Sz, S3 ] from equation (31) the entries of the matrix S for the

stress and strain fields are defined.

The compatible displacement field u is interpolated with standard shape functions according

S1 wl g
u=[] =% ;a+eoaenm U = 3N,

i=1 =1

P
Vi

=Ng (33)

An admissible enhanced strain field with four terms can be obtained from the incompatible displace-

ment field
Ay
) Nenh 0 Ncinh 0 ?\Q
u' = (l) Ntinh E) Ngnh }\’3 (34)
Ay
where
N =1-8,  N§'=1-7’ (35)
Instead of using the exact gradient of the shape functions
9 9 9
enh _ aX enh __ 1 Yn(i’n) ”‘y&“;(é’n) a& enh__ §—1 BE', enh
YT 0 T e Lw@m @] | o NTETEm o7 co
dy an an

the approximated gradient
0" 0 d

enh _ -5; enh __ 1 Yn (O’O) My{;(o’o) .58 enh__ JO ~1 Hb-g enh
on

N TIE)
dy on

as proposed by Taylor/Beresford/Wilson in reference [4] is used to get the following admissible

enhanced strain field:

. A
E , bt 0, bin 0 ||
g = E‘yy =B'A = 0 a 0 -am (38)
Y JEW | a8 _pE —am byn §3
4

where the determinant J of the Jacobian matrix can be expressed as



e =Jg+11E+Tm (39)

With the assumed displacement, strain and stress fields, all integrals in the element formulation can be
calculated exactly with 2x2 Gauss-integration since the expressions for the matrices H, Hy, L, and L!
contain only polynomials in & and 1. This is in contrast to the situation in the displacement element
formulation where we can not get exact integral results for an arbitrary quadrilateral element shape.
This is due to the factor 1/J(£,1) in all integrals for the stiffness matrix.

The diagonal matrix H is defined through the entries of the 3x3 matrix H. Through analytical integra-

tion we get the diagonal coefficients of the matrix H as:

hiy =4Jo

- 4. 222

hzz";”g]o(:ﬁz -7 +3) (40)
. 43 +2, 2 =+ 22+ 25, 5.2 - Y

h3z =~ To

3(3j% -ji1* +3)
where j; = J1/Jg and j, = J,/Jg. The strain matrices B and B! have the structure

Nl,x 0 NZ,x 0 N3,x 0 N4,x 0
B= 0 Nl,y 0 NZ,y 0 N37y 0 N4yy (41)
Niy Nix Npy Nox N3y N3 Nyy Ny

and
_a_?._Nfi‘nh 0 wa_.O_Ngnh 0
| ox 30 ox 30
B=| 0 —a—y-Ninh 0 5;1\16“*‘ (42)
0
'@—"N?”h ,_a__(_)__Nenh 0" Nenh .Q_“ enh
| 9y oy T NET
° d°
where I and 37 indicate that the derivatives of the incompatible shape functions are an approxima-
X y

tion given by equation (37).

It is important to notice that due to the sparse structure of S, B and B! and the fact that these matrices
have repeated entries for their coefficients the matrices L and L! have only a few non-vanishing dif-
ferent coefficients. The non-vanishing coefficients are denoted by £h, fy i fx nhs fyi}‘mh, where (i=1, 2,
3), (=1,2,3,4), k=1, 2) and given by

“sza:n) Nj€m)dv.

'J~JS(&n> NG V.
(43)

fifenn = jS(é n) Nﬁ““(& m dv.



fyknn = JS(é n) NE““(E, ) dv.

There is no particular advantage to give analytical expressions for the results of the integrals in equa-
tions (43). The exact values for £, f” ik p, and f‘ “enh can be obtained with 2x2 Gaussian integra-
tion. Having calculated the exact coefficients of the diagonal matrix H and the sparse matrices L and
L' we can calculate the strain parameters & from relationship (11). Now we can write the assumed

strain field in the form:

£=Bq+B2 (44)
where
Ny O NgO o N O N O
B=|0 N;, o Ny 0N, 0K (45)
N, N, N, N, N, N, NN,
and
— 2
[ Neew 0 N
_ _ _
B = __9 ~¥enh 9 __5 ,enh (46)

Ny enh Nx enh Ny enh Nx enh

. — i . 3 . .
The matrices B, B have the same sparse structure as the matrices B, B'. Taking into account that

Sy =1, the N functions can be written as

i . fxlj £2 3
Ny ==+ =
h;p  hy hs3
f 1j 2j fy3j
N yEm= S,(Em) + =— S3(&.m)
1 hzz hs3
47
i leé h K “r
X, en n
Ny, enh(é n = S,Em) + S3(E,m)
hn 2 h33
flk " f2k b f3k
Ny (&) = 250 4 250 ) e + S3(&.m)
1 hzz h33

where j=1,2,3,4) and (k= 1, 2).

. = =i . . . . i .
Note that the matrices B and B contain polynomials in &, 11 whereas the matrices B and B' contain

rational functions of the natural element coordinates £ and 1.

Instead of computing the matrices K, T’ and Q from equations (15), which involves time consuming
matrix multiplications of H, L, L!, Hy we can compute them faster by using the sparse strain matrices

ﬁandﬁi:

il
<—
we
&1
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EB dV (48)
Q==[B"EB dv
A%

The external load vector involves compatible shape functions from equation (33) and is given by

fox = [ NTEAV + [NTT dS (49)
\% N

3. Formulation for large deformation of hyperelastic materials

In this section we will first use tensor notation and later switch to matrix and vector notation. For an
overview on non-linear elasticity we refer to Beatty’s review articles [27] and [28]. For the large
deformation case we will use the first (un-symmetric) Piola-Kirchhoff stress tensor P which is related
to the second (symmetric) Piola-Kirchhoff stress tensor S, the Kichhoff stresses 1T and the Cauchy

stresses ¢ through the relation
P=FS=1F"T =JoF . (50)

where F is the deformation gradient

:—%:I+Graduﬂ (51)

In this notation, x is the position vector in the current configuration whereas X denotes the position
vector in the reference configuration. Using u as the displacement vector, the position vectors are

related through the equation

x=X+u (52)
The displacement gradient with respect to the reference configuration is given for our two dimensional
example by
du du
_| X dY .
Gradu = v Av (53)
0X dY

The relations for the symmetric Kirchhoff stress tensor T and the Cauchy stress tensor @ are given by

1=PFT = FSFT
(54)
=1
]

Here we want to consider the case of a hyperelastic material which is characterized through a frame
invariant stored energy function W(X,F). For objectivity the strain energy function must satisfy the

relation

WX, QF) = W(X,F) (55)



-11 -

for all proper orthogonal (. For a hyperelastic material the un-symmetric Piola-Kirchhoff stress ten-
sor is given by
oW
P=-—-— (56)

oF

In the finite element implementation we will make use of the incremental relation
AP = A:AF (57)

or in index notation

APy; = Ajpg AFy (58)
The fourth order tensor A, which is called the first elasticity tensor, is given through
*W W
A= A = ———
oFaF ' UM T 5E 3R, (59

Using an assumed displacement gradient G, and an enhanced displacement gradient Gradg e,y in the
reference configuration the modified Hu-Washizu formulation for large deformations can be given as

811 = . [Grad 8u :P dV + 8l1ey, (60)
A%

- jSP :[Gu — Grad u — Grad, uent] dv
v

W | _
oF | ¢F=1+6y % v

+ [8[Gradgueqy 1P dV
A%

+J6Gu:
v

where 8F = Grad &u and

0 0
0 Uenh d Uenh

uy Uy JX oY
G, =| % . . G = 61
" VX VY} oo tent ®Veun 9 Venn b
X aY
Py P2
P=
{ Py PzzJ (62)

have been used. For a discretization of (60) we switch to matrix and vector notation. Using the vec-

tors
PT=[P};, Py, Py, Pay]

Vul =[uyx, vy, uy, vx]

(63)
gs =[x, vy, Uy, Vx]
cnh, enh enh ,enh]

T _
Vouenn = [ul™, v, uy", vx

The variational formulation can be expressed as:
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M=V du" PdV +8ll.y, (64)
v
- .[BPT [g:f ~Vu-V, uenh} dv
v
+ [g, [f’(gu) -lﬂ dv
v
+ [3Valy P dv
v

where P denotes the vector of Piola-Kirchhoff stresses vector obtained from dW/F by using the
assumed displacement gradient G,. An increment for the Piola-Kirchhoff stress depending on an

increment Ag, can be calculated from
AP = A7 Ag, (65)

An expression for the tangent moduli Ay for one of the chosen constitutive models is given in Section
4.

For the increments of stresses and displacement gradients we assume the functions

AP =S AB
Ag, =85S Aa
(66)
V(Au) =B Aq
Vo(Augy,) = B AL
where
S8 0 0 0 0 0 0 0 0 0
SWOOOSISZSBOOOOOO 67)
=1 00000 0S85S,5S000
0 000 O0O0 9 o005 S;S;
Nix 0 Nyx 0 Nix 0 Nax 0
10 Ny 0 N,y 0 Nay 0 Ny
B=INiy 0 Nyy 0 Nyy 0 Nyy 0 (68)
0 Nix 0 Npx 0 Nix 0 Nix

B°™ is the matrix for the enhanced displacement gradient. Unfortunately, for the large deformation
case we cannot use a sparse matrix for the enhanced displacement gradient. Using a sparse matrix B*""
yields an element which is not frame invariant. The following matrix B™ has been chosen for the
proposed enhanced element:

b§§ “bibE  -bibm  bin
enh _ 1 a3 —amf  —ajam  afn
— T JE ) |ma2bf abyk abm -abm
—aby§ a;bi€ aib,n —a by

(69)
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The above matrix can be obtained by using the following form for the enhanced displacement gradient
Henh:

35 HI (70)

& b
JO"|' a b2:| (71)
and I:I 1s chosen as

H=

ME A8

Recently instabilities have been detected in a non-linear version of the QM6 element. The QM6 ele-
ment proposed by Taylor/Beresford/Wilson in 1976 can be viewed as an enhanced strain element with
four enhanced strain terms. A non-linear version was proposed by Simo and Armero [8]. The non-
physical instabilities in enhanced strain finite element simulations can occur in a hyperelastic material
under uniform compression, as initially observed by Wriggers and Reese [20]. The problem has been
investigated recently by several researchers, e.g. Crisfield et al. [11], de Souza Neto et al. [19], Glaser

and Armero [13, 14].

In order to overcome the element instability problems, Glaser and Armero [13] proposed to exchange

the original basis for the enhanced deformation gradient

i ME Aom
A3 7»471} (73)

[
1

by either expression (72) or by

i Mg M+ 2A3m
ME+AT Ag 74

I
I

Glaser and Armero considered the following two transformations for constructing the enhanced part of

the deformation gradient:

J -
@_Hmm§4mm‘ (75)

J -
b) Heh= ”’j(')" J5THJG! (76)
The enhanced deformation gradient in reference [13] is chosen in the form

Ferh = FOHenh (n
as proposed by Simo/Armero and Taylor [9]. Korelc and Wriggers [15] proposed an enhanced defor-

mation gradient of the form

J -
Fenh - Henh - _JE_ JaTHJal (78)
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where H is the same as in equation (72). However, Glaser and Armero pointed out that the use of (78)
yields a non-objective element. For the proposed element H*™ is chosen as in equation (70). Using
(70) an objective element is obtained (see example 5.7).

After elimination of the strain parameters the assumed displacement gradient for an increment takes

the form
Ag, =B Aq+B™" AL (79)
where
—1 —2 —3 —4
Nx O N} 0 Ny O RO
— 0 Ny 0 Ny 0 Ny 0 Ny
B=\-1 =2 =3 g =4 g (80)
Ny Ny Ny 3 Ny 4
o Nx 0 Nx 0 Nx 0 Nx
and

—enh -—enh —enh —enh
bj; by bz by
genh Bcnh —enh —enh
—enh 21 22 23 24
B = | -—enh =-enh -—enh -—enh (81)
31 32 33 34
—enh —enh —enh —enh
by bsy baz by

The functions E;ﬂh(é,n) are defined as

— Li L2 1.3
b (E M) = -+ L Sy ) + = S5(E ) .
hll h22 h33
and
Lk = [ Sp&mbghEm) dV. ©)
\'%

The functions bi}”h are the coefficients of the matrix B defined with equation (69).

Because the assumed displacement gradient can be expressed in the form (79) involving the sparse
matrix B, the element tangent stiffness matrix can be computed in a very economic manner; The ele-
ment tangent stiffness matrix for the large deformation case is given as

kr =Kr -T1Q7 It (84)
where the matrices Ky, I'y, and Qt can be computed in the following form:

Kr==[B ArBdv
v

I'r==[B" ABdV (85)

The residual vectors for step n are obtained by computing



4. Chosen Constitutive Models
For the examples in the present paper we consider two constitutive models.
4.1 Model 1

The stored energy function for the first constitutive model is
W=W({,,L,1;) =W, ,J):é—»u(l, ~3)—plnJ+ —%l(ln J)?

where I}, I, I5 are the invariants of the right Cauchy-Green deformation tensor
C=FTF

and
J=+l; =Vdet C =detF

The second Piola-Kirchhoff stress tensor is obtained from

ow _ aw 9l _ow dL  gw dly
S=250 729, 3¢ T2, 3 TR ac

where
o
aC ~
I (det O)C! =J°C! = PFIFT
aC

For the above strain energy function W we have

and

so that we get the constitutive relationship for § in the form

S=pl+ [+ AInJJFFT

(86)

(87)

(88)

(89)

(90)

on

92)

(93)

(94)
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For the other stresses we obtain
P=p[F-F T +AlJFT
T=pb-I+AInJI
c=Emb-n+Xmit

J J

where

b=FFT

(89)

(96)

The first elasticity tensor A can be obtained conveniently by using components of the un-symmetric

Piola-Kirchhoff stress tensor P, given from (56) by

Ppu=pFy + "}'[*H +AInJ]F,; , Py, = pF,; + %—[—u + X 1n JIF;,

1 1
Py =pFy; - ""J“'["H +AlInJlEy, Py =pFy - j:[—u +AInJJFy;
Using relationship (59) we get

A =p+ 3‘12““[“*‘7\"““ TFnFn, Apn=p+ »J;E—[u«x»l—-kln JIFnFi

Ay = —}—[—uHx InJ]+ —J%—-[u+ A—Aln JJF,Fyy

Al =—~"}1;[u+7»~7»1n JEpky Ajal :*312“‘[““”&"7»1“ JFFn
A :———le—[u+l~—kln JIFFar Anzoy zﬂi—[ﬂfr?\”“ﬂ JIF Fra
App=p+ %{[H'”L“ AlnJJF, Fyy Ay =R+ }%’[H‘WL“ Aln JIFHF,

1
A =- 5}[~»p+7»1n1] + 3~2-[u+l~—7&1n JNE Fpp

97)

(98)

In matrix notation the incremental constitutive equation for a point under consideration can be written

as
AP = At AF
where

A Al Annz Ao

_[Axnn Ann Ann Ang
Apn Apn Apn Apa
At Anz Asnz Agy

APT =[Py, Py, P2, Pyl
AFT = V(Au™) =[Auy, Avy, Auy, Avy]

(99)

(100)
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4.2 Model 2

The second constitutive model used m the examples is taken from a paper by Knowles and Sternberg

[29]. The strain energy function for this model is

o

LAME é—u[lﬂ”z +2]-4] (101)

Reference [29] gives a detailed discussion of this material model which is a special case of a Blatz-Ko

material.

5. Numerical examples

Several linear and nonlinear problems have been selected to test the performance of the proposed
four-node element denoted as B~QE4. For all problems 2x2 Gaussian integration is used. The ele-

ment passes the patch test.

5.1 Beam bending

A beam modeled with five elements is subjected to two load cases (Figure 1). Plane stress conditions
are assumed in the model. The results of different elements for the maximum displacement at point A
and the normal stress G, at point B are given in Table 1. The elements used in the examples are: i)
the bilinear isoparametric displacement element Q4 [30,31,32], ii) the enhanced strain element QM6
of Taylor/Beresford/Wilson [4], iii) the hybrid stress element P-S of Pian/Sumihara [6], iv) the
enhanced mixed element QE2 by Piltner/Taylor [1], v) the proposed element ﬁ—QE4. The elements
B-QE4 and QE2Z give identical results.

fy
2 2 1 1 4 “@‘
@ 150

a B8 1000 E = 1500
2 ¥ =0.25
1000 150

Figure 1: Finite element mesh for cantilever beam problem

e
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Table 1: Comparison of plane stress solutions obtained with four node elements for cantilever beam

problems.

Case 1 Case 2
element | vy TuxB Va OxxB
Q4 4549 | -1604 50.80 | -2146
QM6 96.07 | -2497 97.98 | -3235
P-5 96.18 | -3001 98.05 | -3899
QE2 96.5 -3004 98.26 | -3906
B-QE4 96.5 | -3004 | 9826 | -3906
exact 100 -3000 | 102.6 -4050

5.2 Mesh distortion test for beam bending

In this test a beam under bending is analyzed with only two plane stress elements (Figure 2). The
degree of distortion of the element 1s measured with the distortion parameter A. The material parame-
ters are E = 1500 and v = 0.25. From Table 2 we can see that the elements QE2 and ﬁ-QE4 show the
least sensitivity to mesh distortion even for very severe distortions. Elements QEZ2 and B-QE4 provide

identical results.

AN
=
3 \}\ —
2
' 1000
e

=

5 5

Figure 2: Cantilever beam for the mesh distortion test
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Table 2: Displacement v, of cantilever beam (Figure 2) for different values of the mesh distortion

parameter A

displacement v4

A | Q4 | QM6 | P-S QE2 | B-QE4 | Exact
0 | 28.0 | 1000 | 1000 | 100.0 | 1000 | 100

0.5 | 21.0 80.9 81.0 81.2 81.2 100
1 14.1 62.7 62.9 63.4 63.4 100
2 9.7 54.4 55.0 56.5 56.5 100
3 8.3 53.6 54.7 57.5 57.5 100
4 7.2 51.2 53.1 57.9 57.9 100
4.9 6.2 46.8 49.8 56.9 56.9 100

5.3 Cook’s membrane problem

The material parameters for the plane stress structure shown in Figure 3 are E=1 and v = 1/3. Dis-

placement and stress results are listed in Table 3.

N

77
440 § / : 240
by o4

Figure 3; Cook’s membrane problem: plane stress structure with unit load uniformly distributed along
rightedge (E=1, v=1/3).
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Table 3: Results for the problem shown in Figure 3.

displacement v at C
element | N=2 N=4 N=16
Q4 11.85 | 18.30 | 23.43
QM6 21.05 | 23.02 | 23.88
P-S 21.13 | 23.02 | 23.88
QE2 21.35 | 23.04 | 23.88
B-QE4 | 21.35 | 23.04 | 23.88
maximum stress at A
element | N=2 N=4 N=16
Q4 0.1078 | 0.1814 | 0.2353
QM6 0.1773 | 0.2225 | 0.2364
P-S 0.1854 | 0.2241 | 0.2364
QE2 0.1956 | 0.2261 | 0.2364
B-QE4 | 0.1956 | 02261 | 0.2364

5.4 Short beam under bending

A short beam, supported at the left end and subjected to a couple at the right edge, is modeled with a
mesh as shown in Figure 4. The purpose of this example is to test the influence of the mesh pattern on
the stress distribution in the finite element solution. In the QM6 element the stress has the tendency to
line up with the element edges of the element in the center of the mesh (Figure 5a). On the other hand
elements QE2 and B-QE4 preserve symmetries in the solution domain although a very coarse irregular

mesh is used (Figure 5b).
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Figure 4: Finite element mesh for a short beam under bending

STRESS 1
Min = -4.30E-01
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Current View
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Y = 0.00E+00

Max = 4,30E-01
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Current View
Min = -5.53E-01
X = 1.00E+01
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X = 0.00E-00
Y = 1.00E+01

Figure 5b: Stress o,, obtained with elements QE2 and I§-QE4
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5.5 Single element test for a Neo-Hookean material model

Wriggers and Reese [20] noticed that the enhanced element Q1/E4 [8] can experience problems in the
analysis of Neo-Hookean hyperelastic materials under uniform compression. They suggested the sin-
gle element test shown in Figure 6. The material model (87) is used with the following material
parameters: A = 40000, g = 80.2. At 30.4% compression the element Q1/E4 yields a non-physical ins-
tability. The element tangent matrix has two negative eigenvalues at this deformation level, whereas
the system tangent matrix has one negative eigenvalue. However, the element tangent matrix shouid
have only one negative eigenvalue for this deformation. On the other hand the element B-QE4 keeps
only one negative eigenvalue for the element tangent matrix, up to almost 100% compression.

I \ v

\
X

1

Figure 6: Finite element under compression

5.6 Multi-element test for a Neo-Hookean material model

One half of a block with unit sides is discretized with a 10 x 20 element mesh. The material parame-
ters for the Neo-Hookean model are chosen as in example 5.5. The element Q1/E4 yields a non-
physical instability at 30.4%. However, the first physical instability should appear at 49.6% compres-
sion. The element B-QEA4 is able to detect this physical instability.

5.7 Objectivity test for large deformation

The beam shown in Figure 7a is fixed at the right end and subjected to a prescribed displacement as
illustrated in Figure 7b. After calculating the displacements and stresses the structure is rotated and
displacements and stresses are calculated for each rotation angle (8 = 10°, 20°, ...,180°). For the B-
QE4 element the results are independent of the rotation angle. It should be noticed that the results are
not frame independent if we use enhanced strains based on equation (76) instead of (70).
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T ]]]

Figure 7. a) undeformed beam; b) deformed beam and FE mesh

5.8 Material 2 subjected to a homogeneous plane deformation

One half of a block of dimensions 1 x 1 is dicretized with non-rectangular elements (Figure 8). The
block is subjected to plane strain uni-axial stress parallel to the x;-axis. Material model 2 is used with
1= 100. The analytical solution for G in this problem is given as a function of the stretch A; (Figure

9):
o, = 100(1 — A7%3)

(102)

For every element in the mesh stresses can be calculated exactly.
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Figure 8: Finite element discretization for example 5.8
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Figure 9: Material 2. Cauchy stress vs. axial stretch
In Figure 9, the solid line represents the analytical solution and the circles stand for stress values

obtained numerically for a chosen finite element in the mesh.

6 Concluding remarks

For linear problems, elements B-QE4 and QE2 give identical results and show an overall very good
behavior. The advantage of element B-QEA4 is that it can be coded very similar to a displacement ele-
ment and therefore runs faster than element QE2. The key for a fast linear and non-linear element
implementation is to use orthogonal stress and strain functions in the mixed variational formulation.
Due to the use of orthogonal functions matrix inversions for strain and stress parameters at the element
level can be avoided in a finite element program. In the current implementation standard shape func-
tion derivatives N,, N, are exchanged by ITIX and ITIy functions derived in the paper. For non-linear
problems the displacement like implementation of the mixed element B-QE4 has the obvious advan-
tage that it is time saving compared to an implementation of the mixed variational formulation with

matrix inversions for strain and stress parameters.
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