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Overcomplete Order-3 Tensor Decomposition, Blind Deconvolution, and Gaussian Mixture Models

Abstract

We propose a new algorithm for tensor decomposition, based on the simultaneous diagonaliza-

tion algorithm, and apply our new algorithmic ideas to blind deconvolution and Gaussian mixture

models. Our first contribution is a simple and efficient algorithm to decompose certain symmetric

overcomplete order-3 tensors, that is, three dimensional arrays of the form T =
∑n

i=1 ai ⊗ ai ⊗ ai

where the ais are not linearly independent. Our algorithm comes with a detailed robustness analysis.

Our second contribution builds on top of our tensor decomposition algorithm to expand the family

of Gaussian mixture models whose parameters can be estimated efficiently. These ideas are also

presented in a more general framework of blind deconvolution that makes them applicable to mixture

models of identical but very general distributions, including all centrally symmetric distributions

with finite 6th moment.
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CHAPTER 1

Introduction

Tensor structures arise naturally in machine learning and data sciences. They can be seen as

multi-dimensional generalizations of vectors and matrices: An order-1 tensor is a vector and an

order-2 tensor is a matrix, while an order-n tensor T ∈ Rd1×d2×···×dn is an n-mode array where di

is the dimensionality of mode i.

Figure 1.1. A vector, a matrix and an order-3 tensor.

There are two key concepts in machine learning: The data to be studied and the model to

characterize the data. Both data and machine learning models can be represented using tensors. A

greyscale image can be stored using a matrix, hence images with multiple color channels can be

stored with order-3 tensors. Order-4 tensors can also be used to store time-dependent data: In

medical imaging, 3-dimensional functional magnetic resonance (3D fMRI) images are represented

using order-3 tensors and 3D fMRI scans over time can be stored with order-4 tensors. Beyond raw

data, higher order moments of random vectors are naturally tensors. Therefore tensors are used

to characterize many data models, e.g., exchangeable single topic models, Gaussian mixtures, or

hidden Markov models, to name a few. When viewed as multi-linear functions, tensors are also used

to represent deep learning models, e.g., multichannel convolutional kernels in convolutional neural

networks. However, as the order of the tensor increases, it becomes less interpretable since each entry

corresponds to more variables, and more importantly, it suffers from the curse of dimensionality

since the number of entries grows exponentially with the order. In the matrix case, we have
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various decompositions to compress the number of entries and to give interpretable representations.

For instance, there are the QR decomposition, the singular value decomposition, and the CUR

decomposition [MD09]. Therefore it is natural to ask a similar question for tensors:

Can we find efficient and interpretable decompositions of tensors?

There have been many types of tensor decompositions proposed. The idea of tensor decompo-

sition dated back to [Hit27] and was further developed as the CANDECOMP/PARAFAC (CP)

decomposition in [CC70,Har70]. In parallel, the Tucker decomposition was proposed in [Tuc66].

Recently, the Tensor-Train (TT) decomposition [Ose11] was proposed. We will give a short intro-

duction to them in Section 2.3. Tensor decomposition initially found its application in multi-linear

models in chemometrics and psychometrics [LR92,Bro97,AB03,Bro06,Hen94,KVM01]. And

in recent years the study and application of tensor decomposition have spread to many different

areas: signal processing [DLDM96,Com02,DC07,DLCC07,DLdB08], numerical linear algebra

[LRA93,Kol01,DLDMV00,OST08,ZG01,WTSA15,Sai16,SWZ19], optimization [LT17,

GM17,FG22,KKP21,RMC21], data mining and recommendation system [MMD06,XCH+10,

TMBY17,WMG19,BAH19,ZCW20], neuroscience and medicine [BS05,MHH+06,DVD+07,

ABB+07,HVB+16,SBDS+19], computer vision [VT02,VBPP06,WA03,WA04,SH05,HSK13,

WPSZ18], machine learning [HK13,ABG+14,GVX14,NROV14,AGH+14,AGJ15,GHK15]

and deep learning [NPOV15,GPNV16,LGR+15,KPY+16,YH17,TSN18,MZZ+19].

Among various applications of tensor decompositions, what in particular interests us is the

learning of latent variable models. Latent variable models are statistical models consists of observable

variables and hidden variables. As an introductory example, consider a simple mixture model: Let

X1, . . . , Xn be a family of random variables. Each observation of the mixture is sampled from Xi

with probability wi. Consider the choice of which random variable to sample as the hidden variable

H, a discrete random variable such that the probability of H = i equals wi. The learning task is to

recover the distribution of H (and sometimes the distribution of each Xi) when only the samples

from the mixture are observable. We will review the latent variable models of our interests in

Chapter 4. In recent years, tensor methods are developed to give consistent and efficient estimators

of latent variable models [HK13,GVX14,BCMV14,ABG+14,AGH+14,AGJ15,GHK15].

They are based on simple intuitions from the method of moments [Pea94]: (1) compute some
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statistics, often sample moments from the data, and (2) estimate the model parameters that produce

(almost) the same corresponding population statistics. Following a similar intuition, we have the

following question:

Can we expand the family of efficiently-learnable latent variable models via tensor methods?

This dissertation is based on [CR22] and aims to answer the above two questions in part by

expanding the family of efficiently decomposable tensors, and showing two direct applications, blind

deconvolution and Gaussian mixture model (GMM) parameter estimation, of such decomposition in

latent variable model learning.

Overview of Chapter 2

In Chapter 2, we introduce some of the most important concepts studied in this dissertation

as well as notation used throughout the dissertation. We will provide introductions to tensors,

cumulants, and mathematical tools used in our analysis.

Overview of Chapter 3

In Chapter 3, we study the overcomplete tensor decomposition problem. It is well-known that

most tensor problems, including the decomposition, are NP-hard in the worst case [H̊as90,HL13].

Hence we focus on a specific case that is previously unsolved: Given a symmetric order-3 tensor

T =
∑

i∈[n] a
⊗3
i that is overcomplete, i.e., its components are not linearly independent, we measure

the overcompleteness by writing n = r+ k, where any subset of r ais is linearly independent. When

k is small, we give an intuitively simple algorithm (Algorithm 2) with running time polynomially in

r and exponentially in k to decompose the tensor, even when the input tensor T̃ = T + Ein of the

algorithm contains some noise Ein. Our randomized algorithm extends the idea of the simultaneous

diagonalization algorithm [LRA93]. Two backbones of our proof are:

• The robust analysis of the simultaneous diagonalization algorithm (Theorem 3.3.3) guaran-

tees the correctness of the decomposition;

• The analysis of random contraction (Section 3.3.3) based on the Gaussian correlation

inequality [LM17,Roy14] ensures that with non-negligible probability, a single loop of
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Algorithm 2 will satisfy Theorem 3.3.3 and outputs the desired decomposition, hence

ensures the polynomial running time.

Overview of Chapter 4

In Chapter 4, we study one application of tensor decomposition: learning a family of latent

variable model of the form

(1.0.1) x = z+ η

using samples from x, where z and η are independent random vectors. The random vector z follows

a discrete distribution that can be seen as the latent variable and η is the additive noise which

has zero 1st and 3rd moments, and finite 6th moment. In particular, the family of distributions of

this form contains the Gaussian mixtures with η ∼ N (0,Σ), therefore we also solved one GMM

estimation problem. We show that the 3rd cumulant of such x has a nice tensor structure and thus

our algorithm applies when a natural non-degenerate condition is satisfied, and then the distribution

of z can be efficiently recovered. Furthermore, if η ∼ N (0,Σ), the distribution of η can be recovered

as well.
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CHAPTER 2

Notation and Preliminaries

In this chapter, we will cover notations, preliminaries and background knowledge used in the

dissertation.

2.1. Notation

For n ∈ N, let [n] = {1, . . . , n}. Throughout the dissertation, lower case bold letters (e.g., a,b, c)

are reserved for vectors, upper case bold letters (e.g., A,B,C) are reserved for matrices, and upper

case bold calligraphic letters (e.g., A,B,C) are reserved for tensors.

We use N (µ,Σ) to denote the Gaussian distribution with center µ and covariance Σ. Other

plain calligraphic letters (e.g., A,B, C), are reserved for random events in the analysis of Section 3.3.3.

We use P[·] to denote the probability of a event, E[·] to denote the expectation of a random variable,

and Var(·),Cov(·) to denote the variance of a random variable and covariance of a random vector,

respectively.

For clarity of exposition we analyze our algorithms in a computational model where we assume

arithmetic operations between real numbers take constant time. We use the notation poly(·) to

denote a fixed polynomial that is non-decreasing in every argument. We use O(·),Ω(·) and Θ(·) to

describe asymptotic behavior of functions: for f, g : R→ R, we say f(x) = O(g(x)) if there exists

x0,M > 0 such that |f(x)| ≤Mg(x) for every x ≥ x0, f(x) = Ω(g(x)) if there exists x′0,m > 0 such

that |f(x)| ≥ mg(x) for every x ≥ x′0, and f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

For a vector a ∈ Rd, its i-th entry is denoted by (a)i. For a matrix A ∈ Rd×n, the (i, j)-th entry

is denoted by (A)ij . We denote by σi(A) its i-th largest singular value, by A† its Moore-Penrose

pseudoinverse, and by κ(A) = σ1(A)/σmin(d,n)(A) its condition number. Let vec(A) ∈ Rdn denote

the vector obtained by stacking all columns of A. Denote by diag(a) the diagonal matrix with

diagonal entries from a, where a is a (column) vector, or simply diag(ai) when ais are from a finite
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set {ai : i ∈ [n]}. Let ∥·∥2 denote the spectral norm of a matrix, or the Euclidean norm of a vector

and ∥·∥F, the Frobenius norm of a matrix.

In Rd, we denote by ⟨a,b⟩ the inner product of two vectors a,b, and by ⊗ the tensor product:

For two vectors a⊗ b, (a⊗ b)ij := (a)i(b)j . Let â = a/∥a∥2. For a set of vectors {a1,a2, . . . ,an},

we denote their linear span by span{a1, . . . ,an}. We use [a1,a2, . . . ,an] to denote the matrix

containing ais as columns. If A = [a1,a2, . . . ,an], we have Â = [â1, â2, . . . , ân] and Ã follows a

similar definition, besides we denote by A:m ∈ Rd×m the matrix [a1,a2, . . . ,am] for some m < n

and by Am+1: ∈ Rd×(n−m) the matrix [am+1, . . . ,an]. We say the matrix A is ρ-bounded if

maxi∈[n] ∥ai∥2 ≤ ρ. We denote by In the identity matrix in Rn×n. Given a vector a ∈ Rd or a

diagonal matrix D ∈ Rd×d, for r ∈ R, notations ar and Dr are used for entry-wise power.

2.2. Singular Value Decomposition

The theory of matrix decomposition is well-developed [Ste98,Ste01,GVL13,Hog13]. It is

well known that each matrix A ∈ Rd1×d2 has a singular value decomposition (SVD):

A = UΣV⊤ =
∑

i∈[min{d1,d2}]

σiuiv
⊤
i ,

where U = [u1, . . . ,ud1 ] ∈ Rd1×d1 and V = [v1, . . . ,vd2 ] ∈ Rd2×d2 are orthogonal matrices,

Σ = diag(σi), and σ1 ≥ · · · ≥ σmin{d1,d2} ≥ 0.

SVD is such a power tool that the reader can see from Section 2.3 that it also works as

the backbone of a well-known tensor decomposition algorithm: the simultaneous diagonalization

algorithm. However in real world problems, input data matrix or tensor can always be perturbed

or with noise. It is crucial to measure the difference between the SVD of a matrix A and that of

the perturbed version, A+E. Hence we state Wedin’s theorem, a “sin(θ) theorem” for perturbed

singular vectors as well as Weyl’s inequality for SVD in this section. The following results are from

[Ste90,Ste91].

Theorem 2.2.1 (Weyl’s inequality). Let A,E ∈ Rd1×d2 with d1 ≥ d2. Denote the singular values

in non-increasing order of A and A+E by σi and σ̃i, respectively. Then |σi − σ̃i| ≤ ∥E∥2.

6



Theorem 2.2.2 (Wedin). With the notation from Theorem 2.2.1, let a singular value decomposition

of A be: [U1,U2,U3]
⊤A[V1,V2] =


Σ1 0

0 Σ2

0 0

, where the singular values can be in arbitrary order.

Let the perturbed version be: [Ũ1, Ũ2, Ũ3]
⊤(A+E)[Ṽ1, Ṽ2] =


Σ̃1 0

0 Σ̃2

0 0

. Let Φ be the matrix of

canonical angles between the column spaces of U1 and Ũ1, and Θ be that of V1 and Ṽ1, respectively.

Let δ = min{mini(Σ̃1)ii,mini,j |(Σ̃1)ii − (Σ2)jj |}. Then
√
∥sinΦ∥22 + ∥sinΘ∥22 ≤

√
2∥E∥2/δ.

2.3. Tensors

In this section, we aim to provide a short introduction to tensors. Tensors are the generalization

of matrices and can be seen as multi-dimensional arrays. We use T [i1, . . . , in], or (T )i1...in to denote

the (i1, i2, . . . , in)-th entry of T for the multi-index (i1, i2, . . . , in) ∈ [d1] × [d2] × · · · × [dn], and

T [i] to denote the i-th subtensor of shape [d2]× · · · × [dn] by fixing the first index. We say T is

symmetric if d = d1 = · · · = dn and every entry (T )i1...in is invariant under permutation of indices.

Since we will be mainly dealing with symmetric order-3 tensors in Chapters 3 and 4, in the rest of

this section we will use order-3 tensors for simplicity, while most definitions can be generalized to

higher order cases.

Definition 2.3.1 (Mode-wise product). The mode-1 product of an order-3 tensor T ∈ Rd1×d2×d3

and a matrix U ∈ Rd′1×d1 is defined by

(2.3.1) T ′ = T (U, ·, ·)⇐⇒ T ′[j, i2, i3] =
∑

i1∈[d1]

(T )i1i2i3(U)ji1 ,

where T ′ becomes an order-3 tensor in Rd′1×d2×d3. We have similar definitions of product on other

modes: for U(1) ∈ Rd′1×d1 ,U(2) ∈ Rd′2×d2 ,U(3) ∈ Rd′3×d3, we have that:

(2.3.2)

T ′ = T (U1,U2,U3)⇐⇒ T ′[j1, j2, j3] =
∑

i1∈[d1]

∑
i2∈[d2]

∑
i3∈[d3]

(T )i1i2i3(U
(1))j1i1(U

(2))j2i2(U
(3))j3i3 .
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Example 2.3.2. Let T ∈ R2×2×2 be a tensor with its matrix slices in the first index given by:

T [1] =

1 2

3 4

 , T [2] =

5 6

7 8

 .

And let U ∈ R3×2 be

U =


1 −1

−1 1

0 1

 .

Then the mode-1 product T (U, ·, ·) gives a tensor T ′ ∈ R3×2×2 with slices

T ′[1] =

−4 −4

−4 −4

 , T ′[2] =

4 4

4 4

 , T ′[3] =

5 6

7 8

 .

Furthermore, T (U,U,U) gives a tensor T ′′ ∈ R3×3×3 with slices in the first index:

T ′′[1] =


0 0 0

0 0 0

0 0 −4

 , T ′′[2] =


0 0 0

0 0 0

0 0 4

 , T ′′[3] =


0 0 −2

0 0 2

−1 1 8

 .

Specifically, when d′1 = 1, i.e., for u ∈ Rd1 , T (u, ·, ·) becomes a matrix in Rd2×d3 . In such cases

we call this product contraction. In particular, for u ∈ Rd and symmetric order-3 tensor T we

shorthand the contraction T (u, ·, ·) by Tu. For instance, let u = [−1, 1], then for T in the example

above, Tu =

4 4

4 4

.
Definition 2.3.3 (Rank-1 tensor). A order-3 tensor T is rank-1 if it can be written as the tensor

product of 3 vectors:

(2.3.3) T = a1 ⊗ a2 ⊗ a3 ⇐⇒ T [i1, i2, i3] = (a1)i1(a2)i2(a3)i3 .

Specifically, a symmetric T is rank-1 if T = a⊗ a⊗ a = a⊗3.

8



Given an order-3 tensor T ∈ Rd1×d2×d3 , the CP decomposition [CC70,Har70] tries to find a

minimal set of vectors: {ai ∈ Rd1 ,bi ∈ Rd2 , ci ∈ Rd3 : i ∈ [n]} such that T can be written as the

sum of rank-1 tensors obtained from tensor products of these vectors: T =
∑

i∈[n] ai ⊗ bi ⊗ ci.

= + +

T

+· · ·

a1

b1

c1 c2

b2

a2

cn

bn

an

Figure 2.1. CP decomposition.

The Tucker decomposition [Tuc66] finds a core tensor G ∈ Rn1×n2×n3 and linear transformations

U1 ∈ Rd1×n1 ,U2 ∈ Rd2×n2 ,U3 ∈ Rd3×n3 such that applying the linear transformations on each

mode of G yields T : T = G(U1,U2,U3). When G is diagonal, i.e., G is non-zero only when all

indices coincide, it reduces to the CP decomposition. Hence the Tucker decomposition can be seen

as a generalization of the CP decomposition.

=

T

G

U1

U2

U3

Figure 2.2. Tucker decomposition.

The recently developed Tensor-Train (TT) decomposition [Ose11] attempts to compress the

tensor by parameter sharing between entries: it finds a set of vectors and matrices {ai ∈ Rn1 ,Mj ∈

Rn1×n2 ,bk ∈ Rn2 : i ∈ [d1], j ∈ [d2], k ∈ [d3]} such that T [i, j, k] = a⊤i Mjbk.

In this dissertation, we are interested in the symmetric decomposition, which is a special case of

the CP decomposition such that all rank-one components are symmetric. To characterize it, we give

the definition of the symmetric rank :

9



T

T [i, j, k] =
a⊤i

bkMj

Figure 2.3. Tensor-Train decomposition.

Definition 2.3.4 (Symmetric rank). Let T ∈ Rd×d×d be symmetric. The symmetric rank of T ,

or simply the rank of T is the minimal n ∈ N such that

(2.3.4) T =
∑
i∈[n]

a⊗3
i

for a set of vectors {a1, . . . ,an}.

Remark 1. Note that there are different notions of tensor rank [KB09]: E.g., CP rank, which

is the minimal number of components in a CP decomposition, and Tucker rank or multi-linear

rank, which is the tuple of column ranks of matrix flattenings of a tensor along different modes.

The CP rank and symmetric rank may not coincide for a symmetric tensor [Shi18]. However, in

this dissertation we study only symmetric tensors with the notion of the symmetric rank. In fact,

Kruskal’s theorem (Theorem 2.3.6) guarantees that these two ranks coincide when the theorem holds

true for a symmetric tensor, therefore we do not distinguish them throughout the dissertation.

For a rank n symmetric order-3 tensor T =
∑

i∈[n] a
⊗3
i , we say the tensor T is ρ-bounded if

maxi∈[n]∥ai∥2 ≤ ρ.

The decomposition problem of symmetric tensor is stated as follows: Given a tensor T =∑
i∈[n] a

⊗3
i of rank n, recover the component vectors ai ∈ Rd. [Kru77] gives the classical result on

uniqueness of such decomposition, of which the version with robustness analysis (Theorem 3.3.1

and Corollary 3.3.2) will be the backbone of our theoretical analysis. We first provide the definition

of Kruskal rank and state the case of symmetric tensors below.

Definition 2.3.5 (Kruskal rank). Let A ∈ Rd×n. The Kruskal rank of A, denoted by K-rank(A),

is the maximum k ∈ [n] such that any k columns of A are linearly independent.

10



Theorem 2.3.6 ([Kru77]). Let T be of rank n, and a length n decomposition of T is given by

T = a⊗3
1 + · · · + a⊗3

n . Suppose K-rank(A) = R for A = [a1, . . . ,an] and 3R ≥ 2n + 2. Then

for any other decomposition T =
∑

i∈[n] ui ⊗ vi ⊗ wi with length n, there exists a permutation

matrix Π, and diagonal matrices Λ1,Λ2,Λ3 satisfying Λ1Λ2Λ3 = In, such that [u1, . . . ,un] =

AΠΛ1, [v1, . . . ,vn] = AΠΛ2, [w1, . . . ,wn] = AΠΛ3. That is, the decomposition of T is unique up

to permutation and scaling.

To generalize the notion of Kruskal rank to quantify the well-conditionness, we give the definition

of robust Kruskal rank.

Definition 2.3.7 (Robust Kruskal Rank, [BCV14,BCMV14]). Let A ∈ Rd×n and τ > 0.

The robust Kruskal rank (with threshold τ) of A, denoted K-rankτ (A), is the maximum k ∈ [n]

such that for any subset S ⊆ [n] of size k we have σk(AS) ≥ 1/τ .

There are two widely-used algorithms for tensor decomposition: the simultaneous diagonalization

algorithm and tensor power iteration. We briefly review them below.

The simultaneous diagonalization algorithm [LRA93]. The basic idea of the simultaneous

diagonalization algorithm1 to decompose a rank-d tensor T =
∑

i∈[d] a
⊗3
i with linearly independent

components a1, . . . ,ad ∈ Rd is the following: The contraction of T with x ∈ Rd gives Tx =∑
i∈[d]⟨x,ai⟩aia⊤i = Adiag(⟨x,ai⟩)A⊤. For random unit vectors x,y ∈ Rd, compute the (right)

eigenvectors of

TxT
−1
y = A diag

(
⟨x,ai⟩
⟨y,ai⟩

)
A−1.

With probability 1, the set of eigenvectors is equal to the set of directions of ais (the eigenvectors

recover the ais up to sign and norm). We use a version (Algorithm 1) that allows for the number of

ais to be less than d and that includes an error analysis [GVX13,GVX14]. The running time

of the simultaneous diagonalization algorithm is polynomial in the dimension d, the inverse of

component-wise error 1/ε, and natural conditioning parameters such as the minimum singular value

of TxT
−1
y [GVX13, Section 5.3].

1The simultaneous diagonalization algorithm has been erroneously called Jennrich’s algorithm, see [Kol] for a
discussion.
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Example 2.3.8. Consider a tensor T = a⊗3
1 + a⊗3

2 ∈ R2×2×2 given by its matrix slices in the first

index:

T [1] =

2 0

0 2

 , T [2] =

0 2

2 0

 .

Let x = [1, 0] and y = [0, 1]. Notice that Tx = T [1] and Ty = T [2]. We have TxT
−1
y =

0 1

1 0

.
The right eigenvectors of TxT

−1
y are u1 = [1/

√
2, 1/
√
2] and u2 = [1/

√
2,−1/

√
2], and they are

in the direction of a1,a2. Next, solving a regression problem: minλ1,λ2 ∥T − (λ1u
⊗3
1 + λ2u

⊗3
2 )∥F

recovers a1 = [1, 1] and a2 = [1,−1].

Tensor power iteration [DLDMV00,JGKA19]. Tensor power iteration is applicable when

a rank-n tensor T =
∑

i∈[n] λia
⊗3
i has orthonormal components a1, . . . ,an ∈ Rd. The iteration

updates:

v←− T (v,v, ·)
∥T (v,v, ·)∥2

with random initialized v and v will converge to one of the ais. The rest components can be

recovered with the same technique after subtracting λv⊗3 from T , where λ = T (v,v,v). As

an illustrative example, for T in Example 2.3.8 and v initialized to be [1, 2], v becomes close to

[1/
√
2, 1/
√
2] numerically after 5 iterations. The advantage of power iteration over the simultaneous

diagonalization algorithm is that it converges much faster: v converges to one of the ais within ε

distance in O(log log(1/ε)) iterations, while the disadvantage is that for tensors with non-orthogonal

components, a whitening transform is needed to orthogonalize the input [JGKA19].

2.4. Cumulants

In this section we provide to the reader a short introduction of cumulants, which will be the

main statistical object we study in Chapter 4. We give their definition, properties of interests, and

the technical details about the unbiased estimators of cumulants, called k-statistics.

Cumulants. Cumulants are a family of statistical parameters similar to moments. We first give

the definition of cumulants of a random variable.
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Definition 2.4.1 (Cumulants). Let X be a random variable. Cumulants of X, denoted by Km(X)

for m ∈ N, are defined using the coefficients of the Maclaurin series of cumulant generating function:

(2.4.1) K(t) = logE[exp(tX)] =
∞∑

m=1

Km(X)

m!
Xm,

where Km(X) =
dmK(t)

dtm

∣∣∣∣
t=0

.

The m-th cumulant Km(X) is a polynomial in E[X],E[X2], . . . ,E[Xm]. In particular, the first

cumulant coincides with the first moment, and the second and third cumulants coincide with

the corresponding central moments: K1(X) = E[X], K2(X) = E[(X − E[X])2] = Cov(X), and

K3(X) = E[(X − E[X])3].

Similarly, the cumulants of a random vector x, which are defined using the coefficients of the

Maclaurin series of K(t) = logE[exp(t⊤x)], are a sequence of tensors related to the moment tensors

of x. Similar to the univariate case, we have: K1(x) = E[x],K2(x) = E[(x− E[x])(x− E[x])⊤] =

Cov(x),K3(x) = E
[
(x− E[x])⊗3

]
. Two properties of cumulants motivated us to study them:

Proposition 2.4.2. Let X,Y be two independent random variables. Then Km(X + Y ) = Km(X) +

Km(Y ) for all m.

Proof. It follows from the independence and the definition of cumulant generating function,

we have:

KX+Y (t) = logE[exp(t(X + Y ))] = log(E[exp(tX)]E[exp(tY )])

= log(E[exp(tX)]) + log(E[exp(tY )]) = KX(t) +KY (t),

which implies that for all m, Km(X + Y ) = Km(X) +Km(Y ). □

Proposition 2.4.3. Let x ∼ N (µ,Σ) be a Gaussian random vector. Then K1(x) = µ,K2(x) = Σ,

and Km(x) = 0 for m ≥ 3.

Proof. It follows from the fact that the cumulant generating function of x is

K(t) = µ⊤t+
1

2
t⊤Σt.

13



□

Besides, all symmetric distributions will have K3 = 0 since K3 coincides with the 3rd central

moment which equals to zero.

Sample cumulants. We now show the reader how to estimate sample cumulants using unbiased

estimators called k-statistics. k-statistics are the unbiased estimator for cumulants with the minimum

variance, and are long studied in the statistics community. We use such estimators to compute the

sample 3rd cumulant in Algorithm 3.

We first provide the formula for the 3rd k-statistic given in [McC18, Section 4.2] here:

Proposition 2.4.4 ([McC18]). Given iid. samples x1, . . . ,xN of random vector x, the k-statistic

for the 3rd cumulant of x is: k3(r, s, t) = 1
N

∑
i,j,k∈[N ] ϕ

(ijk)(xi)r(xj)s(xk)t, where r, s, t are the

position indices in the tensor, and ϕ(ijk) is the coefficient given by: it is invariant under permutation

of indices, and for distinct i, j, k ∈ [N ]:

(2.4.2) ϕ(iii) =
1

N
, ϕ(iij) = − 1

N − 1
, ϕ(ijk) =

2

(N − 1)(N − 2)
.

Let T̃ [r, s, t] = k3(r, s, t) be the 3rd k-statistic tensor of a random vector x. To obtain the

entry-wise concentration bound for T̃ , we begin by bounding the variance of each entry in T̃ :

Lemma 2.4.5. Let x = [X1, . . . , Xd] follow a distribution as in (1.0.1). The 3rd sample cumulant

T̃ of x satisfies: Var
(
T̃ [r, s, t]

)
= O(maxt∈[d] E[X6

t ]/N).

Proof. This is essentially the version for the 3rd cumulant of [BRV13, Lemma 4]. The proof

uses the same argument.

We start with defining some multi-indices to simply the computation: let I = (r, s, t) ∈ [d]3 and

α = (i, j, k) ∈ [N ]3, then write ϕ(α)x
(I)
(α) = ϕ(ijk)(xi)r(xj)s(xk)t. Also, we define the intersection of 2

14



multi-indices α, β as: α ∩ β = {i : i ∈ α and i ∈ β}. Now we continue to bound the variance of T̃ :

Var(T̃ [r, s, t]) = E
[( 1

N

∑
α∈[N ]3

ϕ(α)x
(I)
(α)

)2]− E
[ 1
N

∑
α∈[N ]3

ϕ(α)x
(I)
(α)

]2
=

1

N2

∑
α,β∈[N ]3

ϕ(α)ϕ(β) E[x(I)
(α)x

(I)
(β)]−

1

N2

∑
α,β∈[N ]3

ϕ(α)ϕ(β) E[x(I)
(α)]E[x

(I)
(β)]

=
1

N2

∑
α∩β ̸=∅

ϕ(α)ϕ(β) E[x(I)
(α)x

(I)
(β)]−

1

N2

∑
α∩β ̸=∅

ϕ(α)ϕ(β) E[x(I)
(α)]E[x

(I)
(β)]

≤ 1

N2

∑
α∩β ̸=∅

ϕ(α)ϕ(β) E[x(I)
(α)x

(I)
(β)].

(2.4.3)

Now let us consider how many terms there are indexed by β that does not intersect with α. Let

dist(β) be the number of distinct indices in β. Then there are
(

N
dist(β)

)
ways to generate β, out of

which there are
(

N−3
dist(β)

)
that will absolutely have no intersection with α as α can have at most 3

different indices. That is, when fixing the number of distinct indices in β, at most a[(
N

dist(β)

)
−
(
N − 3

dist(β)

)]
/

(
N

dist(β)

)
fraction of index sets in β will intersect with α. To proceed, we need some other estimations on the

coefficients and the expectation. By (2.4.2) we have:

|ϕ(β)| = O(1/Ndist(β)−1),
∑

α∈[N ]3

|ϕ(α)| = O(N).

For E[x(I)
(α)x

(I)
(β)], by Cauchy-Schwarz inequality we have:

E[x(I)
(α)x

(I)
(β)] ≤ max{E[(x(I)

(α))
2],E[(x(I)

(β))
2]}.

Applying Cauchy-Schwarz inequality and Hölder’s inequality gives E[x(I)
(α)x

(I)
(β)] ≤ maxt∈[d] E[X6

t ].
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Then (2.4.3) can be further bounded by

Var(T̃ [r, s, t]) ≤ 1

N2

∑
α∩β ̸=∅

|ϕ(α)ϕ(β) E[x(I)
(α)x

(I)
(β)]|

≤
maxt∈[d] E[X6

t ]

N2

∑
α∈[N ]3

|ϕ(α)|
3∑

c=1

∑
dist(β)=c,α∩β ̸=∅

|ϕ(β)|

= O
(maxt∈[d] E[X6

t ]

N2

∑
α∈[N ]3

|ϕ(α)|
3∑

c=1

(
N
c

)
−
(
N−3
c

)(
N
c

) N1−c
∑

dist(β)=c

1
)

= O
(maxt∈[d] E[X6

t ]

N2

∑
α∈[N ]3

|ϕ(α)|
3∑

c=1

N−1N1−cN c
)

= O
(maxt∈[d] E[X6

t ]

N

)
.

where the second last equality comes from that 1 −
(
N−3
c

)
/
(
N
c

)
= O(N−1) and

∑
dist(β)=c 1 =

O(N c). □

Lemma 2.4.6. Given ϵ, δ ∈ (0, 1), the entry-wise error between T̃ and T = K3(x) is at most ϵ

with probability at least 1− δ when using N ≥ Ω
(
ϵ−2δ−1maxt∈[d] E[X6

t ]
)
samples.

Proof. Using Chebyshev’s inequality with the variance of T̃ given in Lemma 2.4.5 yields the

result immediately. □

Lemma 2.4.7 (Estimation of the 3rd cumulant). Let T , T̃ be the 3rd cumulant of x =

[X1, . . . , Xd] and its unbiased estimate (k-statistic) using Proposition 2.4.4, respectively. Given any

ε, δ ∈ (0, 1), and N = Ω(d9ε−2δ−1maxi∈[d] E[X6
i ]}), with probability 1− δ we have ∥T − T̃ ∥F ≤ ε.

Proof. Apply Lemma 2.4.6 with accuracy ε/d3, failure probability δ/d3 and taking the union

bound over d3 entries, to see that N = Ω(d9ε−2δ−1maxi∈[d] E[X6
i ]}) samples are sufficient. □

2.5. Concentration and Anti-concentration Inequalities

The essential tools to analyze our algorithm in a high dimensional setting are the concentration

and anti-concentration inequalities. We provide the necessary results used in the dissertation here.

16



These lemmas work as the fundamental building blocks in the analysis of our randomized algorithm

in Section 3.3.3.

Lemma 2.5.1 ([DG03,HK13]). Suppose δ ∈ (0, 1), M ∈ Rd×d, Q is a finite subset of Rd and x

is a uniformly random vector in Sd−1. Then P
[
minq∈Q|⟨x,Mq⟩| ≥ δminq∈Q∥Mq∥2√

ed|Q|

]
≥ 1− δ.

For the next lemma we need the Gaussian correlation inequality:

Theorem 2.5.2 (Gaussian correlation inequality [LM17,Roy14]). For any convex centrally

symmetric sets K,L in Rd and any centered Gaussian measure µ on Rd, we have µ(K ∩ L) ≥

µ(K)µ(L).

Lemma 2.5.3 ([Kha67, Ši67]). Let x ∈ Rd be a standard Gaussian random vector, a1, . . . ,ak ∈

Sd−1, and t ∈ [0, 1]. Then P
[
(∀i)|⟨x,ai⟩| ≤ t

]
≥ (t/4)k.

Proof. The claim follows immediately from Theorem 2.5.2 and the fact that the one-dimensional

standard Gaussian density in [−1, 1] is at least (2πe)−1/2 ≥ 1/8. □
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CHAPTER 3

Overcomplete Tensor Decomposition

In this chapter we study the decomposition of symmetric order-3 tensors:

Given a tensor T =
∑

i∈[n] a
⊗3
i of rank n, recover the component vectors ai ∈ Rd.

The problem is undercomplete if the ais are linearly independent, otherwise it is overcomplete.

In contrast to the undercomplete regime, where efficient algorithms are developed, e.g., simultaneous

diagonalization [LRA93] and tensor power iteration [DLDMV00,JGKA19], the overcomplete

regime, especially the order-3 case, is much more challenging and less understood [JGKA19, Chapter

7] in two ways:

• It is not obvious to apply algorithms like the simultaneous diagonalization algorithm and

tensor power iteration directly given the linear dependency of ais.

• There are fewer techniques available for the order-3 case than there are for higher order

[JGKA19, Section 7.3].

These challenges motivate us to study the following question:

Can we efficiently recover ais when T is overcomplete?

Organization of the chapter. In Section 3.1, we discuss some of techniques and challenges

in overcomplete tensor decomposition, and present our results on the high level. In Section 3.2,

we present our algorithmic ideas, then formally propose our algorithm (Algorithm 2), its analysis

(Theorem 3.2.1), as well as high level ideas to prove the correctness of Algorithm 2. And we

implement these proof ideas in Section 3.3. In Section 3.4, we provide numerical simulation results

of Algorithm 2 on synthetic data.

3.1. Introduction

Among basic tensor decomposition techniques for the undercomplete case we have tensor power

iteration and the simultaneous diagonalization algorithm (See Section 2.3 for a short introduction).
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Tensor power iteration is more robust than the simultaneous diagonalization algorithm, while

the simultaneous diagonalization algorithm can be applied more generally in the undercomplete

case: Tensor power iteration is mainly an algorithm for orthogonal tensors (orthogonal ais) and

the general case with additional information, usually a whitening transform that orthogonalizes

independent components, e.g., the second moment matrix in [HK13], while the simultaneous

diagonalization algorithm can decompose the general case without additional information.

Our contributions below are based on the simultaneous diagonalization algorithm because of

this additional power. The robustness of the simultaneous diagonalization algorithm is studied in

several papers; our analysis builds on top of [BCMV14,BCV14] and [GVX14].

For the overcomplete regime, many techniques have been already developed. We have algorithms

such as FOOBI [LCC07], an algorithm to decompose 4th cumulant tensor based on the simultaneous

diagonalization, and the work of [AGJ14,AGJ15], which are based on tensor power iteration with

incoherent components. Anandkumar et al. [AGJ17] analyze the dynamic and convergence of tensor

power iteration for overcomplete order-3 tensors, and Ge and Ma [GM17] provide similar analysis

for random order-4 tensors. In [BCV14], the authors analyze the robustness of the simultaneous

diagonalization, and proposed an algorithm that has running time exponential in the rank n. The

robustness result is further extended to the smoothed analysis case [BCMV14], where the input

tensor has its component vectors perturbed with a small Gaussian noise, and an algorithm with

maximal rank n ≤ d⌊l−1⌋/2/2 for order-l tensors is proposed. In the order-3 case, Recently, a line of

research utilizes the sum-of-squares technique to perform tensor decomposition in the overcomplete

regime: Ge and Ma [GM15] give a polynomial algorithm for overcomplete order-3 random tensors,

[MSS16] improves the previous results and gives a sum-of-squares algorithm for order-4 tensors.

The order-4 case is further improved in [HSS19].

Many techniques for the overcomplete case only make sense for orders 4 and higher or have

weaker guarantees in the order-3 case. For example, some techniques use the fact that a d×d×d×d

tensor can be seen as an d2 × d2 matrix (and similarly for orders higher than 4), while no equally

useful operation is available for order-3 tensors. Algorithms for order-3 tensors based on tensor

power iteration or sum-of-squares usually require certain assumptions on the input tensor, e.g.,
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incoherent components or randomness. Nevertheless, there are several results about decomposition

in the order-3 case that are relevant to our work.

Among works closest to ours, [DDL14,DDL17] propose an algorithm that is efficient in

the mildly overcomplete case for overcomplete order-3 tensor decomposition under natural non-

degeneracy conditions. Though our results have similar assumptions and computational cost

compared to [DDL14,DDL17], our algorithm is comparatively a very simple randomized algorithm

and we provide a rigorous robustness analysis.

Our contributions. We propose an algorithm based on the simultaneous diagonalization algorithm

for overcomplete tensor decomposition. Our informal claim is as follows:

Claim 3.1.1 (Informal statement of Theorem 3.2.1). Given a symmetric order-3 tensor

T =
∑

i∈[d+k] a
⊗3
i ∈ Rd×d×d and when any d-subset of the ais is linearly independent, there is a

randomized algorithm that recovers ais within ε error and with expected running time polynomial in

dk, 1/εk and natural conditioning parameters.

Note that our goal is to show that the running time has polynomial dependence in that sense and

the error has inverse polynomial dependence but we do not optimize the degrees of the polynomials.

Even though the algorithm is exponential in k, we show in Chapter 4 the case k = 1 already makes

possible a new result on Gaussian mixture learning.

Our proposed algorithm (Algorithm 2) and its analysis (Theorem 3.2.1) are stronger than

Claim 3.1.1 in two important ways: It is robust in the sense that it approximates the ais even when

the input is a tensor that is ε′-close to T . Also, it turns out that parameter k above, the number of

ais beyond the dimension d, is not the best notion of overcompleteness. In our result the tensor is

of the form T =
∑r+k

i=1 a⊗3
i , where r is the robust Kruskal rank of ais (informally the maximum r

such that any r-subset is well-conditioned, Definition 2.3.7), so that k is the number of components

above the robust Kruskal rank. Thus, our analysis also applies when the Kruskal rank is less than d.

20



3.2. Overcomplete Order-3 Tensor Decomposition

We consider the problem of decomposing (recovering ais) a symmetric order-3 tensor T ∈ Rd×d×d

of rank n:

(3.2.1) T =
∑
i∈[n]

a⊗3
i .

When the ais are linearly independent, the simultaneous diagonalization algorithm efficiently

recovers them given T . But it has no guarantees if the components are linearly dependent.

Our main idea for the linearly dependent case is divide and conquer : it is still possible that a

large subset {a1, . . . ,ar} of components is linearly independent, so if we cancel out the other

components, {ar+1, . . . , an}, the residual tensor can be efficiently decomposed via the simultaneous

diagonalization algorithm. To cancel the other components, we search for a vector x orthogonal to

them so that Tx =
∑

i∈[n]⟨x, ai⟩aia⊤i only involves the linearly independent components. A random

or grid search for an approximately orthogonal x is efficient if the number of components to cancel

out is small.

For clarity, we now describe an idealized version of our algorithm as if we had two vectors x,y

that are exactly orthogonal to the other components, while the actual algorithm uses a random search

to find them. We also want x, y to be generic with this orthogonality property, so that they can also

play the roles of x, y in the simultaneous diagonalization algorithm (see Section 2.3). Specifically, the

genericity here is that the eigenvalues of TxT
−1
y are distinct. In that case, the eigendecomposition

of TxT
−1
y recovers the directions of {a1, . . . ,ar}. Then, a linear system of equations provides the

lengths of {a1, . . . ,ar}. Once {a1, . . . ,ar} is recovered, the components of T associated to them

can be removed from T via deflation and the simultaneous diagonalization algorithm can be applied

a second time to the residual tensor to recover {ar+1, . . . ,an}.

Our formal statements are Algorithm 2 and Theorem 3.2.1. Our algorithm uses the simultaneous

diagonalization algorithm (Algorithm 1, as presented in [GVX14]) as a subroutine.
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Algorithm 1 DIAGONALIZE [GVX14]

Inputs: Mµ,Mλ ∈ Rd×d, number of vectors r.

1: compute the SVD of Mµ = VDU⊤. Let W be matrix whose columns are the left singular
vectors (columns of V) corresponding to the top r singular values;

2: compute M = (W⊤MµW)(W⊤MλW)−1;
3: compute the eigendecomposition: M = PΛP−1;

Outputs: columns of WP.

Algorithm 2 Approximate tensor decomposition

Inputs: tensor T̃ ∈ Rd×d×d, error tolerance ε, tensor rank n, overcompleteness k, upper bound
M on ∥ai∥2 for i ∈ [n]. Let r = n− k (Kruskal rank).

1: repeat
2: pick x,y i.i.d. uniformly at random in Sd−1;
3: invoke Algorithm 1 with T̃x, T̃y and r. Denote the outputs by ãi for i ∈ [r];

4: solve the least squares problem: minξ1,...,ξr∥Ã:r diag(ξi⟨x, ãi⟩)Ã⊤
:r − T̃x∥2.

5: set R = T̃ −
∑

i∈[r] ξiã
⊗3
i ;

6: pick x′,y′ i.i.d. uniformly at random in Sd−1;
7: invoke Algorithm 1 with Rx′ ,Ry′ and k. Denote the outputs by ãr+i for i ∈ [k];

8: solve the least squares problem: minξr+1,...,ξr+k
∥Ãr+1: diag(ξr+i⟨x′, ãr+i⟩)Ã⊤

r+1: −Rx′∥2.
9: reconstruct the tensor T ′ =

∑
i∈[r+k] ξiã

⊗3
i ;

10: until ∥T ′ − T̃ ∥F ≤ ε, maxi∈[r+k]|ξi|1/3 ≤ 2M

Outputs: a′i := ξ
1/3
i ãi, for i ∈ [r + k].

Theorem 3.2.1 (Correctness of Algorithm 2). Let T =
∑

i∈[r+k] a
⊗3
i , 1 ≤ k ≤ (r − 2)/2,

and ai ∈ Rd. Let A = [a1, . . . ,ar+k] and K-rankτ (A) ≥ r. Let τ > 0, M ≥ maxi∈[r+k] ∥ai∥2,

0 < m ≤ mini∈[r+k] ∥ai∥2 and 0 < εout ≤ min{1,m3}. There exist polynomials poly3.2.1(d, τ,M),

poly′3.2.1(d, τ,M,m−1), such that if εin ≤ εout/ poly
′
3.2.1 and T̃ is a tensor such that ∥T − T̃ ∥F ≤ εin,

then Algorithm 2 on input T̃ and ε = εout/ poly3.2.1, outputs vectors a
′
1, . . . , a

′
r+k such that for some

permutation π of [r+ k], we have ∥aπ(i) − a′i∥2 ≤ εout, ∀i ∈ [r+ k]. The expected running time is at

most poly(dk, ε−k
out, τ

k,Mk,m−k).

Proof idea. The proof has three parts. First we show that if T ′ (with which the algorithm finishes)

is close to T̃ and has bounded components, then the components of T ′, {a′i := ξ
1/3
i ãi : i ∈ [r + k]},

are close to those of T . In the second part we show that, assuming good x,y,x′,y′ have been

found, how the error propagates in our algorithm and the algorithm indeed finishes with a tensor
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T ′ that is close to T̃ (and therefore, close to T via triangle inequality). In the third part we show

the probabilistic bounds that guarantee efficient search of good x,y,x′,y′.

The first part follows from [BCV14, Theorem 2.6] (the version we need is Theorem 3.3.1 here).

We now informally state what good x,y means. Note that in the idealized case, x,y are chosen to

be orthogonal to k = n− r vectors and to be generic, meaning that TxT
−1
y has distinct eigenvalues.

In Algorithm 2 we rely on random search to find good x,y, namely x,y that satisfy:

(1) nearly orthogonal to last k terms: |⟨x, âr+i⟩|, |⟨y, âr+i⟩| are small for i ∈ [k];

(2) non-orthogonality on first r terms: |⟨x, âi⟩|, |⟨y, âi⟩| are lower bounded for i ∈ [r];

(3) the eigenvalues of TxT
−1
y , ⟨x, âi⟩/⟨y, âi⟩, are well-separated.

Properties 1 and 2 guarantee that we have r components with noise after contraction, and property

3 guarantees that the simultaneous diagonalization algorithm can be applied to contracted matrices.

We will revisit and quantify these properties in Section 3.3.3. There will be also similar properties

for x′,y′.

For the second part, we will assume that we have found good vectors x,y. Theorem 3.3.3 (from

[GVX14]) and Lemma 3.3.4 guarantee that we can simultaneously diagonalize matrices T̃x and

T̃y using the simultaneous diagonalization algorithm (Algorithm 1), and the outputs are close to

the directions of ais. Lemma 3.3.5 shows that we can recover approximately the lengths of ais

by solving a least squares problem once we have the directions. At this point we completed the

recovery of r components. Lemma 3.3.6 shows that when the deflation error is small, the residual

tensor R can be decomposed in the same way and the last k directions are recovered. At the end of

the second part, Lemma 3.3.7 shows that the lengths of the last k components are approximately

recovered.

The third part is shown in Lemmas 3.3.10 and 3.3.11. □

Remark 2. The constraint 1 ≤ k ≤ (r − 2)/2 on the rank is because of Kruskal’s theorem

(Theorem 2.3.6): we need 2(r + k) + 2 ≤ 3r to guarantee identifiability.

Remark 3. Theorem 3.2.1 has an immediate extension to order-3p symmetric tensors for integer

p > 1 by “batching” each set of p modes together and reshaping into a dp× dp× dp tensor. However,
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for higher order tensors, additional tools are available. Hence we restrict ourselves to the (in this

sense) harder case of order-3 tensors.

3.3. Proof of Theorem 3.2.1

3.3.1. Uniqueness of Decomposition. We show that if Algorithm 2 satisfies its termination

condition, then its outputs are close to the components of T . We deduce this directly from the

following known result on the stability of tensor decompositions.

Theorem 3.3.1 ([BCV14, Theorem 5]). Suppose a rank R tensor T =
∑

i∈[R] a
⊗3
i ∈ Rd×d×d

is ρ-bounded. Let A = [a1, . . . ,aR] with 3K-rankτ (A) ≥ 2R+ 2. Then for every ε′ ∈ (0, 1), there

exists ε = ε′/poly3.3.1(R, τ, ρ, ρ′, d) for a fixed polynomial poly3.3.1 so that for any other ρ′-bounded

decomposition T ′ =
∑

i∈[R](a
′
i)
⊗3 with ∥T ′ − T ∥F ≤ ε, there exists a permutation matrix Π and

diagonal matrix Λ such that ∥Λ3 − I∥F ≤ ε′ and ∥A′ −AΠΛ∥F ≤ ε′.

The original statement in [BCV14] explicitly assumes that T (the sum of R rank-1 tensors) has

rank R, but this assumption is redundant: a tensor T =
∑

i∈[R] a
⊗3
i ∈ Rd×d×d with 3K-rank(A) ≥

2R+ 2 cannot have another decomposition with less than R terms because of Theorem 2.3.6. Also,

the original statement in [BCV14] is for the non-symmetric case and we only state here the version

we need, specialized to the symmetric case. This restatement is not completely obvious because a

symmetric tensor with minimal length symmetric decomposition of length R (i.e., with symmetric

rank equal to R) could have a non-symmetric decomposition of shorter length in general. But

under Kruskal’s condition, 3K-rankτ (A) ≥ 2R + 2 (implied by the robust Kruskal condition in

Theorem 3.3.1), Kruskal’s uniqueness theorem (Theorem 2.3.6) implies that the symmetric and the

non-symmetric decompositions (and ranks) of such a T coincide.

Note that in Theorem 3.3.1 a scaling matrix Λ is introduced. We will use the following corollary

instead to have a handier result without the scaling matrix:

Corollary 3.3.2. In the setting of Theorem 3.3.1, there exists a polynomial poly3.3.2(R, τ, ρ, ρ′, d)

such that if ε′ ∈ (0, 1) and ε = ε′/ poly3.3.2(R, τ, ρ, ρ′, d), then for any other ρ′-bounded decomposition

T ′ =
∑

i∈[R](a
′
i)
⊗3 with ∥T ′ − T ∥F ≤ ε, there exists a permutation π of [R] such that ∀i ∈ [R],

∥aπ(i) − a′i∥2 ≤ ε′.
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Proof. We assume that the permutation is the identity. Let c = (1 + 4ρ/3) and poly3.3.2 =

cpoly3.3.1. By Theorem 3.3.1, we have that for each i ∈ [R]:

∥a′i − λiai∥2 ≤ c−1ε′, and |λ3
i − 1| ≤ c−1ε′.

Since |x− 1| ≤ 4|x3− 1|/3 for all x ∈ R, the second inequality implies that: |λi− 1| ≤ 4|λ3
i − 1|/3 ≤

4c−1ε′/3. Therefore

∥a′i − ai∥2 ≤ ∥a′i − λiai∥2 + |λi − 1|∥ai∥2 ≤ (1 + 4ρ/3)c−1ε′ = ε′.

□

3.3.2. Robust Decomposition. In this subsection, we will derive the forward error propaga-

tion of Algorithm 2, i.e., how the output error depends on the input error in each step of Algorithm 2.

We will assume throughout this subsection that we already have two unit vectors x,y that are

nearly orthogonal to âr+1, . . . , âr+k, that is, |⟨x, âr+i⟩|, |⟨y, âr+i⟩| ≤ θ for i ∈ [k], where θ will be

chosen later, and K-rankτ (A) ≥ r. Let Ein = T − T̃ be the input error tensor. Also recall that

∥ai∥ ∈ [m,M ]. We summarize the roadmap of this subsection below in Fig. 3.1.

Recover the directions â1, . . . , âr
Lemma 3.3.4

Recover the norms ∥a1∥2, . . . , ∥ar∥2
Lemma 3.3.5

Deflation

Recover the directions âr+1, . . . , âr+k

Lemma 3.3.6
Recover the norms ∥ar+1∥2, . . . , ∥ar+k∥2

Lemma 3.3.7

Figure 3.1. Roadmap of Section 3.3.2.

Part 1: robust diagonalization. We first cite the robust analysis of Algorithm 1.

Theorem 3.3.3 ([GVX14, Theorem 5.2]). Let Tµ =
∑

i∈[r] µiaia
⊤
i = A diag(µ)A⊤, Tλ =∑

i∈[r] λiaia
⊤
i = A diag(λ)A⊤, A = [a1, . . . ,ar], ai ∈ Rd, ∥ai∥ = 1, λi, µi ∈ R for i ∈ [r]. Suppose

(1) σr(A) > 0,

(2) µi, λi ̸= 0 for all i.

(3) (∀i) 0 < kl ≤ |µi|, |λi| ≤ ku, and
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(4) (∀i ̸= j) |µi/λi − µj/λj | ≥ α > 0.

Let 0 < ε3.3.3 < 1 and T̃µ, T̃λ be matrices such that

∥Tµ − T̃µ∥F, ∥Tλ − T̃λ∥F ≤
ε3.3.3k

2
l σr(A)3min{α, 1}
211κ(A)kur2

.

Then Algorithm 1 on input T̃µ, T̃λ outputs unit vectors ã1, . . . , ãr such that for some permutation

π of [r] and signs s1, . . . , sr ∈ {±1}, and for all i ∈ [r] we have ∥aπ(i) − siãi∥ ≤ ε3.3.3. It runs in

time poly(d, 1/α, 1/kl, 1/σr(A), 1/ε3.3.3).

Now we apply Theorem 3.3.3 to our case: let Ex = Tx − T̃x and Ey = Ty − T̃y. Write

T̃x = Â:rDxÂ
⊤
:r + Âr+1:D

′
xÂ

⊤
r+1: + (Ein)x,

where Â:r contains âis as columns, Dx = diag(∥ai∥3⟨x, âi⟩) for i ∈ [r] and Âr+1: contains âr+is,

D′
x = diag(∥ar+i∥3⟨x, âr+i⟩) for i ∈ [k]. Then we have

(3.3.1) ∥Ex∥F = ∥Âr+1:D
′
xÂ

⊤
r+1: + (Ein)x∥F ≤ kM3θ + εin,

and similarly for Ey. The following lemma guarantees the correctness of step 3 in Algorithm 2.

Lemma 3.3.4 (Direction estimation). Let ã1, . . . , ãr be the outputs of step 3 in Algorithm 2. If

(1) ∀i ∈ [r]: 0 < kl/m
3 ≤ |⟨x, âi⟩|, |⟨y, âi⟩| ≤ 1;

(2) ∀i, j ∈ [r], i ̸= j:
∣∣⟨x, âr⟩/⟨y, âr⟩ − ⟨x, âr⟩/⟨y, âr⟩∣∣ ≥ α > 0,

then there are signs s1, . . . , sr ∈ {±1} and a permutation π of [r] such that ∀i ∈ [r]:

∥âπ(i) − siãi∥ ≤ ε3.3.4 :=
211τ4M7r5/2(kM3θ + εin)

k2l min{α, 1}
.

This step runs in time poly(d, α−1, k−1
l , τ,M, ε−1

3.3.4).

Proof. Condition 1 in Theorem 3.3.3 holds since K-rankτ (A) ≥ r:

σr(Â:r) ≥ σr(A:r)/M ≥ 1/(τM).
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Conditions 2 and 3 in Theorem 3.3.3 hold because of our assumptions. Combining (3.3.1) and

K-rankτ (A) ≥ r which implies

σr(Â:r)
3κ(Â:r)

−1 = σr(Â:r)
4σ1(Â:r)

−1 ≥ (
√
rτ4M4)−1,

the assumptions of Theorem 3.3.3 are satisfied with parameter ku = M3. The claim follows. □

Since x,y are actually chosen at random, we provide the probability for assumptions of

Lemma 3.3.4 to hold in Section 3.3.3.

Part 2: norm estimation. The next step is to recover ∥ai∥2. This can be done by solving the

least squares problem in step 4. To see this, one can verify that when ãi = âi and T̃x = Tx (no

error in earlier steps), ξi = ∥ai∥32 is a zero error solution to step 4. The following lemma guarantees

that we can approximate the norm via step 4:

Lemma 3.3.5 (Norm estimation). Let b̃1, . . . , b̃r be the columns of (Ã†
:r)⊤. If Lemma 3.3.4 holds

with ε3.3.4 ≤ min{kl/(2m3), (2
√
rτM)−1}, then ξi = T̃ (x, b̃i, b̃i)/⟨x, ãi⟩ for i ∈ [r] is the unique

solution to step 4 in Algorithm 2 and for the permutation π, signs si in Lemma 3.3.4 and all i ∈ [r]

we have

∣∣∥aπ(i)∥32 − siξi
∣∣ ≤ ε3.3.5 := 2k−1

l m3M2
[
3Mε3.3.4 + rMε23.3.4 + 4τ2(kM3θ + εin)

]
.

Proof. For simplicity we assume the permutation is the identity. We start by showing

σr(Ã:r) > 0, which implies Ã†
:rÃ:r = Ir and thus b̃i is orthogonal to ãj for i, j ∈ [r], i ̸= j. By

Lemma 3.3.4, the distance between corresponding columns of Ã:r diag(si) and Â:r is at most ε3.3.4,

therefore by Theorem 2.2.1 we have

∣∣σr(Ã:r diag(si)
)
− σr(Â:r)

∣∣ ≤ ∥Ã:r diag(si)− Â:r∥2 ≤
√
rε3.3.4,

which implies

(3.3.2) σr(Ã:r) = σr
(
Ã:r diag(si)

)
≥ σr(Â:r)−

√
rε3.3.4 ≥ (τM)−1 −

√
rε3.3.4 ≥ 1/(2τM).
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Next, we show that ξi is the unique solution to step 4. We restate the least squares problem in

a matrix-vector product form:

min
ξi
∥Ã⊙2[⟨x, ã1⟩ξ1, . . . , ⟨x, ãr⟩ξr]⊤ − vec(T̃x)∥2,

where Ã⊙2 =
[
vec(ã1ã

⊤
1 ), . . . , vec(ãrã

⊤
r )

]
∈ Rd2×r. It follows that σr(Ã

⊙2) = σr(Ã:r)
2 > 0 and

thus the solution is unique. Let B̃⊙2 =
[
vec(b̃1b̃

⊤
1 ), . . . , vec(b̃rb̃

⊤
r )

]⊤
and notice that B̃⊙2Ã⊙2 = Ir.

The solution to the least squares problem is then given by ξi = T̃ (x, b̃i, b̃i)/⟨x, ãi⟩ since

[
⟨x, ã1⟩ξ1, . . . , ⟨x, ãr⟩ξr

]⊤
= B̃⊙2 vec(T̃x) =

[
b̃⊤
1 T̃xb̃1, . . . , b̃

⊤
r T̃xb̃r

]⊤
.

Finally we show that siξi is close to ∥ai∥32. The deviation of siξi from ∥ai∥32 is bounded by:

∣∣∥ai∥32 − siξi
∣∣ = ∣∣∣∣∥ai∥32 − 1

⟨x, siãi⟩

(∑
j∈[r]

⟨x,aj⟩⟨b̃i,aj⟩2 + b̃⊤
j Exb̃j

)∣∣∣∣
≤

∣∣∣∣⟨x, âi⟩⟨b̃i, âi⟩2

⟨x, siãi⟩
− 1

∣∣∣∣︸ ︷︷ ︸
small when siãi close to âi

(note that ⟨b̃i,ãi⟩=1)

∥ai∥32 +
∑

j∈[r],j ̸=i

(
∥aj∥32

∣∣∣∣⟨x, âj⟩⟨b̃i, âj⟩2

⟨x, siãi⟩

∣∣∣∣︸ ︷︷ ︸
small when sj ãj close to âj

(note that ⟨b̃i,ãj⟩=0)

+

∣∣∣∣ b̃⊤
i Exb̃i

⟨x, siãi⟩

∣∣∣∣︸ ︷︷ ︸
error from Ex

)
.

(3.3.3)

We analyze the deviation of each term in (3.3.3). By standard arguments using triangle and

Cauchy-Schwarz inequalities, we have for all i, j ∈ [r]:

|⟨x, siãi⟩| ≥ |⟨x, âi⟩| − ε3.3.4 ≥ kl/m
3 − ε3.3.4 ≥ kl/(2m

3),

|⟨x, sj ãj⟩ − ⟨x, âj⟩| ≤ ε3.3.4, |⟨b̃i, sj ãj⟩ − ⟨b̃i, âj⟩| ≤ ε3.3.4,
(3.3.4)

where the first line comes from the assumptions of the lemma, and the last line follows from

Lemma 3.3.4. Notice that b̃i is orthogonal to ãj for j ̸= i, and ⟨b̃i, ãi⟩ = 1. (3.3.4) implies that:

(3.3.5)

∣∣∣∣⟨x, âi⟩⟨b̃i, âi⟩2

⟨x, siãi⟩
− 1

∣∣∣∣ ≤ 6k−1
l m3ε3.3.4,

∣∣∣∣⟨x, âj⟩⟨b̃i, âj⟩2

⟨x, siãi⟩

∣∣∣∣ ≤ 2k−1
l m3ε23.3.4.

The last term in (3.3.3) is bounded by:

(3.3.6)

∣∣∣∣ b̃⊤
i Exb̃i

⟨x, siãi⟩

∣∣∣∣ ≤ 2k−1
l m3∥Ex∥2∥b̃i∥22 ≤ 2k−1

l m3∥Ex∥Fσr(Ã:r)
−2 ≤ 8k−1

l m3τ2M2∥Ex∥F,
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where the second inequality follows from the definition of b̃i, and the last inequality applies (3.3.2).

Combining (3.3.1), (3.3.3), (3.3.5) and (3.3.6) gives the desired result. □

Part 3: deflation. After we deflate T with the previously recovered r components, the induced

error with respect to the exact deflation
∑

i∈[k] a
⊗3
r+i is given by E ′ = Ein +

∑
i∈[r](a

⊗3
i − ξiã

⊗3
i ).

Now we show that the remaining tensor can be decomposed with the same strategy via step 7 in

Algorithm 2.

Lemma 3.3.6 (Direction estimation). Let ãr+1, . . . , ãr+k be the outputs of step 7 in Algorithm 2.

If

(1) ∀i ∈ [k]: 0 < k′l/m
3 ≤

∣∣⟨x′, âr+i⟩
∣∣, ∣∣⟨y′, âr+i⟩

∣∣ ≤ 1;

(2) ∀i, j ∈ [k], i ̸= j:
∣∣⟨x′, âr+i⟩/⟨y′, âr+i⟩ − ⟨x′, âr+j⟩/⟨y′, âr+j⟩

∣∣ ≥ α′ > 0,

then there are signs sr+1, . . . , sr+k ∈ {±1} and a permutation π′ of [k] such that ∀i ∈ [k]:

∥âr+π′(i) − sr+iãr+i∥2 ≤ ε3.3.6 :=
211τ4M7k5/2∥E ′∥F
(k′l)

2min{α′, 1}
.

This step runs in time poly(d, k′l
−1, α′−1, τ,M, ε−1

3.3.6).

Proof. The proof is similar to the proof of Lemma 3.3.4.

We only need to show that Theorem 3.3.3 can be applied here. Take

T̃µ = Rx′ Tµ = Âr+1: diag(∥ar+i∥32⟨x′, âr+i⟩)Â⊤
r+1:

T̃λ = Ry′ Tλ = Âr+1: diag(∥ar+i∥32⟨y′, âr+i⟩)Â⊤
r+1:.

Condition 1 in Theorem 3.3.3 holds because K-rankτ (A) ≥ r. Condition 2 and 3 in Theorem 3.3.3

follow with parameters k′l,M
3, α′. Combining ∥T̃µ −Tµ∥F, ∥T̃λ −Tλ∥F ≤ ∥E ′∥F with the robust

Kruskal rank condition K-rankτ (A) ≥ r which guarantees

σk(Âr+1:)
3κ(Âr+1:)

−1 = σk(Âr+1:)
4σ1(Âr+1:)

−1(
√
kτ4M4)−1,

Theorem 3.3.3 hold and the claim follows. □

With ãr+1, . . . , ãr+k, we can further approximate the norm of ar+1, . . . ,ar+k, in the same way

we did for the first r components, via step 8. The following lemma guarantees it works:
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Lemma 3.3.7 (Norm estimation). Let b̃r+1, . . . , b̃r+k be the columns of (Ã†
r+1:)

⊤. If Lemma 3.3.6

holds with ε3.3.6 ≤ min{k′l/(2m3), (2
√
kτM)−1}, then ξr+i = R(x′, b̃r+i, b̃r+i)/⟨x′, ãr+i⟩, for i ∈ [k]

is the unique solution to step 8 in Algorithm 2 and for the permutation π′, signs sr+i in Lemma 3.3.6,

and all i ∈ [k] we have

∣∣∥ar+π′(i)∥3 − sr+iξr+i

∣∣ ≤ ε3.3.7 := 2k′−1
l m3M2

[
3Mε3.3.6 + kMε23.3.6 + 4τ2∥E ′∥F

]
.

Proof. The proof is similar to the proof of Lemma 3.3.5.

We start by bounding σk(Ãr+1:) from below. By Lemma 3.3.6, the distance between correspond-

ing columns of Ã:r diag(si) and Â:r is at most ε3.3.6. Similarly, by Theorem 2.2.1:

(3.3.7) σk(Ãr+1:) = σk(diag(sr+i)Ãr+1:) ≥ σk(Âr+1:)−
√
kε3.3.6 ≥

1

τM
−
√
kε3.3.6 ≥

1

2τM
.

Thus by reformulating step 8, we can show that ξr+i = R(x′, b̃r+i, b̃r+i)/⟨x′, ãr+i⟩ is the unique

solution to the least squares problem and
∣∣∥ar+i∥3 − sr+iξr+i

∣∣ is bounded by:

∣∣∥ar+i∥3 − sr+iξr+i

∣∣ ≤ ∥ar+i∥3
∣∣∣∣⟨x′, âr+i⟩⟨b̃r+i, âr+i⟩2

⟨x′, sr+iãr+i⟩
− 1

∣∣∣∣
+

∑
j∈[k],j ̸=i

(
∥ar+j∥3

∣∣∣∣⟨x′, âr+j⟩⟨b̃r+i, âr+j⟩2

⟨x′, sr+iãr+i⟩

∣∣∣∣+ ∣∣∣∣ b̃⊤
r+iE

′
xb̃r+i

⟨x′, sr+iãr+i⟩

∣∣∣∣).(3.3.8)

Similar to (3.3.4), we have the following bounds for the terms in (3.3.8):

|⟨x′, sr+iãr+i⟩| ≥ k′l/m
3 − ε3.3.6 ≥ k′l/(2m

3) for i ∈ [k],

|⟨x′, âr+j⟩ − ⟨x′, sr+iãr+j⟩| ≤ ε3.3.6, |⟨b̃r+i, âr+j⟩ − ⟨b̃r+i, sr+iãr+j⟩| ≤ ε3.3.6 for i ∈ [k],

(3.3.9)

where the first inequality is from assumptions of the lemma, the second and the last are from the

conclusion of Lemma 3.3.6. Now we can bound (3.3.8) with (3.3.7) and (3.3.9):

∣∣∥ar+i∥3 − sr+iξr+i

∣∣ ≤ 2k′l
−1

m3M3(3ε3.3.6 + (k − 1)ε23.3.6) + 8k′l
−1

m3τ2M2∥E ′∥F.

□
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3.3.3. Probability Bounds. We give here bounds on the probability of finding good vectors

for contraction so that Algorithm 2 will finally terminate in polynomial time. Throughout this

subsection, let x,y be two independent random vectors distributed uniformly on Sd−1, and let

a1,a2 . . . ,ar+k be such that ∥ai∥ ∈ [m,M ] and K-rankτ ([a1, . . . ,ar+k]) ≥ r, which implies that

their directions satisfy K-rankτM ([â1, . . . , âr+k]) ≥ r.

We first list the events for good x,y to hold to apply Lemma 3.3.4:

(1) nearly orthogonal to last k terms: A1,y = {∀i ∈ [k], |⟨y, âr+i⟩| ≤ θ};

(2) non-orthogonality on first r terms: A2,y = {∀i ∈ [r], |⟨y, âi⟩| ≥ kl/m
3};

(3) the eigenvalue gap: A3 = {∀i ̸= j, i, j ∈ [r], |⟨x, âi⟩/⟨y, âi⟩ − ⟨x, âj⟩/⟨y, âj⟩| ≥ α > 0}.

We have similar events A1,x,A2,x. Note that in this subsection kl, θ and α are considered as fixed

parameters.

The structure of this subsection is stated as follows: we will first demonstrate our proof idea

for controlling the probability of A1,y ∩A2,y. After presenting our idea, we will first analyze the

probability of A1,y ∩A2,y, then the probability of A1,x ∩A2,x ∩A3 when conditioned on the other

events of y. Finally we will collect these sub-events and give the probability that all of them will

hold.

It seems that direct union bound-type arguments are insufficient and some non-trivial conditioning

is necessary: First, A1,x happens with small probability as meaningful values of θ have to be much

smaller than kl/m
3 and α. Naively applying the union bound on some events and analyzing the rest

does not give enough wiggle room for a positive probability. Besides, A3 is the most complicated in

the sense that it controls the difference of two ratios. As we will see later, after conditioning on y,

the ideas of analyzing A1,y,A2,y can be reused for the rest events, which makes the analysis easier

to follow. We now state the idea of our argument to bound the probability of A1,y ∩A2,y:

Bands argument. We analyze the events geometrically and replace random unit vectors by

random Gaussian vectors together with concentration of their norm. Let z be a random Gaussian

vector let a and b be two unit vectors. An event of the form {|⟨z,a⟩| ≤ t1} corresponds to a band,

while an event like {|⟨z,b⟩| ≥ t2} corresponds to the complement of a band. We call them bands
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of type I and type II, denoted by B1 and B2, respectively. To better illustrate this, we give a

demonstration of bands as the shaded areas in Fig. 3.2.

B1

(a) Band of type I.

B2

(b) Band of type II.

Figure 3.2. Example of bands.

The intersection of bands of type I can be lower-bounded with a direct use of the Gaussian

correlation inequality, Lemma 2.5.3, while the intersection of bands of different types needs special

care. Consider B1 ∩ B2: when ⟨a,b⟩ = 0, the intersection becomes B1 with a rectangular region

excluded. In this case, the two bands will be orthogonal, and the two events are independent. In the

general case, the excluded region is a parallelogram depending on ⟨a,b⟩. See Fig. 3.3 for illustration.

In the extreme case, two bands are parallel and hence the probability will be zero when t1 ≤ t2. But

when ⟨a,b⟩ is not too close to one, we can, when bounding the probability, replace the parallelogram

by a slightly larger rectangular region without decreasing the final probability too much, which

is shown by the white dashed lines in Section 3.3.3. This is essentially done by projecting b onto

span {a} and span {a}⊥.

(a) Orthogonal intersection. (b) Non-orthogonal intersection.

Figure 3.3. Intersection of bands.

We see that events A1,y,A2,y are the intersection of bands and their probability is the probability

measure of their intersection. Specifically, we have: A1,y = ∩ki=iB1,i, A2,y = ∩rj=1B2,j , where

B1,i := {|⟨y, âr+i⟩| ≤ θ} and B2,j := {|⟨y, âj⟩| ≥ kl/m
3}. For the rest of this subsection, let

S = span{âr+1, . . . , âr+k}⊥, S⊥ = span{âr+1, . . . , âr+k}, and projS be the orthogonal projection

onto S and projS⊥ = Ik − projS . Now we can bound the probability of A1,y ∩A2,y:

Lemma 3.3.8. If kl > 0 and 0 < θ ≤ 2/
√
d, then

P[A1,y ∩A2,y] ≥ p1 := (θ
√
d/8)k

(
1/4− r

√
d/2πτM(4kl/m

3 +
√
kτMθ)

)
.
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Proof. Write y = z/∥z∥2, where z is a standard Gaussian random vector. Consider the

following events corresponding to z, for R1 < R2 to be chosen later: B′1,i := {|⟨z, âr+i⟩| ≤ R1θ} and

B′2,j := {|⟨z, âj⟩| ≥ R2kl/m
3}. We have

A1,y ∩A2,y = (∩iB1,i) ∩ (∩jB2,j) = (∩iB1,i) \ (∪jBc2,j)

⊇ (∩iB′1,i \ {∥z∥2 ≤ R1})︸ ︷︷ ︸
z nearly orthogonal to âr+i while ∥z∥2 not too small

\ ∪j
(
(B′2,j)c ∪ {∥z∥2 ≥ R2}

)︸ ︷︷ ︸
z nearly orthogonal to âj for some j or ∥z∥2 too large

.

Set A = ∩i∈[k]B′1,i. Since A\ {∥z∥2 ≤ R1} = A\ ({∥z∥2 ≤ R1} ∩A) ⊇ A\ ({∥projS z∥2 ≤ R1} ∩A):

A1,y ∩A2,y ⊇
(
A \ ({∥projS z∥2 ≤ R1} ∩ A)

)
\
⋃
j

(
(B′2,j)c ∪ {∥z∥2 ≥ R2}

)
= A \

(
∪j∈[r]((B′2,j)c ∩ A)

⋃
({∥projS z∥2 ≤ R1} ∩ A)

⋃
({∥z∥2 ≥ R2} ∩ A)

)
,

which implies

P[A1,y ∩ A2,y]

≥ P[A]−
∑
j∈[r]

P[(B′2,j)c,A]− P[{∥projS z∥2 ≤ R1},A]− P[{∥z∥2 ≥ R2},A].
(3.3.10)

We now bound the terms in (3.3.10). First,

P[(B′2,j)c,A] = P
[
|⟨z, âj⟩| ≤ R2kl/m

3
∣∣ A]P[A].

Notice that when conditioning on the event |⟨z, âr+i⟩| ≤ R1θ for i ∈ [k] we have:

(3.3.11) |⟨z,projS⊥ âj⟩| = |z⊤Âr+1:Â
†
r+1:âj | ≤ R1

√
kθ∥Â†

r+1:âj∥2 ≤ R1

√
kτMθ,

where the first equality comes from the definition of the projection, the second inequality follows

from the conditioning, and the last comes from the robust Kruskal rank condition. Furthermore, we

notice that projS âj is orthogonal to âr+1, . . . , âr+k and the conditioning can therefore be dropped
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after applying (3.3.11):

P
[
|⟨z, âj⟩| ≤ R2kl/m

3
∣∣ A] ≤ P

[
|⟨z,projS âj⟩| ≤ R2kl/m

3 + |⟨z, projS⊥ â1⟩|
∣∣ A]

≤ P
[
|⟨z,projS âj⟩| ≤ R2kl/m

3 +R1

√
kτMθ

]
≤ 2(
√
2π∥projS â1∥2)

−1(R2kl/m
3 +R1

√
kτMθ)

≤
√

2/πτM(R2kl/m
3 +R1

√
kτMθ),

where the last two steps follow from bounding the density of a Gaussian distribution from above

and the fact that {âj , âr+1, . . . , âr+k} also satisfies the robust Kruskal rank condition so that

∥projS âj∥2 ≥ (τM)−1.

We use the following bounds for the last two terms in (3.3.10):

P[∥projS z∥2 ≤ R1,A] = P[∥projS z∥2 ≤ R1]P[A] ≤ P[A]/2 (set R1 =
√
d/2),

P[∥z∥2 ≥ R2,A] = P[∥z∥2 ≥ R2 | A]P[A] = (1− P[∥z∥2 ≤ R2 | A])P[A]

≤ (1− P[∥z∥2 ≤ R2])P[A] (Gaussian correlation ineq., Theorem 2.5.2)

≤ P[A]/4 (Markov’s inequality, set R2 = 2
√
d).

Combining the previous estimates we get

P[A1,y ∩A2,y] ≥ P[A]
(
1− 1/2− r

√
2/πτM(R2kl/m

3 +R1

√
kτMθ)− 1/4

)
.

By Lemma 2.5.3, P[A] ≥ (R1θ/4)
k. The claim follows. □

At this point, we are ready to analyze the probability of A3.

Lemma 3.3.9. In the setting of Lemma 3.3.8, let p2 = p1 − (θ
√
d/8)kr2τM(

√
dkθτMk−1

l m3 + α).

Then P[A3 ∩A1,x ∩A2,x | A1,y,A2,y] ≥ p2.

Proof. We start with our idea to bound the probability of the “eigenvalue gap”:∣∣∣ ⟨x, âs⟩⟨y, âs⟩
− ⟨x, ât⟩
⟨y, ât⟩

∣∣∣ ≥ α for s, t ∈ [r], s ̸= t.
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Since we condition on |⟨y, âi⟩| not being too small for all i ∈ [r], when further conditioned on y, we

have:

P
[∣∣∣ ⟨x, âs⟩⟨y, âs⟩

− ⟨x, ât⟩
⟨y, ât⟩

∣∣∣ ≥ α

∣∣∣∣ A1,y,A2,y

]
= E

[
P
[∣∣∣ ⟨x, âs⟩⟨y, âs⟩

− ⟨x, ât⟩
⟨y, ât⟩

∣∣∣︸ ︷︷ ︸
denominators are fixed

≥ α

∣∣∣∣ y] ∣∣∣∣ A1,y,A2,y

]
.

Therefore it is enough to show a uniform lower bound for P[|⟨x, Csâs − Ctât⟩| ≥ α], where |Cs|, |Ct|

are in [1, k−1
l m3]. Notice that the set {|⟨x, Csâs − Ctât⟩| ≥ α} is a type II band, which we denoted

by B3,st. Therefore the target event is the intersection of k type I bands B1,i, r type II bands B2,j

and
(
r
2

)
type II bands B3,st. More precisely,

P[A3,A1,x,A2,x | A1,y,A2,y] ≥ inf
|Cs|,|Ct|∈[1,k−1

l m3]
P[∩i∈[k]B1,i,∩j∈[r]B2,j ,∩s,t∈[r],s ̸=tB3,st].

We reuse ideas from the proof of Lemma 3.3.8. Write x = u/∥u∥2 with u being standard Gaussian.

Consider the following events for u: B′1,i := {|⟨u, âr+i⟩| ≤
√
dθ/2}, B′2,j := {|⟨u, âj⟩| ≥ 2

√
dkl/m

3},

and B′3,st := {|⟨u, Csâs − Ctât⟩| ≥ 2
√
dα}. Set A = ∩i∈[k]B′1,i. With the concentration of ∥u∥2 in

[
√
d/2, 2

√
d], the target probability becomes:

P[∩i∈[k]B1,i, ∩j∈[r] B2,j ,∩s,t∈[r],s ̸=tB3,st] ≥ P
[
A \

(
({∥projS u∥2 ≤

√
d/2} ∩ A)⋃

∪j∈[r]((B′2,j)c ∩ A)
⋃

({∥u∥2 ≥ 2
√
d} ∩ A)

⋃
∪s ̸=t∈[r]((B′3,st)c ∩ A)

)]
≥ p1 −

∑
s,t∈[r],s ̸=t

P[A, (B′3,st)c].(3.3.12)

Now we consider the summand, which is the intersection of k + 1 type I bands. Take s = 1, t = 2

(the rest is similar) and write v = C1â1 − C2â2 = projS v + projS⊥ v. Then:

P[A, (B′3,12)c] = P
[
|⟨u,v⟩| ≤ 2

√
dα

∣∣ A]P[A]
≤ P

[
|⟨u, projS v⟩| ≤ 2

√
dα+ |⟨u,projS⊥ v⟩|

∣∣ A]P[A].(3.3.13)

When conditioning on A, ⟨u, projS⊥ v⟩ is bounded by:

|⟨u,projS⊥ v⟩| = |u⊤Âr+1:Â
†
r+1:(C1â1 − C2â2)| ≤

√
dkθ∥Â†

r+1:(C1â1 − C2â2)∥2/2

≤
√
dkθτMk−1

l m3.
(3.3.14)
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With (3.3.14), we can drop the conditioning in (3.3.13):

P[A ∩ (B′3,12)c] ≤ P
[
|⟨u,projS v⟩| ≤ α+

√
dkθτMk−1

l m3
]
P[A]

≤ 2(α+
√
dkθτMk−1

l m3)/(
√
2π∥projS v∥2)P[A]

≤ 2τM(α+
√
dkθτMk−1

l m3)P[A].

(3.3.15)

The last inequality holds because the set {â1, â2, âr+1, . . . , âr+k} satisfies the robust Kruskal rank

condition, and thus

∥projS v∥2 = ∥C1â1 − C2â2 − Âr+1:Â
†
r+1:v∥2 ≥ (τM)−1

√
C2
1 + C2

2 + ∥Â†
r+1:v∥22 ≥

√
2(τM)−1.

The combination of Lemma 2.5.3 and (3.3.12) and (3.3.15) gives the desired probability. □

Finally, we are in a place to give the probability that all the events are true for x,y:

Lemma 3.3.10. In the setting of Lemma 3.3.8, P[A1,x,A1,y,A2,x,A2,y,A3] ≥ p1p2. In par-

ticular, the choices kl =
√
2πτ−1M−1m3r−1d−1/2/64, α = τ−1M−1r−2/16 and θ(r

√
dkτ2M2 +

64r3τ3M3d
√
k/
√
2π) ≤ 1/16 imply that P[A1,x,A1,y,A2,x,A2,y,A3] ≥

(
θ
√
d
/
8)2k/256.

Proof. The first part follows by combining Lemmas 3.3.8 and 3.3.9. For the second part, since

p2 ≤ p1, the claim follows by using our choices in P[A1,x,A1,y,A2,x,A2,y,A3] ≥ p22. □

At this point, we finished the analysis of the randomness in the first partial tensor decomposition,

to recover the first r components. In the next lemma we give the probability that random vectors

x′,y′ satisfy the assumptions of Lemma 3.3.6. The events we are analyzing are:

A′
2,x = {∀i ∈ [k], |⟨x′, âr+i⟩| ≥ k′l/m

3},

A′
2,y = {∀i ∈ [k], |⟨y′, âr+i⟩| ≥ k′l/m

3}, and

A′
3 = {∀i ̸= j, i, j ∈ [k], |⟨x′, âr+i⟩/⟨y′, âr+i⟩ − ⟨x′, âr+j⟩/⟨y′, âr+j⟩| ≥ α′ > 0}.

Lemma 3.3.11. Let x′,y′ be i.i.d. uniformly random in Sd−1. For âr+1, . . . , âr+k, and k′l, α
′ > 0,

we have

P[A′
2,x,A′

2,y,A′
3] ≥ (1− k2

√
edτMα′ −

√
edkk′l/m

3)(1−
√
edkk′l/m

3).
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In particular, the choices k′l = m3k−1d−1/2/(4
√
e), α′ = τ−1M−1k−2d−1/2/(4

√
e) imply that

P[A′
2,x,A′

2,y,A′
3] ≥ 3/8.

Proof. The first part reuses ideas from the proofs of Lemmas 3.3.8 and 3.3.9. We first separate

the intersection of events:

P[A′
2,x ∩A′

2,y ∩A′
3] = P[A′

2,x ∩A′
3 | A′

2,y]P [A′
2,y] ≥ (P[A′

3 | A′
2,y]− P[(A′

2,x)
c])P[A′

2,y].

By Lemma 2.5.1, P[A′
2,x] and P[A′

2,y] are at least 1−
√
edkk′l/m

3. Also

P[(A′
3)

c | A′
2,y] = E

[
P
[

min
i ̸=j,i,j∈[k]

∣∣∣ ⟨x′, âr+i⟩
⟨y′, âr+i⟩

− ⟨x
′, âr+j⟩

⟨y′, âr+j⟩

∣∣∣ ≤ α′
∣∣∣∣ y′

] ∣∣∣∣ A′
2,y

]
.

Consider a uniform upper bound for P[mini ̸=j,i,j∈[k]|⟨x′, C ′
iâr+i−C ′

j âr+j⟩| ≤ α′], where |C ′
i|, |C ′

j | are

lower bounded by 1. Therefore, again by Lemma 2.5.1, we have

P[(A′
3)

c| A′
2,y] ≤ k(k − 1)

√
edτMα′/(2

√
2) ≤ k2

√
edτMα′.

Combining everything gives the desired result. The second part follows directly from our choices of

k′l and α′. □

3.3.4. Proof of Theorem 3.2.1. In this subsection we prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Without loss of generality, assume π is the identity, and assume

for a moment that εin, θ are small enough so that: (1) the assumptions of Lemmas 3.3.5 and 3.3.7

are satisfied; and (2) ε3.3.4 and ε3.3.6 are smaller than 1 so that we can replace ε23.3.4 and ε23.3.6 by

ε3.3.4 and ε3.3.6 in the expression of ε3.3.5 and ε3.3.7. We trace the error propagation backwards and

show how we can reach ε accuracy for the algorithm to terminate while achieving non-negligible

success probability per iteration. The reconstruction error is bounded with Lemmas 3.3.4 to 3.3.7:

∥T ′ − T̃ ∥F ≤ ∥T̃ − T ∥F +
∑

i∈[r+k]

∥a⊗3
i − ξiã

⊗3
i ∥F

≤ εin +
∑

i∈[r+k]

∣∣∥ai∥32 − siξi
∣∣∥ã⊗3

i ∥F + ∥â⊗3
i − s3i ã

⊗3
i ∥F∥ai∥

3
2

≤ εin + 3rM3ε3.3.4 + rε3.3.5 + 3kM3ε3.3.6 + kε3.3.7.

(3.3.16)
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Collecting the results from Lemmas 3.3.4 to 3.3.7, we have:

ε3.3.4 = O
(
τ4M10kr5/2k−2

l α−1(εin + θ)
)

ε3.3.6 = O(τ4M7k5/2rk′l
−2α′−1ε3.3.5)

ε3.3.5 = O(M3m3rk−1
l ε3.3.4) ε3.3.7 = O(M3m3kk′l

−1ε3.3.6),

which can be written in terms of εin and θ:

(3.3.17)

ε3.3.4 = O
(
τ7M13m−6kr13/2d(εin + θ)

)
ε3.3.6 = O

(
τ13M25m−12k11/2r19/2d3(εin + θ)

)
ε3.3.5 = O

(
τ8M17m−6kr17/2d3/2(εin + θ)

)
ε3.3.7 = O

(
τ13M28m−12k13/2r19/2d7/2(εin + θ)

)
.

Equation (3.3.17) implies the reconstruction error is bounded by

∥T ′ − T̃ ∥F = O
(
τ13M28m−12k15/2r19/2d7/2(εin + θ)

)
.

This gives a polynomial q(d, r, k, τ,M,m−1) = Θ(τ13M28m−12k15/2r19/2d7/2), increasing in every ar-

gument, such that if we request that εin ≤ ε/q(d, r, k, τ,M,m−1) and we set θ = ε/q(d, r, k, τ,M,m−1),

then ∥T ′ − T̃ ∥F ≤ ε (the first termination condition). With this choice: (1) the assumptions of

Lemma 3.3.10 are satisfied; (2) for each iteration, with positive probability the events in Lem-

mas 3.3.10 and 3.3.11 happen; and (3) we can take ε3.3.4 = Θ(τ−6M−15m6r−3d−5/2ε), ε3.3.6 =

Θ(M−3k−4d−1/2ε) and they satisfy the assumptions of Lemmas 3.3.5 and 3.3.7, respectively.

Now we argue that the second termination condition, maxi∈[r+k]|ξi|1/3 ≤ 2M , holds when the

events in Lemmas 3.3.10 and 3.3.11 happen. Notice that at this point |ξi| is close to ∥ai∥32. Without

loss of generality, assume maxi∈[r+k]|ξi|1/3 = |ξ1|1/3. Since ∀x, y > 0, |y1/3 − x1/3| ≤ y−2/3|y − x|,

we have
∣∣∥ai∥2 − |ξi|1/3∣∣ ≤ ∥ai∥−2

2

∣∣∥ai∥32 − |ξi|∣∣, for all i ∈ [r + k], which implies

|ξ1|1/3 ≤ ∥a1∥2 +
∣∣∥a1∥2 − |ξ1|1/3∣∣ ≤ ∥a1∥2 + ∥a1∥−2

2 ε ≤M +m ≤ 2M,

where the second inequality comes from ε3.3.5 ≤ ε and the third inequality comes from ε ≤ εout ≤ m3.

Therefore, the algorithm terminates with a 2M -bounded decomposition with reconstruction error at

most ε.
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Set

poly3.2.1(d, τ,M) = 2 poly3.3.2(2d, τ,M, 2M,d) ≥ 2 poly3.3.2(r + k, τ,M, 2M,d),

poly′3.2.1(d, τ,M,m−1) = q(d, d, d, τ,M,m−1) poly3.2.1 ≥ q(d, r, k, τ,M,m−1) poly3.2.1 .

When the algorithm terminates, we have

(3.3.18) ∥T − T ′∥F ≤ ε+ εin ≤ ε+
ε

q
≤ εout

poly3.2.1
+

εout
q poly3.2.1

≤ εout
poly3.3.2(r + k, τ,M, 2M,d)

.

Thus, we can apply Corollary 3.3.2 and obtain component-wise εout accuracy.

For the running time, in each iteration, steps 3 and 7 run in time poly(d, ε−1, τ,M,m−1). Least

squares steps 4 and 8 and the rest take poly(d) time. By Lemmas 3.3.10 and 3.3.11, the success prob-

ability per iteration is at least 3
(
θ
√
d/8

)2k
/211, which implies that the expected number of iterations

is at most 211(θ
√
d/8)−2k/3 and the expected running time is at most poly(dk, ε−k, τk,Mk,m−k).

Since ε = εout/ poly3.2.1, the expected running time is also at most poly(dk, 1/εkout, τ
k,Mk,m−k). □

3.4. Numerical Simulations

In this section, we report some numerical simulation results of Algorithm 2 to verify its correctness

and study its feasibility. We implement and run Algorithm 2 on synthetic data generated as follows:

For the given dimension d and the overcomplete parameter r, we first randomly sample a matrix

A = [a1, . . . , ad+r] ∈ Rd×(d+r) with i.i.d. entries from N (0, 1), then a random symmetric tensor Tin

is constructed using the columns of A: Tin =
∑

i∈[d+r] a
⊗3
i . Note that the actual implementation

has a different termination condition from Algorithm 2: the algorithm terminates with a success if

the relative error between the output tensor T ′ and input T , ∥T ′ − T ∥F/∥T ∥F is smaller than a

threshold ε, while it terminates with a failure if the number of re-initializations reaches a threshold

N .

Algorithm 2 is applied to random tensors of different d ∈ {10, 20, 30, 40, 50, 60} and r ∈ {1, 2, 3, 4}.

For each (d, r) pair, 50 random tensors are generated and the results are the average on them. In

experiments, we set ε = 0.1 and N = 10000. Fig. 3.4 shows the rate of success of Algorithm 2 on

each (d, r) pair. We see that, even in the mildly overcomplete settings, increasing d or r significantly

reduces the rate of success.
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Figure 3.4. Rate of success on random Gaussian inputs. Horizontal axis indicates
the dimension d, and the vertical axis indicates the overcomplete parameter r. The
number in each cell indicates the rate of success of Algorithm 2 over 50 random
tensor in Rd with d+ r Gaussian components.

We summarize the running time and relative error results for the cases with a non-zero rate

of success in our experiments in Table 3.1. Though we see successful cases when d, r are small,

which verifies the correctness of Algorithm 2 and Theorem 3.2.1, as d, r increases, we see an increase

in the running time and relative error. The rapidly-decreasing rate of success makes Algorithm 2

impractical, which can also be partially recognized in our analysis: Equation (3.3.17) suggests that

polynomials poly3.2.1,poly
′
3.2.1 are actually of very high degree in each of its inputs.

Parameters
Results

Running time (s) Relative error
d r Successful runs All runs Successful runs All runs
60 1 183.6719 259.3723 0.0528 0.2450
50 1 127.9894 128.3883 0.0903 0.2252
40 1 57.3451 62.2241 0.0668 0.1667
30 1 23.6430 26.8917 0.0631 0.1201
20 1 10.3054 11.0066 0.0594 0.0725
10 1 1.1336 1.1336 0.0326 0.0326
10 2 6.4174 6.8246 0.0724 0.1084
10 3 7.2966 7.3902 0.0799 0.1697

Table 3.1. Running time and relative error for the cases with a non-zero rate of
success in Fig. 3.4. The results are averaged on successfully decomposed tensors in
the column “Successful runs” and on all tensors in the column “All runs”.
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CHAPTER 4

Blind Deconvolution and Gaussian Mixture Models

In this chapter we study two problems in data sciences that motivate and are direct applications

of Algorithm 2: blind deconvolution and GMM parameter estimation.

A deconvolution problem can be formulated as follows: We have a d-dimensional random vector

(4.0.1) x = z+ η

where z and η are independent random vectors. Given samples from x, the goal is to determine the

distribution of z. It is called deconvolution because the distribution of x is the convolution of the

distributions of z and η. In principle, z can be seen as the signal we are interested in while η is

some random noise. Blind deconvolution tries to answer the following question:

Can we recover the distribution of z when the distribution of η is unknown?

The following mixture model parameter estimation problem can be recast as a blind deconvolution

problem: Let x be a d-dimensional random vector distributed as the following mixture model: First

sample i from [d], each value with probability wi (wi > 0,
∑

iwi = 1), then let x = µi + η, where η

is a given d-dimensional random vector and µi ∈ Rd. The estimation problem is to estimate µis

and wis from samples of x. It is a deconvolution problem x = z+ η when z follows the discrete

distribution equal to µi with probability wi and is blind when the distribution of η is unknown.

The GMM parameter estimation problem can be described as follows: Let x ∈ Rd be a random

vector with density function x 7→
∑

i∈[k]wifi(x) where wi > 0,
∑

i∈[k]wi = 1 and fi is the Gaussian

density function with mean µi ∈ Rd and covariance matrix Σi ∈ Rd×d. GMM parameter estimation

is the following algorithmic question:

Given i.i.d. samples from x, suppose k is known, can we estimate wis, µis and Σis?

Specifically, the GMM parameter estimation problem is a deconvolution problem when the covariance

matrices of the components are the same, namely Σi = Σ. In such cases, the problem is recast as

41



x = z+ η where z follows a discrete distribution taking value µi with probability wi, i = 1, . . . , k

and η is Gaussian with mean 0 and covariance Σ. It is blind if Σ is unknown.

Inspired by our tensor decomposition algorithm (Algorithm 2), we are interested in a specific

family of η which contains Gaussian distribution η ∼ N (0,Σ):

Can we recover the distribution of z when η has zero 1st, 3rd moments and finite 6th moment?

A practitioner may use the expectation-maximization(EM) algorithm [DLR77], [HTF09,

Section 8.5] for parameter estimation. However due to the non-convex nature of the objective

function, the EM algorithm is not favored by the theorists, while the tensor structure in the

higher order moments of GMMs implied guaranteed and efficient parameter estimation via tensor

decomposition [HK13,GVX14,BCMV14,ABG+14,AGH+14,AGJ15,GHK15].

The intuition of applying tensor decomposition is based on the method of moments: The

distribution of z is identifiable from its 3rd moment tensor

E[z⊗3] =
k∑

i=1

wiµ
⊗3
i

if the decomposition of E[z⊗3] coincides with the right hand side. In such cases, decomposing E[z⊗3]

leads to the recovery of w
1/3
i µis, which will further be decoupled and the distribution of z can be

recovered. To obtain E[z⊗3], since E[η⊗3] = 0, one can exploit moment structures such as:

(4.0.2) E[x⊗3] = E[z⊗3] + (E[z⊗ η ⊗ η] + E[η ⊗ z⊗ η] + E[η ⊗ η ⊗ z]).

Notice that the second term in (4.0.2) can be seen as the sum of E[x] ⊗Σ and its two different

“transposed” tensors, which suggests that when Σ is known, (4.0.2) can be used to compute E[z⊗3].

When Σ is not given, some special cases are solved. For example, in [HK13] the authors showed

that when η ∼ N (0, σId), one has that

E[z⊗3] = E[x⊗3]− σ2
∑
i∈[d]

(E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]),

where ei is the i-th canonical basis vector in Rd, and that σ2 is the smallest eigenvalue of Cov(x).

However, the challenges of our problem come with the unknown and possibly non-spherical covariance

of η: it is not obvious anymore to apply moment structures like (4.0.2) and our contribution is a
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formulation that involves an overcomplete tensor decomposition and uses our overcomplete tensor

decomposition algorithm in an essential way.

Organization of the chapter. In Section 4.1, we will revisit the existing works on blind

deconvolution and GMMs, and present our high level results. In Sections 4.2 and 4.3, we will present

our algorithms on blind deconvolution of discrete distribution and the parameter estimation of

GMMs and prove their correctness.

4.1. Introduction

Blind deconvolution-type problems have a long history in signal processing and specifically

in image processing as a deblurring technique (see, e.g., [LWDF11]). The idea of using higher

order moments in blind identification problems is standard too in signal processing, specifically

in Independent Component Analysis (see e.g., [Car91,CJ10]). Our model (4.0.1) is somewhat

different but very natural and inspired by mixture models.

With respect to GMMs, we are interested in parameter estimation in high dimension with no

separation assumption (i.e., the means µi can be arbitrarily close). Among the most relevant results

in this context we have the following polynomial time algorithms: [HK13], for linearly independent

means and spherical components (each Σi is a multiple of the identity); [ABG+14], for O(dc)

components with identical and known covariance Σ; [BCMV14], for O(dc) components with each

Σi being diagonal in the smoothed analysis sense; [GVX13, Section 7], [GVX14], for linearly

independent means and spherical components in the presence of Gaussian noise; and [GHK15],

for a general GMM with O(
√
d) components in the sense of smoothed analysis. Our algorithm

expands the family of GMMs for which efficient parameter estimation is possible. It does not require

prior knowledge of the covariance matrix unlike [ABG+14] and can handle more components (d

components) than [GHK15] at the price of assuming that all covariance matrices are identical.

With respect to recent results on clustering-based algorithms [DHKK20,JV19], we consider these

works incomparable to ours since clustering-based algorithms typically require some separation

assumptions in the parameters.
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Our contributions. We provide an efficient algorithm for the following blind deconvolution

problem:

Claim 4.1.1 (Informal statement of Theorem 4.2.2). Let x = z + η be a random vector

as in (4.0.1), where z is a d-dimensional discrete distribution supported on d points and η has

zero mean, zero 3rd moment and finite 6th moment. Suppose z satisfies a natural non-degeneracy

condition (Assumption 4.2.1). Then there is an randomized algorithm that, with probability 1− δ

over the randomness in the samples, recovers z within ε error. The expected running time and

sample complexity are polynomial in d, ε−1, δ−1 and natural condition parameters.

Equivalently, it can solve the mixture model parameter estimation problem above under the

same conditions (Algorithm 3 and Theorem 4.2.2). We show an efficient algorithm for the following

GMM parameter estimation problem:

Claim 4.1.2 (Informal statement of Theorem 4.3.1). Given samples from a d-dimensional

mixture of d identical and not necessarily spherical Gaussians with unknown parameters wi, µi, Σ

satisfying a natural non-degeneracy condition (Assumption 4.2.1), there is an randomized algorithm

that with probability 1− δ over the randomness in the samples, estimates all parameters within ε

error. The expected running time and sample complexity are polynomial in d, ε−1, δ−1 and natural

conditioning parameters.

4.2. Blind Deconvolution of Discrete Distribution

In this section we provide an application of Algorithm 2: To perform blind deconvolution of an

additive mixture model of the form

(4.2.1) x = z+ η

in Rd, where z follows a discrete distribution that takes value µi with probability wi for i ∈ [d],

and η is an unknown random variable independent of z with zero mean, zero 3rd moment and

finite 6th moment. Our goal is to recover the parameters of z when given samples from x. By

44



estimating the overall mean and translating the samples we can, without loss of generality, assume

that E[x] =
∑

i∈[d]wiµi = 0 for the rest of this section.

We will see that, under a natural non-degeneracy condition, Assumption 4.2.1, the parameters

of z are identifiable from the 3rd cumulant of x as the first and third moments of η are zero. Let

Km(x) be the m-th cumulant of x. By properties of cumulants (see Section 2.4):

(4.2.2) K3(x) = K3(z) +K3(η) =
∑
i∈[d]

wiµ
⊗3
i .

If the symmetric decomposition of T = K3(x) coincides with (4.2.2), then the function w
1/3
i µi

of the centers µi and the mixing weights wi is identifiable. However the component vectors

satisfy
∑

iwiµi = 0 (they are always linearly dependent) and therefore applying the simultaneous

diagonalization algorithm naively has no guarantee.1 We show that, under the following non-

degeneracy condition, our overcomplete tensor decomposition algorithm (Algorithm 2) works

successfully.

Assumption 4.2.1. K-rankτ ([µ1, . . . ,µd]) = d− 1.

Remark 4. Note that at this point we are working with a centered mixture (
∑

i∈[d]wiµi = 0) and

thus the assumption is on the centered mixture. Note also that if x = z + η is a not necessarily

centered mixture, the assumption is satisfied automatically by the centered version of x when z has

affinely independent support.

Under Assumption 4.2.1, we can decompose (4.2.2) with Algorithm 2. To distinguish the

direction and the scaling factor of component vectors, we reformulate the problem: let ai = µ̂i,

and ρi = ∥µi∥2, our goal becomes to decompose T =
∑

i∈[d]wiρ
3
i a

⊗3
i subject to

∑
i∈[d]wi = 1 and∑

i∈[d]wiρiai = 0.

We now state our algorithm (Algorithm 2) for blind deconvolution of discrete distribution.

1Note that even when the overall mean is non-zero and the means are linearly independent, T still has linearly
dependent components as it is the central 3rd moment. If one does not use T , then one loses (4.2.2).
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Algorithm 3 Blind deconvolution of discrete distribution

Inputs: i.i.d. samples x1, . . . ,xN from mixture x, error tolerance ε′, upper bound ρmax on
∥µi∥2 for i ∈ [d], lower bound wmin on wi for i ∈ [d], robust Kruskal rank threshold τ .

1: compute the sample 3rd cumulant T̃ using Proposition 2.4.4;
2: invoke Algorithm 2 with error tolerance ε4.2.2 = ε′/ poly4.2.2, tensor rank d and overcompleteness

1 to decompose T̃ , thus obtain a′i, the estimated version of w
1/3
i µi, for i ∈ [d];

3: set ṽ to the right singular vector associated with the minimum singular value of A′ = [a′1, . . . , a
′
d];

4: set w̃ := [w̃1, . . . , w̃d] = ṽ3/2/(
∑

i∈[d] ṽ
3/2
i ), µ̃i = w̃

−1/3
i a′i for i ∈ [d];

Outputs: estimated mixing weights w̃1, . . . , w̃d, and estimated means µ̃1, . . . , µ̃d.

Theorem 4.2.2 (Correctness of Algorithm 3). Let x = [X1, . . . , Xd] = z + η be a ran-

dom vector as in (4.2.1) satisfying Assumption 4.2.1. Assume 0 < wmin ≤ mini∈[d]wi, ρmax ≥

maxi∈[d] ρi, 0 < ρmin ≤ mini∈[d] ρi, 0 < ε′ ≤ min{1, wminρ
3
min} and δ ∈ (0, 1). There ex-

ists a polynomial poly4.2.2(d, τ, ρmax, w
−1
min) such that if ε4.2.2 = ε′/ poly4.2.2, then given N i.i.d.

samples of x, with probability 1 − δ over the randomness in the samples, Algorithm 3 outputs

µ̃1, . . . , µ̃d and w̃1, . . . , w̃d such that for some permutation π of [d] and for all i ∈ [d] we have

∥µπ(i) − µ̃i∥2 ≤ ε′ and |wπ(i) − w̃i| ≤ ε′. The expected running time over the randomness

of Algorithm 2 is at most poly(d, ε′−1, δ−1, τ, ρmax, ρ
−1
min, w

−1
min,maxi E[X6

i ]) and will use N =

Ω
(
ε′−2δ−1d11maxi∈[d] E[X6

i ]
(
poly′3.2.1(d, τ, ρmax, w

−1/3
min ρ−1

min)
)2)

samples.

The proof of Theorem 4.2.2 has three parts. The first part is about the tensor decomposition.

Note that, assuming ∥T̃ − T ∥F is small enough, Theorem 3.2.1 guarantees that we can recover ãi

approximately in the direction of aπ(i) and ξi close to wπ(i)ρ
3
π(i) for some permutation π. However

we are not finished yet as our goal is to recover both the centers and the mixing weights. Therefore

in the second part we need to decouple wi and ρi from wiρ
3
i , which corresponds to steps 3 and 4 in

Algorithm 3. The correctness of these steps are shown in Theorem 4.2.3. At last, we show that

the 3rd cumulant can be estimated to within ε accuracy, i.e., ∥T̃ − T ∥F ≤ ε, with polynomially

many samples for any ε > 0. This follows from a standard argument using k-statistics, shown in

Section 2.4 and Lemma 2.4.7.

Decoupling. Before we move on to the proof of Theorem 4.2.2, we show the reader how the

mixing weights wi and the norms ρi are decoupled after we decompose the tensor T̃ . As E[x] = 0,
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the true parameters satisfy
∑

i∈[d]wiρiai = 0, which can be reformulated as a linear system

(4.2.3) A diag(wiρ
3
i )

1/3w2/3 = 0,

where w = [w1, . . . , wd] and A contains ais as columns. To decouple these parameters in the

noiseless setting, one only needs to solve this system under the constraint that w is a probability

vector. As rank(A) = d− 1, w2/3 lies in the direction of the right singular vector associated with

the only zero singular value. Then w will be uniquely determined since
∑

i∈[d]wi = 1. It is natural

then to recover the weights using our approximations to terms in the linear system, namely in the

direction of the right singular vector associated to the minimum singular value of Ã diag(ξi)
1/3,

where Ã = [ã1, . . . , ãd]. The following theorem guarantees this will work:

Theorem 4.2.3 (Decoupling). Let 0 < wmin ≤ mini∈[d]wi, and ρmax ≥ maxi∈[d]∥µi∥2. Suppose

the outputs of step 2 in Algorithm 3, namely ξ1, . . . , ξd and Ã = [ã1, . . . , ãd], satisfy Theorem 3.2.1

with εout < w
4/3
min/(24dτ) and permutation π. One can choose positive right singular vectors v, ṽ

associated with the minimum singular value of A diag(wiρ
3
i )

1/3, Ã diag(ξi)
1/3, respectively. Define

w̃ = ṽ3/2/
∑

i∈[d] ṽ
3/2
i and ρ̃i = (ξi/w̃i)

1/3. Then |wπ(i) − w̃i| ≤ 12w
−1/3
min dτεout and |ρπ(i) − ρ̃i| ≤

48w
−4/3
min ρmaxdτεout.

Proof. Let v = [v1, . . . , vd], ṽ = [ṽ1, . . . , ṽd], w̃ = [w̃1, . . . , w̃d]. We start by showing that v, ṽ

and w̃ are well-defined. Since w2/3 is a solution to (4.2.3) and Adiag(wiρ
3
i )

1/3 is of rank d − 1,

we pick v = w2/3/∥w2/3∥2. To show that ṽ is well-defined, first we bound the singular values and

vectors of Ã diag(ξi)
1/3. Let σ̃i = σi(Ã diag(ξi)

1/3). By Theorem 2.2.1,

σ̃d ≤ ∥A diag(wiρ
3
i )

1/3 − Ã diag(ξi)
1/3∥2 ≤

√
dεout < w

4/3
min/(24

√
dτ).

To obtain the deviation in the singular vectors, we first show that σ̃1, . . . , σ̃d−1 are bounded away

from zero. LetΣ1 = diag
(
σ1(Adiag(wiρ

3
i )

1/3), . . . , σd−1(Adiag(wiρ
3
i )

1/3)
)
, Σ̃1 = diag(σ̃1, . . . , σ̃d−1)

and ∆ = w
1/3
min/(2τ). Suppose σ̂d−1 is the least singular value of the matrix obtained by deleting

the first column of Adiag(wiρ
3
i )

1/3, then it follows that σd−1(A diag(wiρ
3
i )

1/3) ≥ σ̂d−1 ≥ w
1/3
min/τ ,

where the first inequality follows from the interlacing property of singular values of a matrix and its

submatrix obtained by deleting any column, and the second inequality comes from Assumption 4.2.1.
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The minimum diagonal term in Σ̃1 satisfies:

min
i

(Σ̃1)ii ≥ σd−1(A diag(wiρ
3
i )

1/3)−
√
dεout ≥

w
1/3
min

τ
−

w
4/3
min

24
√
dτ
≥

w
1/3
min

2τ
= ∆.

Therefore by Theorem 2.2.2 with Σ2 = 0, we have for the singular vectors2:

∥v − ṽ∥2 ≤
√
2dεout/∆ = 2

√
2dw

−1/3
min τεout.

We get ṽi ≥ vi − 2
√
2dw

−1/3
min τεout ≥ w

2/3
min − 2

√
2dw

−1/3
min τεout > 0, where the second inequality

follows from
∑

i∈[d] v
3/2
i ≥

∑
i∈[d] v

2
i = 1. Hence ṽ also has positive entries and w̃ is well-defined.

We now derive the bounds on the mixing weights and norms. Without loss of generality π is

the identity. The mixing weight error is bounded by:

∥w̃ −w∥2 =

∥∥∥∥∥ ṽ3/2∑
i∈[d] ṽ

3/2
i

− v3/2∑
i∈[d] v

3/2
i

∥∥∥∥∥
2

≤ ∥ṽ
3/2 − v3/2∥2∑

i∈[d] v
3/2
i

+
∥ṽ3/2∥2

(
∑

i∈[d] v
3/2
i )(

∑
i∈[d] ṽ

3/2
i )

∣∣∣∣∣∑
i∈[d]

(v
3/2
i − ṽ

3/2
i )

∣∣∣∣∣.
(4.2.4)

We bound each term in (4.2.4) below, since ṽ, v both have entries in (0, 1]:
∑

i∈[d] v
3/2
i ≥ ∥v∥22 =

1,
∑

i∈[d] ṽ
3/2
i ≥ ∥ṽ∥22 = 1, and ∥ṽ3/2∥2 = (

∑
i∈[d] ṽ

3
i )

1/2 ≤ ∥ṽ∥2 = 1. Moreover:

∥ṽ3/2 − v3/2∥2 =
(∑
i∈[d]

(
ṽ
3/2
i − v

3/2
i

)2)1/2
≤ 3

2

(∑
i∈[d]

(ṽi − vi)
2
)1/2

=
3

2
∥ṽ − v∥2,

∣∣∣∑
i∈[d]

(v
3/2
i − ṽ

3/2
i )

∣∣∣ ≤∑
i∈[d]

|v3/2i − ṽ
3/2
i | ≤

3

2

∑
i∈[d]

|vi − ṽi| ≤
3
√
d

2
∥ṽ − v∥2,

where the above two inequalities follow from |x3/2 − y3/2| ≤ 3|x− y|/2 for x, y ∈ [0, 1]. We obtain

the following bound on the error in mixing weights:

(4.2.5) ∥w̃ −w∥2 ≤
3(1 +

√
d)

2
∥ṽ − v∥2 ≤ 3

√
2w

−1/3
min (d+

√
d)τεout ≤ 12w

−1/3
min dτεout.

2Note that even though Theorem 2.2.2 gives the angle between the subspaces spanned by the first d− 1 right singular
vectors of Adiag(wiρ

3
i )1/3 and their perturbed counterparts, the same bound applies to the orthogonal complement,

spanned by v.
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Notice that our assumption on εout guarantees that w̃i ≥ wmin/2, therefore the error in the norm is

bounded by:

|ρ̃i − ρi| = |(ξi/w̃i)
1/3 − ρi| ≤ w̃

−1/3
i

(
|ξ1/3i − w

1/3
i ρi|+ ρi|w1/3

i − w̃
1/3
i |

)
≤ w̃

−1/3
i

(
εout + ρmax|w1/3

i − w̃
1/3
i |

)
≤ (2w−1

min)
1/3(εout + ρmaxw

−2/3
min |wi − w̃i|)

≤ 48w
−4/3
min ρmaxdτεout

where the second inequality comes from Theorem 3.2.1, the third inequality comes from the fact

|x1/3 − y1/3|/|x− y| ≤ y−2/3 for any x, y > 0, and the last follows from (4.2.5). □

We are now ready to prove Theorem 4.2.2.

Proof of Theorem 4.2.2. Set the arguments of poly′3.2.1, poly3.2.1, to (d, τ, ρmax, w
−1/3
min ρ−1

min)

and (d, τ, ρmax), respectively. Assume for a moment that N is large enough so that T̃ in step 1

satisfies ∥T − T̃ ∥F ≤ εout/(poly
′
3.2.1) and we can apply Theorem 3.2.1. We start by verifying that

we can apply Theorem 4.2.3. Set poly4.2.2 = 49w
−4/3
min max{ρmax, 1}dτ poly3.2.1. By Theorem 3.2.1,

using our assumption ε′ ≤ 1, our choice of ε4.2.2 guarantees that the output error of step 2 in

Algorithm 3 is

εout = ε4.2.2 poly3.2.1 = ε′/(49w
−4/3
min max{ρmax, 1}dτ) < w

4/3
min/(24dτ).

We now bound our estimation error for ∥µi∥2 and wi with Theorem 4.2.3. Assuming the permutation

is the identity we have for i ∈ [d]:

∥µi − µ̃i∥2 ≤ |ρi − ρ̃i|∥ãi∥2 + ρi∥ai − ãi∥2 ≤ (48w
−4/3
min ρmaxdτ + ρmax)εout ≤ ε′,

|wi − w̃i| ≤ 12w
−1/3
min dτεout ≤ ε′.

Next, we derive the sample complexity. We need:

∥T − T̃ ∥F ≤ εin ≤ εout/(poly
′
3.2.1) = ε′ poly3.2.1 /(poly

′
3.2.1 poly4.2.2).

By Lemma 2.4.7, N = Ω(ε′−2δ−1d11maxi∈[d] E[X6
i ](poly

′
3.2.1)

2) many samples are sufficient for εin

to meet the assumption. Since N is polynomial in δ−1 and maxi∈[d] E[X6
i ], the expected running

time will also be polynomial in them. □
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4.3. Parameter estimation of Gaussian Mixture Models

In this section we consider a specific family of mixture models, namely GMM with identical

but unknown covariance matrices. The model is as in (4.2.1), where η ∼ N (0,Σ). Our goal is to

approximate all parameters of the mixture: Σ, wis and µis. Again, suppose Assumption 4.2.1 holds

and the mean of the mixture is zero (by translating the samples as in Section 4.2). Algorithm 3

guarantees that we can recover the mixing weights wis and centers µis of z. To recover Σ, notice

that since the mean is zero, Cov(x) = E[xx⊤] =
∑

i∈[d]wiµiµ
⊤
i +Σ. The covariance matrix can

be approximated then by taking the difference between the sample second moment of x and the

second moment of the reconstructed discrete distribution. We make this precise in Algorithm 4 and

Theorem 4.3.1.

Algorithm 4 Parameter estimation for GMM

Inputs: i.i.d. samples x1, . . . ,xN from mixture x, error tolerance ε′′, upper bound ρmax on
∥µi∥2 for i ∈ [d], lower bound wmin on wi for i ∈ [d], robust Kruskal rank threshold τ .

1: invoke Algorithm 3 with samples from x and parameters ε′ = ε′′/poly4.3.1, ρmax, wmin, τ to get
w̃i and µ̃i for i ∈ [d];

2: set Σ̃ = 1
N

∑
j∈[N ] xjx

⊤
j −

∑
i∈[d] w̃iµ̃iµ̃

⊤
i ;

Outputs: estimated covariance matrix Σ̃, mixing weights and means w̃i, µ̃i : i ∈ [d].

Theorem 4.3.1 (Correctness of Algorithm 4). Let x be a GMM with identical but unknown

covariance matrices satisfying Assumption 4.2.1. Assume 0 < wmin ≤ mini∈[d]wi, ρmax ≥

maxi∈[d] ρi, 0 < ρmin ≤ mini∈[d] ρi, 0 < ε′′ ≤ min{1, wminρ
3
min} and δ ∈ (0, 1). There exist

a polynomial poly4.3.1(d, ρmax) such that if ε′ = ε′′/poly4.3.1, then given N i.i.d. samples of x

and with probability 1 − δ over the randomness in the samples Algorithm 4 outputs µ̃1, . . . , µ̃d,

w̃1, . . . , w̃d and Σ̃ such that for some permutation π of [d] and ∀i ∈ [d]: ∥Σ̃−Σ∥F ≤ ε′′,

|wπ(i) − w̃i| ≤ ε′ and ∥µπ(i) − µ̃i∥2 ≤ ε′. The expected running time over the randomness

of Algorithm 2 is at most poly(d, ε′′−1, δ−1, τ, ρmax, ρ
−1
min, w

−1
min,maxi∈[d]Σ

3
ii) and will use N =

Ω
(
ε′′−2δ−1d13maxi∈[d]Σ

3
ii

(
poly′3.2.1(d, τ, ρmax, w

−1/3
min ρ−1

min)
)2)

samples.

Proof. Let poly4.3.1(d, ρmax) = 1+dρ2max+2d(2ρmax+1). By Theorem 4.2.2, with probability

1− δ, Algorithm 3 will output the estimated mixing weights w̃i and means µ̃i within ε′ additive
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accuracy. The sample complexity and running time follows therein, where we have maxi∈[d] E[X6
i ] =

maxi∈[d] 15Σ
3
ii for GMM.

Next, we bound the error in the covariance matrix. Note that when the number of samples

guarantees that T is estimated to εin accuracy with probability 1− δ, it can also guarantee Cov(x)

is estimated to εin accuracy with probability 1− δ since the latter takes Ω(d6ε−2
in δ−1maxi∈[d]Σ

2
ii)

many samples by a similar argument to Lemmas 2.4.5 and 2.4.6. So

∥Σ̃−Σ∥F =

∥∥∥∥ 1

N

∑
j∈[N ]

xjx
⊤
j −

∑
i∈[d]

w̃iµ̃iµ̃
⊤
i −Σ

∥∥∥∥
F

≤
∥∥∥∥ 1

N

∑
j∈[N ]

xjx
⊤
j − Cov(x)

∥∥∥∥
F

+
∑
i∈[d]

|wi − w̃i|∥µiµ
⊤
i ∥F +

∑
i∈[d]

w̃i∥µiµ
⊤
i − µ̃iµ̃

⊤
i ∥F

≤ εin + dρ2maxε
′ +

∑
i∈[d]

(wi + ε′)(2∥µi∥2 + ε′)ε′ ≤ poly4.3.1 ε
′ ≤ ε′′,

where the second to last inequality follows from bounding εin by ε′ and wi, ε
′ by 1. □
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CHAPTER 5

Conclusions and Open Questions

5.1. Order-3 Tensor Decomposition

In Chapter 3, we showed that an order-3 tensor can still be robustly decomposed in polynomial

time, even if its components are linearly dependent. By Kruskal’s theorem, our algorithm works

up to n ≤ 3d/2− 1 components with every d components being linearly independent. Our work

does not assume randomness or incoherence of the components and is a complement to the existing

literature. However, many questions on tensor decomposition still remain to be answered. We

summarize the decomposability of tensors below.
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100

200

300

Dimension d

R
an

k
n

n ≤ d, efficient if linearly
independent

n ≤ 3d
2 − 1, our work

3d
2 − 1 < n < o(d3/2), effi-
cient for random tensor

n = Ω(d3/2), unknown

Figure 5.1. Decomposability of order-3 tensors.

In the mildly overcomplete regime, (n ≤ Cd for some fixed C), our work and [DDL14,DDL17]

guarantee the decomposability for generic tensors, but the running time, though being polynomial

in d, depends exponentially on the notion of overcompleteness, while [AGJ14] gives a polynomial

time algorithm under the incoherence or randomness assumption, and their results generalize to
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the highly overcomplete regime: n = o(d3/2) components at most. It is not clear if we can take the

advantage of all these algorithms:

Can we decompose generic tensors in polynomial time with n = o(d3/2) components?

Moreover, it is unknown, to our knowledge, if there exists any efficient algorithm, even for random

tensors when n = Ω(d3/2).

From a practitioner’s perspective, our results are more of theoretical values and far from

being practical. Current tensor power iteration-based algorithms in the overcomplete regime

[AGJ14,AGJ17] depend on deterministic assumptions such as incoherent components or stochastic

assumptions such as components being drawn uniformly on the sphere. It is an interesting question

to develop algorithms for overcomplete tensor decomposition with both less theoretical assumptions

and stronger practical performance.

5.2. Blind Deconvolution and GMM Estimation

Our algorithm guarantees that if the natural non-degeneracy condition (Assumption 4.2.1) is

met, a Gaussian mixture with unknown but identical covariance matrices can be learned. However,

it is still an open question that whether algorithms based on tensor decomposition can estimate

arbitrary Gaussian mixtures. Our algorithm requires all covariance matrices being identical, while

[GHK15] learns only O(
√
d) arbitrary Gaussians in Rd. Therefore it is interesting to investigate:

Can we learn a mixture of O(dc) arbitrary Gaussians N (µi,Σi) in polynomial time for c ≥ 1?
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APPENDIX A

Codes for simulation

In this Appendix, we collect the python codes used for numerical simulations in Section 3.4.

1 import numpy as np

2 from tqdm import tqdm

3 def simul_diag(M1 , M2 , r: int):

4 """ Simulatenous diagonalization algorithm."""

5 U, _, __ = np.linalg.svd(M1)

6 W = U[:, 0 : r]

7 M1_whitened = W.T @ M1 @ W

8 M2_whitened = W.T @ M2 @ W

9 M = M1_whitened @ np.linalg.inv(M2_whitened)

10 e, P = np.linalg.eig(M)

11 return W @ P.real

12 def solve_matrix_sys(A_r , Tx , x):

13 """

14 Solve a matrix valued linear system A_r * Xi * diag(A_r.T * x) * A_r.T = Tx"""

15 B = np.linalg.pinv(A_r).T

16 Xi = np.diagonal(B.T @ Tx @ B)

17 return Xi / np.tensordot(A_r , x, axes= [0 ,0])

18 def decompose(T, x, y, r: int):

19 """

20 Given an input tensor , run the simultaneous diagonalization algorithm and

length recovery """

21 T_x = np.tensordot(T, x, axes =[[0] ,[0]])

22 T_y = np.tensordot(T, y, axes =[[0] ,[0]])

23 A = simul_diag(T_x , T_y , r = r)

24 Xi = solve_matrix_sys(A, T_x , x)
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25 return A, Xi

26 class overcomplete_tensor_decomposition ():

27 """ Overcomplete tensor decomposition """

28 def __init__(self , dimension , init_x = None , init_y = None , rng = None):

29 if init_x is not None:

30 self.x_magic = init_x

31 elif rng is not None:

32 self.x_magic = rng.normal(size = (dimension))

33 else:

34 self.x_magic = np.random.normal(size = (dimension))

35 if init_y is not None:

36 self.y_magic = init_y

37 elif rng is not None:

38 self.y_magic = rng.normal(size = (dimension))

39 else:

40 self.y_magic = np.random.normal(size = (dimension))

41 if rng is not None:

42 self.x_2nd = rng.normal(size = (dimension))

43 self.y_2nd = rng.normal(size = (dimension))

44 else:

45 self.x_2nd = np.random.normal(size = (dimension))

46 self.y_2nd = np.random.normal(size = (dimension))

47 def __call__(self , T, tensor_rank , overcomplete_param):

48 # Decompose the first r compoents

49 A_r , Xi_r = decompose(T, self.x_magic , self.y_magic , r = tensor_rank -

overcomplete_param)

50 # Deflation

51 T_first = construct_sym_tensor(components= A_r , weights= Xi_r)

52 R = T - T_first

53 # 2nd decomposition

54 A_k , Xi_k = decompose(R, self.x_2nd , self.y_2nd , r = overcomplete_param)

55 # Reconstruction
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56 T_second = construct_sym_tensor(components= A_k , weights= Xi_k)

57 return T_first + T_second , (A_r , Xi_r , A_k , Xi_k)

58 def construct_sym_tensor(components , weights = None):

59 """ Construct a 3rd order symmetric tensor with columns of components and

muliplicative constants from weights """

60 _, rank = np.shape(components)

61 if weights is None:

62 weights = np.ones((1,rank))

63 return np.einsum(’il,jl,kl->ijk’, components * weights , components , components

)

64

65 dimensions = np.arange (10 ,70 ,10) # input dimension & Kruskal rank

66 overcomplete_params = np.arange (1,5) # different overcompleteness from 1 to 4

67 rng = np.random.default_rng(seed =202206241)

68 MAX_TRIAL , EXP_PER_DIM = 10000, 50

69 exp_errors = {d: {r: np.zeros(EXP_PER_DIM) for r in overcomplete_params} for d in

dimensions}

70 exp_time = {d: {r: np.zeros(EXP_PER_DIM) for r in overcomplete_params} for d in

dimensions}

71 for d in tqdm(dimensions):

72 for r in tqdm(overcomplete_params):

73 for i in tqdm(range(EXP_PER_DIM)):

74 # params per experiment

75 min_err = err = float(’inf’)

76 trials = 0

77 # initialize inputs

78 components = rng.normal(size = (d, d+r)) # generate d+r Gaussian

vectors in R^d

79 tensor_in = construct_sym_tensor(components = components)

80 norm_tensor_in = np.linalg.norm(tensor_in)

81 # decomposition

82 start_time = time.time()
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83 while err > 1e-1 and trials <= MAX_TRIAL:

84 # try decomposing the input tensor

85 decomposer = overcomplete_tensor_decomposition(dimension = d,rng =

rng)

86 outputs = decomposer(T = tensor_in , tensor_rank = d+r,

overcomplete_param = r)

87 tensor_out = outputs [0]

88 # check termination

89 err = np.linalg.norm(tensor_in - tensor_out)/norm_tensor_in #

measure relative error

90 min_err = min(min_err ,err)

91 trials += 1

92 end_time = time.time()

93 exp_errors[d][r][i] = min_err

94 exp_time[d][r][i] = end_time - start_time
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