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A novel optimization framework for VMAT with dynamic gantry 
couch rotation

Qihui Lyu, Victoria Y Yu, Dan Ruan, Ryan Neph, Daniel O’Connor, and Ke Sheng
Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California

Abstract

Existing Volumetric Modulated Arc Therapy (VMAT) optimization using coplanar arcs is highly 

efficient but usually dosimetrically inferior to intensity modulated radiation therapy (IMRT) with 

optimized non-coplanar beams. To achieve both dosimetric quality and delivery efficiency, we 

proposed in this study, a novel integrated optimization method for non-coplanar VMAT 

(4πVMAT). 4πVMAT with Direct Aperture Optimization (DAO) was achieved by utilizing a least 

square dose fidelity objective, along with an anisotropic total variation term for regularizing the 

fluence smoothness, a single segment term for imposing simple apertures, and a group sparsity 

term for selecting beam angles. Continuous gantry/couch angle trajectories were selected using the 

Dijkstra’s algorithm, where the edge and node costs were determined based on the maximal gantry 

rotation speed and the estimated fluence map at the current iteration, respectively. The couch-

gantry-patient collision space was calculated based on actual machine geometry and a human 

subject 3D surface. Beams leading to collision are excluded from the DAO and beam trajectory 

selection (BTS). An alternating optimization strategy was implemented to solve the integrated 

DAO and BTS problem. The feasibility of 4πVMAT using one full-arc or two full-arcs was tested 

on 9 patients with brain, lung, or prostate cancer. The plan was compared against a coplanar 

VMAT (2πVMAT) plan using one additional arc and collimator rotation. Compared to 2πVMAT, 

4πVMAT reduced the average maximum and mean organs-at-risk (OARs) dose by 9.63% and 

3.08% of the prescription dose with the same target coverage. R50 was reduced by 23.0%. 

Maximum doses to the dose limiting organs, such as the brainstem, the major vessels, and the 

proximal bronchus, were reduced by 8.1 Gy (64.8%), 16.3 Gy (41.5%), and 19.83 Gy (55.5%), 

respectively. The novel 4πVMAT approach affords efficient delivery of non-coplanar arc 

trajectories that lead to dosimetric improvements compared with coplanar VMAT using more arcs.

1. Introduction

In 1995, intensity-modulated arc therapy (IMAT) was proposed by Yu (Yu 1995), 

introducing a new method for rotational IMRT delivery on the widely available C-arm 

gantry machines. In 2007, Otto (Otto 2007) published a practical arc optimization algorithm 

that fueled the rapid commercial development and clinical adoption of Volumetric 

Modulated Arc Therapy (VMAT). Compared to the conventional static beam intensity 

modulated radiotherapy (IMRT), VMAT significantly improves delivery efficiency (Wolff et 
al. 2009; Rao et al. 2010; Verbakel et al. 2009) while maintaining comparable dosimetry.

Current VMAT methods utilize one or more arcs, each co-planar by itself, with or without 

manually selected couch rotations between arcs. For clarity, we term it 2πVMAT in this 
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paper. The 2πVMAT optimization problem has been solved by progressively inserting new 

control points into coarsely sampled gantry angles, until typically a 2-degree spacing 

between the gantry angles is achieved. This progressive sampling approach is not only 

computationally tractable, but also provides deliverable VMAT plans that meet the 

mechanical constraints of multi-leaf collimator (MLC), including the leaf travelling speed 

limits. However, this heuristic progressive sampling approach has several limitations. First, 

the greedy optimization algorithm is susceptible to undesired local minima due to its 

sensitivity to suboptimal parameter tuning in the early coarse-resolution stage of 

optimization. Second, the optimization result strongly depends on the parameter tuning 

history, causing difficulties to exactly reproduce a plan. Third, due to the interpolation that 

take place in the progressive sampling process, the method tends to spread the photon 

fluence uniformly throughout the entire arc even if only a fraction of the beam angles is 

optimal for treating the patient. To overcome these limitations, we developed a level-set 

based direct aperture optimization (DAO) for 2πVMAT (Nguyen, et al. 2016), which solves 

the entire arc optimization problem in full resolution. This non-progressive sampling 

approach was shown to generate a single arc coplanar VMAT that outperformed progressive 

sampling VMAT using two arcs with the same number of control points in each arc.

The improved VMAT method is still limited to coplanar arcs while non-coplanar beams hold 

unquestionable dosimetric advantages as shown by recent 4π IMRT research, which 

maximally utilizes the non-coplanar beams for significant dosimetric gains compared to the 

VMAT plans (Dong, et al. 2013; Sheng et al. 2015; Dong, et al. 2013). The advantage of 

non-coplanar IMRT beams is further demonstrated by Sharfo et al. (Sharfo et al. 2017) who 

combined VMAT with a few non-coplanar IMRT beams and showed improved organs-at-

risk (OAR) sparing and dose spillage. However, delivering many isolated non-coplanar 

beams can be time consuming and laborious to the clinic and an undue burden to the patient. 

Alternatively, non-coplanar VMAT arcs were investigated.

A straightforward non-coplanar VMAT approach was based on user-defined trajectories 

(Woods et al. 2016; Krayenbuehl et al. 2006; Shaitelman et al. 2011; Liang et al. 2015) that 

are limited to narrow applications or specific patient anatomies. Several automated VMAT 

trajectory optimization techniques were proposed to generalize the solution. Smyth et al. 
(Smyth et al. 2013) introduced a trajectory optimization for VMAT by choosing a minimal 

cost trajectory on a cost map, which was computed based on ray-OAR voxel intersections. 

Yang et al. (Yang et al. 2011) proposed a hierarchical clustering algorithm to find multiple 

continuous and extended sub-arcs through a minimum search of a score function containing 

geometrical information. MacDonald et al. (Lee MacDonald & Thomas 2015) also 

introduced a trajectory optimization algorithm that minimizes the geometric overlap between 

planning target volumes (PTV) and OARs based on the two-dimensional projection from 

source to the isocenter plane as a function of gantry and couch angle. VMAT optimization 

was then performed as a separate step. Due to the separation, these methods were ineffective 

in solving complex planning problem where clean trajectories not entering one or more 

OARs do not exist. To overcome the limitation, a gantry/couch trajectory optimization needs 

to be incorporated in dose optimization.
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Due to the difficulty of solving the complete non-coplanar VMAT problem, a 

mathematically tractable way is to first identify the non-coplanar control points using beam 

orientation optimization (BOO) and fluence map optimization (FMO), which essentially is 

the goal of 4π IMRT. Following the idea, Wild et al. (Wild et al. 2015) utilized a genetic 

algorithm to solve the combinatorial problem of BOO, and Papp et al. (Papp et al. 2015) 

used the gradient norm strategy to heuristically select a few promising beams. Once the 

static beam positions are determined as nodes, non-coplanar arcs are created to connect 

them. An intrinsic limitation of these methods is that although the static beam positions are 

dosimetrically desirable, the arcs connecting them are not. By generating the non-coplanar 

arc plans, the major workload of dose delivery is shifted to these dosimetrically suboptimal 

arc trajectories.

Evidently, to fundamentally solve the non-coplanar VMAT problem, not only the nodes, but 

also entire arc trajectories need to be part of the BOO equation. In this study, we propose a 

novel optimization framework that simultaneously solves the complete non-coplanar VMAT 

trajectory optimization and DAO problems for VMAT, while ensuring deliverability by 

avoiding couch-gantry-patient collision and enforcing mechanical constraints of MLC leaf 

motion and gantry rotation. We term this method 4πVMAT in contrast to the 2πVMAT 

methods using only individual coplanar arcs. Videos demonstrating the difference between 

2πVMAT and 4πVMAT can be found in the supplement material.

2. Materials and methods

2.1. Formulation

2.1.1. Direct Aperture Optimization and Beam Orientation Optimization—The 

proposed 4πVMAT DAO and BOO formulation is written as
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minimize

f bα, cbα, ubα b, α = 1
nb, nα

1
2 W ∑

b = 1

nb
∑

α = 1

nα
Abα f bα − d0

2

2

︸fidelity term

+ ∑
b = 1

nb
∑

α = 1

nα
λ1 D1bα

f bα 1
+ λ2 D2bα

f bα 1
︸anisotropic TV term on f

+ 1
2 ∑

b = 1

nb
∑

α = 1

nα
γ1 diag(ubα)( f bα − cbα) 2

2 + γ2 diag(1 − ubα) f bα 2
2

︸single segment term

+ ∑
b = 1

nb
∑

α = 1

nα
g1 D1bα

ubα 1
+ g2 D2bα

ubα 1
︸anisotropic TV term on u

+ ∑
b = 1

nb
∑

α = 1

nα
γ3Gbα f bα 2 + γ4Gbα(1 − Pbα) f bα 2

︸group sparsity term

+ g3 g3 DPu 1
︸aperture continuty term

subject to f bα ≥ 0, cbα ≥ 0, ubα ≥ 1, b = 1, 2, …, nb, α = 1, 2, …, nα

f bα = 0, cbα = 0, ubα = 0, ∀(b, α) ∉ S

u = ub = 1 α = 1
T ub = 1 α = 2

T ⋯ ub = 1 α = αn
T ub = 2 α = 1

T ub = 2 α = 2
T ⋯ ub = nb α = nα

T T
,

(1)

where the notations for the variables and data are summarized in Table 1.

In this formulation, the data fidelity term attempts to find the optimal fluence map fbα such 

that the total calculated dose from all candidate beams is as close as possible to the optimal 

dose d0.

The priorities for structures of interest are controlled by the diagonal weighting matrix W. 

The anisotropic total variation (TV) regularization on fluence map fbα encourages piecewise 

continuity of the fluence map within each candidate beam (Zhu et al. 2008). λ1 and λ2 

control the degree of piecewise continuity of fbα in the direction parallel and orthogonal to 
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the MLC leaf direction, respectively. A balanced tradeoff between dose fidelity and fluence 

map continuity achieves a high quality and deliverable dose distribution.

The single segment term enforces the final fluence map fbα to contain only one segment per 

candidate beam. It pushes fbα towards cbα where ubα is 1, and towards 0 where ubα is 0, 

encouraging the fluence map to be a constant within the aperture, and 0 outside the aperture. 

By gradually increasing the weighting on this term during the optimization process, the 

optimizer forces single segment per candidate beam. The anisotropic TV term on aperture 

variable ubα encourages large segments and penalizes holes in the aperture, with 

hyperparameters λ1 and λ2 controlling the degree of segment continuity in the direction 

parallel and orthogonal to the MLC leaf direction respectively. The single segment term and 

the anisotropic TV term address the hardware constraints by enforcing a single deliverable 

segment within each candidate beam.

The group sparsity term is a l2,1 norm penalty. This convex penalty provides a non-greedy 

approach for BOO in 4πVMAT by promoting group sparsity in the fluence map fbα and 

encouraging most of candidate beams to be inactive. This term is divided into two 

components through a parameter Pbα, which is defined as 1 for candidate beams that are on 

the selected trajectory in the beam trajectory selection (BTS) process, and 0 elsewhere. y3 

controls the sparsity level for all candidate beams and y4 adds additional weighting on 

candidate beams that are not on the optimal trajectory. The aperture continuity term 

regulates leaf movement by penalizing apertures differences between adjacent candidate 

beams on the selected trajectory from BTS. The group sparsity term and the aperture 

continuity term address the hardware constraints by switching off the off-trajectory beams 

by the end of the optimization and encouraging aperture continuity along the trajectory 

respectively.

The flowchart of the proposed 4πVMAT optimization framework is shown in Figure 1. First 

of all, a patient-specific collision map is generated and candidate beams are divided into a 

feasible set S and an infeasible set based on an individualized collision model for non-

coplanar radiotherapy delivery (Yu et al. 2015). Then Pbα is assigned as 1 for all feasible 

beams, which serves as prior information for the DAO&BOO. The DAO&BOO solves the 

optimization problem in equation (1) and optimizes fluence map , fluence intensity cbα, and 

vectorized aperture variable ubα alternatingly, generating a 4πVMAT plan with a small 

fraction of beams active. Note that these on-beams are not necessarily on a connected 

trajectory; instead they are separated in the entire feasible space. The optimal fluence map 

fbα is then utilized to generate the simplified Dijkstra’s map (Bollobás & Riordan 1993; 

Dijkstra 1959), on which the BTS is performed and one or two trajectories are selected 

based on the tumor region. Pbα is assigned as 1 for all candidate beams on the selected 

trajectories and 0 elsewhere, which is then translated into the DAO&BOO in the next 

iteration, penalizing heavily on the fluence map development for off-trajectory candidate 

beams as compared with on-trajectory beams. The optimization alternates between 

DAO&BOO and BTS until convergence, allowing BTS to fully explore the dose domain 

before converging to a final trajectory.
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2.1.2. Beam trajectory selection—The BTS is formulated as a travelling salesman 

problem, where the gantry/couch graph G = [N, E] is defined as a number of nodes N and 

edges E that connects every two nodes. In this 4πVMAT optimization framework, the 

gantry/couch graph contains nα by nb nodes, representing nα gantry angles and nb couch 

angles, and associated with a node cost NC(b, α) for each candidate beam (b, α) and the 

edge cost EC((b1, α1), (b2, α2)) for the edge that connects (b1, α1) and (b2, α2). A graph 

search algorithm is performed on the graph to determine the shortest path from one node to 

any other nodes. For the patient safety and comfort, this 4πVMAT framework enforces a 

constant couch rotation direction within each arc and allows the gantry to rotate 

dynamically. The 4πVMAT arc is represented by a continuous, one-way path on the gantry/

couch graph, starting from the first couch angle and ending at the last couch angle, 

containing only one candidate beam per couch angle.

The node cost NC(b, α) for a feasible candidate beam with couch angle b and gantry angel 

α depends on fbα, the fluence map from DAO&BOO at the current iteration, which is 

deliverable for each candidate beams, though they may not be connected by a trajectory. The 

node cost (b, α) for an infeasible candidate beam is infinity, which enforces trajectory 

selection from feasible beams only. The formulation of (b, α) is given by

Costmax = max 1
2 W(Abα f bα − d0) 2

2 ∀(b, α) ∈ S

NC(b, α) = −log Costmax − 1
2 W(Abα f bα − d0) 2

2 , i f (b, α) ∈ S

∞, i f (b, α) ∉ S
.

(2)

Candidate beams that correspond to dose contribution closer to the ideal dose distribution 

are assigned with lower node costs. By finding the shortest path on the Dijkstra’s graph, the 

optimal trajectory prefers candidate beams that are more dosimetrically promising.

The edge costs between every two nodes enforce constraints on trajectory selection. The 

edge cost between candidate beams (b1, α1) and (b2, α2) is defined as

EC (b1, α1), (b2, α2) =
0 i f b2 − b1 = 1 and α1 − α2 < α0
∞ otherwise

, (3)

where α0 is calculated as α0 = ωg ⋅ τ, with ωg representing the maximum angular rotation 

speed of the gantry and τ the time frame between each control point. Equation (3) ensures 

that the selected trajectory is a continuous one-way path that contains only one gantry angle 

per couch angle, and that the gantry angles of adjacent beams on the selected trajectory are 

within gantry rotation speed limits (controlled by α0). For simpler cases such as the brain 

tumor, a single 4πVMAT arc can be adequate to achieve satisfactory dose profile. For more 

complex patients and body sites where non-coplanar angles are restricted by collision, two 

arcs may be necessary to substantially improve the dose distribution. In this case, the node 
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cost (b, α) is assigned to be infinity for any candidate beams on the first selected trajectory, 

and then the second trajectory is chosen by finding the shortest path on the updated graph.

2.2. Algorithm

Section 2.1 illustrates the entire optimization framework, including the DAO&BOO module 

and the BTS module. This section provides a solution to the optimization framework. The 

DAO&BOO module was solved using FISTA, with details discussed in the section 2.2.1. 

The BTS module was solved using Dijkstra’s algorithm, shown in the section 2.2.2. 

Together the optimizer solves the entire problem iteratively and alternatingly between the 

two modules.

2.2.1. DAO&BOO using FISTA—Akin to our previous study (Nguyen, et al. 2016), the 

DAO&BOO module consists of three submodules, each of which solves the optimization 

problem in equation (1) with respect to one optimization variable while holding the other 

two variables constant, and the whole optimization problem is solved in an alternating block 

fashion. In the submodule 2, the algorithm solves equation (1) with respect to the fluence 

intensity cbα, and results in a closed form equation for cbα. In the submodule 1 and 

submodule 3, the optimization problem solves for the vectorized fluence map fbα and the 

vectorized aperture variable ubα, and generates a convex optimization problem that can be 

efficiently solved through an accelerated proximal gradient method, known as the Fast 

Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck & Teboulle 2009).

FISTA is capable of solving any optimization problem that can be formulated as

minimize F(x) + G(x), (4)

where F is a differentiable convex function with a Lipschitz continuous gradient, and G is a 

convex function which has a proximal operator that can be evaluated efficiently. The 

proximal operator (Parikh & Boyd 2013) of a function G with step size t is defined by

proxtG(x) = argmin
z

G(z) + 1
2t z − x 2

2
.

The pseudocode for the FISTA with line search algorithm is summarized in Algorithm 1, 

where evaluation of the gradient of F and the proximal operator of G are required at each 

iteration, and the function value of F is also assessed to obtain the optimal step size through 

a line search method.

Algorithm 1

FISTA with line search

Pseudocode for FISTA with line search

Initialize x0: = 0, v0: = x0 , t0 > 0, r1 > 1, r2 > 1

for k = 1, 2, … do
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Pseudocode for FISTA with line search

  t ≔ r1tk−1

  Repeat

    θ: =
1 i f k = 1

positive root o f tk − 1θ2 = tθk − 1
2 (1 − θ) i f k > 1

   y ≔ (1 − θ)xk−1 + θvk−1

   x ≔ proxtG(y − t∇F(y))

   break i f F(x) ≤ F(y) + < ∇F(y), x − y > + 1
2t x − y 2

2

  t ≔ t/r2

 tk ≔ t

 θk ≔ θ

  νk : = xk + 1
θk

(x − xk)

  break i f
x − xk

xk
≤ ε

 xk ≔ x

end for

return x

2.2.1.1. Algorithm Submodule 1: Update fbα: Submodule 1 updates the fluence map 

vector fbα while holding the aperture variable ubα and fluence intensity cbα constant. 

Omitting terms that do not depend on fbα, we see that solving equation (1) with respect to 

the vector fbα is equivalent to solving the reduced problem
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minimize

f bα b, α = 1
nb, nα

1
2 W ∑

b = 1

nb
∑

α = 1

nα
Abα f bα − d

2

2

+ ∑
b = 1

nb
∑

α = 1

nα
λ1 D1bα

f bα 1
+ λ2 D2bα

f bα 1

+ 1
2 ∑

b = 1

nb
∑

α = 1

nα
γ1 diag(ubα)( f bα − cbα) 2

2 + γ2 diag(1 − ubα) f bα 2
2

+ ∑
b = 1

nb
∑

α = 1

nα
γ3Gbα f bα 2 + γ4Gbα(1 − Pbα) f bα 2

subject to f bα ≥ 0, b = 1, 2, …, nb, α = 1, 2, …, nα

f bα = 0, ∀(b, α) ∉ S

(5)

This subproblem finds the optimal fluence map fbα that minimizes the difference between 

the calculated dose and the ideal dose, regularizes fbα to approach the aperture ubα and 

intensity cbα through a total variation term and a single segment term, while at the same time 

encouraging most candidate beams to be inactive by utilizing the group sparsity term. As 

shown in the appendix, equation (5) can be written in the canonical FISTA form, and the 

optimization problem could be solved through FISTA with evaluation of the gradient of F1 

and the proximal operator of G1.

2.2.1.2. Algorithm Submodule 2: Update cbα: Submodule 2 updates cbα while holding fbα 
and ubα constant. The optimization problem in equation (1) with respect to cbα is equivalent 

to

minimize

f bα b, α = 1
nb, nα

∑
b = 1

nb
∑

α = 1

nα
diag(ubα)( f bα − cbα) 2

2

subject to cbα ≥ 0, b = 1, 2, …, nb, α = 1, 2, …, nα .

cbα = 0, ∀(b, α) ∉ S .

The optimized cbα has a closed form
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cbα =
ubα
T f bα

ubα
T 1

b = 1, 2, .., nb, α = 1, 2, .., nα, (b, α) ∈ S .

This optimal fluence intensity cbα is the average of all beamlet intensities within the aperture 

for each candidate beam.

2.2.1.3. Algorithm Submodule 3: Update ubα: Submodule 3 updates ubα while holding fbα 
and cbα constant. The optimization problem in equation (1) with respect to ubα is equivalent 

to

minimize

ubα b, α = 1
nb, nα

1
2 ∑

b = 1

nb
∑

α = 1

nα
γ1 diag(ubα)( f bα − cbα) 2

2 + γ2 diag(1 − ubα) f bα 2
2

+ ∑
b = 1

nb
∑

α = 1

nα
g1 D1bα

ubα 1
+ g2 D2bα

ubα 1
+ g3 DPu 1

subject to 0 ≤ ubα ≤ 1, b = 1, 2, …, nb, α = 1, 2, …, nα

ubα = 0, ∀(b, α) ∉ S

(6)

This optimization problem could also be efficiently solved through FISTA, which is 

described in the appendix. The whole DAO&BOO is solved in an alternating block fashion 

that repeatedly runs through submodule 1 to submodule 3 until the fluence map converges.

2.2.2. Beam Trajectory Selection: Dijkstra’s Algorithm—As illustrated in section II.

1.2, the gantry/couch graph contains nα by nb nodes with node costs and edge costs defined 

in equation (2) and equation (3). The edge costs in this problem is special, since all 

connections between two candidate beams are assigned as infinity except for the path that 

goes directly to the next couch angle with a moderate gantry angle variation. It ensures that 

the selected trajectory starts from the first couch angle and ends at the last couch angle, with 

only one candidate beam selected for each couch angle. This setup not only guarantees a 

practicable trajectory for 4πVMAT delivery that addresses patient safety and comfort, but 

also makes the travelling salesman problem more straightforward and computationally 

inexpensive to solve. This special graph optimization problem is solved using a simplified 

Dijkstra’s algorithm (Bollobás & Riordan 1993; Dijkstra 1959) as shown in Algorithm 2. 

αsℎort is a vector with nb elements denoting the candidate beams on the selected trajectory, 

with couch angle b and gantry angle αshort(b). For lung and prostate patient, a secondary 

trajectory αsℎort2 is obtained on top of αsℎort. Once the trajectories are chosen, Pbα is 
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assigned to be 1 for any selected candidate beams, and 0 elsewhere, and is utilized in 

DAO&BOO to assign different group sparsity penalties for selected and unselected 

candidate beams.

Algorithm 2

Pseudocode for Simplified Dijkstra’s algorithm

Simplified Dijkstra’s algorithm

Initialize the graph with each node G(b, α) ≔ ∞

G(1, α) ≔ NC(1, α)

for b = 1, 2, …, nb − 1

 for α = 1, 2,⋯, nα

   G(b + 1, α) : = min
α′

G(b, α′) + NC(b + 1, α) + EC (b, α′), (b + 1, α)

   αt(b + 1, α) : = argmin
α′

G(b, α′) + NC(b + 1, α) + EC (b, α′), (b + 1, α)

  end for

end for

αshort(nb) : = argmin
α′

G(nb, α′)

for b = nb − 1, nb − 2, …, 1

 αshort(b) ≔ αshort(b + 1, α1(b + 1))

end for

if planning for lung and prostate cancer patient

 NC(b, αshort(b)) ≔ ∞

 G2(1, α) ≔ NC(1, α)

 for b = 1, 2,⋯, nb

  for α = 1, 2,⋯, nα

    G2(b + 1, α) : = min
α′

G2(b, α′) + NC(b + 1, α) + EC (b, α′), (b + 1, α)

    αt2(b + 1, α) : = argmin
α′

G2(b, α′) + NC(b + 1, α) + EC (b, α′), (b + 1, α)

  end for

 end for

  αshort2(nb) : = argmin
α′

G2(nb, α′)

 for b = nb − 1, nb − 2,⋯, 1

  αshort2(b) ≔ αt2(b + 1, αshort2(b + 1))

 end for

End

2.3. Implementation Details

The feasible beam set is based on the collision model from our previous study (Yu et al. 
2015), which provides an individualized collision prediction model for the purpose of non-
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coplanar beam delivery in IMRT. In the 4πVMAT study, all candidate beams that are 

predicted to be undeliverable isocentrically are excluded, and a 10-degree margin is added to 

both upper bound and lower bound of the infeasible gantry angle range for each couch angle 

to avoid couch-gantry-patient collision during the gantry/couch rotation between feasible 

beams.

Parameter tuning can be tricky in this 4πVMAT framework, since there are a number of 

hyper-parameters in addition to the regular structure weightings that help ensure the 

deliverability of 4πVMAT plan. Nevertheless, the optimization results are insensitive to 

most of the hyper-parameters that control the deliverability. Once a suitable set of these 

parameters are found, our experiments show robust performance even if the structure 

weightings are changed or applied to different patient cases with comparable sizes of PTV 

and OARs.

To achieve a satisfactory local minimum that makes much of the data fidelity term, some 

heuristics are set up for parameters y1 − y4. All of them increase as the optimization 

progresses, which allow the optimization to focus on the convex dose fidelity term and 

ensure a good local minimum with high dosimetric quality at the initial stages of the 

optimization. During the optimization, the single segment term and group sparsity term are 

gradually emphasized to ensure plan deliverability of the DAO result. y1 and y2 were 

updated when each round of three submodules in DAO is completed

γ1 = γ10 ⋅ 1 + (1000)
i
N γ2 = γ20 ⋅ 1 + (1000)

i
N ,

where i is the number of rounds from submodule 1 to submodule 3 within the DAO module, 

N is the total number of rounds within the DAO module, which we chose to be 6 in this 

study empirically. y10 and y20 are the initial values of y1 and y2 respectively. y3 and y4 

enforces the number of active candidate beams to be within certain ranges, which is 

designed to decrease with the iteration of BTS process. In submodule 1 where the group 

sparsity term controls the sparsity level of , the number of active beams is evaluated every 20 

iterations. y3 and y4 are automatically increased or decreased by 20% if there are too many 

or insufficient active beams. All the hyperparameters were tuned based on the optimization 

performance. For example, the λ1 and λ2 would be increased if the fluence map was too 

rough, or decreased if it was too smooth. We also increase the values of y10 and y20 if there 

are multiple segments in one candidate beam. The range of these hyper parameters in our 

study are listed in Table 2.

A video showing the alternating optimization process can be found in the supplement 

material. The video shows the fluence map fbα, fluence intensity cbα, aperture variable ubα, 

and selected trajectory Pbα alternatingly, labelled by the iteration number Nt ⋅ ND ⋅ Nx, 

where Nt is the iteration number of performing the DAO&BOO module and BTS module, 

ND is the iteration number within the DAO&BOO module, and Nx is the iteration number 

within the submodules of the DAO&BOO that optimizes for fbα, cbα, and ubα respectively.
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2.4. Evaluation

The feasibility of the optimization algorithm was tested on three glioblastoma multiforme 

retreatment patient (GBM), three lung cancer patient (LNG), and three prostate cancer 

patient (PRT). The GBM retreatment planning followed an internal protocol to minimize 

dose to previously irradiated critical organs (Yu et al. 2018). The centrally located lung and 

the prostate stereotactic body radiotherapy (SBRT) plans follow (Chang et al. 2008) and 

(King et al. 2012), respectively. Table 3 summarizes the number of feasible beams, the 

prescription doses, and PTV volumes for all patients. patients

Using a convolution/superposition code with a 6 MV x-ray polyenergetic kernel as described 

in our previous publications (Neylon et al. 2014; Dong, et al. 2013), the beamlet dose was 

calculated for all feasible beams among 2400 candidate beams in 4πVMAT. Since the gantry 

rotation angles are more likely to be collision-free when the couch stays close to central 

position, the couch angles are more densely sampled for couch angles ranging from 15° to 

0° and from 360° to 345°, following the International Electrotechnical Commission (IEC 

61217) convention. The 2400 candidate beams correspond to 30 gantry angles with 12-

degree spacing from 0 to 359 degrees, and 80 couch angles, separated by 1 degree for the 

central 30 degree range and 3 degrees elsewhere, from 270 to 90 degrees. For 2πVMAT, the 

beamlet dose was calculated for 80 gantry angles with 4.5 degree of separation for each arc, 

from 0 to 359 degrees. The beamlet resolution was 0.5×0.5 cm2, and the dose array 

resolution was 0.25×0.25×0.25 cm3.

All arcs contain 80 control points in this study. The 4πVMAT plan contains one arc for the 

GBM patient, 80 control points in total, which is compared against a 2πVMAT plan with 

two coplanar arcs with collimator angles at 45° and 135°, 160 control points in total. For the 

lung cancer patient and prostate cancer patient, the 4πVMAT plan contains two arcs with 

160 control points in total, while the 2πVMAT contains three arcs with collimator angles at 

30°, 90°, and 150°, 240 control points in total. The 2πVMAT and 4πVMAT utilize the same 

DAO model except that the 2πVMAT has a predefined coplanar trajectory. The travelling 

time between each beam is 2s, allowing 12° of gantry rotation.

PTV statistics including PTV D95, D98, D99, D2, (defined as the dose which is received by 

at least 95%, 98%, 99%, and 2% of the volume respectively), and PTV homogeneity 

defined as
D95
D5

 were evaluated. For OAR, the Dmax and Dmean were assessed. Maximum 

dose is defined as D2, recommended by the ICRU-83 report (Grégoire & Mackie 2011). The 

dose conformity defined as the ratio between the PTV volume receiving 100% or more of 

the prescription dose and the PTV volume, and the Integral Dose defined as the volume 

integral of the dose deposited in the patient, were also obtained. The R50, defined as the 

50% isodose volume divided by the target volume, was evaluated to quantify the amount of 

high dose spillage in the patient body.

3. Results

Figure 2 shows the fluence map of the GBM #1 patient as an example of the optimization 

result on the Gantry/Couch graph. The red regions on the Gantry/Couch graph indicate the 

Lyu et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



candidate beams that cause collision. Notice that only those candidate beams that are on the 

selected trajectory have nonzero fluence weights. To deliver the 4πVMAT plan, the couch 

rotates from 90° to 270° and the gantry rotates accordingly. Figure 3 shows the selected 

beam angles on the Gantry/Couch graph with corresponding 3D view for all patients. The 

4πVMAT algorithm optimizes for all candidate beams simultaneously and finds one or two 

optimal trajectories that go through the safe region, from the first couch angle to the last 

couch angle, indicated by the green blocks, affording efficient delivery of non-coplanar arc. 

The maximum allowance of the gantry rotation is 12° between two adjacent beams. With the 

gantry rotation speed limit at 6° per second, 2 seconds is sufficient for delivery at one 

control point. For the GBM patient, the 4πVMAT plan takes around 3 minutes in estimation 

to deliver the single arc 4πVMAT plan, and for the lung cancer patient and prostate cancer 

patient, the calculated time is approximately 5 minutes to deliver the two arcs 4πVMAT 

plan. Videos demonstrating the 4πVMAT delivery process can be found in the supplement 

material.

Figure 4 shows the dose distribution of 4πVMAT and 2πVMAT for all patients. By using 

non-coplanar beams, 4πVMAT has the flexibility to distribute the dose in any non-colliding 

direction within the 4π spherical space, depending on the benefits of OAR sparing and target 

coverage. A greater separation of these non-coplanar beams also reduces the high dose 

spillage in 4πVMAT. In the GBM cases, the geometry is simpler, the single arc 4πVMAT 

plans were able to significantly avoid dose spillage to the brainstem as well as other critical 

structures, such as the chiasm and right optic nerve in the GBM #1 case, and the left cochlea 

in the GBM #2. In all the LNG cases, by utilizing beams with greater separation, the two-arc 

4πVMAT plans substantially reduced the high dose spillage compared with the three-arc 

2πVMAT plan, including those to the critical organs, such as the chest wall, proximal 

bronchus, and spinal cord in the LNG #1, the heart in LNG #2, and the aorta and pulmonary 

vessel in LNG #3. For all three prostate cases, the two-arc 4πVMAT plans resulted in a 

more desirable asymmetric dose in the anterior/posterior direction to substantially better 

spare the rectum as compared with the three-arc 2πVMAT plan, while achieving similar 

bladder high dose volumes. In all cases, by utilizing these OAR-sparing angles, 4πVMAT 

achieved consistently better OARs sparing at the same time maintaining or improving PTV 

coverage.

Figure 5 shows the DVHs of 4πVMAT and 2πVMAT for all OARs of the patients. 

Complete DVH plots with PTV included are shown in the supplement materials. The 

4πVMAT was able to markedly reduce dose to OARs while achieving comparable or better 

PTV statistics across all patients, especially for the dose limiting organs, such as the 

brainstem in the GBM #2 and GBM #3, the proximal bronchus in all three LNG patients, the 

major vessels in LNG #2, and LNG #3, and the seminal vesicle and the rectum in all PRT 

patients. In the GBM #3 case, the one-arc 4πVMAT plan reduced the maximum doses to the 

brainstem by 8.1 Gy (64.8%) compared with the two-arc 2πVMAT plan. In the LNG #1 

case and the LNG #2 case, the two-arc 4πVMAT plan reduced the dose to the proximal 

bronchus and the major vessels by 16.3 Gy (41.5%) and 19.83 Gy (55.5%) compared with 

the three-arc 2πVMAT plan. Across all LNG case, the 4πVMAT plan substantially reduced 

the hot spots in the critical structures that were covered by high dose up to 30Gy.

Lyu et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2019 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The quantitative statistics for the PTV and OARs are shown in Table 4 and Table 5. The 

PTV statistics, Dose Conformity, and Integral Dose are comparable across 4πVMAT and 

2πVMAT, but the 4πVMAT is able to substantially reduce R50, indicating a remarkable 

improvement in dose compactness that is consistent with previously reported 4π IMRT-

VMAT comparison (Tran et al. 2017). On average, the 4πVMAT plan reduced the OARs 

max and mean doses by 9.63% and 3.08% of the prescription dose. The single largest 

sparing in OARs max and mean dose is up to 39.7% and 14.9% of the prescription dose.

4. Discussion

Our previous 2πVMAT method (Nguyen, et al. 2016) solves the VMAT optimization 

problem by considering all beams simultaneously instead of progressive sampling, making it 

possible to incorporate BOO into non-coplanar VMAT. The integrated 4πVMAT 

optimization framework further develops the 2πVMAT method by simultaneously solving 

both the DAO and BTS problems. By expanding the solution to the non-coplanar space, 

4πVMAT was able to greatly improve the dose compactness as indicated by R50, reduce 

dose spillage to OARs and subsequently achieve better dosimetry than the 2πVMAT with 

more arcs. Considering that the non-progressive sampling 2πVMAT was already superior to 

the existing progressive sampling VMAT algorithm that is widely employed in clinics 

(Nguyen, et al. 2016), 4πVMAT holds the strong promise of substantially improving state-

of-the-art radiotherapy without sacrificing delivery efficiency.

4πVMAT takes an alternating approach between DAO&BOO and BTS. From the dosimetric 

point of view, the DAO&BOO achieves high plan quality by activating a set of 

dosimetrically promising beam, and the BTS finds the optimal trajectory that tends to 

include the most of these active beams by minimizing the selected node costs. On the other 

hand, to address the mechanical constraints, the regularization in the DAO&BOO enforces 

the plan deliverability, and the BTS meets the delivery/treatment time constraint and selects 

only the trajectories that does not require a substantial gantry rotation between adjacent 

beams, by minimizing the edge cost. The selected trajectory is then translated into 

DAO&BOO to further explore the dose domain through a weighted group sparsity term, 

where off-trajectory candidate beams are penalized more heavily. In the DAO&BOO 

process, promising off-trajectory beams could still be turned on to provide better dose 

distribution, and on-trajectory beams might be rejected if they are dosimetrically 

undesirable. By alternatingly optimizing between the DAO&BOO and BTS, the algorithm 

makes an integrated final decision based on both the dosimetry and mechanical constraints. 

With the gantry rotation speed limit at 6° per second, 2 seconds is sufficient for delivery at 

one control point of the current 4πVMAT plan, where the largest gantry rotation angle is 12 

degrees between adjacent beams. A more rapid delivery may be achieved with faster gantry 

rotation.

Compared with the previous non-coplanar VMAT study with user-defined heuristic 

trajectories (Krayenbuehl et al. 2006; Shaitelman et al. 2011; Liang et al. 2015) and 

trajectory optimization techniques using geometric information (Smyth et al. 2013; Yang et 
al. 2011; Lee MacDonald & Thomas 2015), this 4πVMAT optimization framework is able 

to thoroughly and automatically search the entire non-coplanar trajectory space for various 
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patient anatomies and dosimetric requirements. Compared with other non-coplanar VMAT 

optimization algorithms using optimized static IMRT beams as anchoring nodes for non-

coplanar arcs that may not be dosimetrically optimal (Wild et al. 2015; Papp et al. 2015), our 

4πVMAT integrates BTS into VMAT optimization, and encourages the fluence map to be 

developed natively into 4πVMAT arcs. Compare with the current commercial solution 

HyperArc (Ohira et al. 2018), which is restricted to using a few predefined trajectory 

templates and is currently only applied to the brain treatment, the proposed 4πVMAT 

framework fully explores the 4π space with a site-specific collision model, and hence holds 

the promise of substantially improving the dose profile and being more broadly applicable to 

other body sites.

4πVMAT in its current form is computationally intensive due to the optimization problem 

size and alternating optimization between DAO and BTS despite our effort to accelerate the 

computation. In our previous study on FMO for IMRT (Nguyen et al. 2015; Nguyen, et al. 
2016) and VMAT (Nguyen, et al. 2016), a first-order primal-dual algorithm, the Chambolle-

Pock (Chambolle & Pock 2011) algorithm, has shown a robust performance for treatment 

planning optimization and is computationally inexpensive compared to other first-order 

methods such as alternating direction method of multipliers (ADMM) (Boyd 2011), since 

ADMM requires to solve a linear equation involving the system matrix at each iteration. In 

this study, the DAO modules are solved by FISTA (Beck & Teboulle 2009), a fast proximal 

gradient method. On one hand, FISTA shares the same merits with the Chambolle-Pock 

algorithm in that it only requires the multiplication of the system matrix and its transpose at 

each iteration. On the other hand, it achieves a convergence rate of O( 1
k2 ), which is 

substantially faster than the O(1
k ) convergence rate of the Chambolle-Pock algorithm. Even 

with the accelerated algorithm, the optimization run time on a single desktop using 

MATLAB implementation still took from 1 hour for the GBM case to 9 hours for the LNG 

case and PRT case. To further speed up optimization for clinical implementation, aside from 

switching to a higher performance language such as C, the most computationally expensive 

matrix multiplication step in FISTA is parallelizable and can therefore be moved to graphic 

processing units (GPUs) for higher computation efficiency. The current 4πVMAT 

framework was evaluated with 12 degrees of gantry angle spacing to reduce the computation 

cost. With future acceleration techniques, we may be able to perform the optimization with a 

denser sampling of the 4π space. Another limitation of the 4πVMAT optimization 

framework is its complexity in tuning the hyperparameters, compounded with its heavy 

computation costs, can be time consuming and laborious. One way to get around with this 

problem is to simplify the dataset when tuning the hyperparameters, either by downsampling 

the structure of interest or truncating the dose calculation matrix. From our experience, the 

algorithm is insensitive to this procedure, hence the same set of hyperparameters apply to the 

full sampled data.

5. Conclusion

This study presents a novel non-coplanar 4πVMAT method, which solves the direct aperture 

optimization (DAO) and beam trajectory selection (BTS) in an alternating approach using 
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FISTA and Dijkstra’s algorithms. Without sacrificing deliverability and treatment efficiency, 

the novel 4πVMAT method substantially improves dose compactness and OAR sparing with 

the same PTV coverage, as compared with coplanar VMAT (2πVMAT) with more arcs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research is supported by DOE Grants No. DE-SC0017057 and DE-SC0017687, and NIH Grant 
R44CA183390, R01CA188300 and R43CA183390.

Appendix

A1 Smooth approximation to facilitate the application of FISTA

FISTA requires the objective function to be the sum of a smooth term and a simple term, 

which makes the nondifferentiable l1 norm in the TV regularization terms difficult to deal 

with. To avoid this problem, the l1 norm is replaced by the Huber penalty (Noe 1930) 

defined as

H(x) = x 1
(μ) = ∑

i
xi

(μ),

where

xi
(μ) =

1
2μ xi

2, xi ≤ μ

xi − μ
2 , xi > μ .

The Huber penalty provides a convex, differentiable approximation to the l1 norm, with a 

smoothing parameter μ. The gradient of the Huber penalty function (x) is Lipschitz 

continuous with Lipschitz constant L = 1
μ .

A2 Apply FISTA on Submodule 1

To apply FISTA on the subproblem formulated in equation (5), it is necessary to formulate 

the problem in the canonical FISTA form shown in equation (4). Here we define functions 

F1 and G1 as:
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F1( f ) = 1
2 W(A f − d) 2

2 + λ1 D1 f 1
(μ) + λ2 D2 f 1

(μ)

+ 1
2 γ1 diag(u)( f − c) 2

2 + γ2 diag(1 − u) f 2
2

G1( f ) = ∑
b = 1

nb
∑

α = 1

nα
γ3Gbα f bα 2 + γ4Gbα(1 − Pbα) f bα 2 + I+( f bα)

where

I+( f bα) =
0 i f f bα ≥ 0 and (b, α) ∈ S,

∞ otherwise
,

A = Ab = 1 α = 1 Ab = 1 α = 2 ⋯ Ab = 1 α = nα
Ab = 2 α = 1 Ab = 2 α = 2 ⋯ Ab = nb α = nα

,

D1 =

D1b = 1 α = 1
⋯ 0

⋮ ⋱ ⋮
0 ⋯ D1b = nb α = nα

, D2 =

D2b = 1 α = 1
⋯ 0

⋮ ⋱ ⋮
0 ⋯ D2b = nb α = nα

,

f = f b = 1 α = 1
T f b = 1 α = 2

T ⋯ f b = 1 α = nα
T f b = 2 α = 1

T f b = 2 α = 2
T ⋯ f b = nb α = nα

T T
,

u = ub = 1 α = 1
T ub = 1 α = 2

T ⋯ ub = 1 α = nα
T ub = 2 α = 1

T ub = 2 α = 2
T ⋯ ub = nb α = nα

T T
,

c = cb = 1 α = 1 1 T
cb = 1 α = 2 1 T ⋯ cb = 1 α = nα

1 T
cb = 2 α = 1 1 T

cb = 2 α = 2 1 T ⋯ cb = nb α = nα
1 T .T

The gradient of F1 and the proximal operator of G1 can be evaluated efficiently through

∇F1( f ) = ATW2(A f − d) +
λ1
μ D1

TP[ − μ, μ](D1 f ) +
λ2
μ D2

TP[ − μ, μ](D2 f ) + γ1diag(u)( f − c) + γ2diag(1 − u) f

[proxtG1
( f )]bα = f bα − PB(max( f bα, 0))

proxtG1
( f )

= proxtG1
( f )b = 1 α = 1

T proxtG1
( f )b = 1 α = 2

T ⋯ proxtG1
( f )b = 2 α = 1

T ⋯ f b = nb α = nα
T T

where B is the Euclidean ball of radius (y3Gbα + y4Gbα(1 − Pbα))t centered at the origin and 

PB is the function that projects onto B. The maximum is interpreted componentwise. With 

these formulas for the gradient of F1 and the proximal operator of G1, the submodule 1 

subproblem can be solved using FISTA.
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A3 Apply FISTA on Submodule 3

To apply FISTA on submodule 3, equation (6) is formulated in the canonical FISTA form (4) 

by defining F2 and G2 as:

F2(u) =
γ1
2 q, u + g1 D1u 1

μ + g2 D2u 1
μ + g3 DPu 1

μ,

G2(u) = I[0, 1](u),

where

I[0, 1](u) = 0 i f 0 ≤ u ≤ 1
∞ otherwise

,

u = ub = 1 α = 1
T ub = 1 α = 2

T ⋯ ub = 1 α = nα
T ub = 2 α = 1

T ub = 2 α = 2
T ⋯ ub = nb α = nα

T T
,

q = qb = 1 α = 1
T qb = 1 α = 2

T ⋯ qb = 1 α = nα
T qb = 2 α = 1

T qb = 2 α = 2
T ⋯ qb = nb α = nα

T T
,

qbα is the vector defined as

diag(qbα) = diag( f bα − cbα)2 − diag( f bα)2 .

The gradient of F2 and the proximal operator of G2are straightforward to evaluate

∇F2(u) =
γ1
2 q +

g1
μ D1

TP[ − μ, μ](D1u) +
g2
μ D2

TP[ − μ, μ](D2u) .

proxtG2
(u) = P[0, 1](u)

where P[0,1] is the projection onto the feasible set {u | 0 ≤ ubα ≤ 1 for all b, α}.

With these formulas for the gradient of F2 and the proximal operator of G2, it is 

straightforward to solve the submodule 3 subproblem using FISTA.
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Figure 1. 
Flowchart of 4πVMAT optimization
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Figure 2. 
Normalized fluence map on the Gantry/Couch graph (GBM #1). Only those candidate 

beams that are on the selected trajectory have nonzero fluence weights. The couch rotates 

from 90° to 270° and the gantry rotates accordingly. MLC leaf direction is vertical for this 

diagram. The red regions denote the gantry/couch angles that cause collision. The relative 

intensities of apertures are indicated by the colorbar.
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Figure 3. 
The selected beam angles on the Gantry/Couch graph with corresponding 3D view for all 

patients. The red regions on the Gantry/Couch graph indicate the candidate beams that cause 

collision. The green blocks show the selected trajectories.
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Figure 4. 
Isodose colorwash comparison for all patients.
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Figure 5. 
DVH comparison of the 4πVMAT (solid) and the 2πVMAT (dotted) for all OARs of the 

patients.
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Table 1

Notations and data structures used in this study

Notation Type Description

Indices

b Index Index for couch angle, b = 1,2, . ., nb

α Index Index for gantry angle, α = 1,2, . ., nα

Optimization Variables

fbα Vector Vectorized fluence map of the (btℎ, αtℎ) candidate beam at couch angle b and gantry angle α

cbα Vector Fluence intensity that fbα approaches within the aperture of the (btℎ, αtℎ) candidate beam

ubα Vector Aperture variable for the (btℎ, αtℎ) candidate beam Defined as 1 where the aperture exists and 0 elsewhere

u Vector
Aperture variable that indicates MLC leaf positions for all candidate beams 

u = ub = 1 α = 1
T ub = 1 α = 2

T ⋯ ub = 1 α = nα
T ub = 2 α = 1

T ub = 2 α = 2
T ⋯ ub = nb α = nα

T T

Other data

S Set A set of all feasible candidate beams

Abα Matrix Fluence to dose transformation matrix for the (bth, αth) candidate beam

W Matrix Diagonal weighting matrix, with weightings for structures of interest as diagonal elements

d0 Vector Ideal dose with the prescription dose at the PTV and zero elsewhere

D1bα

Matrix Derivative matrix in the direction parallel to the MLC leaf movement for the (bth, αth) candidate beam

D2bα

Matrix Derivative matrix in the direction orthogonal to the MLC leaf movement for the (bth, αth) candidate beam

Pbα Scalar Pbα is 1 for candidate beams on the selected trajectory from BTS and 0 elsewhere

IPTV Matrix Indicator diagonal matrix for PTV, with its diagonal elements equal to 1 for voxels in PTV and 0 elsewhere

nbα Scalar Number of beamlets with a trajectory that intersects PTV in the (bth, αth) candidate beam Weightings of the group 
sparsity term for each feasible candidate beam to compensate for

Gbα Scalar

unfair penalization on candidate beams Gbα =
sum(IPTV Abα 1 )

nbα

DP Matrix Derivative matrix in the direction of the selected trajectory, which calculates the difference in MLC leaf positions 
between adjacent beams on the selected trajectory.
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Table 2

The range of the hyper parameters used in this study

λ1 λ2 y10 y20 y3 g1 g2 g3

10–1000 0.2–20 0.05–50 0.05–50 50–2000 10−5 − 10−3 10−5 − 10−3 10−5 − 10−3
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Table 3

Number of feasible beams, prescription doses for each fraction, and PTV volumes for all patients

Number of feasible beams Prescription Dose (Gy/fx) PTV Volume (cc)

GBM1 1824 25/5 6.23

GBM2 2.34

GBM3 0.77

LNG1

1174 50/4

139

LNG2 10.2

LNG3 116

PRT1

1200 40/5

111

PRT2 127

PRT3 85
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Table 5

OAR mean and maximum dose sparing differences between 4πVMAT and 2πVMAT for all patients.

OAR dose sparing: 2πVMAT - 4πVMAT (Gy)

Dmax Dmean

Largest Value Average Value Largest Value Average Value

GBM1 3.21 Brainstem 1.88 2.33 R Opt Nrv 1.17

GBM2 6.68 Brainstem 2.51 1.25 L Cochlea 0.77

GBM3 8.10 Brainstem 3.63 2.85 R Opt Nrv 1.49

LNG1 16.3 Proximal Bronchus 6.39 5.29 Chest wall 1.81

LNG2 19.83 Major Vessels 10.11 2.13 Spinal Cord 0.88

LNG3 15.48 Proximal Bronchus 7.19 7.46 Aorta 2.77

PRT1 4.20 Penile Bulb 1.09 1.72 R Femur 0.14

PRT2 3.80 R Femur 1.09 2.30 Rectum 0.56

PRT3 8.22 L Femur 0.70 2.70 L Femur 0.53

The columns labelled “Largest Values” represents the largest amount of dose sparing difference achieved among all OARs, and the corresponding 
OAR. “Average values” represents the average sparing difference among all OARs
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