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ABSTRACT OF THE DISSERTATION 

 

Compiling a Computing Identity: 

A Byte of Self-Efficacy, Belonging, and Other Predictive Factors 

 

by 

 

Kaitlyn Nicole Stormes 

Doctor of Philosophy in Education 

University of California, Los Angeles, 2024 

Professor Linda J. Sax, Chair 

 

Despite efforts to increase representation among those enrolled, earning degrees, and 

working in the computing and technology industry, women across races/ethnicities and People of 

Color more broadly remain underrepresented in the field. Fortunately, extant literature has found 

that psychosocial factors like computing identity can help broaden participation for these groups 

by supporting their academic and career interests and persistence. However, a consistent and 

comprehensive measure of computing identity remains elusive. 

This quantitative dissertation draws on a conceptual framework developed for Women of 

Color in computing and uses longitudinal survey data from 1,036 undergraduate students from 

one of 15 research universities across the U.S. to: (a) develop a reliable measure of computing 

identity and assess the role of self-efficacy and sense of belonging in that measure; (b) validate 

the measure across time and gender and racial/ethnic groups; and (c) identify college-related 
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factors influencing computing identity, considering variations across gender and racial/ethnic 

identities. 

This dissertation provides a nuanced account of what computing identity is and how it 

forms among undergraduate students, noting the unique facilitators and impediments across 

gender and racial/ethnic groups. In particular, findings highlight that computing identity is a 

multidimensional measure that incorporates a student’s self-identity as a computing person, their 

sense that computing is a part of their core personal identity, and their sense of belonging in the 

greater computing community. Hence, it is distinct from related concepts—interest, self-efficacy 

(competence/performance), and social recognition. While the construct of the computing identity 

measure is consistent across gender, racial/ethnic, and intersectional gender and racial/ethnic 

identities, it does not necessarily hold over time during college. 

Further, while the baseline computing identity and academic major variables generally 

fostered greater computing identity scores, separate linear regression analyses revealed distinct 

predictors for different student groups, implying that a one-size-fits-all approach to fostering 

computing identity should be avoided. For instance, interest in computing was a salient predictor 

of men’s computing identity but not women’s, and self-efficacy was a positive predictor for 

underrepresented Students of Color but not for white students. This dissertation probes these and 

other findings, offering implications for enhancing practice and policy and advancing theory and 

research. 
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DEDICATION 

This dissertation is wholeheartedly dedicated to the younger version of myself and all rising 

women in computing and first-generation scholars on their doctoral journeys worldwide. 

A note from me to you: believe in yourself, even when it feels like no one believes in 

you. Consider all that you have already accomplished and all the possibilities that you 

can achieve. Recognize that while this dissertation is a big deal, you are much more of a 

person than your dissertation; it does not define you. You are whole with or without it, 

and you are already enough as you are. 
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 1 

PREFACE 

Take a moment to imagine a scientist. Does that image change when you picture a 

“computer” scientist? Decades of research show that when asked to “draw a _________ 

scientist,” children and undergraduate students, regardless of gender and race/ethnicity, often 

depict scientists as white, intelligent, yet “nerdy” men with crazed white hair and glasses, often 

holding Erlenmeyer flasks (Miller et al., 2018). This general schema of what a scientist looks 

like tends to hold for all types of scientists, including those in computing (Public Broadcasting 

Service [PBS], 2021; Martin, 2004). Images such as these convey that the technology industry 

and broader STEM fields are not a place for women across races/ethnicities and People of Color 

more broadly (PBS, 2021). This is an important phenomenon because the ability to see oneself as 

a scientist is a key predictor of students’ intent to major in STEM fields and various academic 

and career outcomes (e.g., Carlone & Johnson, 2007; Chang et al., 2011). Further, given the lack 

of gender and racial/ethnic diversity in some STEM disciplines, including computer science, 

fostering students’ discipline-specific identity (i.e., computing identity) may be critical to 

increasing students’ interest and persistence in the field (Lunn et al., 2021a; 2021c; Rodriguez et 

al., 2020; Rodriguez & Lehman, 2017). 

Identity-based computing education research interests me due to personal experiences I 

faced early in my computing career. After becoming the first in my family to graduate from a 

four-year university, I worked as a data analyst and programmer. Excited for my new career, I 

was surprised to feel dissonance as I encountered misogynistic comments about my role as a 

woman in the workplace. I was talked over, ignored, and made to feel less intelligent than my 

male peers. I was frequently asked to take on administrative tasks and sit quietly at tables with 

university administrators. I was often not given credit for my work when it was shared with 
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university administrative leaders. Finally, I learned that I earned a lower annual wage than my 

male peers with the same educational level and job title. Overall, my early career experiences 

made me feel frustrated that these acts of sexism in the workplace still occur today. Soon after, I 

began reflecting on other instances during my primary and secondary educations when I was 

made to feel (and later internalized) that I was not good enough as a student, let alone as a 

student of math, science, and computing. 

Unfortunately, the experiences I encountered in that professional setting (and the 

resurgence of prior similar feelings from K-12 to higher education) made me question my ability 

to perform computing-related tasks and whether I could continue to see myself as a computing 

person. My privileged experience as a white woman also made me wonder about the experiences 

of Women of Color, particularly Black, Indigenous, and Latina women who have historically 

been underserved by higher education. From conversations with our only female computer 

science intern and through reading computing education literature, however, I learned that many 

women report similar experiences, and racially/ethnically underrepresented students in 

computing often also report experiences with racism and objectification. To support women in 

computing and serve as a mentor for how to combat these barriers, I began volunteering for a 

local Girls Who Code club. Despite my desire to fit in and support others through this trying 

climate, I ultimately convinced myself that I did not belong. In an effort for me (and others) to 

feel valued, respected, and heard, I left that role to research undergraduate women’s experiences 

in STEM and, more specifically, computing. 

In my next role as a senior evaluator and data manager for an undergraduate research-

training program, I learned about the gender and racial/ethnic equity gaps in undergraduate 

STEM enrollment and degree attainment and the importance of diversifying pathways to 
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graduate school and the workforce. I also learned how students’ demographics and experiences 

before and during college affect their interest and persistence in STEM. With a better 

understanding of the data and the factors that facilitate (or impede) students’ persistence in 

STEM, I was now able to name my experiences—a lack of sense of belonging, a decline in my 

computing self-efficacy, and the important role that others play in fostering my sense of identity 

as a computing person (i.e., my computing identity). Around the same time, I learned about the 

“draw a scientist” phenomenon, and I was both dismayed and intrigued to understand the 

phenomenon of how students come to think of themselves as scientists. With renewed 

excitement, but this time for studying STEM recruitment and retention efforts to foster students’ 

psychosocial factors, I decided to pursue a PhD. 

Given my gendered—yet-privileged—experience as a white woman in a programming 

role paired with my research experience, genuine interest in the topic, and commitment to STEM 

student success, I decided to dedicate my work to (a) understanding the experiences that women, 

especially those from marginalized racial/ethnic identities, face in male-dominant STEM 

disciplines like computing; and (b) exploring how to foster computing identity among students in 

these fields. Through my research platform, I want to help transform students’ lives by 

promoting social justice and mobility. 

This is my story, which led me to return to school and continues to fuel me to this day. In 

reflecting on my educational and career background that guided me to this point in my journey, I 

believe that anybody can solve problems in science, regardless of their gender identity, 

racial/ethnic identity, or any other social identity. As a researcher it is my job and my passion to 

study ways to foster greater student success in this regard. While this dissertation may be the 

start of my research agenda, I aspire to continue this work long after I become “Dr. Stormes.” 
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Tapping into my background in psychology and my drive to better support women of all 

racial/ethnic identities and People of Color in general in computing, I bring you this dissertation. 

The forthcoming study focuses on fostering discipline-specific identity for all students in 

computing as a means to promote greater participation and persistence in computing and to serve 

as a reminder that “there is no problem in science that can be solved by a man that cannot be 

solved by a woman” (Rubin, 1996). 

Positionality Statement 

My intersectional identity as a white woman and personal experiences as a former 

computer programmer inherently inform the lens through which I approach and interpret this 

research. My identities and values inform the work that I do and how I situate findings for 

research and practice. Importantly, however, as I reconcile my own identity in this space, I am 

aware that I will never know what it is like to be an undergraduate Woman of Color in 

computing, so I continually practice interrogating the biases that I bring to this work. As 

described above, I stand alongside others who see the need to diversify computing and believe 

more must be done to create environments where all are welcome, especially those of 

marginalized gender and/or racial/ethnic identities (e.g., Daily & Eugene, 2013; Washington et 

al., 2019). In my research, I tend to take a critical feminist approach, aiming to unveil and 

dismantle the systems of oppression that women and Students of Color face in computing. I 

strive to avoid perpetuating the systems that default to white male dominance in computing 

education. In practice, this means that the questions I ask and the decisions I make regarding the 

inclusion of the study sample and how the analyses are carried out are and will continue to be 

informed by my personal experience and from scholarship that aligns with my approach to 

conducting said research. In doing so, methodologically, I opt for critical quantitative analytical 
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methods whenever I have adequate sample sizes in the data. Admittedly, given the disproportion 

representation of non-binary students and students from historically marginalized racial/ethnic 

groups in undergraduate computing, this is not always feasible, even with data from multiple 

institutions. As I aim to honor students’ gender and racial/ethnic identities, I strive to 

disaggregate social identity variables wherever possible. 

Additionally, I examine important facets of students’ pre-college and undergraduate 

experiences that foster their computing identity development separately by gender and 

race/ethnicity. Nevertheless, the lived experiences of gender nonbinary and racially/ethnically 

minoritized students deserve to be heard, and research that centers on their experiences is valued 

and needed. In this dissertation, I do what I can to honor all students’ experiences. Still, 

additional research may be required to understand how all groups of students develop their 

identities in computing. Following this study’s findings, I provide ideas for how other 

researchers and I can further this scholarship. Ultimately, I believe we can achieve equity in 

computing, and I remain hopeful that this dissertation is one step toward that goal. 
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CHAPTER ONE: INTRODUCTION 

While the field of computing is traditionally thought of as male-dominated, previous 

research has in fact shown that women outnumbered their male counterparts in the field of 

computing prior to World War II (Shetterly, 2016; Thompson, 2019; Washington et al., 2019). In 

the post-war era of the 1950s, however, men’s computational and programming skills were more 

highly regarded, which ultimately drove women out of these jobs1. Today, women in the 

aggregate comprise only 27% of technologists in this industry, and Women of Color make up 

only 14% (Anita Borg Institute, 2022; Ashcraft et al., 2016). Given that computer and 

information technology fields account for almost one in ten jobs in the U.S. workforce (Ariella, 

2022; Flynn, 2022), these gender and racial/ethnic equity gaps in technology (U.S. Bureau of 

Labor Statistics [BLS], 2021) have serious implications. For example, the median annual wage 

for individuals in computer and information technology occupations is $97,430—a value more 

than double the median annual pay for those in all other occupations (BLS, 2022b). Additionally, 

employment in the technology sector is projected to grow by 15% in the next eight years, 

resulting in 682,800 new jobs (BLS, 2022b). The forthcoming growth in the industry’s 

employment rates and the field’s lucrative wages provide an important opportunity to increase 

the social mobility of those minoritized by their gender and/or racial/ethnic identities (Lockard & 

Wolf, 2012). 

                                                 
1 During World War II, female “coders”—also known as “female ‘human computers’”—outnumbered their male 

counterparts and often performed calculations by hand“‘’” (Ensmenger, 2012; Henn, 2014). Even as the first 

computers were created, Women of Color often did the early computer programming for private companies, NASA, 

and the U.S. military (Ensmenger, 2012). However, as the war ended and men returned to the workforce, computing 

began to be seen as a profession that relied upon critical thinking skills. As such, white women and Women of 

Color, while once needed for their expertise, were no longer considered equipped for the work, and the field of 

computing soon evolved to exclude them (Ensmenger, 2012). 
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The equity gaps in the U.S. tech workforce present both societal and individual-level 

implications. For instance, equitable representation can help lead to diverse perspectives and 

innovations, which in turn is an important way to help foster a boost in the economy and be 

competitive with the rest of the world (Ong, 2011; Peckham et al., 2007; Rodriguez et al., 2020; 

Washington et al., 2019). However, the lack of diversity in the tech industry has important 

implications and real-world ramifications when our inventions do not mirror the needs of our 

increasingly diverse population (Noble, 2018; Peng et al., 2019). Further, when women across 

races/ethnicities and People of Color more broadly are not considered in these technological 

advances, the innovations, in turn, limit the safety and well-being of all who rely on them. For 

instance, seatbelt technology was originally designed for the height and weight of males, and 

automatic hand dryers, soap dispensers, and facial recognition software did not originally 

acknowledge those with darker skin tones (Noble, 2018). There remains a critical need for the 

individuals who design technology to represent the population they serve; otherwise, technology 

will continue catering to certain groups and being inaccessible to all who rely on it (Peng et al., 

2019). 

Some scholars interested in addressing the equity gap in computing and technology have 

justifiably focused their research on workplace issues, including bias in hiring practices, 

promotion processes, and hostile work climates (e.g., Ashcraft et al., 2016; Whitney, 2021). 

However, these workplace inequities are, in fact, indicative of problems that begin much earlier 

on the pathway to the profession (Lane et al., 2021; Lunn et al., 2021c). As such, looking at 

undergraduate degree attainment rates is useful for understanding these pathways. 
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While earning a degree in computing2 is a viable way to pursue a career in technology 

(BLS, 2022a), there are gender and racial/ethnic disparities in undergraduate enrollment and 

degree attainment rates as well (Zweben & Bizot, 2021). For instance, across all racial/ethnic 

groups, there is a greater representation of men than women among those who earn degrees in 

computing (see Figure 1.1 below; Lane et al., 2021; Lunn et al., 2021c; Ong, 2011; Zweben & 

Bizot, 2021). In 2020, 21% of all computing degrees were awarded to women, and only 11% 

were awarded to Women of Color3 (WOC; NCSES, 2021). Notably, the percentage of degrees 

conferred in computing to non-Asian WOC is only 5% (Lane et al., 2021; Lunn et al., 2021c; 

NCSES, 2020; Zweben & Bizot, 2021). 

As stark as these current equity gaps are in computing, they are not novel. In fact, over 

the last two decades, the share of men’s degrees across all fields that were earned in computing 

has nearly doubled, but the rates for women have remained fairly stagnant (National Center for 

Education Statistics [NCES], 2018, 2020; Lunn et al., 2021a; Barr, 2018). Thus, from the early 

1990s to today, the equity gaps in computing continue to grow. 

  

                                                 
2 The term “computing” in the broad sense is used to represent subdisciplines within the field that incorporate 

programming components. The operational definition of this term varies across institutions and published studies. 

However, for this dissertation, computing represents a variety of students’ undergraduate academic majors in 

technology (e.g., bioinformatics, computer science, computer information systems/informatics, business information 

management, management information systems, computer engineering, software engineering, data science, game 

design, information science/studies, information technology). 
3 The term “Women of Color” includes women doubly marginalized by race/racism and gender/sexism. Specifically, 

this term includes women who identify in the following racial/ethnic social identities: Asian American, American 

Indian or Alaska Native, Black or African American, Hispanic or Latina/o/x/e, Middle Eastern, Native Hawaiian or 

Other Pacific Islander, and those who marked two or more racial/ethnic categories (National Academies of Sciences, 

Engineering, and Medicine, 2017). 
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Figure 1.1 

Traditional Analysis: Percentage of All Bachelor’s Degrees in Computing Awarded to Students 

by Gender and Race/Ethnicity, 2019–20 

 

Another way to consider the severity of these equity gaps in computing is to examine the 

number of bachelor’s degrees earned in computer science (CS) for each group relative to all 

bachelor’s degrees earned by that group (Barr, 2018). Figure 1.2 below depicts this approach for 

the most recently available degree completion data (NCSES IPEDS, 2020). Specifically, across 

all racial/ethnic groups, the share of degrees awarded in computing fields (relative to all fields) is 

far larger for men than for women. Among women, Asian women earn 5% of their bachelor’s 

degrees in computing, the highest share reported for any group of women. 
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Figure 1.2 

Cohort Analysis: Percentage of Bachelor’s Degrees in Computing by Gender and Racial/Ethnic 

Group Relative to All Bachelor’s Degrees by That Group 

 

Taken together, the increase in the demand for computing professionals to meet the needs 

of the growing workforce and the low representation of certain groups in computing has created 

a paradox with important considerations that are yet to be addressed (Daily & Eugene, 2013). 

Indeed, despite long-term job prospects in tech, problems will persist if the computing graduates, 

job pool, industry, and inventions continue to cater to dominant social groups and their 

perspectives. These equity issues in computing underscore a critical need to increase the 

enrollment and degree attainment of undergraduate students who are marginalized via sexism (as 

women) and/or racism (as People of Color; Rodriguez et al., 2020). Thus, the need to broaden 

participation in computing (BPC) has long been a focus of researchers and policymakers due to 
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the individual and societal consequences of persistent gender and racial/ethnic equity gaps 

(BPCnet, n.d.). 

Research and Funding Efforts to Address the Equity Gaps in Computing 

Historical trends demonstrate a shift in representation among those interested in, 

studying, earning degrees in, or working in computing; these trends sustain the interest of 

researchers and policymakers alike. However, despite BPC efforts and the boom in enrollment 

seen nationally, gender and racial/ethnic disparities remain in computing (CRA, 2017; Zweben & 

Bizot, 2021). As a result, several organizations have funded efforts to inspire, engage, and 

encourage more women and Students of Color in computing. These important organizations 

allocate resources and funding to support efforts to broaden participation and close equity gaps 

but vary in the communities they target (e.g., school-age children4, undergraduate college 

students5, graduate and doctoral students6, the computing workforce7, broadening participation 

for all women8, Black women9, Hispanic/Latine women and men10, Native American Women11, 

and Asian women12. One such effort was the Building Recruiting and Inclusion for Diversity 

                                                 
4 Google, Code.org, Girls Who Code. 
5 CRA, Melinda French Gates’ Pivotal Ventures, The National Center for Women & Information Technology 

[NCWIT], AnitaB.Org, and Harvey Mudd’s BRAID initiative. 
6 CRA’s Widening Participation Grad Cohort for Women. 
7 AnitaB.org. 
8 Systers, Status of Women in Computing Committee, Grace Hopper Celebration of Women in Computing, PWERE 

Program, NCWIT, Girls Who Code, and she++, PyLadies, Girl Develop It, and the not-for-profit Women in 

Technology organization later known as the Anita Borg Institute. 
9 Historically Black Colleges and Universities, Black Women in Computing, ABI, NSF-funded African American 

Mentoring in Computing Sciences, National Society for Black in Computing, BlackComputeHER conference, Black 

Girls Code. 
10 Hispanic-Serving Institutions, Latinos in Science and Engineering, the Society of Hispanic Professional 

Engineers, Hispanic Technology and Telecommunications Partnership, TechLatino and Latino Tech Summit, the 

NSF’s Computing Alliance of Hispanic-serving Institutions initiative, and the Grace Hopper Celebration’s Latinas 

in Computing group. 
11 Tribal Colleges and Universities and the Tribal Colleges and Universities Program, NSF’s Tribal Colleges and 

Universities Program, and the South Dakota School of Mines and Technology’s Tiospaye program. 
12 Asian American Native American and Pacific Islander Serving Institutions, Society of Asian Scientists and 

Engineers, and the China Computer Federation, STEM Women Asian; Chinese Women in Computing. 
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(BRAID) initiative. Drs. Telle Whitney (former CEO and president of Anita Borg Institute for 

Women and Technology) and Maria Klawe (former president of Harvey Hudd College)—two 

women computer scientists who led and continue to lead groundbreaking efforts to diversify 

technology—developed the BRAID initiative as an effort to broaden the participation of 

undergraduate women and Students of Color majoring in computer science. The BRAID 

initiative included 15 research universities across the U.S. that opted to participate and diversify 

their computing departments by providing more inclusive-centered pedagogy and student-

centered support. Data from these institutions was used for this study. 

Suffice it to say that diversifying technology matters to many, as evidenced by the 

abundance of and funding behind organizations supporting these efforts, yet the equity gaps 

remain. See Lunn et al. (2021c) for a recent publication on the historical overview of the known 

efforts to diversify computing for all women (both nationally and abroad) and a thorough 

timeline of when these groups were established. While more must be done to diversify 

technology in industry and academia (Washington et al., 2019), we can learn from existing 

research to expand our understanding of computing students and curate better support systems 

for these students. 

What We Know from Existing Research 

Various societal, structural, and individual-level explanations have been offered for the 

continued gender gap in STEM and, more specifically, in computing. Through myriad reasons—

such as interactions with others, misrepresentations in the media, inequitable access and 

exposure to computers and technology, and uncomfortable racist and/or sexist experiences from 

primary through postsecondary school—marginalized students are often made to feel that 

computing spaces are unwelcoming and unsafe environments to pursue a degree and career in 
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(Barker et al., 2002; Blum & Freize, 2005; Daily et al., 2022; Diekman et al., 2010, 2011; 

Gallup-Amazon, 2021; Margolis & Fisher, 2002; NCES, 2021; Jhally & Kilbourne, 2010; PBS, 

2021; Rodriguez et al., 2020; Tung, 2016; Scott et al., 2022; Sherman & Zurbriggen, 2014). 

Decades of scholarship document that students’ perceptions of computing and the unwelcoming 

experiences mentioned above contribute to equity gaps among those who are interested and those 

who persist in the field (CRA, 2017; Daily et al., 2022). In addition to documenting the role 

played by environments, research in this area also highlights the important role of students’ 

affective or psychosocial characteristics (e.g., Barker et al., 2002; Beyer, 2014; Robnett, 2013; 

Rodriguez & Lehman, 2017; Rodriguez et al., 2020; Sax et al., 2018). Namely, computing self-

efficacy13, sense of belonging14 in computing, and computing identity15 have been identified as 

important in predicting various educational and career-related computing outcomes. 

The aforementioned psychosocial constructs vary in terminology and use. In particular, 

computing self-efficacy—or students’ confidence regarding their ability to skillfully perform 

tasks needed to succeed in the field of computing—has been deemed valuable in that it is linked 

to undergraduate student persistence (Lehman et al., 2022), students’ graduate school aspirations 

(Wofford et al., 2022), and their computing career aspirations (George et al., 2022). Additionally, 

students with a greater sense of belonging in computing—or the extent to which students feel 

they fit among those in the greater computing community—are more likely to enroll and persist 

in computing (e.g., Sax et al., 2018; Strayhorn, 2012). Finally, computing identity (the primary 

                                                 
13 Computing self-efficacy is the extent to which a student believes in their ability to skillfully perform the necessary 

computing-related tasks required of someone in the field of computing (Bandura, 1977, 1986a, 1986b; Beyer, 2014; 

Compeau & Higgins, 1995; Lin, 2016). 
14 Sense of belonging in computing is the extent to which a student feels that they belong or fit in the computing 

community (Sax et al., 2018). 
15 Computing identity is the extent to which a student sees themselves as a computing person, based on how they 

make meaning of their core identity and navigate the world around them (Abes et al., 2007; Carlone & Johnson, 

2007; Lunn et al., 201b; Gee, 1999; Rodriguez et al., 2020, Rodriguez & Lehman, 2017). 
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focus of this study) is an essential psychosocial factor and key determinant of students’ sustained 

continuance in computing through college and into graduate school and the workforce 

(Aschbacher et al., 2010; Lunn et al., 2021a, 2021c; Perez et al., 2014; Rodriguez et al., 2020; 

Rodriguez & Lehman, 2017; Taheri et al., 2019; Wofford et al., 2022). 

Unfortunately, our understanding of these important psychosocial variables is muddied 

because while the definitions of identity, self-efficacy, and sense of belonging differ, scholars 

often use these phrases interchangeably in CS education (McGill et al., 2019), and items 

measuring these different constructs vary little across studies. Indeed, some computing education 

researchers have used the same survey items to create an identity factor that others have used to 

create a self-efficacy or sense of belonging factor (Beyer, 2014; Blaney et al., 2022; Blaney & 

Barrett, 2022; Cohoon & Aspray, 2006; George et al., 2022; Lehman, 2017; Lehman et al., 

2022). Additionally, these latent variables are also combined within studies. For instance, Lewis 

and her colleagues (2019) did not differentiate between belonging and identity as they used both 

“I feel like I belong in computing” and “I see myself as a computing person” as survey items in 

their measurement of students’ sense of belonging in computing. 

Even still, we know from existing literature that there are some recognized gender and 

racial/ethnic differences in these psychosocial measures that compel further examination (Beyer, 

2014; Kvasny et al., 2011; Rodriguez & Lehman, 2017; Rodriguez et al., 2020; Sax et al., 2018; 

Seymour et al., 2004). Examinations of racial/ethnic and gender differences in identity, self-

efficacy, and sense of belonging across institutional settings tend to reveal that the salience of 

these measures varies over time and by student demographics (Cohoon & Aspray, 2006). For 

example, men and white or Asian students, who are among the majority of those enrolled in 

computing, tend to score higher on these concepts; findings have mostly held consistent across 
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time, but more current research that investigates this issue is certainly needed (Beyer, 2014; Sax 

et al., 2018; Seymour et al., 2004; Smith et al., 1994). 

Of relevance to this study, however, is research that supports a deep-dive investigation 

into the concept of computing identity. In response to Rodriguez and Lehman’s (2017) call for 

researchers to nuance our understanding of computing identity and factors that support such a 

measure, this dissertation centers on supporting students’ perceptions of themselves as a 

computing person by fostering their sense of “computing identity.” While there are various 

operational definitions and terminologies used in the field to describe the concept of computing 

identity—professional identity, discipline-specific identity, and even other psychosocial phases 

such as self-efficacy and belonging—for this study, computing identity is operationalized as the 

extent to which students see themselves as a computing person. The conceptualization of this 

measure is informed by several scholars who suggest that computing identity comprises five 

elements, including items related to self-efficacy and belonging. As such, the core concepts of 

computing identity include (a) interest, (b) competence, (c) performance, (d) recognition, and (e) 

sense of belonging (Abes et al., 2007; Carlone & Johnson, 2007; Lunn et al., 2021a; Gee, 1999; 

Rodriguez & Lehman, 2017). 

While more research is needed to further our understanding of how computing identity is 

developed among undergraduate students (Rodriguez & Lehman, 2017), there is some research 

that highlights potential factors that play a pivotal role in determining the strength of students’ 

computing identity that is worth mentioning. For example, in their conceptual framework of 

computing identity (which is used as a foundation for this study), Rodriguez et al. (2020) 

describe the important role of students’ early computing identity experiences (e.g., interactions 

with peers, family, teachers, and science and computing-related coursework) as factors that 
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support or deter the development of one’s computing identity. Additionally, related psychosocial 

constructs such as self-efficacy, early computing identity, and sense of belonging are said to 

promote greater computing identity in college (Chemers et al., 2011; Leary et al., 2013; Lunn et 

al., 2021a; Margolis et al., 2000; Robnett et al., 2015; Seymour et al., 2004). Students’ 

computing-related experiences within and outside of their introductory computing courses also 

play a role in facilitating their computing identity. Of note are students’ interactions with peers, 

faculty, and the community writ large via conference attendance and participation in 

undergraduate research experiences or internships and co-op opportunities (Aschbacher et al., 

2010; Charney et al., 2007; Eagan et al., 2013; Hunter et al., 2007; Kapoor & Gardner-McCune, 

2019; Peters, 2014; Peters & Pears, 2013). 

Gaps in the Literature 

Although prior literature has aided in our collective understanding of computing identity, 

research to date has yet to identify a consistent and psychometrically sound measure (Rodriguez 

& Lehman, 2017) that is validated across time and student demographics, such as gender and 

racial/ethnic identity (Lent et al., 2011; Rodriguez et al., 2020). Moreover, computing self-

efficacy and identity are two key variables often used interchangeably, and there is mixed 

research on whether related psychosocial constructs such as self-efficacy (Robnett et al., 2015) 

predict computing identity or vice versa (Graham et al., 2013; Maxwell & Cole, 2007). 

Therefore, there needs to be more consensus on how to better differentiate these psychosocial 

constructs and whether they should be operationalized as subcomponents of computing identity 

(e.g., Lunn et al., 2021a; Mahadeo et al., 2020; Taheri et al., 2019) or separate factors that may 

instead predict computing identity (Graham et al., 2013; Maxwell & Cole, 2007; Robnett et al., 

2015). Thus, given the importance of computing identity in predicting students’ persistence in 
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computing, Rodriguez and Lehman (2017) report that there remains a critical need to enhance 

our conceptual understanding and measurement of this construct. 

Study Objectives 

This dissertation focused on students’ undergraduate experiences in computing as they 

relate to shaping their computing identity. In particular, I aimed to (a) explore if a 

psychometrically sound measure of computing identity could be developed, (b) determine the 

extent to which self-efficacy and sense of belonging were necessary components of one’s 

computing identity, (c) examine if the new computing identity factor held over time and for 

different gender and racial/ethnic groups, and (d) identify key college-related variables that 

facilitate the development of computing identity among undergraduate students who took an 

introductory computing course. This study was informed by existing literature, my theoretical 

frameworks (described in the next chapter), and the following three key research questions. 

Research Questions 

1. To what extent can a psychometrically sound measure of computing identity be 

developed for students who took an undergraduate introductory computing course? 

a. Are self-efficacy and sense of belonging necessary components of computing 

identity? 

2. To what extent does computing identity hold over time during college, and how does 

this vary by gender, race/ethnicity, and intersections of gender and race/ethnicity? 

3. What variables predict computing identity in the year following students’ 

participation in an introductory computing course? 

a. To what extent do these predictors differ for women and men? 

b. To what extent do these predictors differ across racial/ethnic categories? 
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Study Significance 

This study advances BPC research by using existing literature and theory (Rodrigez et al., 

2020; Lunn et al., 2021a) to inform the creation of a computing identity measure that can also be 

uniquely applied to student groups holding systemically minoritized social identities in 

computing (i.e., white and Asian women, Women of Color, and Men of Color). Additionally, 

this study furthers existing research by ensuring that the measure of computing identity holds 

over time, by gender, and within gender groups by race/ethnicity. Finally, the study contributes 

to our limited understanding of the factors that foster students’ computing identity, how those 

factors differ by gender, and how the predictive power of each racial/ethnic group varied among 

women and men, respectively—an approach that other researchers have called for in response to 

the changing demographics in the U.S. and in education (Crenshaw, 1991; Collins, 1986; 

Howard, 2019; Johnson, 2007; Wilson & Kittleson, 2013). The early college experience, 

particularly in introductory courses, is a critical opportunity to promote student retention in 

computing and diversification of the field, and by better understanding the pre-college and early 

college experiences that strengthen students’ identities in computing, we are now better equipped 

to support student persistence (Hill et al., 2010; Margolis & Fisher, 2003; Seymour & Hewitt, 

1997; Walker, 2017; Washington et al., 2019). Taken together, the findings from this study can 

help inform how we design, implement, and adapt interventions to strengthen the development of 

these constructs, with particular attention to students’ gender and race/ethnicity, which in turn 

has implications for diversifying the representation of students in computing. 
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CHAPTER TWO: LITERATURE REVIEW 

The primary focus of this study is developing computing identity among undergraduate 

students in computing. In particular, in this dissertation, I (a) explore if a measure of computing 

identity could be developed, (b) determine the extent to which self-efficacy and identity are 

necessary components of one’s computing identity, (c) examine if the new computing identity 

factor held over time and for different genders and racial/ethnic groups, and (d) identify key 

college-related variables that facilitate the development of computing identity among 

undergraduate students who took an introductory computing course. While there is research on 

equity gaps in computing as well as information regarding the importance of computing identity 

in predicting various outcomes for computing students, to my knowledge at the time of this 

study, a measure of computing identity with strong psychometric properties has not yet been 

developed and tested across students’ intersecting gender and racial/ethnic identities, nor is there 

enough existing research that describes the factors that promote identity development among 

computing students from differing gender and race/ethnic identities. 

Importantly, this chapter highlights the breadth and depth of what is known about these 

concepts broadly in STEM and, more specifically, in computing. As such, this chapter is divided 

into two parts. Part I includes the literature review16, in which I broadly provide an in-depth 

overview of identity-related research in STEM before I review the literature on computing 

identity. This section is followed by a brief summary of research on self-efficacy and belonging 

as they relate to computing identity. Part II provides an overview of the theoretical framework 

                                                 
16 The literature referenced in this chapter spans the last few decades, focusing especially on publications since 2010 

while acknowledging foundational studies published before then. It should be reiterated that as computing has 

largely been dominated by white and Asian men, there is limited research that focuses on the experiences of Women 

of Color in computing. Most of the intersectional research that does exist is qualitative, which has been included in 

this literature review. 
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guiding this study and concludes with a precursor to the general methodology I use to address 

my research questions, which is discussed more thoroughly in Chapter Three. 

Part I: Literature Review 

This section includes a brief review of the science identity literature related to science, 

technology, engineering, and mathematics (STEM) writ large, before delving further into STEM 

subdiscipline-specific identity in the field of computing and technology. 

History and Definitions of Identity 

Several identity theorists whose work originated in the early 1960s are still highly cited in 

higher education research today (Mayhew et al., 2016). The first notion of identity formation is 

attributed to Erik Erikson, a neo-Freudian developmental psychologist whose work centered on 

the psychobiological life stages an individual goes through as they age (Erikson, 1959, 1963, 

1968). Erikson’s psychosocial stages built upon Freud’s psychosexual stages to incorporate three 

adult stages. Of note is Erikson’s fifth developmental stage, which occurs as an individual enters 

and progresses through their undergraduate experience. At this point, students reconcile the 

dissonance between their views of the world and themselves from childhood and their 

experiences and lessons learned during college to form their identity (Berk, 2015; Erikson et al., 

1959; Festinger, 1962). 

Since Erikson’s conceptualization of identity, a variety of researchers have expanded 

upon this work. Marcia (1966, 1980) extended psychological identity in research by centering 

that identity development requires both exploration and commitment. In doing so, they 

introduced a series of identity typologies and offered that individuals go through stages of 

identity development throughout their lifespan. During roughly the same time, Tajfel (1979) took 

a social-psychological approach to create social identity theory, which posits that identity 
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development relies heavily on (un)conscious cues from one’s social environment, thereby 

focusing less on the individual. Moving beyond general identity theory, Chickering and Reisser 

(1993) drew upon the original theorists to create an identity model unique to college students. In 

Chickering’s seven vectors of identity development theory (1969), students cycle through several 

phases before conceptualizing their identity. For a full discussion of Chickering’s student 

identity development model, see Chickering (1969; Chickering & Reisser, 1993). 

Moving forward to the early 2000s, a grounded model of multiple dimensions of identity 

(MMDI), which has roots in intersectionality and critical race theory, was created and has since 

evolved. Jones and McEwen (2000) first devised the MMDI, which incorporates the 

environmental context alongside an individual’s personal identity development. Their original 

model formation centered on the notion that students have a core identity and multiple social 

identities (e.g., gender, race/ethnicity) that they navigate simultaneously. In 2004, Abes and 

Jones revised the framework and created a reconceptualized MMDI, including a meaning-

making filter. The idea behind this aspect is that students filter through influences from their 

environment to make sense of the world around them and themselves. As a result, the salience of 

their social identities varies based on the context of their surroundings. Once again, this model 

was updated to include a self-authorship component, which highlights that students have the 

autonomy to sift through environmental cues to form how they choose to see themselves and the 

world but holds that contextual influences remain interconnected with their meaning-making and 

perceptions of their multiple social identities (Abes et al., 2007). 

Around the same time, in their study of undergraduate Women of Color in engineering, 

Tate and Linn (2005) established that students have multiple identities (i.e., academic, social, and 

intellectual) and that these identities are influenced by their environments before and during 
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college. Building on the notion that identity is established based on various individual and 

environmental factors, Gee (1999, 2000) developed the theory of identity, which illuminates the 

important role others play in identity development. Specifically, Gee determined that identity 

represents “the kind of person one is seeking to be and enact in the here and now,” but that 

identity cannot be created by one’s lonesome (1999, p. 13). Instead, Gee declared that the 

creation of one’s identity relies upon the demonstration of one’s proficiency with others and that, 

in return, one’s own contributions are recognized. 

Common to all the vast research on general identity and student identity theory is that 

students’ identities are conceptualized through their lived experiences (before and during 

college). Likewise, while students have some autonomy over their social identity formation, their 

identities are influenced by their social and environmental surroundings. What remains less 

understood, however, are the factors that influence a sense of identity among students in STEM 

and, more specifically, those in computing. 

Building upon existing identity literature incorporating personal attributes, students’ 

social identities, and contextual influences from one’s environment, Carlone and Johnson created 

a grounded model of science identity (2007). Carlone and Johnson describe science identity as 

how people make meaning of their science experiences alongside societal structures that 

influence their ability to construct possible meanings of themselves. Although the model focuses 

on the development of science identity—which is discussed more in the next section—and the 

focus of this study is on the development of computing identity, this model is informative for two 

reasons. First, for its exemplary application of identity development among students in the 

sciences (which includes computing), and second, for its centering on those marginalized by 

their intersecting social gender and racial/ethnic identities. 
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In their pivotal study, Carlone and Johnson (2007) conducted ethnographic interviews 

with 15 undergraduate Women of Color in STEM and followed up with them six years later as 

they entered their careers to understand the lived experiences that formed their scientific 

identities. Through qualitative data analysis, the authors identified that those in their study had 

three science identity typologies: research scientist, altruistic scientist, and disrupted scientist. In 

short, research scientists achieved equilibrium as they were confident in their ability to do 

science (i.e. self-recognition) as they were recognized by others for their contributions to the 

field. Altruistic scientists did not seek recognition; instead, they were called to science and saw 

their work as a mechanism to help others. Finally, disrupted scientists sought after but did not 

receive recognition for their scientific contributions, and they reported feeling their science 

journeys were disrupted and unsatisfying. Moreover, the authors of this study found recognition 

from others to be critical in the development of science identity and these typologies. 

Across these three science identity trajectories, the authors found three interrelated 

dimensions that were foundational to one’s science identity development: (1) competence, or 

conceptualized knowledge and understanding of scientific content; (2) performance, or social 

performances of science practices; and (3) recognition, or seeing oneself and being seen by 

others as a “science person” (Carlone & Johnson, 2007). The authors argue that students need all 

three components to foster their science identity, but that recognition is the cornerstone of their 

development. 

While science identity is much broader than computing identity, which is central to this 

study, the model offers utility toward our understanding of computing education literature. First, 

the theoretical underpinning of this model speaks to the innate and structural systems Students of 

Color face in many STEM fields, of which computing education researchers have also found 
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(Beyer, 2014; Cheryan et al., 2009). Also, the model centers on the intersectional experiences of 

those marginalized by their gender and race/ethnicity—a key aspect this dissertation aims to 

examine. As such, the model provides a framework for naming and quantitatively accounting for 

the systems of oppression that students in computing face while honoring the multiple, 

intersecting social identities present as they construct their computing identities. Finally, the 

model attests to the idea that identity is malleable, which supports the literature that is expanded 

upon in the sections below regarding the nature of one’s identity changing as one’s skills, 

experiences, and interactions evolve during college. As central as Carlone and Johnson’s (2007) 

work is examining identity development in STEM writ large and in computing more narrowly, 

computing educational researchers have argued for identity frameworks central to the computing 

discipline (Rodriguez & Lehman, 2017). Perhaps in response to their call, two research studies 

emerged proclaiming to do just that, offering computing-specific lenses to examine identity 

development in computing. 

First, Mahadeo et al. (2020) used Carlone and Johnson’s (2007) research to develop their 

computing identity framework. In their research, they use survey data from multiple institutions 

to develop and test a measure of computing identity, which is a similar methodology to the one I 

use in this dissertation. While these authors still identify recognition, performance, and 

competence as core to students’ computing identity, they combine performance and competence 

into one category and add a third core component they name interest. They even assess whether 

their computing identity model with subconstructs holds by gender (i.e., female/non-female) and 

race/ethnicity (i.e., Black/non-Black and Hispanic/non-Hispanic). Their model serves as an 

important starting point on factors central to conceptualizing students’ computing identity, but it 

is also limited in several key ways. It is unclear if they combined men with nonbinary students, 
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and they did not test the measure equivalence across all categories of racial/ethnic identities (i.e., 

white and Asian categories were left out, among other minority subgroups), investigate students’ 

intersectional gender and racial/ethnic identity, or look at the equivalence of their measure over 

time. 

Second, and around the same time, Rodriguez et al. (2020) created a conceptual 

framework for understanding students’ computing identities (see Figure 2.1). In their conceptual 

study grounded in qualitative data, Rodriguez and her colleagues explain how supporting 

students’ identity development in computing may need to be tailored to the needs of students 

with varying racial/ethnic and gender demographics, as their lived experiences—based on their 

social identities—vary person to person (2020). To that end, the authors create a framework for 

Latinas in computing that shares three core tenets with Carlone and Johnson’s grounded model 

of science identity (i.e., performance, competence, and recognition). Like Mahadeo et al. (2020), 

Rodriguez et al. (2020) also add interest as another tenet of computing identity (see Figure 2.1). 
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Figure 2.1 

Computing Identity Framework (Rodriguez et al., 2020) 

 

At the core of their model, Rodriguez and her peers theorize that undergraduate students’ 

individual identities are informed by students’ navigating and making meaning of the world 

around them through daily negotiations. The authors describe the identity-making process as 

marked by three pivotable yet recursive markers. For instance, students’ pre-college computing 

experiences inform whether they are interested in and decide to major in computing. As students 

enter their computing major and navigate introductory courses, their college computing 

experiences shape whether they strengthen their computing identity and, ultimately, whether they 

stay a computing major. Finally, those computing experiences during college are pivotal in 

shaping students’ revised computing identities and other computing-related outcomes (2020). 
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However, the authors also move beyond naming the core components of computing 

identity to acknowledge pre- and during-college factors and the five interweaving systemic levels 

of oppression that may hinder or support the development of Latinas’ computing identities. 

Informed partly by sociological theories, this model includes an individual, microsystem, 

mesosystem, exosystem, and macrosystem levels (Rodriguez et al., 2020). Here, Rodriguez and 

her coauthors explain that identity development is curated at the individual level, as demarcated 

as the model’s center, but that students’ identities are informed through bidirectional 

relationships, interactions, and socialization in the world around them—thus, the 

acknowledgment of the other four systems. Moving from the innermost to the outermost 

influence, the microsystem includes individuals with whom students often interact in computing 

(e.g., faculty, peers, and advisers); the mesosystem signifies influences from students’ 

environments, such as their family, community, and off-campus work and extracurricular 

relationships; the exosystemic represents influences from the mass media, politics, and industry; 

and the most extant influence is attributed to cultural attitudes and values, which the authors 

depict occurring at the macrosystem level. 

Additionally, this model also takes an asset-based approach to highlight that students 

bring unique skills and assets to college (based on their learned experiences growing up and 

throughout their science-educational journeys) and names the multiple forms of oppression 

Women of Color face in computing and the impact of these aforementioned aspects that lead 

students to revise their incoming computing identities over time (Rodriguez et al., 2020). In sum, 

applying this computing-specific model for the present study exceeds what the models from the 

literature on general identity or science identity offer. Due to its contributions to the literature, 

Rodriguez et al.’s (2020) framework was selected as the lead theoretical model to both inform 
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the development and prediction of computing identity for undergraduate students in computing 

for this quantitative study. Additionally, this framework aids in a deeper understanding and 

meaning-making of this study’s findings, with a particular lens toward understanding computing 

identity for Women of Color and other students marginalized by their intersecting gender and 

racial/ethnic identities in computing. The applicability of this model and how it helps inform 

important implications to disciplines within STEM, such as computing, is unparalleled for this 

dissertation. 

The theoretical framing section in Part II of this chapter provides additional information 

regarding how the Rodriguez et al. (2020) framework is applied to this study, and Chapter Three 

provides information about how this framework is used to inform the variables for regression 

analyses. In the following section, I briefly summarize the importance of science identity within 

the context of STEM before diving deeper into the computing identity literature. 

Research on Identity Within the Context of STEM 

The identity-related STEM studies that have been published to date span various 

educational levels and student demographics. However, particular attention is given to STEM 

literature on undergraduate college students in general and underrepresented student populations 

more specifically. Below, I set the stage for the importance of understanding students’ science 

identities in the context of STEM and then provide context on identity development in the 

context of computing specifically. 

Science Identity 

As mentioned above, since its conception, science identity has been a key concept in 

STEM education research that extends to various disciplines, education levels, and populations 

of varying racial/ethnic and gender representation (Carlone & Johnson, 2007; Hazari et al., 
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2013). Most foundational research exploring science identity has been qualitative and is often 

centered on K-12 education (Brickhouse & Potter, 2001; Brown, 2004). Within approximately 

the last decade, some researchers have explored science identity through quantitative research 

methods, though rarely among college-age students (Hazari et al., 2013). In the existing 

quantitative research on undergraduate students in STEM, science identity has been identified as 

an important factor in STEM persistence (Chang et al., 2011), improved course grades (Chen et 

al., 2020), sense of belonging (Chen et al., 2021), graduate school aspirations in STEM (Estrada 

et al., 2011), and a likelihood of students entering a science occupation (Stets et al., 2017). 

How Has It Been Measured/What Does it Mean? 

Perhaps due to limitations in quantitative researchers’ ability to quantify science identity, 

research on this topic measures and operationalizes this concept in several ways. In her work, 

Avraamidou (2020) refers to science identity as a process of becoming a science person rather 

than solely a means to an end (i.e., being a science person). In other words, some may believe 

that students either have or do not have a science identity, whereas others see science identity as 

a belief students must continually strengthen as they encounter dissonance and navigate 

questioning themselves and their place in science (Holland & Lave, 2001). Just as there is no 

concrete definition of science identity, there are also different terms used to describe this 

overarching concept (e.g., professional identity, scientific identity, researcher identity) and 

discipline-specific measures (e.g., biology identity, physics identity, engineering identity) 

(Rollins et al., 2021). Because there is no consensus on the operationalization and terminology, I 

use the literature referring to the concept of “science identity” wherever possible. For this 

dissertation, science identity relies on the definition provided by Carlone and Johnson (2007), 

which centers on students’ perception of the extent to which they identify as a science person. 
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The strength of students’ science identities is increased with greater interest, performance, 

competence, and recognition in the field of science (Carlone & Johnson, 2007; Rodriguez et al., 

2020). 

While science identity has been used in the literature in various ways, one widely used 

measure of science identity comes from Estrada et al. (2011), whose work expanded upon 

Chemer’s unpublished manuscript (2006). In their longitudinal research on college students 

nationwide, the Higher Education Research Institute at UCLA used item-response theory to 

create and validate a measure of science identity, which centers on the extent to which students 

conceive themselves as scientists (HERI, 2017). Building from the work of Estrada et al.’s five-

item measure of scientific identity (2011), the HERI measure of science identity includes four 

items, each with a 5-point Likert scale ranging from one (Strongly Disagree) to five (Strongly 

Agree). An example item includes, “To what extent are the following statements true of you: I 

think of myself as a scientist” (HERI, 2017). 

What Is Known to Predict It? 

Across the science identity education literature, researchers generally agree that science 

identity is fostered through (a) positive pre-college experiences in science, (b) undergraduate 

science-related experiences, and (c) personal interest in and connection to the field of science. 

Students’ preparation during high school, emotional support from peers, and exposure to science 

also play important roles in shaping students’ development of science identity before college 

(Azmitia et al., 2009; Chen et al., 2020; Chang et al., 2014; Robnett et al., 2015). Additionally, 

student participation in undergraduate research experiences, science coursework, and 

professional development opportunities to practice science and present research at conferences 

during college supports their science identity development (Brickhouse et al., 2000; Chemers et 
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al., 2011; Hunter et al., 2007; Kapoor & Gardner-McCune, 2019). Finally, students’ science self-

efficacy, early development of science identity, and a continued sense of belonging are important 

psychosocial factors that foster students’ sense of identity as a science person (Chemers et al., 

2011; Leary et al., 2013; Lunn et al., 2021a; Margolis et al., 2000; Robnett et al., 2015; Seymour 

et al., 2004). 

Just as science identity is developed in a variety of ways, it can also be diminished 

through unpleasant (i.e., racist, misogynistic) experiences or “chilly climates,”17 especially for 

undergraduate women and Students of Color in STEM fields (Hughes, 2014; Hall & Sandler, 

1982; Seymour & Hewitt, 1997; Steele, 1997). Experiences such as these are unfortunately 

common for women and Students of Color in some more male-dominated STEM disciplines, 

such as computing (Aschbacher et al., 2010; Carlone & Johnson, 2007; Chang et al., 2014). 

Fortunately, however, students have some autonomy in “authoring” their identity by placing 

meaning on certain experiences and input from others in their community (Aschbacher et al., 

2010; Le et al., 2019). 

Are There Gender or Racial/Ethnic Differences? 

Given the inherent systems of power that students marginalized by their gender and/or 

racial/ethnic identities encounter, it is reasonable to expect equity gaps in the extent to which 

individuals develop a science identity; however, research in this regard appears to be somewhat 

                                                 
17 Hostile environments experienced by women in STEM are constantly referred to as “chilly climates;” the usage of 

the word “chilly” masks the actual misogyny women face, as well as the racialized misogyny Women of Color 

experience, and further perpetuates these systems of domination by not actually acknowledging these systems at 

play. In his critical analysis of problematic language, Harper (2012) encourages researchers to stop perpetuating 

racist norms and call racist experiences and acts of racism what they are. This approach should also be extended to 

hostile environments of (racialized) misogyny because continuing to refer to oppressive experiences in STEM for 

women as “chilly” affords comfort to those who benefit from the exclusion of women, particularly Women of Color, 

rather than critiquing the racism and sexism which occur daily. By not naming the power dynamics that adversely 

impact women, Women of Color continue to experience oppression uniquely due to the dual occurrence of racism 

and sexism (Ong et al., 2011; Rodriguez et al., 2020). Researchers must name the systems of domination and utilize 

frameworks that allow us to do so. 
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mixed. In studies exploring science identity in the formative developmental stage (e.g., high 

school level), some findings highlight gender differences but no racial/ethnic differences 

(Vincent-Ruz & Schunn, 2018). In studies examining science identity among undergraduate 

students, however, most findings suggest gender and race/ethnicity differences (Hazari et al., 

2013) and differences among students by their racial/ethnic identity (Carlone & Johnson, 2007). 

Regarding gender, women tend to have lower perceptions of their scientific identities 

than their male peers. Shapiro and Sax (2011) call upon researchers to expand upon cross-

sectional research to investigate gender differences in students’ science identities over time with 

longitudinal analyses. Importantly, Brickhouse et al. (2000) highlighted the need to understand 

differences within gender and not rely too heavily on differences between gender identities. They 

explain that research that compares students’ gender across a variety of key variables can be 

valuable, but it can also exaggerate differences without recognizing the diversity within these 

gender groups. To address this, researchers might consider examining identity among women 

across different racial/ethnic groups. 

Regarding race/ethnicity, science identity was found to be “important for minority 

students because it confers a sense of belonging in science that might otherwise be negatively 

targeted due to their marginalized group status” (Chen et al., 2020, p. 10). In another study, 

Hazari et al. (2013) found that white men had higher physics identity than white women or Men 

of Color. They also found that Students of Color reported lower identification in biology, 

chemistry, or physics. Overall, this research demonstrated that Hispanic women had the lowest 

science identities, which is consistent with Rodriguez et al.’s (2020) identity research for Latinas 

in computing. 
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Importantly, research exploring the intersectional experiences of Women and Men of 

Color is limited, yet scholars have called for additional studies incorporating intersectional lenses 

and analyses (Avraamidou, 2020). In fact, they claim that science identity cannot be studied 

either conceptually or methodologically without considering the multiple aspects of one’s 

identity using an intersectional lens. Avraamidou’s research calls upon researchers to name the 

systems of power and oppression at play to challenge the “broader agenda of science education 

for promoting equity and social justice” (2020, p. 327). As mentioned in Chapter One, there were 

and continue to be a variety of inequitable systems and power issues at play to keep certain 

students away from certain STEM fields (e.g., engineering and computing). I am hopeful that 

researchers’ interest in and efforts toward interrogating these systems and acknowledging the 

impact of Whiteness as a container (Stewart & Nicolazzo, 2018) can aid in supporting more 

critical research on this topic to foster more equitable and supportive environments for all 

students. For example, Rodriguez et al.’s 2020 research and conceptual framework on Latinas’ 

computing identities allow researchers to interrogate these systems in our understanding of the 

lived experiences of students marginalized by their gender and racial/ethnic identity in the 

subfield of computing within STEM. 

The systemic, institutional, and curricular forces at play, along with the stigma 

surrounding masculinity associated with STEM (Simon et al., 2017) and students’ incoming 

characteristics (e.g., demographics, academic preparation) contribute to the extent to which 

students come to see themselves (and to be seen by others) as scientists. However, more research 

is needed to systematically investigate these changes at various points before, during, and after 

students’ experiences in their introductory courses. 
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How Does Science Identity Change During College? 

The notion that science identity is fluid and can change over time aligns with the views of 

many identity researchers (e.g., Aschbacher et al., 2010; Avraamidou, 2020; Carlone & Johnson, 

2007; Marcia 1966, 1980; Rodriguez et al., 2020). Peters (2018) states that as students enter 

college, they hone their interests, and their identities become narrower. Further, as Aschbacher et 

al. (2010) describe this process, “As students develop knowledge, competence, and meaning 

from these social interactions, they begin to construct their identities, or who they are and wish to 

be, in relation to these communities” (pp. 565–566). Therefore, it is natural that students’ science 

identities evolve, especially during their formative primary and secondary educational journeys. 

Shapiro and Sax (2011) also call upon researchers to investigate psychosocial factors over time. 

While there is much existing literature that incorporates measures of identity in the 

prediction of students’ undergraduate outcomes (e.g., college/major persistence, time-to-degree, 

GPA, major change), graduate school outcomes (e.g., admission to masters and doctoral 

programs), and career-related outcomes (e.g., persistence into career aligned with major of 

study), there is still inconsistency in how the measures are operationalized and what factors 

predict them. Specifically, there remains a need to investigate the extent to which an identity 

measure can be created that holds over time across student demographics in STEM subfields 

(Sax & Newhouse, 2019), such as in the field of computing (Rodriguez & Lehman, 2017), and 

explore what aspects of a student’s educational journey or personal demographics contribute to 

their development of such a measure. 

Identity Within the Context of Computing 

Computing education researchers have explored the concept of computing identity in a 

variety of ways. Indeed, in 2022, Kapoor and Gardner-McCune conducted a review of 55 papers 
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that explored computing identity. In their analysis of these studies, they found that there was an 

uptick in publications over time since 1996 and that most of the papers in their corpus sought to 

either describe the important role of computing in a qualitative manner or explore the 

relationship of computing on another outcome. The following year, Große-Bölting and their 

colleagues (2023) built upon this work to understand its theoretical underpinnings by conducting 

their own systematic literature review of 41 identity-focused research articles published in 

postsecondary computing education outlets since 2005. Through their analysis, Große-Bölting et 

al. (2023) found that publications have increased over time and that while most of the articles 

were not empirical research studies, of those that were, only a handful focused on the 

development of identity-based instruments and measurements. 

Therefore, the field of computing is still lacking a reliable and valid discipline-specific 

identity measure (Rodriguez & Lehman, 2017; Kapoor & Gardner-McCune, 2022). Existing 

literature highlights the importance of computing identity in predicting a variety of student-

success-related outcomes, but in its current state, there is not a comprehensive measure that has 

been operationalized in a consistent manner and tested across time and among different 

demographics of undergraduate students. As the demography of college students is changing and 

becoming more diverse (Howard, 2019), we must find ways to better support the unique needs of 

all our students, especially those with identities from marginalized gender and racial/ethnic 

groups (Rodriguez et al., 2020). The research community also lacks a comprehensive 

understanding of what computing identity is and what factors contribute to students’ 

development of this measure. Conflicting terminology and operational definitions may be at 

fault, or there may not be enough research on identity development in the higher education 

computing sphere to have the answers we need. Given the importance of computing identity 
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serving as a positive predictor of students’ persistence in computing, graduate school aspirations, 

and interests in computing careers, creating a measure of identity specific to computing is an 

important goal. Additionally, finding ways to foster the development of computing identity 

among college students in the United States may be one important step toward supporting 

students’ academic and professional success in computing—ultimately serving as a potential 

gateway toward diversifying the technology field. 

What is Computing Identity? 

The idea of a discipline-specific computing identity is more nuanced to the subfield than 

the general term science identity (Carlone & Johnson, 2007), which represents identity 

development in the broad field of science. Computing falls into the technology realm (i.e., the 

“T” in STEM) but is itself a science (Denning, 2005). Thus, there are substantial differences that 

must be considered in scholarship within STEM subfields, such as the context of the field and 

the general student demographic representation (Sax & Newhouse, 2019). To that end, 

developing a stronger science identity among students in certain STEM subdisciplines cannot be 

a one-size-fits-all approach, as disciplines that make up STEM are not a monolith. Indeed, there 

is a need to develop a field-specific computing identity measure to fill that gap (Rodriguez & 

Lehman, 2017). 

For this dissertation, the concept of computing identity is a multidimensional measure 

that is defined as the extent to which a student sees themselves as a computing person informed 

by how they make meaning of their core identity and navigate the world around them (Abes et 

al., 2007; Carlone & Johnson, 2007; Lunn et al., 2021a, Gee, 1999; Rodriguez & Lehman, 2017). 

This concept is highly regarded as an important aspect of student success; however, there 

remains little consensus on the operational definition of computing identity to date. Computing 



 37 

education researchers tend to use different theoretical frameworks that center on unique aspects 

of identity, often leading to different conceptualizations of the term in published literature. For 

instance, recognition is a focal point in Gee’s 2000 identity lens, whereas interest is a key factor 

in Mahadeo et al.’s (2020) and Rodriguez et al.’s (2020) conceptual frameworks. Thus, the vague 

yet commonly used term “computing identity” is a key facilitator in predicting outcomes of 

retention, interest, and motivation and is linked with a variety of identity-related phrases. Still, no 

agreement remains on this term or how to measure it in the computing field. More recently, 

computing identity has been defined as the extent to which students identify as a computing 

person (Rodriguez & Lehman, 2017), which Rodriguez et al. (2020) further illustrated is more of 

an identity spectrum than an “all or nothing” identity configuration. 

As mentioned, several theoretical frameworks—each with unique tenets—guide scholars’ 

exploration of computing identity. Perhaps because there is not a single theoretical framework 

highlighting key components of computing identity development, there is no consensus on the 

conceptual understanding of computing identity (Rodriguez & Lehman, 2017). Thus, there 

remains no standard for measuring computing identity nor in the terminology used to refer to this 

concept. For example, Kapoor & Gardner-McCune (2019) and Rollins et al. (2021) refer to this 

phenomenon as “professional identity.” Because research examining the concept of computing 

identity is limited (Rodriguez & Lehman, 2017), this literature review incorporates research on 

computing identity and professional identity among undergraduate students in computing, with 

greater emphasis on “computing identity.” 

What Does It Predict? 

While there remains no consensus on the operational definition of computing identity, 

STEM subdiscipline identity is, however, highly regarded as a predictor of a variety of positive 
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undergraduate computing outcomes such as actual and aspirational persistence, graduate school, 

and career outcomes (Aschbacher et al., 2010; Perez et al., 2014; Taheri et al., 2019; Wofford et 

al., 2022). Researchers have also found field-specific identity to positively predict students’ 

graduate school aspirations, career commitment, and career outcomes (Chemers et al., 2011; 

Hazari et al., 2010; Wofford et al., 2022). Further, in their systematic review of identity-based 

higher education computing literature, Große-bölting and their colleagues (2023) report the most 

common motivation for researchers using identity in their work was primarily to promote 

retention and greater gender or racial/ethnic diversity, followed by investigating its relationship 

with recruitment, motivation, and increased performance outcomes. 

How Has It Been Measured? 

As there is no consistent operational definition of the affective/psychosocial concept of 

computing identity, there is also no consistent way to measure computing identity that has been 

validated across student demographic groups, contexts, and time. Instead, there are many key 

phrases used to describe computing identity. For example, some studies refer to this concept as 

self-concept, self-perception, self-efficacy, sense of belonging, or professional identity (e.g., 

Bailey, 2003; Baumeister, 1997; Große-bölting et al., 2023; Kapoor & Gardner-McCune, 2019; 

Parker, 2018; Rollins et al., 2021). Again, while some researchers (e.g., Lunn et al. 2021a; 

Mahadeo et al., 2020; Taheri et al., 2019) underscore the importance of multiple subconstructs 

(or core components) of students’ computing identities (i.e., interest, competence/performance, 

recognition, sense of belonging), other scholars think of these latent variables in different ways 

(e.g., as precursors/predictors of computing identity or as entirely separate constructs altogether). 

Across the literature, scholars use different terminology when referencing the same topic both 

across and within their empirical works. Not only do the terms to describe computing identity 
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differ, but so do the variables used to measure this construct. For example, in one study 

exploring undeclared students’ undergraduate experiences in introductory computing courses, the 

author created a latent factor of computing identity that comprised several variables such as, “I 

feel like I ‘belong’ in computing,” “Using computers to solve problems is interesting,” and “I am 

confident that I can complete an undergraduate degree in computing” (Lehman, 2017). Using the 

same master dataset, other authors used items from that factor in their studies to represent 

students’ fit in computing (Lehman et al., 2022), self-efficacy (Blaney & Barrett, 2022), or sense 

of belonging (George et al., 2022; Sax et al., 2018). My argument is not that prior literature was 

too constrained, but rather that it was perhaps not constrained enough. More specifically, while 

other scholars have used similar items to measure computing identity (or related concepts), I am 

seeking to investigate if these larger latent factors that were included in prior studies’ measures 

of computing identity are part of some broader latent construct (e.g., self-recognition and 

belonging, identity, self-authorship) or if are they different ideas entirely. 

While acknowledging that previously created factors may or may not hold across new 

samples being studied with the same dataset, more research is needed to serve as a guide to 

identify what computing identity is and if self-efficacy and belonging are necessary components 

of this measure (Lunn et al., 2021a; Rodriguez et al., 2020; Rodriguez & Lehman, 2017). We can 

work toward clearer definitions and measurements by developing a greater understanding of 

computing identity. 

How Does It Differ from Other Psychosocial Factors? 

By definition, computing identity (Abes et al., 2007; Lunn et al., 2021a; Rodriguez et al., 

2020; Rodriguez & Lehamn, 2017) is neither self-efficacy (Bandura, 1977, 1986a, 1986b; Beyer, 

2014; Compeau & Higgins, 1995; Lin, 2016) nor sense of belonging (Sax et al., 2018), and the 
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measurements and terminology used to describe these psychosocial factors should not be used in 

such a manner that implies that they are one and the same. While Rodriguez et al. (2017; 2020) 

recognize that computing identity is multifaceted, she and her coauthors join other scholars 

(Kapoor & Gardner-McCune, 2022; Große-Bölting et al., 2023) in urging for more research that 

supports the field’s understanding of how these psychosocial variables work together (or 

separately) to inform students’ computing identities. 

Computing Identity vs. Computing Self-Efficacy. Like identity, research has 

emphasized that increased self-efficacy is related to (a) one’s greater future involvement in a 

task, (b) the effort one is willing to expend to learn and perform a task, and (c) one’s 

commitment to carrying through a task (Bandura, 1977, 1986a, 1986b; Lin, 2016). The 

operationalizations and terminology used to describe self-efficacy vary. Dating back to the late 

1970s, Albert Bandura (1977, 1986a, 1986b) coined the term “self-efficacy,” referring to 

“people’s beliefs in their ability to perform specific behaviors or courses of action” (pp. 184–

185). Other terms in computing to describe students’ self-efficacy are “learning self-efficacy” 

(Lin, 2016), “computer self-efficacy” (Teo & Ling Koh, 2010), “technology self-efficacy” 

(Bertozzi, 2007), “programming self-efficacy” (Lin, 2016), and “computing self-efficacy” 

(Blaney & Stout, 2017). Marakas et al. (1998) label these types of computer self-efficacies as 

either task-specific or general. For this dissertation, computing self-efficacy is 

operationalized—in the general sense—as undergraduate students’ belief in their ability to 

skillfully perform computational tasks required of them in the field of computing (Bandura, 

1977, 1986a, 1986b; Beyer, 2014; Compeau & Higgins, 1995; Lin, 2016). Thus, a critical 

distinction between computing self-efficacy and computing identity is that the latter is a broader 

term representing students’ perception of their sense of self as a computing person, and the 
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former is a term that measures their perceived performance ability. While self-efficacy is a 

known predictor of identity (Robnett et al., 2015), based on the evolution of computing identity 

scholarship that situates students’ recognition of themselves as a computing person alongside 

their competence and performance in computing (Rodriguez et al., 2020), this dissertation 

explores the extent to which computing self-efficacy is a core component of computing identity 

rather than a predictor of computing identity. However, as the literature in this regard is mixed, 

and because self-efficacy is not a component of computing identity (as demonstrated in Chapter 

Four), computing self-efficacy is used as a predictor to analyze the extent to which it contributes 

to one’s computing identity (Graham et al., 2013; Maxwell & Cole, 2007; Robnett et al., 2015). 

Computing Identity vs. Sense of Belonging in Computing. Like self-efficacy, the 

latent construct measuring students’ sense of belonging in computing is a critical predictor of 

various student success measures and may also be a core component of computing identity. 

Sense of belonging—often described as a measure of environmental “fit” (Strayhorn, 2012)—is a 

key predictor of STEM retention (Espinosa, 2011) and students’ interest and persistence in 

computing (Veilleux et al., 2012). Just as computing self-efficacy might be a core component of 

identity, so too might students’ sense of belonging in computing. Indeed, Große-bölting et al. 

even said that identity and belonging are so intertwined that “identities are operationalized as a 

sense of belonging or membership to and within the discipline” (2023; p. 5). While Rodriguez 

and her colleagues acknowledge the importance of students’ belonging, especially for Women of 

Color, in their research on Latinas in computing, sense of belonging is not a stated facet of their 

conceptual model (grounded in qualitative data; 2020). However, several recent quantitative 

scholars discovered through factor analysis and structural equation modeling that a sense of 

belonging was a core component and, in fact, a subconstruct of computing identity (e.g., Lunn et 
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al., 2021a; Mahadeo et al., 2020; Taheri et al., 2018). Therefore, for this dissertation, sense of 

belonging in computing is operationalized as the extent to which a student feels that they are 

part of or “fit” in the computing community (Blaney & Stout, 2017; Cheryan et al., 2009; Taheri 

et al., 2019; Sax et al., 2018), and for the reasons mentioned above, sense of belonging is treated 

as a potential component of computing identity and not as an independent predictor. 

How Does It Change? 

While Carlone and Johnson (2007) suggest science identity should grow over time, few 

researchers have studied computing identity over time—despite its documented fluidity. In one 

study by Kapoor and Gardner-McCune (2019), the authors found that the 14 undergraduate 

computer science majors they interviewed formed their computing professional identities during 

the first three years of their degree programs. The authors mention that the identities were 

commonly formed between students’ second and third years of their computing programs. This 

timeframe is particularly important as it is typically after students participate in their 

introductory computing course experiences. However, research has also indicated that students’ 

introductory course experiences also play an important role in students computing identity 

development (Rodriguez et al., 2020; Peters, 2014; Peters & Pears, 2013). I am not aware of 

research that has looked at students’ computing identities over time (e.g., before, during, and 

after their introductory computing courses). 

What is Known to Predict It? 

Most research to date focuses on qualitative methodologies to understand the 

development of students’ computing identities, resulting in few studies that have explored 

computing identity as an outcome measure (e.g., Lunn et al., 2021a). Even fewer studies have 

explored the extent to which students’ experiences during college predict their computing 
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identities or have used longitudinal data to account for students’ incoming computing identity 

scores, which Astin and antonio (2012) suggest is an important consideration to control. Given 

the limitations in the existing literature and the mixed findings pertaining to students’ gender and 

racial/ethnic identity in predicting computing identity, there remains a need to further our 

understanding of the student demographic, academic background, and college environmental 

factors that facilitate or impede the development of computing identity. Of the existing literature 

on this topic, there are several key elements that may contribute to the development of 

computing identity for college students. Some important elements of computing identity include 

factors related to students’ backgrounds, scores on other related psychosocial measures, and 

experiences within and outside of college. 

Background Factors. Well before college, students’ early childhood experiences play a 

role in their computing identity development (Rodriguez et al., 2020). Some of these experiences 

include family roles, cultural expectations, and experiences in elementary and high school that 

help to form how students identify when they get to college. Rodriguez et al. (2020) describe 

these influences as “pre-college computing identity experiences,” listing encounters with peers, 

family, teachers, and early experiences in science and computing courses. Lunn et al. (2021a) 

describe students’ feelings based on their interactions with others as their internalized 

recognition, which is a core component of their computing identity development. An example of 

these influences is students’ negative experiences in math and science or experiencing racism in 

a classroom, which Chang et al. (2011) documented as impediments to women and racial/ethnic 

minority students’ science identity and persistence. In fact, Hazari et al. (2010) found that early 

high school experiences predicted identity for students in physics and whether they persisted in 

the field (i.e., conceptual understanding, experience connecting computing concepts to the real 
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world and students’ communities, answering questions, teaching classmates, and encouragement 

from a high school teacher). While disciplines in STEM differ (Sax & Newhouse, 2019), we may 

extrapolate that early computing experiences likely play an important role in computing identity 

development as well. In fact, pre-college experiences such as how students make meaning of 

science and themselves based on their pre-existing knowledge formed in their childhood by 

family members in science (e.g., family support and social capital) are assets and contributing 

factors to their development of computing identity students can bring to computing spaces 

(Rodriguez et al., 2020; Wofford & Gutzwa, 2022). Further, researchers describe this 

phenomenon as “students’ funds of identity directly influenc[ing] their computing identity and 

vice versa” (Rodriguez et al., 2020, p. 34). While these pre-college data may be harder to 

measure in quantitative studies, Lunn and her colleagues (2021a) found high school math grades, 

students’ gender and race/ethnicity, the extent to which students worked outside the home, and 

whether they came from a supportive family to be predictors of students’ computing identity. 

Psychosocial-Related Factors. As described in the above literature review, there are a 

variety of psychosocial factors related to students’ scientific identities that may foster growth in 

this regard. Similar to facets that develop science identity, students’ interest in computing, self-

computing-related self-efficacy, early development of computing identity, and a continued sense 

of belonging are likely important psychosocial factors that have the potential to foster students’ 

sense of identity as a computing person (Carlone & Johnson, 2007; Chemers et al., 2011; Leary 

et al., 2013 Margolis et al., 2000; Mahadeo et al., 2020; Robnett et al., 2015; Rodriguez et al., 

2020; Seymour et al., 2004). However, as some scholars have considered computing identity 

with subcomponents as their dependent variable (e.g., Lunn et al., 2021a), more research is 

needed to uncover the latent factors that contribute to students’ computing identity development 
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during college because there is little to no research examining the salience of these related 

psychosocial factors (e.g., students’ interest in computing, self-efficacy, sense of belonging) in 

enhancing students’ computing identity. 

College Computing Identity Experiences within the Introductory Computing 

Course. Identity-related factors also shape the salience of undergraduate students’ computing 

identities during college. For example, Rodriguez et al. (2020) highlight transformative 

encounters students have during their introductory computing courses—one aspect that other 

researchers (e.g., Peters, 2014; Peters & Pears, 2013) have also found to be important in early 

computing identity development. Additionally, these authors found that students’ experiences in 

computing spaces and interactions with faculty and peers within computing may facilitate or 

impede their computing identity. Further, in their qualitative research on undergraduate Latinas 

in computing, Rodriguez et al. (2020) note that students who reported they experienced sexism 

and/or racism informed the researchers that these experiences were deterrents to their ability to 

identify as a computing person. Moreover, when faced with negative computing-related 

encounters, students negotiate their positionality and identity within the field (Rodriguez et al., 

2020). I am not aware of literature that has investigated the salience of experiential intro course 

factors on quantitative studies predicting computing identity. While the sample of their study was 

not necessarily students in introductory courses, in their regression analysis predicting computing 

identity, Lunn et al. (2021a) found that students tended to have stronger computing identities 

when they were in a club, mentored others, worked with their advisor on classwork, and had 

friends in computing. Additionally, in their study, the more often students were mentored and 

reported that other students in class helped with their classwork, the lower their computing 

identities tended to be. 
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College Computing Identity Experiences outside of the Introductory Computing 

Course. Students’ engagement in the broader computing context through other computing 

experiences and professional development opportunities (e.g., participating in internships, 

research experiences, and attending conferences) are also known to support students’ identity 

development in computing (Lunn et al., 2021a; Kapoor & Gardner-McCune, 2019). In fact, some 

of the largest contributions to professional identity development in computing were among 

coursework from other computing courses, informal activities like hackathons, and professional 

development opportunities like internships and conferences that support the engagement in 

“communities of practice” (Lave & Wenger, 1991; Kapoor & Gardner-McCune, 2019). 

Importantly, the authors argue that students’ engagement in the computing community has 

implications for their computing identity development beyond that of students’ classroom 

environments. These findings are supported by other researchers who also articulate the 

importance of undergraduate research participation, presenting material other than coursework, 

and networking at conferences as important predictors of increased student discipline-specific 

identity (Aschbacher et al., 2010; Charney et al., 2007; Hunter et al., 2007; Lunn et al., 2021a). 

Are There Gender and/or Racial/Ethnic Differences? 

While Große-Bölting et al. (2023) reported that scholars named lack of diversity in 

computing as an important reason to study computing identity, they also reported that few 

studies (only three of the 13 focusing on diversity) mentioned students’ intersectional gender and 

racial/ethnic or other identities—despite Rodriguez and Lehman’s (2017) related critique several 

years prior. In line with the limited nature of research on undergraduate computing identity in 

this regard, few scholars have explored the extent to which there are gender and racial/ethnic 

differences in students’ computing identity, and there are mixed findings from the studies that do 
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exist on this topic. For instance, Parker did not find gender differences in their study of computer 

science professional identity. Additionally, Taheri and his colleagues (2018) did not unveil 

gender differences in their measure of computing identity; however, they did confirm four 

subconstructs of computing identity (i.e., interest, sense of belonging, recognition, and 

competence/performance). In a later study by some of the same authors, they again found that 

students’ sense of belonging was a core component of their computing identity, but this time, 

they discovered gender and racial/ethnic differences, where white students and men had higher 

computing identity scores than their peers (Lunn et al., 2021a). However, while Lunn’s research 

was conducted on multiple institutions, the study sample was limited to students from public 

universities in the state of Florida. As such, their results cannot be generalized to all students in 

computing, and additional research is needed to see if these findings hold for different institution 

types and a larger national sample. Other scholars have taken great strides to understand the lived 

experiences of how Latinas develop their computing identities (Rodriguez et al., 2020), but 

additional research is still needed to adequately respond to Rodriguez and Lehman’s (2017) call 

to action. 

While limited research exists on this topic, it is expected that men would score higher on 

computing identity—as they do, broadly speaking, in other affective psychosocial constructs 

such as science identity, sense of belonging, and self-efficacy (e.g., Hill et al., 2010; Corbett & 

Hill, 2015; Lunn et al., 2021a; Seymour et al., 2004). However, scholars must expand research in 

this area to determine whether the same findings hold true when examining students’ computing 

identity and investigating what changes occur over time once controlling for students’ incoming 

computing identity scores. There are currently no studies that have controlled for students’ 

baseline computing identity scores in predicting longer-term computing identity, so we cannot be 



 48 

certain if students’ scores strengthen more over time once pre-test measures are controlled and if 

there would be gender differences if they do change. To do so, several factors must be 

considered. Given that not all women and not all racialized people experience education and 

identity development in the same ways, we cannot apply a blanket approach to the measurement 

and study of computing identity. There is no monolith for the experiences of all women or the 

experiences of any one racial/ethnic group (Rodriguez et al., 2020). Researchers must do better 

to include women from racial/ethnic identities in their studies and aim to disaggregate gender 

and race/ethnicity and study their intersections in their efforts to explore factors that contribute to 

the development or deterrence of computing identity (Ong et al., 2011). 

The Present Study 

Taken together, there is a need to better understand what computing identity is 

(Rodriguez & Lehman, 2017) and how we can foster the development of this important concept 

for all students, especially those doubly oppressed in computing because of their gender and 

race/ethnicity (Rodriguez et al., 2020). In developing such a measure, researchers must consider 

students’ demographic representation and determine if a psychometrically sound (i.e., reliable 

and valid) computing identity construct can be created. The extent to which self-efficacy and 

sense of belonging are necessary components of identity must also be explored. After creating 

the measure of computing identity, researchers must examine if the factor holds across time and 

student’s racial/ethnic and gender identity categories. Specifically, if we want to diversify the 

student body of those in computing undergraduate programs as a step toward increasing the 

representation of all women and Men of Color in the computing and technology workforce, we 

must consider these aspects of their multiple social identities in the development of an identity 

measure in computing. Thus, there remains a continued need to examine computing identity 
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development across and within student gender and racial/ethnic groups (Rodriguez & Lehman, 

2017). 

Objectives 

Research exploring the nature of students’ identity development in the context of 

undergraduate computing is limited, especially regarding how these constructs relate to 

historically marginalized groups, and more research is needed to fill this gap (Rollins et al., 

2021). Importantly, this dissertation responds to the need identified for a discipline-specific 

computing identity measure (Rodriguez & Lehman, 2017) by creating a factor of computing 

identity and testing its (in)variance over time and across students’ gender and racial/ethnic 

identities. In doing so, this study expands upon existing literature to provide the computing 

higher education field with a discipline-specific measure of computing identity and explores a 

variety of factors that predict this measure. 

This study is guided by the following three research questions and their subcomponents. 

Research Questions 

1. To what extent can a psychometrically sound measure of computing identity be 

developed for students who took an undergraduate introductory computing course? 

a. Are self-efficacy and sense of belonging necessary components of computing 

identity? 

2. To what extent does computing identity hold over time during college, and how does 

this vary by gender, race/ethnicity, and intersections of gender and race/ethnicity? 

3. What variables predict computing identity in the year following students’ 

participation in an introductory computing course? 

a. To what extent do these predictors differ for women and men? 
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b. To what extent do these predictors differ across racial/ethnic categories? 

Part II: Theoretical/Conceptual Framing 

Despite much research on equity gaps in computing, there are no prior higher education 

studies that validate a measure of computing identity, test the reliability and equivalency of this 

measure for students of different gender, racial/ethnic, and intersectional gender and racial/ethnic 

identities, or that examine the predictive nature of college environmental variables in the 

development of this construct. In this study, I seek to gain a deeper understanding of how 

computing identity is conceptualized, confirm whether self-efficacy and sense of belonging were 

core components of this measure, examine if the factor held over time and by gender and 

racial/ethnic groups, and finally study the key factors that support computing identity 

development among undergraduate students in computing. In doing so, Rodriguez et al.’s (2020) 

conceptual model of computing identity for Latinas is used to situate the context of supporting 

students’ identity development to promote greater diversity and persistence in computing. 

Guided by literature that acknowledges the influence of individuals and their environments, this 

theoretical perspective lends utility toward developing and testing measures of students’ 

psychosocial computing identity, identifying variables that predict this measure, and 

understanding the implication of these findings for the computing discipline. 

Earlier in this chapter, I argue that models focusing on discipline-specific identities, such 

as computing identity, should naturally be more field-specific than the general concept of science 

identity. As such, this dissertation relies upon a revised version of Rodriguez et al.’s (2020) 

conceptual model of computing identity. The revision includes students’ sense of belonging in 

computing as a core component of their identity development (Taheri et al., 2018; Lunn et al., 

2021a), uses items related to computing self-efficacy as a proxy for students’ perceived 
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competence/performance (Godwin et al., 2016), and reiterates the importance of their internal 

recognition of themselves as a computing person (Carlone & Johnson, 2007). For this 

dissertation, the model depicted in Figure 2.2 below is used to inform items that are used in the 

development of the computing identity factor and serves as a guide for the independent (or 

predictor) variables used in the model predicting computing identity due to the important role 

student’s personal characteristics, background contexts, and educational experiences play. The 

use of Rodriguez et al.’s 2020 model for variable selection is described in greater detail in 

Chapter Three. This model’s development originated as a way to call attention to the 

multilayered experiences Women of Color face in computing, situated within the larger context 

of an individual’s core identities (i.e., gender, race, and ethnicity), which is pertinent to this 

study. As this model is rooted in the experiences of Women of Color in computing, its usefulness 

extends beyond variable selection; it provides an important foundation for me to interpret this 

study’s findings and contribute to computing literature, theory, and practice. See Figure 2.2 

below for an overview of the revised computing identity framework. The difference between the 

prior models and the revised model below is that I added sense of belonging as a core component 

of computing identity and centered the college-level factors to focus on students’ computing-

related experiences. 
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Figure 2.2 

Revised Computing Identity Framework 
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CHAPTER THREE: METHODOLOGY 

Given the importance of computing identity for undergraduate students’ success in 

computing and the notable gaps in the literature described in Chapter Two, the scope of this 

study is threefold. First, I develop a measure of computing identity. In doing so, I determine 

whether self-efficacy and sense of belonging are necessary components of one’s computing 

identity. Second, I examine the extent to which the psychometric properties of the new 

computing identity measure are equivalent over time and by student demographics. Third, I 

study students’ pre- and during-college factors and the predictive power of these variables on 

developing their computing identity and explore how these factors differ by students’ gender and 

racial/ethnic identity. Together, findings from this study inform how to foster computing identity 

among students from varying demographics in introductory computing courses to promote 

greater recruitment and retention, ultimately diversifying technology. Informed by prior literature 

on this topic and Rodriguez et al.’s (2020) conceptual framework of computing identity 

described in Chapter Two, I use an existing longitudinal dataset collected from Momentum’s 

BRAID research team at UCLA to conduct a combination of quantitative analyses (i.e., 

descriptive statistics, factor analysis, measure invariance tests, ordinary least squares regression) 

to address the three key research questions below. 

Research Questions 

1. To what extent can a psychometrically sound measure of computing identity be 

developed for students who took an undergraduate introductory computing course? 

a. Are self-efficacy and sense of belonging necessary components of computing 

identity? 
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2. To what extent does computing identity hold over time during college and by gender, 

race/ethnicity, and intersections of race/ethnicity? 

3. What factors predict computing identity in the year following students’ participation 

in an introductory computing course? 

a. To what extent do these predictors differ for women and men? 

b. To what extent do these predictors differ across racial/ethnic categories? 

The methodological plan for this study is driven by existing literature that documents 

gender and racial/ethnic equity gaps in computing while maintaining the importance of 

computing identity in predicting a variety of college, career, and graduate school outcomes for 

undergraduate students who took an introductory computing course. To systematically develop 

and test a computing identity measure and explore the factors that predict this measure when 

treated as an outcome, this study interrogates the conceptual understanding and universal 

applicability of a computing identity measure for students of varying gender and racial/ethnic 

identities. To honor students’ intersectional social identities and not perpetuate systems of 

oppression for marginalized communities in computing, I work to apply criticality in my 

quantitative methodological approaches wherever possible (e.g., disaggregated racial/ethnic and 

gender categories, intersectional analyses; Carter & Hurtado, 2007; Mayhew & Simonoff, 2015; 

Rodriguez et al., 2020; Rodriguez & Lehman, 2017). More information on these methodological 

techniques, decisions, and rationales is provided in the remainder of this chapter. 

Research Design 

This study uses existing student-level survey data collected from the BRAID research 

team at UCLA. To understand students’ experiences in computing courses on short- and long-

term outcomes, the BRAID research team at UCLA conducted a longitudinal student-level study 
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surveying two cohorts of students from 2014 to 2021. These data were collected starting in the 

fall of 2015 and 2016 from students enrolled in an undergraduate introductory computing course 

across 15 U.S. doctoral universities with either high or very high research activity18, of which 

two were private and 13 were publicly controlled (The Carnegie Classification of Institutions of 

Higher Education, n.d.). The UCLA research team administered the first (pretest) survey at the 

beginning of the introductory course, a second (posttest) survey at the end of the introductory 

course, and a third (first follow-up) survey was administered in the year following students’ 

completion of the introductory computing course. The remaining follow-up surveys were 

administered each fall term until 2021 (see Figure 3.1 for the surveys used in this study). In 

support of analyses on important marginalized subpopulations in computing, the data used for 

this study aggregates across cohorts to increase the sample sizes needed to reduce the effects of 

student survey attrition and increase statistical power (Aberson, 2019; Barrow et al., 2016; Stout 

et al., 2018). 

Specifically, for this dissertation, the pretest survey provides data on students’ incoming 

intentions and demographics, serving as an important control for the direct pretest computing 

identity measure captured upon students’ entry to the introductory course (Astin & antonio, 

2012). In addition, the posttest survey provides information about students’ experiences during 

the introductory course (e.g., perceptions of faculty and department). Finally, the first follow-up 

survey provides information about students’ experiences in college (e.g., college involvement). 

Combining these data sources into a matched panel database—where the sample is restricted to 

                                                 
18 The 15 BRAID institutions include: Arizona State University, Missouri University of Science and Technology, 

New Jersey Institute of Technology, University of California, Irvine, University of Illinois at Chicago, University of 

Maryland, Baltimore County, College Park, University of Nebraska-Lincoln, University of North Texas, University 

of Rochester, University of South Carolina, University of Texas at El Paso, University of Vermont, University of 

Wisconsin-Milwaukee, and Villanova University. 
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only include students who completed the pretest survey, posttest survey, and first follow-up 

survey—supports longitudinal research by allowing for a detailed investigation of the factors that 

facilitate or impede students’ computing identity throughout their early college experiences. 

Survey participants were given incentives to increase survey response rates and show 

appreciation for the time spent taking surveys. The survey incentives remained the same for both 

cohorts but varied by survey administration. For the pretest survey, the first 400 respondents 

received a $15 Amazon gift certificate, and all students were entered into a raffle for a chance to 

win one of two $125 Amazon gift certificates. A similar incentive was offered for students who 

participated in the posttest survey at the end of the intro class. However, all survey respondents 

who participated in the first follow-up survey received a $10 Amazon gift certificate, and no 

additional incentives were raffled. Response rates varied by student cohort and survey but ranged 

from 19% to 42%. 

While representatives from computing departments at each of the BRAID institutions 

self-selected to participate in the BRAID initiative, the undergraduate student enrollment and 

degree attainment trends at these institutions are largely representative of the norms seen across 

research institutions nationwide (Lehman et al., 2022; Zweben & Bizot, 2015, 2016, 2017, 2018, 

2019, 2020, 2021). Further, the reported computing experiences for the overall sample are akin 

to the experiences reported by students in computing at other BRAID institutions and, more 

broadly, at other research institutions (Lehman et al., 2022). 
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Figure 3.1 

Overview of Survey Data Sample and Research Design (n = 1,036) 

 

Study Sample 

Across both cohorts, 8,067 students completed the pretest survey, 5,333 completed the 

posttest survey, and 4,412 completed the first follow-up survey. However, the sample for this 

study was restricted to students who had completed all three surveys, students who had not 

graduated with a bachelor’s degree at the time of the first survey, and students who indicated 

they were computing majors, computing minors, or were undeclared but expressed interest in 

majoring in computing on any survey time point (n = 1,036)19. By the final survey, 765 students 

                                                 
19 Momentum has already provided me with access to these data for use in sample exploration and preliminary 

sample descriptives to determine the extent to which the proposed analytical approaches can be achieved with the 

data available. However, the official use of this dataset for the proposed analyses is pending the successful 

completion of my dissertation proposal along with UCLA IRB approval. Therefore, the data provided in this section 

are from the curated merged dataset for this study. 
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(74%) were computing majors, of whom 690 had persisted in computing since the initial survey. 

The remaining 75 students had become computing majors since the initial survey time point. 

Of the 1,036 students in the sample, there is nearly equal representation across cohorts 

(i.e., 46% from cohort A and 54% from cohort B). More than three-quarters of these students 

(83%) were in their first or second year of college at the time of the first survey (n = 863). Table 

3.1 summarizes survey respondents’ intersecting gender and racial/ethnic identities. In sum, 63% 

of students identified as men, and most students identified as white (42%) or Asian (28%). 

Additionally, more than half of the women in this sample are Women of Color (66%; Anita 

Borg, 2021). Importantly, those in this study closely represent those broadly enrolled in 

computing, as described in Chapter One. 

Table 3.1 

Sample Demographics by Gender and Racial/Ethnic Identity (n = 1,036) 

  

Men 
 

Women 
 

Nonbinary 

or Other 

Self-

Identified 

 
Gender 

Not 

Reported 

 
Total 

Race/Ethnicity  n %  n %  n %  n %  n % 

White 303 46.3  123 34.1  10 52.6  1 100.0  437 42.2 

Asian  178 27.2  113 31.3  2 10.5  0 0.0  293 28.3 

Black  34 5.2  30 8.3  3 15.8  0 0.0  67 6.5 

Latine  70 10.7  40 11.1  2 10.5  0 0.0  112 10.8 

Indigenous, 

Multiracial, or 

Other  

32 4.9  23 6.4  1 5.26  0 0.0  56 5.4 

Race/Ethnicity 

Not Reported  
38 5.8  32 8.9  1 5.26  0 0.0  71 6.9 

Total   655 63.2  361 34.8  19 1.83  1 0.1  1,036 100.0 

Note. Nonbinary included those identifying as gender non-conforming or genderqueer. Indigenous, 

Multiracial, or Other, including “Other” in race/ethnicity represents Arab, Middle Eastern, or Persian or 

indicated they identified as two or more racial/ethnic identities. Percentages are provided within 

columns, apart from the total gender where percentages are provided within the row. 
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Table 3.2 

Additional Student Demographics and Background Characteristics (n = 1,036) 

Variable n % 

First-Generation Status   

First-Generation 294 20.3 

Continuing Generation 694 47.9 

Unknown or missing 48 3.3 

Citizenship Status   

U.S. Citizen 880 60.7 

Non-U.S. Citizen with permanent residency 61 4.2 

Non-U.S. Citizen with temporary visa 51 3.5 

Other Citizenship status 6 0.4 

Unknown or missing 38 2.6 

Socioeconomic status   
Poor 48 3.3 

Below Average 163 11.2 

Average 444 30.6 

Above Average 325 22.4 

Wealthy 25 1.7 

Unknown or missing 31 2.1 

Parent Career   
At least one parent with computing career 231 15.9 

No parent with computing career 805 55.6 

Transfer Status   

Student transferred from another institution 184 12.7 

Student did not transfer 852 58.8 

Major at the beginning of the introductory computing course   

Computing 732 50.5 

Engineering 149 10.3 

Biological Sciences 22 1.5 

Business 34 2.3 

Physical Sciences 9 0.6 

Math/Statistics 23 1.6 

Other 13 0.9 

Health Professions 5 0.3 

Social Sciences 25 1.7 

Unknown or missing 24 1.7 
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Additional Student Demographics and Background Characteristics (Continued) 

 
Variable n % 

Undecided students’ aspired majors   

Computing 79 7.6 

Non-computing, other major or unknown 2 0.2 

Non-undecided student 955 92.2 

High School GPA   

A or A+ 403 27.8 

A− 285 19.7 

B+ 175 12.1 

B 101 7.0 

B− 21 1.4 

C+ 13 0.9 

C 7 0.5 

C− 3 0.2 

D 2 0.1 

Unknown or missing 26 1.8 

 

Additionally, most students in this sample had parents who had earned a bachelor’s 

degree, were born citizens of the United States, reported they were raised as part of an average 

socioeconomic class, shared that they did not have a parent with a career in computing, yet were 

either majoring in computing, minoring in computing, or were undecided but aspiring to become 

a computing major20, and were high-achieving students in high school (see Table 3.2). 

Regarding students’ academic characteristics, many reported their average high school 

grade was a B or higher, and 51% of students were computing majors at the time of the first 

survey (see Table 3.2). Additionally, 84% of students reportedly had only one academic major, 

                                                 
20 Computing majors/minors and aspirants included students in the following aggregated academic fields: 

Bioinformatics, Computer Science, Computer Information Systems/Informatics, Computing and Business (including 

Business Information Management and Management Information Systems), Computer Engineering (including 

Computer Engineering and Software Engineering), Data Science, Game Design, Information Science/Studies, 

Information Technology, and Other Computing. 
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8% reported having more than one major, and the remaining 8% indicated they were undecided 

about their major or did not report their major. Furthermore, all BRAID institutions are 

represented in the dataset, and 87% of students came from a publicly controlled university, with 

the majority of students having attended Arizona State University (17%); the University of 

Maryland, Baltimore County (15%); or the University of California, Irvine (11%; see Table 3.3). 

Table 3.3 

Frequency of Student Enrollment, by BRAID Institution 

BRAID Institution n % 

Arizona State University 174 16.8 

College Park 75 7.2 

Missouri University of Science and Technology 71 6.9 

New Jersey Institute of Technology 76 7.3 

University of California, Irvine 110 10.6 

University of Illinois at Chicago 36 3.5 

University of Maryland, Baltimore County 155 15.0 

University of Nebraska-Lincoln 78 7.5 

University of North Texas 39 3.8 

University of Rochester 69 6.7 

University of South Carolina 44 4.2 

University of Texas at El Paso 38 3.7 

University of Vermont 29 2.8 

University of Wisconsin-Milwaukee 14 1.4 

Villanova University 28 2.7 

Total 1,036 100.0 

 

Development of the Computing Identity Measure(s) 

The primary dependent variable for this study was a new, latent, affective psychosocial 

measure of undergraduate students’ computing identity. Guided by literature and the conceptual 

frameworks for each construct, I selected items that were present on all three surveys that 
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conceptually aligned with this study’s definition of computing identity21. While prior scholars 

have used the same surveys to develop factors of self-efficacy, sense of belonging, and other 

identity-related constructs (as mentioned earlier), I sought to create the most comprehensive 

computing identity factor possible. In alignment with the work of prior scholars (e.g., Carlone & 

Johnson, 2007; Rodriguez et al., 2020), my measure of computing identity includes items related 

to interest, competence, performance, and recognition. Additionally, as I am inspired by the work 

of Taheri et al. (2018) and Lunn et al. (2021a), my measure of computing identity also includes 

items related to sense of belonging to determine whether this construct is the cornerstone of our 

conceptualization of computing identity. Thus, while I am guided by existing literature and 

theory, the creation of this measure is still somewhat exploratory, so I use both exploratory and 

confirmatory factor analysis to achieve this goal—ensuring adequate factor loadings, 

eigenvalues, and internal consistency (Fabrigar et al., 1999; Streiner, 1994; Tabachnick & Fidell, 

2007). 

Importantly, while prior studies have created single measures of computing identity, there 

is limited research that has explored the extent to which the computing identity measure varies 

across time and student demographics. Therefore, before finalizing the dependent computing 

identity variable for this study, I examined the measure invariance at each survey time point and 

across categories of students’ gender, race/ethnicity, and intersections of students’ gender and 

racial/ethnic identities. This analytical process of assessing measure equivalence is explained in 

greater detail in this chapter’s Analytical Plan and Critical Approach section. 

                                                 
21 Computing identity represents the extent to which a student sees themselves as a computing person, based on how 

they make meaning of their core identity and navigate the world around them (Abes et al., 2007; Carlone & Johnson, 

2007; Lunn et al., 2021a; Rodriguez et al. 2020; Rodriguez & Lehman, 2017). 
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Additionally, the first research question supported my quest to determine whether a 

psychometrically sound measure of computing identity could be created. I added items related to 

self-efficacy (i.e., performance and competence items) and sense of belonging to see if they were 

necessary components in how we measure one’s computing identity. Then, I assessed if the new 

computing identity measure held over time and across students’ gender, race/ethnicity, and 

gender and racial/ethnic identities combined. The computing identity measure created as a result 

of the first research question was then used as the dependent variable for the final research 

question. In the following section, I describe the operationalization of computing identity, but the 

detailed process for the factor development is provided later in this chapter and in the results of 

the first research question in Chapter Four. 

Operationalizing Computing Identity 

I anticipated that although computing identity would not be measured the same as science 

identity, it would have similar foundational components that held across students’ racial/ethnic 

and gender identities but with a heavier emphasis on computing-related experiences and 

interactions during college. For example, just as Carlone and Johnson (2007) emphasize the 

fluidity of identity and the importance of students’ performance, competence, and recognition 

paired with their racial, ethnic, and gender identities, I expected these to also be important in the 

conceptualization of computing identity. However, as the field of computing identity differs from 

that of other science disciplines (Sax & Newhouse, 2019), this study uses a computing-specific 

lens developed by Rodriguez et al. (2020) to create and test the computing identity measure 

resulting in a construct with items specific to the field of computing. Additionally, as there may 

be differences in the makeup of the computing identity factor across race/ethnicity and gender, 
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there may also be differences in the variables that influence the predictability of computing 

identity by gender and race/ethnicity. 

For this study, computing identity is operationalized as the extent to which students see 

themselves as a computing person. The computing identity measure relies upon a body of 

literature that suggests computing identity comprises five elements: interest, competence, 

performance, recognition, and sense of belonging (Abes et al., 2007; Carlone & Johnson, 2007; 

Gee, 1999; Lunn et al., 2021a; Mahadeo et al., 2020; Rodriguez et al., 2020; Rodriguez & 

Lehman, 2017; Taheri et al., 2018). Given the availability of items on the survey data being used 

for this study, I anticipated the concept of computing self-efficacy to be interwoven with 

students’ perceived competence and performance characteristics. 

This study’s measurement of computing identity builds upon existing research by 

including students’ interest in computing (Mahadeo et al., 2020; Rodriguez et al., 2020), social 

identification as a computing person (Tajfel, 1979), and sense of belonging as a computing 

person (Lunn et al., 2021a; Taheri et al., 2018). As my review of the literature revealed that it 

may be difficult to parse self-efficacy from identity, items related to computing self-efficacy are 

included in the computing identity measure as proxies for students’ recognition of themselves 

and their ability to “do” computing. Specifically, the computing identity factor is informed, in 

part, by the work of prior scholars that measured computing identity with three self-report 

agreement items measured on a 5-point Likert scale (1 = Strongly Disagree to 5 = Strongly 

Agree): “I see myself as a computing person,” and “Computing is a big part of who I am,” as 

well as a reverse-coded item, “I do not have much in common with other students in my 

computing courses” (e.g., Lehman et al., 2022; Wofford, 2021). 
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While prior scholars developed their computing identity measures using the above survey 

items, this study moves their research forward by examining the extent to which self-efficacy 

and sense of belonging are core components of computing identity and by studying the 

equivalence of this new measure across survey time points and student demographics. See Table 

3.4 for a list of proposed computing identity items, their coding schemes, and subconstructs that 

were explored in developing this study’s computing identity measure. Only items that loaded 

onto their single factor (or subconstruct) at 0.5 or above, did not load onto another factor at 0.30 

or above, were represented by at least three items, and that produced an overall Cronbach’s alpha 

reliability of 0.70 were considered (Bolkan, 2017). Given that I include 18 items related to areas 

prior scholars found as subconstructs (e.g., Lunn et al., 2021a), I explore whether the best-fitting 

model for measuring computing identity is as a single factor with related but separate factors, a 

broad single-factor (unidimensional) measure, a bifactor, or a hierarchical (second order) factor 

(see Appendices C–E). 
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Table 3.4 

The 18 Proposed Computing Identity Items 

Item Response Options 

Interest 

How much do you agree or disagree with the 

following statements? 

1=Strongly Disagree; 2=Somewhat Disagree; 

3=Neither Agree nor Disagree; 4=Somewhat 

Agree; 5=Strongly Agree 

—I am interested in learning more about what I can 

do with computing 

 

—Using computers to solve problems is interesting 
 

—I care about doing well in computing. 
 

Competence 

I am confident that I can… 

1=Strongly Disagree; 2=Somewhat Disagree; 

3=Neither Agree nor Disagree; 4=Somewhat 

Agree; 5=Strongly Agree 

—Find employment in an area of computing interest. 
 

—Become a leader in the field of computing. 
 

—Win a computing-related contest (e.g., 

programming/robotics contest or hackathon). 

 

—Get admitted to a graduate computing program. 
 

—Complete an undergraduate degree in computing. 
 

—Quickly learn a new programming language on my 

own. 

 

—Clearly communicate technical problems and 

solutions to a range of audiences. 

 

Performance 

How would you rate yourself in the following areas 

compared to the average person your age? 

1=Lowest 10%; 2=Below Average; 

3=Average; 4=Above Average; 5=Highest 

10% 

—Computer skills 
 

Recognition 

How much do you agree or disagree with the 

following statements? 

1=Strongly Disagree; 2=Somewhat Disagree; 

3=Neither Agree nor Disagree; 4=Somewhat 

Agree; 5=Strongly Agree 

—Computing is a big part of who I am.  

—My family emphasizes the value of earning a 

computing degree. 

 

Belonging 

How much do you agree or disagree with the 

following statements? 

1=Strongly Disagree; 2=Somewhat Disagree; 

3=Neither Agree nor Disagree; 4=Somewhat 

Agree; 5=Strongly Agree 

—I feel like I “belong” in computing.  

—I feel like an outsider in the computing 

community. 

 

—I feel welcomed in the computing community.  

—I do not have much in common with the other 

students in my computing classes. 
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Computing Identity Predictive Model 

The conceptualization and factor creation of computing identity, the variables selected for 

the regression, and the order in which they entered the model relied upon the individual level of 

the guiding computing identity framework described in Chapter Two (Rodriguez et al., 2020). In 

Rodriguez et al.’s 2020 book chapter, the authors propose a conceptual computing identity 

framework for Latinas. The model is noteworthy for several reasons. First, it focuses on different 

levels of influence on Latina’s computing identity development. Second, it centers on individual 

student assets to the field and names the systems of power and oppression they must navigate 

during their undergraduate experience. Finally, building upon Carlone and Johnson’s 2007 

framework, this model acknowledges the importance of students’ interest, competence, 

performance, and recognition; speaks to the temporal influence of pre-college and during-college 

experiences; names intersectionality, which attends to Rodriguez and Lehman’s (2017) call to 

action for more research on this topic; and has roots in the field of technology, which computing 

as a discipline is situated within (Rodriguez et al., 2020). While the model was created with 

Latinas in mind and its theoretical underpinnings stem from qualitative research, it still serves as 

an important guide for this study in documenting potential factors at play and determining their 

influence on developing students’ computing identity, particularly for Underrepresented Students 

of Color in computing (USOCC). See Figure 3.2 below for an overview of the key variable 

categories and Appendix A for a complete list of variables that were included in the models, 

including their operationalizations and coding schemes. All variables were measured using a 5-

point Likert scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree) unless otherwise 

noted. 
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Figure 3.2 

Theoretical Framework Informing the Computing Identity Measure and the Regression Model 

 

Note. The difference between this figure and those provided in the prior chapters is that this visual is more 

nuanced in that it focuses particularly on the factors influencing students’ computing identity at the 

individual level. 

Pretest Computing Identity 

A measure of students’ pretest computing identity (α = 0.878) was used as a baseline 

measure to control for their incoming computing identity (Astin & antonio, 2012). This three-

item factor was identical to the dependent variable but was measured at the beginning of 

students’ introductory computing course. The time interval between this pretest survey measure 

and the first follow-up survey outcome measure (taken in the fall term following students’ 

completion of their introductory course) was approximately six months to one year, depending 

on whether students completed their initial surveys in the fall or spring term of the previous year. 

Personal Characteristics 

While personal characteristics were not documented in Rodriguez et al.’s 2020 model for 

Latinas in computing, this study encompasses students from different racial/ethnic and gender 
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backgrounds. As such, documenting their demographics is important. Variables in this section 

include students’ gender identity, racial/ethnic identity, and an indicator of whether they would 

be the first in their family to earn a bachelor’s degree. These demographic variables came from 

the pretest survey, unless missing, in which case an individual students’ information was 

acquired from their responses to other survey timepoints. 

Background Contexts 

Prior literature suggests that students’ preparation during high school is an important 

factor in promoting their identity development during college (Azmitia et al., 2009; Chang et al., 

2014; Robnett et al., 2015). Consequently, an indicator of whether students took an AP computer 

science course in high school (Sax et al., 2022) and a variable measuring their high school GPA 

were considered. Additional predictors include a measure of students’ class standing upon entry 

to the introductory computing course (e.g., as a first- or second-year student), an indicator of 

whether the student transferred from another college or university (Blaney, 2020; Blaney et al., 

2022), and a measure of their perceived socioeconomic status as a way to capture students’ 

family background (Rodriguez et al., 2020). These data came from the pretest survey. 

Finally, while one of the assumptions of linear regression is that all variables in the model 

must be at the same “level” (i.e., a student-level model only), as this is a multi-institution study, I 

also investigated if institutional-level variables needed to be included in the model 

(PremalMatalia, 2020). To determine whether this was necessary, I ran a one-way analysis of 

variance (ANOVA) to explore the extent to which computing identity varies by institution. Then, 

I examined the intra-class correlations (ICCs) for the independent variables on the computing 

identity outcome to get a more detailed understanding. While one ICC exceeded the 10% 

threshold (the pre-test computing identity independent variable), the ICC for the dependent 
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variable (a later time point for this variable) for this study was only 8%. Thus, I determined that a 

fixed-effects model was not necessary. In other words, despite the sample containing a different 

proportion of students across the 15 BRAID institutions (see Table 3.1), students’ computing 

identities did not vary by institution, so it was not necessary to account for institutional fixed 

effects. Therefore, I did not include dummy-coded BRAID institutional variables in the 

regression models. 

Early Computing Identity Experiences 

Rodriguez and her colleagues (2017, 2020) underscore the importance of students’ pre-

college computing-related experiences on their computing identity development. This block of 

items comes from the pretest survey and includes an indicator of whether students’ 

parents/guardians had a career in computing in order to signify whether this was an important 

predictor. A measure of students’ familial support served as a proxy for students’ pre-college 

identity-affirming experiences and to describe their funds of identity (Rodriguez et al., 2020; 

Wofford & Gutzwa, 2022). Specifically, I created a factor measuring students’ family support (α 

= 0.687) consisting of three items. For these items, students were asked their level of agreement 

with statements such as, “My family encourages me to pursue a computing degree.” 

Additionally, because 69% of the sample reported at least some prior programming 

experience and programming experience is linked with computing self-efficacy, which is linked 

to computing identity (Chemers et al., 2011; Seymour et al., 2004), I included an aggregate 

measure of the amount of prior programming experience students had upon entry to the 

introductory computing course. This variable was measured using a sum of seven binary items 

where students responded “yes” or “no” to learning programming through a course in high 

school, at a computer camp, in an online course, by taking a college-level programming course at 
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their current college, by taking a college-level programming course at another four-year college, 

by taking a course at a community college, or by learning programming on their own. As such, 

the aggregate measure of students’ prior programming experience ranged from zero to seven. 

Additional Psychosocial Computing Identity Factors 

While broader science identity literature suggests that some psychosocial factors (e.g., 

self-efficacy, interest in computing) predict computing identity and that sense of belonging may 

be a component of identity, any items that did not load on my computing identity measure were 

added in this block to investigate the extent to which they are precursors to computing identity, 

predicting it instead of being components of it (e.g., Chemers et al., 2011; Leary et al., 2013; 

Lunn et al., 2021b; Margolis et al., 2000; Robnett et al., 2015; Seymour et al., 2004). Based on 

the results (detailed in Chapter Four), these measures included students’ interest in computing 

and two self-efficacy factors. Each of these measures came from the posttest survey measured at 

the end of students’ introductory course (i.e., the second survey timepoint) and included three 

survey items. A sample item from the interest measure (α = 0.846) includes, “I am interested in 

learning more about what I can do with computing.” The first computing self-efficacy measure 

related to students’ professional competency (α = 0.817) with one item including, “I am 

confident I can quickly learn a new programming language on my own.” The other computing 

self-efficacy measure related to students’ professional milestones (α = 0.847) and included the 

following item: “I am confident I can find employment in an area of computing interest.” 

College Computing Identity Experiences Within the Introductory Course 

Students’ experiences in introductory courses are pivotal to their continued success and 

persistence in computing. Therefore, all items in this block came from the posttest survey that 

allowed me to capture these experiences. Given that culturally relevant teaching pedagogy is 
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encouraged by faculty to create more identity-inclusive and equitable classroom environments 

(Daily et al., 2022; Lunn et al., 2021a), I created a four-item measure representing students’ 

perception of the extent to which their instructor provided relevant social and personal examples 

(α = 0.795). These items inquired about whether examples involved women across race/ethnicity, 

People of Color regardless of their gender identity, or relevant social issues, or whether they 

addressed misconceptions about the computer science field. 

Additionally, in response to the continued need for faculty to promote relevant teaching 

pedagogy in classrooms (Ladson-Billings, 2021), I created a six-item measure of students’ 

perception of instructional inclusivity (α = 0.906). Items that make up this factor included 

students’ level of agreement with items that asked if their instructors and teaching assistants 

(TAs) were inclusive and supportive of women or Students of Color, if they were interested in 

helping when the student came to them with questions, and if they were responsive to questions 

in class and via email (Blaney & Stout, 2017). In addition, given the well-documented hostility 

that some marginalized students face in computing (e.g., Ashcraft et al., 2016; Whitney, 2021), 

the final measure in this section included a factor of feeling dismissed (α = 0.832) that included 

three items measured on a 5-point Likert scale ranging from 1 (Never) to 5 (All of the Time). In 

this measure, students indicated the extent to which their “ideas or opinions [were] minimized or 

ignored.” 

College Computing Identity Experiences Outside of the Introductory Course 

Just as students’ experiences in the introductory courses are important for their 

computing identity, so are their experiences outside of their introductory courses. To account for 

the importance of students’ social interactions and experiences outside of the classroom, I added 

five variables. The first two variables represented latent factors: a four-item measure of peer 
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support (α = 0.879) and a three-item measure of mentor support (α = 0.916), both measured 

using a 5-point Likert scale to which students reported their level of agreement from 1 (Not at 

All) to 5 (Very Much). The peer support prompt included, “To what extent is each of the 

following kinds of support available to you from other computing students if you need it?” A 

sample item from this measure is, “Someone to confide in or talk to about your problems.” For 

the mentor support measure, students were asked to rate their level of agreement to the following 

question: “To what extent do you have a mentor who-,” and a sample item is, “shares personal 

experiences as an alternative perspective to your problems.” 

Next, a variable that indicated whether students were computing majors or minors at the 

last survey time point was also included. Kapoor and Gardner-McCune (2019) describe the 

important role that students’ participation in professional development opportunities and 

hackathons plays in fostering their identity development. Thus, I included two binary variables to 

indicate whether students participated in an internship or co-op, or if they attended a technical 

conference in computing (Aschbacher et al., 2010; Charney et al., 2007; Hunter et al., 2007). 

Analytic Plan and a Critical Approach 

My primary analytical approaches were threefold. First, I relied upon factor analysis to 

create a measure of computing identity in response to the first research question. Then I attended 

to the second research question by assessing the measure invariance of the new computing 

identity factor over time during college and across student demographics. Finally, in response to 

my third research question, I used multiple regression to identify pre- and during-college factors 

that informed the development of computing identity for all students and explored the unique 

predictors for women and USOCC in computing compared to their peers from other social 

identity groups. 
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In approaching these analyses, and in alignment with my research positionality, I applied 

aspects of quantitative criticalism (Carter & Hurtado, 2007) where possible to avoid perpetuating 

systems of power and oppression in the academy (Garvey, 2020; Wells & Stage, 2015). In the 

field of higher education, quantitative studies deemed critical are becoming increasingly popular; 

however, there are a variety of perspectives on the extent to which studies are indeed 

quantitatively “critical” (Garvey, 2020; Stage & Wells, 2014; Wells & Stage, 2015). In this 

study, I took quantitatively critical approaches in several ways. Conceptually and theoretically, I 

took an equity approach that promotes social justice through my research inquiries, which 

supports a nuanced understanding of how we conceptualize and make meaning of students’ 

computing identities. I also applied criticality throughout my methodology (e.g., assessing 

measure invariance, honoring students’ gender and racial/ethnic identities, and using a 

comparative group approach toward understanding how the factors predicting computing identity 

vary by gender and race/ethnicity). The following sections describe these approaches in greater 

detail. 

Research Question 1: Developing a Computing Identity Measure 

This section describes the processes for developing the computing identity measure, 

assessing model fit, and identifying the appropriate model structure. I used factor analysis to 

develop the measure of computing identity. In particular, factor analysis offers statistical strength 

by reducing the number of items that “hang” together on a similar latent construct (Tabachnick 

& Fidell, 2007). In addition, it offers practical strength as it allows researchers to make 

subjective decisions informed by literature that support greater interpretability and implications 

for practice (Streiner, 1994). As discussed in Chapter Two, the terminology referring to 

computing identity, self-efficacy, and sense of belonging have been used interchangeably in the 
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existing literature. Therefore, because the operational definitions for this study (as informed 

through literature and theories) do differ, but I identified a need for more clarification to parse 

these constructs from one another, I utilized both exploratory and confirmatory factor analysis 

(EFA and CFA) to identify items that loaded onto—and the structure of—a computing identity 

measure. Further, only survey items that corresponded to computing identity and were informed 

through literature and theory were examined, and the analytical decisions to create the factor 

were informed by scholarship from the fields of statistics (Wells, 2021), higher education 

(Eagan, 2020), and computing education (e.g., Lunn et al., 2021a). See Table 3.4 for a curated 

list of the 18 proposed survey items that were explored in developing this computing identity 

measure. 

Broadly speaking, the primary target sample for the development of this factor was the 

population of students from both cohorts who both completed the pretest survey and met the 

remaining study restrictions (n = 4,269). However, I used SPSS to randomly split this sample 

into two nearly equivalent groups, in alignment with literature advising the use of different 

samples for EFA than is used CFA and to achieve sample sizes of at least a 10 to 1 ratio of 

students per item and that the overall sample exceeds 300 cases (DeVellis & Thorpe, 2021; 

Fabrigar et al., 1999; Kline, 2023; Tabachnick & Fidell, 2007). Approximately 50% of the 

sample was included in an initial EFA to determine which items would be appropriate for the 

scale, and the remaining students were included in the CFA to confirm the factor structure 

(DeVellis & Thorpe, 2021). Then, the model structure was confirmed using the combined sample 

of students who completed the pretest survey. See Table 3.5 for a summary of the study analyses 

and corresponding sample sizes. 
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Table 3.5 

Summary of Study Analyses and Sample Sizes 

Analysis Sample Actual Sample Analyzed (excluding 

missing cases) 

Assessment of Items 

—Initial EFA First ½ of students who 

completed the pretest 

survey (n = 2,142) 

(n = 2,068) 

—Targeted EFA 

Confirmation of Factor Structure 

—CFA Second ½ of students who 

completed the pretest 

survey (n = 2,134) 

(n = 2,091) 

Assessment of Model Structure 

—CFA All students who completed 

the pretest survey 

(n = 4,269) 

 

(n = 4,158) 

—Unidimensional 

—Bifactor 

—Second Order 

Assessment of Demographic Measure Equivalence  

—Measure invariance testing All students who completed 

the pretest survey 

(n = 4,269) 

Gender (n = 4,017) 

Race/Ethnicity (n = 3,502) 

Gender & Race/Ethnicity (n = 3,460) 

Assessment of Longitudinal Measure Equivalence 

—Measure invariance testing Students who participated in 

all three survey time points 

(n = 1,036) 

(n = 1,036) 

Assessment of Factors that Predict Computing Identity 

—Hierarchical blocked multiple 

regression analyses 

Students who participated in 

all three survey time points 

(n = 1,036) 

All Students (n = 660) 

Men (n = 417) 

Women (n = 243) 

white students (n = 307) 

Asian students (n = 244) 

USOCC (n = 173) 

—Stepwise multiple regression 

analyses 

All students (n = 768) 

Men (n = 492) 

Women (n = 276) 

white students (n = 375) 

Asian students (n = 268) 

USOCC (n = 193) 

Note. Underrepresented Students of Color in computing (USOCC) includes students from the following 

racial/ethnic identities: Black or African American; Hispanic or Latina/o/x; American Indian; Native 

Hawaiian or Pacific Islander; Arab, Middle Eastern, or Persian; and students from two or more 

racial/ethnic groups (Wofford et al., 2022). The racial/ethnic makeup of the sample groups for the blocked 

model and the stepwise model, respectively, were: Black, 20% and 21%; Latine, 39% and 37%; Native 

American, 1% and 1%; Native Hawaiian or Pacific Islander, 1% and 1%; Arab, 8% and 8%; and two or 

more race/ethnicities, 31% and 32%. 
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Exploratory Factor Analysis. The first step of my data analysis was determining the 

appropriate number of factors and corresponding items for the new measure of computing 

identity. To do this, I conducted an EFA with robust maximum likelihood estimation using 

Mplus version 8.7 (Muthén & Muthén, 2017). The purpose of the initial EFA was to assess 

which of the 18 proposed items related to computing identity loaded onto one or more latent 

constructs. Only those without missing data were included, yielding a sample of 2,068 students 

who completed the pretest survey. I used goemin rotation in Mplus to allow for correlations 

between factors, as prior literature suggests these items may be related (e.g., Beyer, 2014; Blaney 

et al., 2022; Blaney & Barrett, 2022; Cohoon & Aspray, 2006; George et al., 2022; Lehman, 

2017; Lehman et al., 2022) and tested the models with between one and five latent variables. I 

then ran a second, targeted EFA with the same pretest sample retaining only the 12 items that 

loaded on a latent variable at 0.50 or higher without a cross-loading of 0.30 or higher (Bolkan, 

2017) and had at least two items represented. 

Confirmatory Factor Analysis. Next, I used CFA to confirm the structure of the items 

that loaded onto the computing identity factor in a second sample of students (i.e., the remaining 

half of students who completed the pretest survey), excluding those with missing data, yielding a 

sample of 2,091 students. 

Research Question 1a: Assessing Subcomponents of Computing Identity 

After establishing the computing identity factor through the steps above, it was important 

to determine whether the computing identity measure had one or more subcomponents 

(Tabachnick & Fidell, 2007), considering both the extant literature that describes how these 

measures are multifaceted (Marakas et al., 1998; Jones & McEwen, 2000) and the various ways 

computing identity has been measured (Taheri et al., 2018; 2019; Lunn et al., 2021a). Therefore, 
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I ran a second CFA to determine whether the measure was unidimensional or multidimensional 

(i.e., multifactorial). For this additional CFA, I used the full sample of 4,158 students who took 

the pretest survey to assess the model fit, comparing a multidimensional CFA with 

unidimensional, bifactor, and second-order factor structures (DeVellis & Thorpe, 2021; see 

Appendices C–E). More specifically, if computing identity were a simple single-

factor/unidimensional model, all items would have strong loading on a single computing identity 

measure. Whereas, if computing identity were best represented as a bifactor model, sub-items 

would load unidimensionally within several subcomponents or latent variables (e.g., interest, 

recognition, performance, competence, sense of belonging) and on a global computing identity 

factor. However, if computing identity were best represented as a second-order/hierarchical 

factor, all sub-items would first load on unique first-order factors (e.g., interest, recognition, 

performance, competence, sense of belonging) and then on a second-order factor (i.e., computing 

identity). Here the sub-items would not have a direct relationship with the overarching measure 

of computing identity, but instead would be related through their subfactors (DeVellis & Thorpe, 

2021). See Appendices C–E for illustrations of these possible model structures. 

After confirming the factor structure in Mplus, I computed Cronbach’s alpha (α) and 

McDonald’s omega (ω) to ensure that the reliability of the items that comprised the factor(s) was 

greater than 0.70 and did not exceed 0.90. 

Assessing Model Fit. Based on the work of prior scholars (e.g., Bolkan, 2017; DeVellis 

& Thorpe, 2021), I relied on a combination of the Akaike Information Criteria (AIC), Bayesian 

Information Criteria (BIC), Comparative Fit Index (CFI), and Root Mean Square Error of 

Approximation (RMSEA) to assess the model fit for both the exploratory and confirmatory 

factor analyses. Specifically, I looked for the lowest AICs and BICs in the comparison of model 
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options with a CFI ≥ 0.95 and an RMSEA ≤ 0.08 (Fabrigar et al., 1999; Hu & Bentler, 1999; 

Wells, 2021). 

Research Question 2: Measuring (In)variance in the Computing Identity Measure 

This section describes the process of using factorial measure invariance to assess whether 

the new computing identity measure functions equivalently over time and across students from 

varying demographic (gender and racial/ethnic) social groups (Litson & Feldon, 2021). Several 

scholars encourage researchers to run additional inferential analyses (beyond assessing reliability 

with Cronbach’s alpha and McDonald’s omega) to ensure equivalency of the new measure over 

time (longitudinal factor model) and across the various social identities represented in their 

samples (multigroup confirmatory factor model; Geiser, 2022, 2023; Litson & Feldon, 2021; 

Marcoulides & Yuan, 2017; Wells, 2021). Therefore, I examined the invariance of the 

computing identity measure over time and across student demographics by using longitudinal 

and multigroup confirmatory factor analysis in Mplus (Wells, 2021). 

While several scholars have identified a variety of approaches to assess measure 

invariance, I was guided by Putnick and Bornstein’s (2016) structural equation modeling (SEM) 

framework for CFA for this study. In this framework, the authors identify a four-step process to 

assess for configural, metric, scalar, and residual invariance whereby the tests become more 

stringent as you progress along the spectrum. Configural invariance, the least stringent of the 

four steps, allows researchers to assess if the pattern of parameters (factor loadings and 

intercepts) for all the items that load onto the measure of computing identity are equivalent 

across subgroups (Putnick & Bornstein, 2016). For example, configural invariance allows for the 

investigation of whether an item such as “I see myself as a computing person” consistently 

loaded onto the measure of computing identity for each subgroup of interest. Metric invariance 
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(i.e., weak measurement equivalence) assesses if the strength of the relationship between the 

factor and each item is the same for each subgroup of interest by constraining factor loadings 

(i.e., making them equivalent) but allowing intercepts to range freely (Wells, 2021). In practice, 

this means comparing the magnitude of loadings for each item related to computing identity for 

each subgroup of interest. Scalar invariance (i.e., strong measurement equivalence) constrains 

both the factor loadings and intercepts for each item of the computing identity measure to assess 

if making them equivalent is a worse fit than metric invariance for all subgroups of interest. In 

other words, with this approach, we assess whether the mean differences in the computing 

identity factor account for all the subsequent mean differences across the items by constraining 

the factor loadings and intercept measurement parameters (Wells, 2021). Residual invariance 

(i.e., strict invariance) is the practice of assessing the equivalence of item residuals of metric and 

scalar invariant items. However, Wells (2021) describes it as overly restrictive and Putnick and 

Bornstein (2016) mention that many researchers omit this step. Therefore, because I was unable 

to assess configural invariance and residual invariance, which is often seen as too strict, I 

focused instead on the two midpoints described above—metric and scalar invariance. 

In addition to these measure invariance (equivalence) assessments, I used paired samples 

t-tests in order to assess how computing identity mean scores changed between the pretest and 

the first follow-up survey for each group: (a) all students, (b) women, (c) men, (d) USOCC, (e) 

Asian students, and (f) white students. I also ran independent samples t-tests (for gender groups) 

and an ANOVA (for race/ethnicity groups) to assess between-group differences of students’ 

computing identity scores within a given survey timepoint. 

Assessing Model Fit. Assessing whether a model adequately fits the data involves 

examining the chi-square fit statistic and its corresponding p-value; a non-significant chi-square 
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fit statistic is preferable, indicating a good model fit such that there is no significant difference 

between the model predictions and the data (Litson & Feldon, 2021). While chi-square is a 

typical indicator of fit, its use as such has been critiqued because of its extreme sensitivity to 

large sample sizes (Meade, 2005)—highlighting differences where they may be otherwise less 

meaningful (Chen, 2007). Therefore, I first investigated if the chi-square fit statistic was 

significant using a more stringent significance threshold (i.e., p < .001; Litson & Feldon, 2021). 

Then I investigated other accepted fit indices, namely, CFI and RMSEA, where a well-fitted 

model is identified when CFI ≥ 0.95 and RMSEA ≤ 0.08 (Fabrigar et al., 1999; Hu & Bentler, 

1999; Wells, 2021). However, there are some considerations worth mentioning. First, CFA is 

often only possible with large sample sizes (Kline, 2023), as the chi-square goodness-of-fit 

indices produced from the maximum likelihood (ML) estimation allow adequate power to reject 

the null hypothesis even when the model does not fit the population (Wells, 2021). However, as 

further explained by Wells (2021), “Just because a model does not fit perfectly in the population 

does not mean it is not useful or that it does not provide a good enough approximation” (p. 261). 

Thus, as parameter estimates tend to be statistically significant with large datasets used in CFAs, 

I also examined factor (co)variances, factor loadings, intercepts, and residual (co)variances to 

interpret the magnitude of the parameters (Wells, 2021). 

Overall, by clarifying these psychosocial factors, findings from this research question 

allow me to address a gap in the literature as to whether a strong single-factor psychosocial 

discipline-specific measure of computing identity can be created that holds across student 

demographic (gender and racial/ethnic) groups. 
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Research Question 3: Predicting Computing Identity 

I used a combination of quantitative methods to address the third research question. First, 

before running the regression analyses, I ran frequency distributions to assess normality and 

variance and tested for multicollinearity among the independent variables—ensuring that no two 

variables exceeded a correlation of r ≥ .70. While two variables—undergraduate research 

participation and technical conference participation—had little variance (most students had not 

indicated involvement in either computing-related activity), I chose to keep both variables in the 

model. This decision was informed by prior literature suggesting they were important in 

fostering students’ persistence in computing because computing identity is a predictor of 

persistence. Thus, I wanted to see if these variables predicted computing identity. 

Next, I ran a series of 12 multiple regression analyses, first using a blocked forward 

multiple regression approach then using a stepwise multiple regression approach. As opposed to 

analyses that force all variables to enter the model at the same time, I started with running six 

hierarchical blocked multiple regressions among each group of students: (a) all students, (b) 

women, (c) men, (d) USOCC, (e) Asian students, and (f) white students. The blocked approach 

allowed me to document how each of the seven conceptually related blocks of variables accounts 

for variation in the outcome, with the most predictive variables entering first, within their 

theoretical temporal blocks informed by the theory that guides the corresponding model (Astin & 

Dey, 1996; Field, 2013). 

However, because findings varied across students’ social groups and some variables were 

initially significant but lost significance as other sets of variables entered, the approach of 

entering variables together within blocks made it impossible to track how the entry of certain 

variables may have affected the predictive power of other variables. Therefore, with interest in 
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further investigating the important changes within those particular blocks and diagnosing which 

variables were driving this said change, I decided to rerun the regressions using a blocked 

stepwise multiple regression (Astin & antonio, 2012), again among each of the six student 

groups: (a) all students, (b) women, (c) men, (d) USOCC, (e) Asian students, and (f) white 

students. In these revised models, however, only the variables that entered at any step for at least 

one social group from the initial regressions were included. This approach allowed me to better 

track the step-by-step changes in regression coefficients as each new variable was added to the 

model, providing greater insight into the relative predictive power of each independent variable 

on the computing identity dependent variable as additional variables were being controlled. 

For both approaches to multiple regression, the pretest computing identity factor was 

force-entered at the first step to highlight the simple correlation between the pretest and outcome 

computing identity variables and the significance between the two variables (Sax & Harper, 

2007). As mentioned earlier in this chapter, I also included independent variables that were not 

components of the computing identity outcome (i.e., the interest in computing factor and the two 

self-efficacy factors) since they may serve as predictors of computing identity. 

Analytically, both blocked stepwise individual variable regression modeling approaches 

allowed me to study the relationship between key independent/predictor variables (e.g., gender, 

race/ethnicity, introductory course experiences) on the dependent variable of interest (i.e., 

computing identity) while controlling for student demographic, background, psychosocial, and 

other college-related variables as informed by the respective theoretical framing (Astin & Dey, 

1996). 
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Research Questions 3a and 3b: Predicting Computing Identity Separately by Social Group 

Informed through critical quantitative research methodological approaches, education 

researchers can work to center the experiences of certain groups of students and look for 

differences among these students in their analyses (e.g., limit the sample to only women and see 

what differences arise by race). Importantly, Carter and Hurtado (2007) posit that comparative 

group approaches, as opposed to group-specific approaches whereby all students are entered into 

the model together, are appropriate for use in studies where prior literature documents expected 

differences in the outcomes of interest. In this case, there is a variety of literature that highlights 

gender and racial/ethnic equity gaps in terms of students’ computing identity. Contrary to a 

single model “group-specific approach,” running analyses separately by gender and 

race/ethnicity in the “comparative group approach” allows me to examine how the predictive 

power of the variables—which would otherwise be masked or only illustrated through many 

conditional effect/interaction terms added to the model—vary among each group (Astin & 

antonio, 2012; Carter & Hurtado, 2007; Sax, 2008). 

Assessing Model Fit. To determine the regression model that best fits the data in 

predicting computing identity for students in this study, I assessed the model’s goodness of fit 

using R2 as a measure of variance explained by the model (Field, 2013). In other words, R2 is a 

measure of the overall strength of the regression model, which represents the proportion of 

variance accounted for by the variables in the regression equation (Astin & antonio, 2012). 

Ranging from 0 to 1, the R2 statistic is the multiple correlation (i.e., the correlation between 

actual and predicted score; Astin & antonio, 2012). While the size of the R2 depends on many 

factors including sample size, the number of variables, and the variability and usefulness of 

independent variables in predicting the outcome (Astin & antonio, 2012), the higher the value, 
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the better the model. While a model that explains 100% of the variance is unrealistic, I aimed for 

models that explain around 60% of the variance that exists in the development of students’ 

computing identity, which is considered “high” in higher education research (i.e., R2 ≥ .60; 

Eagan, 2020). While R2 does not imply causality, it is useful in describing the model’s strength 

in predicting the outcome of interest (Field, 2013). 

By documenting which variables predict these psychosocial outcomes and for which 

demographic groups these predictors remain true, findings from these research questions 

contribute to the literature on what is known about computing identity and how to better foster 

this among all students, especially those minoritized by their gender and racial/ethnic identities 

in computing, to support persistence in the field. 

Taken together, the critical quantitative approaches described above provide me with a 

mechanism for accounting for differences across gender within racial/ethnic categories and 

provide for a deeper understanding of differences by race/ethnicity within gender categories. 

Additionally, criticality in this research study provides me with a platform to acknowledge and 

inform the computing community of potential individualized approaches that may be needed to 

tailor and ultimately transform the support provided to the development of computing identity 

among all students in order to increase equity in computing. 

Study Strengths and Limitations 

It should be noted that quantitative research studies are inherently unable to provide the 

same level of in-depth understanding of students’ experiences as qualitative interviews and focus 

groups. Still, quantitative research inquiries such as this offer several notable strengths. First, 

quantitative research that relies on large sample sizes allows researchers to explore statistical and 

practical significance, which is particularly useful for university administrations that determine 
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policy based on “strength in numbers” approaches. Second, while quantitative studies are limited 

to existing data, quantitative methods allow for the inclusion and testing of an effect and the 

magnitude of that effect from multiple factors on an outcome of interest. Finally, these robust 

approaches allow quantitative studies to hold constant factors that institutions and departments 

cannot change (e.g., student demographic, institutional characteristics) to examine the unique 

effect of variables on a given outcome. 

Findings from this study must be interpreted with caution, however, as institutions self-

selected to participate and all students were enrolled at research-intensive universities, meaning 

that their experiences may be unlike those of computing students at other institutions. While the 

demographics of those who participated in the BRAID surveys are largely representative of 

students enrolled in computing at similar research institutions, as mentioned earlier, it is 

important to acknowledge potential non-response bias, in that those who responded to the survey 

and their survey responses may be inherently different from those that did not respond to the 

survey (Blaney et al., 2020). However, given how diverse all higher education systems are 

becoming, examining students (especially those marginalized in computing) at research-intensive 

institutions is important, too. There are also many differences within computing disciplines 

(Cohoon & Aspray, 2006) that this study does not address. Future research may consider 

disaggregating both STEM subdisciplines (Sax & Newhouse, 2019) and the computing fields 

(Cohoon & Aspray, 2006) in their examinations. Unfortunately, these data do not allow for the 

measurement of students’ experiences concerning racism, sexism, hostility, and 

microaggressions, which Rodriguez et al. (2020) and Harper (2012) argue are critical steps in 

measuring and naming these systems of power and oppression and in understanding the entirety 

of systemic influences on students’ computing identities. 
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Additional threats to the validity of these findings include criticisms of the proposed 

analyses. Factor analysis is critiqued for its subjective nature and infinite number of available 

rotations (Tabachnick & Fidell, 2007). Analyses with a comparative-group approach are often 

critiqued because while they explore nuances between groups, they still assume, to some extent, 

homogeneity of those within the groups being compared (e.g., in this case, presenting all women 

or all Asian students as monoliths). However, I counter that argument by examining the 

experiences among women by race/ethnicity and across race/ethnicity by gender, thus examining 

the experiences of students who hold multiple social identities. 

Thus, although the strengths of this study outweigh any threats to validity, future 

researchers still need to replicate and extend these findings using other datasets and samples, as 

is the case with most research. 
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CHAPTER FOUR: RESULTS 

Informed by the importance of broadening the participation of all women and students 

from marginalized racial/ethnic social identities in computing described in Chapter One, the 

review of extant literature presented in the first part of Chapter Two, and the research 

methodology described in Chapter Three, the analytical scope of this study is threefold. First, I 

aim to develop a psychometrically sound measure of computing identity. In doing so, I identified 

the measure structure and determined the extent to which self-efficacy and sense of belonging 

are necessary components of computing identity. Second, I explore how well the computing 

identity measure holds across each of the three survey time points and for students from various 

gender and racial/ethnic identities. Finally, I examine the key variables that facilitate or impede 

the development of computing identity among undergraduate students who took an introductory 

computing course. I also investigate if these factors vary by gender and race/ethnicity in 

accordance with my theoretical and conceptual frameworks described in the second part of 

Chapter Two. 

This chapter begins with an overview of my research questions. I then briefly describe 

the analytical procedure before providing the findings corresponding to each research question 

listed below. 

Research Questions 

1. To what extent can a psychometrically sound measure of computing identity be 

developed for students who took an undergraduate introductory computing course? 

a. Are self-efficacy and sense of belonging necessary components of computing 

identity? 
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2. To what extent does computing identity hold over time during college and by gender, 

race/ethnicity, and intersections of race/ethnicity? 

3. What pre-college and college-related variables predict computing identity in the year 

following students’ participation in an introductory computing course? 

a. To what extent do these predictors differ for women and men? 

b. To what extent do these predictors differ across racial/ethnic categories? 

Research Question 1: Developing a Computing Identity Measure 

In response to my first research question, I used both exploratory and confirmatory factor 

analysis to assess whether a psychometrically sound measure of computing identity could be 

created. The following sections provide a high-level overview of the steps I took to run these 

analyses (see Chapter Three for more details), emphasizing the results I discovered along the 

way. 

Exploratory Factor Analysis 

I ran two exploratory factor analyses (EFAs). Using a random sample of roughly half of 

the pretest survey data among students who met all other study criteria (n = 2,068) and the 18 

items that aligned with the literature on the five subcomponents of computing identity, I ran the 

first EFA to assess the number of items and factor(s) onto a computing identity measure. Based 

on the results, I retained a five-factor solution as findings from this initial EFA indicated this was 

the best-fitting model (see Table 4.1). However, because several items cross-loaded on different 

factors or had low loadings across all factors and only two reverse-coded items were represented 

for one factor, I only retained 12 variables representing four latent factors (see Table 4.2). I then 

included these 12 items in a second, targeted four-factor EFA to test how the data fit the 

proposed model. Results from this EFA indicated that the data fit the model relatively well, 𝜒2 
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(24) = 45.608, p < .01, SRMR = 0.008, CFI = 0.997, RMSEA = 0.021 (CI: 0.011, 0.030) with all 

variables loading significantly on their respective factors (see Table 4.4). 
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Table 4.1 

Summary of Model Fit, the Initial EFA with Five Factors 

Model Chi-square AIC BIC df p CFI SRMR RMSEA CI 

One-factor 4,372.01 88,702.55 89,006.81 135 < .01 0.63 0.10 0.12 (0.12, 0.13) 

Two-factors 2,551.35 86,282.53 86,682.56 118 < .01 0.79 0.06 0.10 (0.10, 0.10) 

Three-factors 1,320.95 84,867.33 85,357.52 102 < .01 0.89 0.04 0.08 (0.07, 0.08) 

Four-factors 736.75 84,206.00 84,780.71 87 < .01 0.94 0.03 0.06 (0.06, 0.06) 

Five-Factors 347.53 83,771.72 84,425.30 73 < .01 0.98 0.02 0.04 (0.04, 0.05) 

Models compared 

1 vs. 2 1,410.73   17 < .01     

2 vs. 3 1,240.41   16 < .01     

3 vs. 4 578.05   15 < .01     

4 vs. 5 373.11   14 < .01     

Note. chi-square = Satorra-Bentler scaled chi-square. AIC = Akaike Information Criteria. BIC = Bayesian Information 

Criteria. CFI = Comparative Fit Index. SRMR = Standardized Root Mean Square Residual. RMSEA = Root Mean Square 

Error of Approximation. CI = 90 percent confidence interval. Adequate model fit to the data is determined by low AIC and 

BIC and CFI ≥ 0.95 and RMSEA ≤ 0.08 (Hu & Bentler, 1999). 
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Table 4.2 

EFA, a Five-Factor Solution with GEOMIN Rotated Loadings 

 Factor 

Item 1 2 3 4 5 

1. I am interested in learning more about what I can do with computing 0.06 0.70 0.05 −0.02 −0.05 

2. Using computers to solve problems is interesting −0.01 0.75 −0.01 0.12 0.06 

3. I care about doing well in computing. 0.01 0.64 0.17 −0.08 −0.02 

4. I am confident I can—find employment in an area of computing interest. 0.05 0.05 0.71 0.05 −0.01 

5. I am confident I can—become a leader in the field of computing. −0.01 −0.03 0.12 0.76 −0.06 

6. I am confident I can—win a computing-related contest (e.g., programming 

contest, robotics contest, hackathon). 

0.01 −0.08 0.02 0.80 −0.02 

7. I am confident I can—get admitted to a graduate computing program. 0.03 −0.05 0.62 0.17 0.02 

8. I am confident I can—complete an undergraduate degree in computing. −0.02 0.13 0.72 0.01 0.04 

9. I am confident I can—quickly learn a new programming language on my 

own. 

−0.01 0.05 0.15 0.54 0.05 

10. I am confident I can—clearly communicate technical problems and solutions 

to a range of audiences. 

0.02 0.05 0.23 0.48 0.01 

11. Self-rating: computer skills 0.31 0.00 0.05 0.12 0.17 

12. I see myself as a “computing person.” 0.88 −0.02 0.09 −0.05 −0.02 

13. Computing is a big part of who I am. 0.71 0.05 −0.13 0.19 0.00 

14. My family emphasizes the value of earning a computing degree 0.06 0.11 0.01 0.20 −0.00 

15. I feel like I “belong” in computing. 0.81 0.02 0.05 0.01 0.05 

16. I feel like an outsider in the computing community. (R) 0.10 −0.05 0.03 −0.02 0.78 

17. I feel welcomed in the computing community. 0.18 0.24 −0.08 0.32 0.23 

18. I do not have much in common with the other students in my computing 

classes. (R) 

−0.10 0.04 0.02 −0.00 0.68 

Note. (R) represents items that should be reverse coded. Eigenvalues for the four factors are: (1) 6.248, (2) 2.002, (3) 1.496, (4) 1.151, (5) 0.938. 
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Table 4.3 

EFA, a Targeted Four-Factor Solution GEOMIN Rotated Loadings 

 Factor 

Item 1 2 3 4 

Interest in Computing     

1. I am interested in learning more about what I can do with computing. 0.76 0.02 −0.03 0.01 

2. Using computers to solve problems is interesting. 0.71 0.06 0.00 0.06 

3. I care about doing well in computing. 0.67 −0.02 0.12 −0.07 

Computing Identity     

1. I see myself as a “computing person.” −0.03 0.87 0.07 −0.04 

2. Computing is a big part of who I am. 0.05 0.71 −0.14 0.18 

3. I feel like I “belong” in computing. −0.00 0.85 0.04 −0.01 

Computing Self-Efficacy: Professional Milestones     

1. I am confident I can—find employment in an area of computing interest. 0.04 0.03 0.73 0.03 

2. I am confident I can—get admitted to a graduate computing program. −0.04 0.03 0.64 0.16 

3. I am confident I can—complete an undergraduate degree in computing. 0.14 −0.01 0.71 0.00 

Computing Self-Efficacy: Professional Competencies     

1. I am confident I can—win a computing-related contest 

(e.g., programming contest, robotics contest, hackathon). 

 

−0.03 

 

0.01 

 

−0.01 

 

0.83 

2. I am confident I can—become a leader in the field of computing. 0.01 −0.02 0.11 0.76 

3. I am confident I can—quickly learn a new programming language on my own. 0.06 0.05 0.16 0.47 

Note. Eigenvalues for the four factors are: (1) 4.972, (2) 1.761, (3) 1.270, (4) 0.578.  
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Confirmatory Factor Analysis 

I also ran two confirmatory factor analyses (CFAs). The first CFA was used to confirm 

the four-factor structure; findings indicated that the data fit the proposed four-factor model well, 

𝜒2 (48) = 448.04, p < .01, SRMR = 0.03, CFI = 0.97, RMSEA = 0.05 (CI: 0.04, 0.05). See Figure 

4.1 for the correlations between factors and factor loadings. In running the second CFA, I 

evaluated the fit of several alternative models, including a single (unidimensional) factor, a 

bifactor model, and a hierarchical (i.e., second order) factor structure. Results indicated the 

multidimensional CFA with four separate factors—each with three subsequent items—was the 

best fit for these data (see Tables 4.3 and 4.4). 

Research Question 1a: Assessing Subcomponents of Computing Identity 

As existing literature is mixed on whether computing self-efficacy (Blaney & Barrett, 

2022) and sense of belonging (George et al., 2022; Sax et al., 2018) are core components of 

computing identity (e.g., students’ “fit in computing”; Lehman et al., 2022), this study seeks to 

explore whether they are distinct, stand-alone measures or components of a broader computing 

identity measure. Based on the findings from the second CFA reported above, the present study’s 

findings suggest that the measure of computing identity does not contain items related to self-

efficacy (a proxy for competence and performance) but that a sense of belonging in computing is 

embedded within the measure of computing identity (and its items did not load onto their own 

unique factor; see Table 4.3). Despite adding four belonging-related items to the exploratory 

factor analysis tests, a unique measure for belonging in computing did not emerge; this finding is 

different from the work of prior scholars (Lunn et al., 2021a; Mahadeo et al., 2020; Taheri et al., 

2019). Instead, for this study, a single belonging item, “I feel like I belong in computing,” loaded 

onto the measure of computing identity—suggesting that a sense of belonging is a core 
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component of how one sees oneself as a computing person. Therefore, operationally, these 

findings indicate that computing identity is a multidimensional measure that incorporates a 

student’s self-identity as a computing person, a sense that computing is a part of their core 

personal identity, and a sense of belonging in the greater computing community. 

Importantly, instead of the proposed performance-related items loading onto a sub-

measure of self-efficacy, or self-efficacy being a subcomponent of computing identity, instead 

the results from the CFA suggest two separate self-efficacy factors. The first computing self-

efficacy measure relates to students’ confidence in their ability to achieve professional 

milestones in computing, and the other refers to students’ confidence in their ability to achieve 

professional competencies. Both measures included three items, and for each item students were 

asked to rate their level of agreement on a 5-point Likert scale ranging from 1 (Strongly 

Disagree) to 5 (Strongly Agree); however, the items for these factors differed in scope. The items 

related to computing self-efficacy professional milestones that were included pertained to 

students’ confidence in their ability to achieve computing milestones such as (a) “complet[ing] 

an undergraduate degree in computing,” (b) “get[ting] admitted to a graduate computing 

program,” and (c) “find[ing] employment in an area of computing interest.” These items differed 

from those in the other computing self-efficacy: professional competencies measure because the 

latter items pertained to students’ confidence in their ability to perform professional computing 

skills. The items in this measure included students’ confidence in their ability to (a) “become a 

leader in the field of computing,” (b) “win a computing-related contest,” and (c) “quickly learn a 

new programming language on [their] own.” 
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Table 4.4 

Summary of Model Fit, CFA Analysis of Factor Structure 

Model Chi-square AIC BIC df p CFI SRMR RMSEA CI 

CFA, four factors 448.04 107,525.48 107,791.46 48 < .01 0.97 0.03 0.05 (0.04, 0.05) 

Unidimensional 5,635.48 114,545.51 114,773.49 54 < .01 0.64 0.12 0.16 (0.15, 0.16) 

Bifactor 741.39 107,896.41 108,200.38 42 < .01 0.96 0.05 0.06 (0.06, 0.07) 

Second Order 859.69 108,045.40 108,298.71 50 < .01 0.95 0.06 0.06 (0.06, 0.07) 

Note. Chi-square = Satorra-Bentler scaled chi-square. AIC = Akaike Information Criteria. BIC = Bayesian Information Criteria. CFI = 

Comparative Fit Index. SRMR = Standardized Root Mean Square Residual. RMSEA = Root Mean Square Error of Approximation. CI = 90 

percent confidence interval. Adequate model fit to the data is determined by low AIC and BIC and CFI ≥ 0.95 and RMSEA ≤ 0.08 (Hu & 

Bentler, 1999). 

 

Figure 4.1 

Four Separate Factors; CFA 

 

Note. Loadings are standardized. Variables correspond to items listed in Table 4.3. 
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Research Question 2: Measuring (In)variance in the Computing Identity Measure 

After confirming the factorial structure and determining an adequate model fit for the 

computing identity measure, I then assessed the extent to which the new computing identity 

factor held over time and by students’ social identities because in scale development, ensuring 

these measures are valid across students’ diverse social identities is important (Wells, 2021). 

Therefore, despite the strong fit statistics of the CFA and the initial investigations of Cronbach’s 

alpha and McDonald’s omega indicating reliability and the strength of the factors over time and 

across student demographics (see Table 4.6), additional inferential analyses were necessary to 

assess the goodness of fit for the factor over time (longitudinal factor model) and across these 

social identities (multigroup confirmatory factor model; Geiser, 2022, 2023; Litson & Feldon, 

2021; Marcoulides & Yuan, 2017). Unfortunately, I could not assess configural invariance 

because, as stated above, the new computing identity measure only consisted of three items, 

which is the bare minimum for a latent factor, leading it to be a perfect fit with zero degrees of 

freedom. Had the computing identity factor had four items, configural invariance could have 

been assessed, but because it does not, we can assume configural invariance is met for 

computing identity across the subgroups of interest. Therefore, to address this research question, 

I focused on metric invariance and scalar invariance. Due to the constrained nature of my three-

item computing identity measure, configural invariance was not relevant (Geiser, 2022; 2023), 

and residual invariance was too stringent (Putnick & Bornstein, 2016; Wells, 2021). 

For this dissertation, I had a mixture of large and small sample sizes. After excluding 

some groups with either very small sample sizes or ambiguous group identity22, the sample size 

                                                 
22 Several of the smaller groups were not included in this analysis, including students who identified as (a) non-

binary, genderqueer, gender non-conforming (n = 37), or did not report their gender (n =208); or (b) Indigenous, 

Multiracial, as an [o]ther racial/ethnic identity (n = 156), or did not report their race/ethnicity (n = 605). 
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for invariance testing ranged from as small as 71 to as large as 2,964. See Table 4.5 below for the 

sample sizes and groups compared in the invariance tests. 

Table 4.5 

Reliability of Computing Identity over Time during College and across Students’ Social 

Identities 

  

n 

Cronbach’s 

α 

McDonald’s 

ω 

Computing Identity Over Time, During College (n = 1,036) 
   

—Pretest survey 1,036 0.878 0.879 

—Posttest survey 1,036 0.899 0.900 

—First Follow-up survey 1,036 0.893 0.894 

Pretest Computing Identity, by Gender (n = 4,017) 
   

—Men 2,964 0.850 0.851 

—Women 1,053 0.873 0.874 

Pretest Computing Identity, by Race/Ethnicity (n = 3,502) 
   

—White 1,772 0.858 0.860 

—Asian 1,045 0.874 0.877 

—Black 251 0.868 0.870 

—Latine 434 0.822 0.822 

Pretest Computing Identity, by Gender & Race/Ethnicity (n = 

3,460) 
   

—White women 400 0.865 0.865 

—White men 1,346 0.850 0.852 

—Asian women 323 0.874 0.877 

—Asian men 713 0.867 0.871 

—Black women 71 0.881 0.883 

—Black men 178 0.839 0.841 

—Latina/e women 108 0.871 0.873 

—Latino/e men 321 0.783 0.784 

Note. Both Cronbach’s alpha (α) and McDonald’s omega (ω) are reported. While the field appears to be 

slowly moving toward Omega for its robustness, as alpha is more restrictive due to its assumptions 

(Goodboy & Martin, 2020; McNeish, 2017), I report both to aid in comparison with existing and future 

scholarship that may only investigate alpha. 
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Measure Equivalence Across Time, During College 

To assess the equivalence of the three-item computing identity measure over time, I used 

the full longitudinal sample with three time points (n = 1,036) to assess metric and scalar 

invariance using a longitudinal confirmatory factor model in Mplus (Geiser, 2023). Both metric 

and scalar invariance models had significant chi-square goodness-of-fit values, indicating a 

significant difference between the observed data and each specified model according to this fit 

index (see Table 4.7 for model fit and model fit comparisons; Litson & Feldon, 2021). Based on 

other fit indices, while the CFI was 0.96 for the metric model and 0.95 for the scalar model, the 

RMSEA for both models was 0.09 and 0.10, respectively, and thus, despite trending in the right 

direction (i.e., approaching non-significance based on the p-value of the chi-square, the CFI ≥ 

0.95, and RMSEA being close to 0.08 as desired), neither the metric nor scalar model met the 

necessary fit model fit criteria (Hu & Bentler, 1999). This suggests students’ responses to items 

in the computing identity measure may look different over time, which aligns with prior 

literature speaking to the fluid nature of discipline-specific identity (Aschbacher et al., 2010; 

Avraamidou, 2020; Carlone & Johnson, 2007; Marcia 1966, 1980; Rodriguez et al., 2020). 

Importantly, this finding is somewhat expected as it is typical that as students gain more 

experience, their psychosocial characteristics also evolve (Kapoor & Gardner-McCune, 2019). 

Therefore, suggestions for additional research in this regard is discussed more in Chapter Five. 

However, because the sample sizes for each time point were quite large (possibly 

producing significant chi-square values where differences may otherwise be trivial) and due to 

the fact that the CFI and RMSEA were near the cutoff points (Hu & Bentler, 1999), I opted to 

conduct post hoc confirmatory factor analysis at the latter two survey time points to compare the 

standardized parameters (factor loadings and intercepts). These additional analyses allowed me 
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to determine whether specific items led to differences in the factor structure over time (see Table 

4.6). Findings show similar factor loadings and intercepts, despite the differences being 

identified in the measure invariance longitudinal test, revealing that researchers need to consider 

both practical significance and statistical significance when examining equivalency in the 

strength of factor loadings and factor means over time. 
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Table 4.6 

Parameters of the Three-Item Computing Identity Measure over Time and By Subgroup 

 

1. I see myself as a “computing 

person.” 

2. Computing is a big part of who I 

am. 

3. I feel like I “belong” in 

computing. 

Analytical Subgroups 

Standardized 

Factor Loadings 

Standardized 

Intercepts 

Standardized 

Factor Loadings 

Standardized 

Intercepts 

Standardized 

Factor Loadings 

Standardized 

Intercepts 

Over Time, During College      
—Pretest Survey 0.95 −0.11 0.95 −0.12 0.95 −0.13 

—Posttest Survey 0.95 −0.11 0.89 −0.13 0.87 −0.14 

—First Follow-up Survey  1.00 −0.04 0.93 −0.05 0.80 −0.07 

Gender Identity      

—Women 1.00 3.87 0.98 3.39 1.08 3.74 

—Men 1.00 4.22 1.04 3.85 1.12 4.12 

Racial/Ethnic Identity      

—White 1.00 4.21 1.12 3.77 1.12 4.09 

—Asian 1.00 3.95 0.95 3.62 1.15 3.83 

—Black 1.00 4.08 0.97 3.76 1.26 3.97 

—Latine 1.00 4.25 1.03 3.83 1.01 4.20 

Intersectional Gender & Racial/Ethnic Identity    

—White women 1.00 3.97 1.01 3.39 1.05 3.85 

—White men 1.00 4.28 1.13 3.88 1.14 4.16 

—Asian women 1.00 3.77 1.01 3.37 1.18 3.63 

—Asian men 1.00 4.03 0.91 3.73 1.14 3.92 

—Black women 1.00 3.70 0.95 3.42 1.08 3.52 

—Black men 1.00 4.23 1.03 3.90 1.15 4.15 

—Latine women 1.00 4.35 1.12 3.94 1.01 4.30 

—Latine men 1.00 3.95 0.90 3.51 1.04 3.91 
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Measure Equivalence by Gender 

Computing identity was also assessed among students’ gender identities, comparing 

women to men. To assess the equivalence of the three-item computing identity measure by 

gender, I ran a multigroup confirmatory factor analysis in Mplus using students’ gender identities 

(n = 4,017; see Table 4.7; Geiser, 2022). Non-significant findings for these tests indicate no 

significant difference between observed data and each specified model according to this fit 

index. These findings were confirmed with the alternative fit criteria (i.e., CFI ≥ 0.95 and 

RMSEA ≤ 0.08 for all models; Hu & Bentler, 1999). Therefore, findings from these analyses 

confirm the computing identity measure is equivalent for men and women. Despite the 

equivalence of this measure by gender, see Table 4.6 for subtle differences in standardized factor 

loading and intercepts. 

Measure Equivalence by Race/Ethnicity 

To assess if the three-item measure of computing identity varies by race/ethnicity, I ran a 

multigroup confirmatory factor analysis in Mplus among four of the main student racial/ethnic 

identities (n = 3,502; Geiser, 2022). The racial/ethnic groups that were compared included white, 

Asian, Black, and Latine students. The scalar model had significant chi-square goodness-of-fit 

values (see Table 4.7). Non-significant findings for the metric model indicate no significant 

difference between observed data and each specified model according to this fit index, such that 

the factor structure of the computing identity measure is equivalent between white, Asian, Black, 

and Latine students. These findings were confirmed using the alternative fit criteria, where all 

models produced a CFI ≥ 0.95 and RMSEA ≤ 0.08 (Hu & Bentler, 1999). Again, like the 

equivalence in computing identity by gender groups, despite the equivalence of this measure by 
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race/ethnicity, Table 4.6 illustrates minor differences in standardized factor loading and 

intercepts. 

Measure Equivalence by Intersections of Gender and Race/Ethnicity 

Finally, because students carry multiple interwoven social identities, invariance testing 

was also assessed across students’ intersectional gender and racial/ethnic identities (e.g., for 

Latina/e women vs. Black men). Like the above approaches for gender and race/ethnicity, I again 

ran a multigroup confirmatory factor analysis in Mplus using larger student gender and 

racial/ethnic groups (n = 3,460; Geiser, 2022). The groups that were compared included white 

women, white men, Asian women, Asian men, Black women, Black men, Latina/e women, and 

Latino/e men. Findings indicated the scalar model had a significant chi-square value but was in 

alignment with the alternative fit criteria CFI ≥ 0.95 and RMSEA ≤ 0.08, as was the same with 

metric model (see Table 4.7). According to this fit index, the metric model’s non-significant 

findings indicate that the three-item computing identity measure is equivalent across white 

women and men, Asian women and men, Black women and men, and Latine women and men. 

Akin to the measure equivalence found in computing identity by gender and race/ethnicity, Table 

4.6 provides small differences in standardized factor loading and intercepts by students’ 

intersectional gender and racial/ethnic identities. 
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Table 4.7 

Computing Identity Measure Equivalence over Time and by Students’ Social Identities 

Model x2 (df) p CFI TLI RMSEA (90% CI) SRMR Difftest x2 (df) 

Over Time, During College (n = 1,036) 

Metric 284.68 (28) * 0.96 0.95 0.09 (0.08, 0.10) 0.04 13.42 (4) 

Scalar 385.21 (32) * 0.95 0.94 0.10 (0.09, 0.11) 0.04 100.53 (4) 

Gender Identity (n = 4,017) 

Metric 1.74 (2)  1.00 1.00 0.00 (0.00, 0.04) 0.01 1.74 (2) 

Scalar 15.03(4)  1.00 0.99 0.04 (0.02, 0.06) 0.01 13.81 (2) 

Racial/Ethnic Identity (n = 3,502) 

Metric 20.867 (6)  0.99 0.99 0.05 (0.03, 0.08) 0.05 20.87 (6) 

Scalar 39.559 (12) * 0.99 0.99 0.05 (0.03, 0.07) 0.06 18.65 (6) 

Intersections of Gender & Racial/Ethnic Identities (n = 3,460) 

Metric 25.89 (14)  1.00 0.99 0.04 (0.02, 0.07) 0.06 25.89 (14) 

Scalar 65.723 (28) * 0.99 0.99 0.06 (0.04, 0.07) 0.07 40.03 (14) 

Note. x2 = chi-square; df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean 

square error of approximation; CI = confidence interval; SRMR = Standardized Root Mean Square Residual. The chi-square x2 

difftest (difference test) was conducted using multiple-group CFA in Mplus. Adequate model fit to the data is determined by 

evaluating a chi-square fit statistic p-value, where * = p < .001 (Litson & Feldon, 2021). Other accepted fit indices include CFI and 

RMSEA, where a well-fitted model is identified when CFI ≥ 0.95 and RMSEA ≤ 0.08 (Hu & Bentler, 1999). 
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To provide additional context for whether the factors varied over time and by students’ 

gender and racial/ethnic group, I ran additional analyses that revealed both within and between-

group differences. Despite Carlone and Johnson (2007) suggesting students’ computing identity 

scores should increase over time with greater exposure and skillset obtained, the paired samples 

t-test analyses comparing the average computing identity scores within groups over time 

revealed that computing identity scores decreased over time for all groups, with only some 

differences being statistically significant. For instance, students’ pretest computing identity 

scores (M = 9.80, SD = 2.48) were far higher than their scores on the first follow-up survey 

computing identity scores (M = 9.12, SD = 2.77; t(447) = 1.38, p < .001, d = 0.07). The same 

was true for women, men, and USOCC. However, there were no significant mean score 

differences between the pretest computing identity and the first follow-up survey computing 

identity for Asian students (Pretest M = 9.36, SD = 2.22; First Follow-up Survey M = 9.12, SD = 

2.60) nor for white students at either time point (Pretest M = 9.80, SD = 2.48; First Follow-up 

Survey M = 9.65, SD = 2.77). These analyses helped to uncover that students’ scores decreased 

from the pretest to the first follow-up survey for all groups, though effect sizes were small across 

all social groups (Cohen’s d ranged from 0.07 to 0.26; Cohen, 1988; see Table 4.8). The decline 

we see for all groups may be attributable to not all students in the sample being computing 

majors in the first follow-up survey. However, these decreases are akin to the findings by Sax 

and her colleagues in relation to their exploration of sense of belonging in computing in 2018. 

The independent sample’s t-test and the one-way ANOVA revealed some interesting 

findings that aligned with some literature and differed from other literature. As indicated by the 

superscripts in Table 4.8 below, there were several differences between groups within a given 

survey time point. Specifically, the findings for between-group differences by gender aligned 
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with Sax and her colleague’s research (2018) on sense of belonging in computing. Indeed, 

findings for this study revealed that men’s computing identity scores were higher than women’s 

computing identity scores on both the pretest survey (Men: M = 10.15, SD = 2.13; Women: M = 

9.05, SD = 2.40) and the first follow-up survey (Men: M = 10.07, SD = 2.39, Women: M = 9.05, 

SD = 2.40), respectively (Pretest: t(996) = 7.514, p < .001, d = 0.50; Follow-up survey: t(1,010) 

= 10.14, p < .001, d = 0.67). 

However, ANOVAs revealed there were also statistically significant differences seen 

across racial/ethnic groups (Pretest: F(2, 998) = 6.82, p < .001, partial η2 = 0.014; Follow-up: 

F(2, 999) = 5.18, p = .006, partial η2 = 0.010). Post hoc analyses revealed that these between-

group differences did not align with what prior scholars found (Lunn et al., 2021a). While there 

were no differences seen between Asian and white students’ initial computing identity scores, 

USOCC had higher pretest computing identity test scores (M = 10.04, SD = 2.09) than their 

white (M = 9.88, SD = 2.43, 95% CI [−0.19, 0.52]) and Asian peers (M = 9.38, SD = 2.22, 95% 

CI [0.28,1.04], partial η2 = 0.014). Based on benchmarks by Cohen (1988) for the range of partial 

eta squared (i.e., the effect size for ANOVAs), this finding meets the criteria for a large effect, 

meaning there is a substantial difference between groups and that the practical implications of 

this difference should strongly be considered (Lakens, 2013). On the first follow-up survey, there 

were no differences between USOCC and their white and Asian peers. However, white students 

scored significantly higher on the follow-up survey than Asian students at this later timepoint, as 

indicated by the statistically significant difference between white students (M = 9.73, SD = 2.73) 

and their Asian counterparts (M = 9.10, SD = 9.60, 95% CI [0.24, 1.02], partial η2 = 0.010). 

Again, based on the criteria presented in Lakens (2013), which is based on Cohen’s 1988 effect 

size indicators, this effect is between medium (partial η2 = 0.06) and large (partial η2 = 0.14), 
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meaning this difference is not trivial. Therefore, these differences in computing identity by 

gender and race/ethnicity illuminate not only statistical significance but also practical 

significance. 

Taken together, the notion that computing identity decreases over time is somewhat 

expected as college students come to learn more about the world around them and realize how 

much they have yet to learn about the field they are studying (Aschbacher et al., 2010; 

Avraamidou, 2020; Carlone & Johnson, 2007; Marcia 1966, 1980; Rodriguez et al., 2020). 

However, the fact that there are differences between groups at different points in time suggests 

that we need to provide more equitable support to foster students’ computing identities over 

time. Understanding how students’ computing identities are developed and how to maintain or 

enhance the degree of computing identity students come to college with is the focus of analysis 

for the next research question. Recommendations to address this and other findings from this 

study are discussed in Chapter Five. 

Table 4.8 

Within and Between-Group Mean Differences between Students’ Pretest and First Follow-up 

Computing Identity Scores 

 

Pretest 

Computing Identity 

First Follow-up 

Computing Identity     

Social Group M SD M SD df t p 

Cohen’s 

d 

All Students 9.80 2.48 9.65 2.77 447 1.38 < .001 0.07 

Gender         
Women 9.03a 2.40 8.40a 2.80 354 4.91 < .001 0.26 

Men 10.13b 2.12 10.06b 2.40 630 0.90 < .001 0.04 

Race/Ethnicity         
USOCC 10.01a 2.09 9.41ab 2.67 250 4.10 < .001 0.26 

Asian 9.36b 2.22 9.12a 2.60 307 1.87 .062 0.11 

White 9.80b 2.48 9.65b 2.77 447 1.38 .168 0.07 

Note. Superscripts with different letters indicate between-group differences (down columns, within social 

groups), whereas statistics reported indicate within-group differences (across rows, within social group 

subcategories). 



 

 108 

 

Research Question 3: Predicting Computing Identity 

Having established a computing identity measure and demonstrated equivalence across 

students’ gender, race/ethnicity, and intersectional gender and racial/ethnic identities above, the 

remaining analysis used a combined sample of 1,036 students who completed the pretest, 

posttest, and first follow-up survey to see what background, psychosocial, and college variables 

predict computing identity. With a particular interest in how computing identity is developed 

among students from different social groups, I ran a series of ordinary least squares (OLS) 

regression analyses using the measure of computing identity from the third survey time point (α 

= 0.893) as the dependent variable. As a reminder, the computing identity factor was measured 

on a 5-point Likert scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree) and included 

the following three items: “I see myself as a ‘computing person,’” “Computing is a big part of 

who I am,” and “I feel like I ‘belong’ in computing.” Further, this outcome was used to assess 

the extent to which various independent variables predict stronger computing identity among (a) 

all students in computing, (b) women, (c) men, (d) white students, (e) Asian students, and (f) a 

combined group23 of USOCC (i.e., Black or African American; Hispanic or Latina/o/x, 

American Indian; Native Hawaiian or Pacific Islander; Arab, Middle Eastern, or Persian; and 

students from two or more races/ethnicities; Wofford et al., 2022). 

For the hierarchical blocked regression, variables included in the initial main effects 

models accounted for between 43% and 55% of the variance in computing identity—depending 

                                                 
23 Importantly, I want to recognize that I understand students from different backgrounds do not experience college 

in the same ways and that even students who share social identities may still not experience college similarly. Yet, 

despite my best intentions to disaggregate racial/ethnic groups for reasons mentioned previously, due to small 

sample sizes and the need for enough statistical power to detect meaningful differences, I ultimately excluded the 

small group of students who identified as nonbinary and I combined Black, Latine, and all other students from one 

or more racial/ethnic groups together.  
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on the subpopulation examined (see Table 4.9). The direct pretest computing identity variable 

explained most of the variance in computing identity across the regressions (i.e., R2 ranged from 

0.29 in the regression among Asian students to 0.47 in the regression among white students). 

Still, several other variables also played a small but statistically significant role. 
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Table 4.9 

Initial Hierarchical Linear Regressions Predicting Computing Identity One Year after Students’ Intro Computing Courses 

Dependent Variable REGRESSION 

1 

REGRESSION  

2 

REGRESSION  

3 

REGRESSION  

4 

REGRESSION 

5 

REGRESSION  

6 

—Computing Identity at First 

Follow-up 

ALL 

(n = 660) 

MEN 

(n = 417) 

WOMEN 

(n = 243) 

WHITE 

(n = 307) 

ASIAN 

(n = 244) 

USOCC 

(n = 173) 

 

Final Model 

(Block 7) 

Final Model 

(Block 7) 

Final Model 

(Block 7) 

Final Model 

(Block 7) 

Final Model 

(Block 7) 

Final Model 

(Block 7) 

Independent Variables b Sig b Sig b Sig b Sig b Sig b Sig 

Block 1: Pretest Item             
—Pretest Computing Identity  0.41 *** 0.41 *** 0.41 *** 0.51 *** 0.36 *** 0.40 *** 

Block 2: Personal Characteristics 

—Gender: Women  −0.15 *** --- --- --- --- −0.04 
 

−0.16 ** −0.30 *** 

Race (White)             
—Race: Asian  −0.10 ** −0.09 * −0.11 

 
--- --- --- --- --- --- 

—Race: Black −0.07 ** −0.03 
 

−0.12 * --- --- --- --- --- --- 

—Race: Latine  −0.03 
 

0.00 
 

−0.07 
 

--- --- --- --- --- --- 

—Race: Other −0.04 
 

−0.03 
 

−0.06 
 

--- --- --- --- --- --- 

—First-Generation Status 0.01 
 

−0.02 
 

0.07 
 

0.02 
 

0.01 
 

−0.02 
 

Block 3: Background Contexts 

—Class Standing −0.05 
 

−0.08 
 

0.01 
 

−0.09 * 0.02 
 

−0.05 
 

—Socioeconomic Status −0.02 
 

−0.07 
 

0.04 
 

0.03 
 

−0.06 
 

−0.04 
 

—Transfer Status −0.04 
 

−0.04 
 

−0.07 
 

−0.04 
 

−0.02 
 

−0.15 
 

—HS CS Course 0.03 
 

0.02 
 

0.07 
 

0.06 
 

−0.02 
 

0.04 
 

—HS GPA 0.05 
 

0.06 
 

0.04 
 

0.07 
 

0.01 
 

−0.02 
 

Block 4: Early Computing Identity Experiences  
—Parent CS Career 0.02 

 
0.03 

 
−0.01 

 
0.00 

 
0.09 

 
0.03 

 

—Family Computing Support+ −0.04 
 

−0.03 
 

−0.02 
 

−0.04 
 

−0.11 
 

0.04 
 

—Amount of Prior 

Programming Experience 

0.07 * 0.07 
 

0.10 
 

0.03 
 

0.18 ** 0.03 
 

Block 5: Additional Psychosocial Computing Identity Factors  
—Interest in Computing+ 0.13 *** 0.20 *** 0.07 

 
0.14 ** 0.12 * −0.04 
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—Computing Self-Efficacy: 

Professional Competencies+ 

0.06 
 

0.05 
 

0.07 
 

0.08 
 

0.08 
 

0.08 
 

—Computing Self-Efficacy: 

Professional Milestones+ 

−0.01 
 

−0.03 
 

−0.01 
 

−0.12 * −0.03 
 

0.15 
 

Block 6: College Computing Identity Experiences Within the Intro Course  
—Relevant Social/Personal 

Examples+ 

0.00 
 

0.03 
 

−0.07 
 

0.03 
 

0.03 
 

−0.12 
 

—Perception of Inclusive 

TAs/Faculty+ 

0.00 
 

−0.03 
 

0.05 
 

0.00 
 

0.09 
 

0.00 
 

—Feeling Dismissed+ 0.05 
 

0.10 * 0.00 
 

0.00 
 

0.05 
 

−0.03 
 

Block 7: College Computing Identity Experiences Outside of the Intro Course  
—Peer Support+ 0.05 

 
0.10 * −0.02 

 
0.08 

 
0.10 

 
−0.02 

 

—Mentor Support+ 0.00 
 

−0.04 
 

0.07 
 

0.00 
 

−0.06 
 

0.03 
 

—Computing Major/minor 0.25 *** 0.25 *** 0.27 *** 0.26 *** 0.26 *** 0.16 * 

—Undergraduate Research 

Participation 

0.04 
 

0.01 
 

0.07 
 

0.01 
 

0.06 
 

0.04 
 

—Technical Conference 

Participation  

0.00 
 

−0.02 
 

0.03 
 

−0.01 
 

−0.02 
 

−0.01 
 

Model R2  0.50  0.47  0.49  0.59  0.47  0.50 

Note. + denotes variable is a factor; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; b = unstandardized regression coefficient. 
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For the blocked stepwise regression approach, the pretest computing identity measure 

still served as the primary independent variable, entering it first, and all remaining variables 

entered next one by one only if they were significant at some point in the prior model for at least 

one subgroup (even if they were not significant at the final step when all variables were entered 

together). The following nine variables were excluded because they were not significant 

predictors for any group at any point: 

1. Five background variables: first-generation status, socioeconomic status, parent 

computing career status, a factor of family computing support. 

2. One psychosocial variable: a measure of computing self-efficacy: professional 

competencies. 

3. Four college variables: a factor measuring the inclusivity of the instructional team 

(TA/Faculty), a mentor support factor, and two separate variables measuring whether 

students participated in undergraduate research or attended a technical conference. 

For the revised stepwise OLS regression models, when all variables were entered at the 

final step, between 43% and 55% of the variance in computing identity was explained—

depending on the subgroup examined (see Appendix G). Further, findings from these models 

predicting computing identity one year after students’ introductory computing courses indicate 

several predictors and that these key variables differ to some degree across the different student 

social groups (see Table 4.10). 

In the remainder of this section, I review findings from the regression analysis among all 

students and then pivot to discuss the more nuanced findings and value-added of comparing 

predictors among students by gender and race/ethnicity across the separate regression models. 
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Table 4.10 

Linear Regression Predicting Computing Identity among All Students One Year after Students’ Intro Computing Courses (n = 768) 

Dependent Variable   Pretest  Background Psychosocial College 

—Computing Identity at First Follow-up   (Step 1) (Step 11) (Step 13) (Step 17) 

Independent Variables r Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 

Pretest Item 
          

—Pretest Computing Identity .61 *** 0.61 *** 0.54 *** 0.46 *** 0.41 *** 

Personal Characteristics 
          

—Gender: Women −.31 *** −0.16 *** −0.16 *** −0.17 *** −0.16 *** 

Race (White) 
          

—Race: Asian  −.08 ** −0.03 
 

−0.05 
 

−0.04 
 

−0.08 ** 

—Race: Black −.09 *** −0.07 * −0.07 * −0.07 * −0.06 * 

—Race: Latine  .04 
 

−0.03 
 

−0.03 
 

−0.03 
 

−0.04 
 

—Race: Other −.01 
 

−0.02 
 

−0.02 
 

−0.02 
 

−0.03 
 

Background Contexts 
          

—Class Standing −.02 
 

0.00 
 

−0.01 
 

−0.01 
 

−0.04 
 

—Transfer Status .01 
 

−0.04 
 

−0.04 
 

−0.03 
 

−0.04 
 

—HS CS Course .18 *** 0.07 * 0.03 
 

0.04 
 

0.02 
 

—HS GPA −.03 
 

0.03 
 

0.04 
 

0.03 
 

0.03 
 

Pre-College Computing Identity Experiences 
         

—Amount of Prior Programming Experience .28 *** 0.09 *** 0.08 * 0.07 * 0.07 * 

Additional Psychosocial Computing Identity Factors 
        

—Interest in Computing+ .38 *** 0.17 *** 0.18 *** 0.18 *** 0.14 ** 

—Computing Self-Efficacy: Professional 

Milestones+ 

.30 *** 0.03 
 

0.05 
 

0.01 
 

0.00 
 

College Experiences Within the Intro Course 
         

—Relevant Social/Personal Examples+  .03 0.18 0.00 
 

−0.01 
 

0.00 
 

0.00 
 

—Feeling Dismissed+ −.08 *** −0.03 
 

−0.02 
 

0.03 
 

0.04 
 

College Experiences Outside of the Intro Course 
         

—Peer Support+ .16 *** 0.07 * 0.07 * 0.05 
 

0.05 
 

—Computing Major/minor .40 *** 0.25 *** 0.25 *** 0.22 *** 0.23 *** 

Model R2 
   

0.368 
 

0.410 
 

0.437 
 

0.480 

Note. r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p < .001; **= p < .01; * = p < .05; 𝛽 = standardized regression 

coefficient. 
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Predictors of Computing Identity for All Students 

The 17 variables (including gender and race) used in the regression among all students (n 

= 768) explain 48% of the variance in computing identity one year after students’ introductory 

course experience (R2 = 0.483). As expected, the direct pretest computing identity measure alone 

accounted for most of the variance in the dependent variable when it was entered first (37%; ß = 

0.61). Because pretest computing identity was measured at the beginning of the introductory 

course, it captured students’ incoming self-identity as a computing person, a sense that 

computing is a part of their core personal identity, and a sense of belonging in the greater 

computing community. However, as expected, the effect of the pretest variable was attenuated 

each time other independent variables were added to the model because the variables share 

predictive power (as indicated by a reduced beta coefficient at each step). Therefore, several 

additional variables beyond the pretest variable contribute to the remaining 11% of the variance 

in explaining the computing identity outcome. 

Importantly, student background variables (i.e., personal characteristics, background 

contexts, and prior computing experiences) are among the majority of the predictive variables in 

explaining computing identity. For instance, being a woman (vs. man; ß = −0.08), Asian (vs. 

white; ß = −0.16), or Black (vs. white; ß = −0.06) are negative predictors of computing identity, 

such that identifying in any of these social groups is associated with lower computing identity. 

Beyond demographics, students who took a computing course in high school are more likely to 

have a stronger computing identity than those who did not take such a course. However, the 

positive effect of high school computing courses is reduced and loses significance when the 

variable representing prior programming experience enters the model because high school 

computing courses and prior programming share predictive power. Further, students’ prior 
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computing experience is a positive background variable in predicting computing identity (ß = 

0.07). 

By the time all variables entered the model, only one psychosocial variable predicted 

computing identity among all students. Specifically, students’ interest in computing is a positive 

predictor of the computing identity outcome and is therefore associated with greater computing 

identity (ß = 0.14). While this factor was measured at the end of students’ introductory 

computing courses and their incoming interest in computing was not accounted for, it may be 

safe to assume some of the differences seen for these groups were due to their incoming interest 

in computing that they generated before college. Interestingly, the measure of students’ 

computing self-efficacy: professional milestones did not end up being a facilitator or an 

impediment toward developing one’s computing identity. This was likely because while the 

measure of computing self-efficacy: professional milestones on its own is a predictor of 

computing identity (r = .30), it is also correlated with the direct pretest computing identity 

measure (r = .45); when the pretest computing identity variable is accounted for first, the positive 

predictive power of computing self-efficacy: professional milestones disappears. 

Once accounting for students’ backgrounds, psychosocial factors, and college 

experiences, computing major was the only college environmental variable to remain significant, 

contributing positively toward computing identity (ß = 0.23). This suggests that students 

majoring in computing have greater computing identity than their peers in other majors. 

However, there are two other college environmental variables that have significant correlations 

(p < .05) with the outcome but were not predictors at the final step of the model: a measure of 

feeling dismissed (r = −.08), and peer support (r = .16). This signifies that controlling for no 

other variables, students were more likely to report higher computing identity scores the less they 
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felt dismissed and the more they experienced greater peer support. The former suggests that 

students who felt dismissed had low computing identity from the start of the course, but that 

feeling dismissed was not uniquely associated with lower computing identity scores one year 

after the introductory course. Similarly, the measure of peer support might have been a 

significant positive predictor had it not been for the fact that the measure of students’ interest in 

computing entered first, as when this occurred, the main effect disappeared because these two 

variables share predictive power in explaining the variance of the computing identity outcome. In 

summary, and as expected, the more students perceive their peers support them, the more likely 

they are to experience higher computing identity scores, though this relationship may be 

mediated by students’ interest in computing. 

Non-Significant Predictors of Computing Identity, for All Students. The findings 

above revealed seven key variables (out of 17 total variables in the model) that predicted 

computing identity among all students; however, we must also take note of the variables that did 

not contribute to computing identity after all variables were controlled. Six of the 10 non-

significant predictors were background contexts, one was a psychosocial variable, and three 

variables were related to college experiences (see Table 4.10). 

There are two primary reasons why variables were not significant at the final step of the 

model: either they were never significant even at the simple correlation level, or they lost their 

significance over time as other variables entered the model due to multicollinearity. For instance, 

six of the 10 non-significant predictors were never significant. These variables included students’ 

identifying as Latine or Other (both compared to white), class standing, transfer status, high 

school GPA, and perception of their introductory course instructor, providing relevant 

social/personal examples in the introductory computing course. The main variables that, once 
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accounted for, drove other variables to lose significance included the pretest measure of 

computing identity, the amount of prior programming experience, and the measure of students’ 

interest in computing. Further, the variables that lost significance due to their relationships with 

other variables included whether students completed a computing course in high school, a 

measure of computing self-efficacy: professional competencies, the more students felt dismissed, 

and the more they perceived having peer support. 

Research Question 3a: Comparing Predictors of Computing Identity by Gender 

The second part of the third research question focuses on how predictors of computing 

identity differ by gender. To examine whether the predictors are the same or different by gender, 

I ran two stepwise OLS multiple regressions predicting the computing identity outcome, first 

among women and then among men. The variables and coding schemes remained the same 

across models, allowing for clearer comparisons in the magnitude and direction of the 

unstandardized regression coefficients (b). After accounting for the direct pretest computing 

identity measure, students’ backgrounds, other psychosocial factors, and college experiences, the 

final model explained 46% of the variance in computing identity for women and 43% of the 

variance among men. 

Below, I report the salient predictors seen among both gender-related regressions and 

then provide separate summaries of the unique predictors for women and men. See Table 4.11 

for simple correlations and standardized regression coefficients (β) used to identify the most 

important predictors within gender models and the significance level of each variable in 

predicting computing identity. 

Salient Predictors of Computing Identity for Both Genders. Three (two positive and 

one negative) key variables emerged with the same significance and direction across the separate 
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regression models for women (n = 276) and men (n = 492). The positive predictors seen among 

both regressions included the direct pretest computing identity measure and the variable 

representing whether students were majoring or minoring in computing. These findings suggest 

that having a greater incoming computing identity (β for women = 0.43; β for men = 0.39) and 

being a computing major or minor at the point of the first follow-up survey (β for women = 0.21; 

β for men = 0.27) are associated with higher levels of computing identity one year after students’ 

introductory computing courses. Importantly, findings also indicate that for both men and 

women, identifying as Asian (compared to white) is associated with lower scores on computing 

identity one year after students’ introductory computing courses (β for women = −0.11; β for 

men = −0.08). 
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Table 4.11 

Linear Regression Findings Predicting Computing Identity One Year after Students’ Intro Computing Courses, By Gender 

Dependent Variable 

—First Follow-up Computing Identity 

Among Women 

(n = 276) 

Among Men 

(n = 492) 
 r Sig b Sig r Sig b Sig 

Pretest Item   
      

—Pretest Computing Identity .57 *** 0.43 *** .58 *** 0.39 *** 

Personal Characteristics   
  

  
  

Race (White)       
  

—Race: Asian  −.04 
 

−0.11 * −.09 * −0.08 * 

—Race: Black −.13 * −0.11 * −.04 
 

−0.04 
 

—Race: Latine  .05 
 

−0.07 
 

.03 
 

−0.02 
 

—Race: Other −.02 
 

−0.07 
 

.02 
 

−0.02 
 

Background Contexts   
  

  
  

—Class Standing .02 
 

0.02 
 

−.03 
 

−0.08 
 

—Transfer Status .05 
 

−0.02 
 

−.02 
 

−0.06 
 

—HS CS Course .22 *** 0.04 
 

.11 * 0.01 
 

—HS GPA .02 
 

0.06 
 

.01 
 

0.01 
 

Pre-College Computing Identity Experiences  
  

  

 
 

—Amount of Prior Programming Experience .30 *** 0.10 
 

.25 *** 0.07 
 

Additional Psychosocial Computing Identity Factors   
  

 
 

—Interest in Computing+ .34 *** 0.09 
 

.43 *** 0.21 *** 

—Computing Self-Efficacy: Professional Milestones+ .28 *** 0.01 
 

.32 *** −0.01 
 

College Experiences Within the Intro Course  
  

  

 
 

—Relevant Social/Personal Examples+  −.04 
 

−0.03 
 

.04 
 

0.02 
 

—Feeling Dismissed+ −.16 *** −0.02 
 

−.01 
 

0.10 * 

College Experiences Outside of the Intro Course    
  

 
 

—Peer Support+ .14 *** 0.01 
 

.17 *** 0.07 
 

—Computing Major/minor .44 *** 0.27 *** .34 *** 0.21 *** 

Model R2    0.457    0.428 

Note. r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; b = unstandardized 

regression coefficient 
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Salient Predictors of Computing Identity Only for Women. One variable was a 

unique predictor among women: identifying as Black (compared to white) was a significant 

negative predictor of women’s computing identity (β = −0.11). This suggests that, like the 

finding regarding Asian women referenced above, women who identified as Black tended to 

score lower on the computing identity measure than women who identified as white. These 

differences among women (i.e., that being Black or Asian negatively predicts computing identity 

relative to their white women peers) reaffirm the need to understand the intersectional 

perspectives seen among gender groups by race/ethnicity. 

Salient Predictors of Computing Identity Only for Men. While there was only one 

unique predictor of computing identity for women, there were two significant predictors of 

computing identity for men. In particular, the unique predictors for men were both positive: 

interest in computing (β = 0.21) and feeling dismissed (β = 0.10). These findings can be 

interpreted as the more men are interested in computing and feel dismissed, the higher their 

computing identity scores tend to be. The latter concept sounds counterintuitive but aligns with 

existing literature, as I discuss more in Chapter Five. 

Non-Significant Predictors of Computing Identity across Gender Groups. There 

were 11 of the 16 total variables in the regression models that did not predict computing identity 

in either the regression among women or among men (see Table 4.11). Five of these variables 

were background variables, including identifying as Black, Latine, or Other racial/ethnic 

identities (both compared to white); whether students were in their first or second year (class 

standing); whether students transferred to their institution (transfer status); students’ high school 

GPA; and the amount of prior programming experience students brought with them into their 

introductory course. There was roughly an even number of variables that were never significant 
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across the regressions (even at the simple correlation level) to those variables that were 

significant initially but lost significance over time. The variables that were never significant 

across either gender-based regression included: students identifying as Latine or Other 

race/ethnicity (compared to white), class standing, transfer students, high school GPA, and a 

measure of relevant social/personal examples. 

Despite being significant at the correlation level, many variables were correlated with the 

pretest computing identity measure, which, when entered first, consumed a lot of the variance in 

explaining the dependent variable. The variables that lost statistical significance due to 

multicollinearity included: the measure of computing self-efficacy: professional milestones, 

students’ perception of the intro course instructor providing relevant social/personal examples 

during class, and having a network of peers that support them. 

Research Question 3b: Comparing Predictors of Computing Identity by Race/Ethnicity 

The final component of this research question seeks to investigate how predictors of 

computing identity vary by students’ racial/ethnic identities (see Table 4.12). The analyses for 

this section mirror those used in the above regressions by gender, but this time, gender was 

added as an independent variable, and the four variables representing race/ethnicity were 

excluded. Using an OLS stepwise multiple regression approach with the same variables and 

order of entry, I ran three regressions to predict computing identity one year after students’ 

introductory courses for the following groups: (a) USOCC, (b) Asian students, and (c) white 

students. Upon the final step, when all 13 variables were in the model, 45% of the variance in 

computing identity was explained among USOCC, 44% among Asian students, and 55% among 

white students. 
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In the following sections, I give an overview of the salient predictors seen across all 

racial/ethnic groups that have the same predictive power and direction. I then share the variables 

whose salience across racial/ethnic groups is different (e.g., a variable was significant for one 

group but not others) and share instances across the models where a variable is significant for 

more than one group but differs in terms of direction (i.e., one positive and one negative). See 

Table 4.12 for an overview of the magnitude and direction of key predictors within and across 

each of these analyses. 
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Table 4.12 

Linear Regression Findings Predicting Computing Identity One Year after Students’ Intro Computing Courses, By Race/Ethnicity 

Dependent Variable USOCC Asian White 

—First Follow-up Computing Identity (n = 193) (n = 268) (n = 375) 

Independent Variables r Sig b Sig r Sig b Sig r Sig b Sig 

Pretest Item 
            

—Pretest Computing Identity .55 *** 0.40 *** .55 *** 0.38 *** .67 *** 0.52 *** 

Personal Characteristics 
            

—Gender: Women −.36 *** −0.26 *** −.30 *** −0.16 *** −.29 *** −0.08 * 

Background Contexts 
            

—Class Standing .01 
 

−0.05 
 

.05 
 

0.00 
 

−.05 
 

−0.07 
 

—Transfer Status −.07 
 

−0.13 
 

.01 
 

−0.02 
 

.04 
 

−0.04 
 

—HS CS Course .11 
 

−0.01 
 

.16 ** −0.02 
 

.24 *** 0.05 
 

—HS GPA −.03 
 

−0.01 
 

−.02 
 

0.01 
 

−.06 
 

0.03 
 

Pre-College Computing Identity Experiences 
          

—Amount of Prior Programming 

Experience 

.13 * 0.01 
 

.27 *** 0.16 *** .36 *** 0.04 
 

Additional Psychosocial Computing Identity Factors 
         

—Interest in Computing+ .28 *** −0.01 
 

.29 *** 0.10 
 

.42 *** 0.16 *** 

—Computing Self-Efficacy: 

Professional Milestones+ 

.34 *** 0.18 * .29 *** 0.01 
 

.31 *** −0.12 * 

College Experiences Within the Intro Course 
           

—Relevant Social/Personal Examples+  −.06 *** −0.10 
 

.11 * 0.04 
 

.01 
 

0.03 
 

—Feeling Dismissed+ −.24 
 

−0.04 
 

.01 
 

0.01 
 

−.09 *** 0.02 
 

College Experiences Outside of the Intro Course 
          

—Peer Support+ .13 
 

0.00 
 

.19 * 0.09 
 

.22 *** 0.07 * 

—Computing Major/minor .36 *** 0.16 * .35 *** 0.24 *** .46 *** 0.24 *** 

Model R2 0.450 0.440 0.553 

Note. USOCC = Underrepresented Students of Color in computing; r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p 

< .001; ** = p < .01; * = p < .05; b = unstandardized regression coefficient. 
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Variables That Are Significant for All Racial/Ethnic Groups. Three significant 

variables had the same direction of effect across the separate racial/ethnic regression models for 

USOCC (n = 193), Asian (n = 268), and white students (n = 375). Two of these variables were 

positive predictors of computing identity, and one was a negative predictor. The common 

positive predictors included the direct pretest computing identity measure and the variable 

representing whether students were majoring/minoring in computing. These findings mirror that 

of the above analyses (for all students and by gender) and reiterate the importance of students’ 

incoming computing identity (β for USOCC = 0.40; β for Asian = 0.38; β for white = 0.52) and 

being a computing major/minor (β for USOCC = 0.16; β for Asian = 0.24; β for white = 0.24) in 

predicting students’ computing identities one year after their introductory course experience. The 

gender variable served as a negative predictor, such that across all racial/ethnic groups, students 

who identified as women (vs. identifying as men) tended to have lower computing identities (β 

for USOCC = −0.26; β for Asian = −0.16; β for white = −0.08). 

Variables with Inconsistent Effects across Racial/Ethnic Groups. Three variables did 

not yield similar results across the racial/ethnic regression across models—two variables were 

background characteristics (prior programming experience and interest in computing) and two 

were associated with students’ college experience (peer support and self-efficacy: professional 

milestones). The first background variable was prior programming experience. While this 

variable was significant at the simple correlation level for all models, it only remained significant 

at the final step for Asian students. We can interpret this to mean that while, at the simple 

correlation level, prior programming experience is significantly associated with computing 

identity for all racial/ethnic groups, when we control for other variables—namely, the direct 

pretest for USOCC and high school computing courses for white students—the effect of prior 
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programming experience disappears for USOCC and white students. However, having greater 

prior programming experience retained its predictive power on Asian students’ computing 

identity development (β = 0.16). This finding means that at the simple correlation level, prior 

programming experience strongly correlates with computing identity for everyone. However, as 

other variables were added, the magnitude of that strength diminished due to multicollinearity. 

The next background variable that was significantly correlated with computing identity 

but did not remain significant for all groups after controlling for other variables was the 

psychosocial variable measuring interest in computing. For USOCC, once I controlled for the 

pretest, the predictive power of students’ interest in computing disappeared. For Asian students, 

it was not until the last step, when students’ majors entered, that the predictive power of 

students’ interest in computing disappeared. For white students, having greater interest in 

computing tended to foster greater computing identity even when controlling for all variables (β 

= 0.16). 

The first college environmental variable that served as a uniquely positive predictor was a 

measure of peer support, which was seen only for white students. Here, white students who 

reported greater feelings of peer support also tended to have greater computing identities one 

year after their introductory computing course. In other words, peer support enhances computing 

identity, but only for white students. Interestingly, although this variable was not significant at 

the simple correlation level for USOCC, it was significant for Asian students. For Asian 

students, it was not until interest in computing entered that the effect of peer support became 

non-significant. This might suggest interest is more predictive of computing identity than peer 

support for these underrepresented students. 
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The findings from the regression models highlight only one salient variable that was 

significant but in different (i.e., opposite) directions across students’ social groups: the measure 

of self-efficacy: professional milestones. At the simple correlation level, this measure was 

positive for all groups. For USOCC, this measure remained a significant positive predictor of 

computing identity (β = 0.18), even after controlling for other pretest, background, and 

psychosocial and college-related variables—implying that with increased computing identity 

scores, they tended to have higher computing identity scores. For Asian students, computing self-

efficacy: professional milestones would have been a salient positive predictor had it not been for 

the relationship between this variable and the direct pretest computing identity measure sharing 

variance. However, white students with greater confidence in their ability to achieve computing 

outcomes tended to experience the opposite effect; indeed, for white students, this measure of 

computing self-efficacy: professional milestones was associated with lower scores on computing 

identity. For white students, the psychosocial measure of computing self-efficacy: professional 

milestones became negative when the direct pretest of computing identity entered and remained 

a negative predictor of computing identity at the final step (β = −0.12). This suggests that, for 

white students, once the other variables are controlled, the predictive power of self-efficacy: 

professional milestones reverses direction, though an explanation for this is not clear from the 

data (and may be a function of multicollinearity among these variables). However, these findings 

may be an anomaly because the beta coefficients are small and this variable was significant and 

positive at the simple correlation level. Thus, more research is needed to parse the unique role of 

computing self-efficacy, specifically concerning computing self-efficacy surrounding 

professional milestones, for students from different racial/ethnic groups such as these. 
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Non-Significant Variables across Racial/Ethnic Groups. After controlling for all 13 

variables, six variables were not significant in predicting computing identity among any of the 

racial/ethnic groups. Four of these variables were background characteristics, with the remaining 

two being variables representing college experiences within the introductory computing course. 

Similar to the regressions above among all students, and those among groups, I followed 

the betas to see what contributed to variables being insignificant in predicting computing identity 

on the first follow-up survey. The variables that were not significant for any of the racial/ethnic 

groups even at the simple correlation level included class standing, transfer status, and high 

school GPA. The key variables that became non-significant due to multicollinearity issues were 

items related to introductory course experiences; namely, the more instructors provided relevant 

social/personal examples and the more students felt they were dismissed. This is not to say these 

experiences do not matter, because ample literature implies the computing climate does matter. 

Rather, these findings suggest that there are a variety of other variables that are stronger 

predictors of computing identity. 

Summary of Key Results 

In the psychometric measure development, it became clear that computing identity is not 

the same as computing self-efficacy and that computing identity and belonging could not be 

separated. Further, while the new psychosocial measure of computing identity is representative 

of students from various genders, races/ethnicities, and intersectional gender and racial/ethnic 

backgrounds, we cannot assume a one-size-fits-all approach to fostering computing identity 

among our increasingly diverse group of computing students. 

In particular, the findings from the six primary regressions reveal several salient 

predictors of computing identity for computing students in the year following their introductory 
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computing course. Across the regressions, positive predictors tend to include greater pretest 

computing identity, greater amounts of prior programming experience (for Asian students only), 

greater interest in computing (for men and white students only), being a computing major, 

feeling dismissed (for men only), greater peer support (for white students only), and greater 

computing self-efficacy: professional milestones (for USOCC only). Negative predictors include 

identifying as a woman (compared to a man), identifying as Asian or Black (both compared to 

white), and computing self-efficacy: professional milestones (for white students only). 

In the next (and final) chapter, I discuss these findings in conversation with existing 

literature and theory and highlight implications for future research and practice. 
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CHAPTER FIVE: DISCUSSION AND IMPLICATIONS 

This study responds to the need for more research that thoroughly examines how 

computing identity is operationalized, measured, and developed among undergraduate computing 

students from varying demographic social groups in their introductory computing courses. In 

particular, the study relies upon longitudinal student survey data from 1,036 undergraduate 

students who completed three surveys during approximately two academic years (i.e., a pretest 

survey at the beginning of the introductory course, a posttest survey at the end of the 

introductory course, and a follow-up survey in the fall of the next academic year). The study 

sample was further restricted to students who (a) had not yet graduated at the time of the follow-

up survey, (b) were either computing majors or undeclared majors who aspired to become 

computing majors, and (c) were enrolled in an introductory computing course at one of 15 

research institutions across the United States. The following questions framed this inquiry. 

Research Questions 

1. To what extent can a psychometrically sound measure of computing identity be 

developed for students who took an undergraduate introductory computing course? 

a. Are self-efficacy and sense of belonging necessary components of computing 

identity? 

2. To what extent does computing identity hold over time during college and by gender, 

race/ethnicity, and intersections of gender and race/ethnicity? 

3. What pre-college and college-related variables predict computing identity in the year 

following students’ participation in an introductory computing course? 

a. To what extent do these predictors differ for women and men? 

b. To what extent do these predictors differ across racial/ethnic categories? 
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Overall, findings from this research offer the computing education community more 

clarity on how to operationalize and measure the psychosocial computing identity concept in a 

way that applies to students from varying social groups and provides an opportunity to propel 

our collective understanding of the unique ways in which computing identity is developed 

among students from differing gender and racial/ethnic identities. The remainder of this chapter 

summarizes the high-level findings corresponding to each of the three research questions 

presented in Chapter Four and discusses the implications of these findings for future practice, 

policy, theory, and research. 

Research Question 1 Finding: Computing Identity Is Distinct from Computing Self-

Efficacy but Is Not Distinct from Sense of Belonging 

The first research question was designed to provide clarity as to what the psychosocial 

concept of computing identity is (and is not) in partial response to Rodriguez and Lehman’s 

(2017) call for more research that systematically parses computing identity from its related 

concepts—namely, from computing self-efficacy and sense of belonging in computing. Findings 

from the factor analyses lead me to conclude that while the concepts are related, computing self-

efficacy is a distinct measure from computing identity, whereas sense of belonging is indeed 

integral to measuring computing identity. In fact, the best-fitting structure for these data was four 

separate measures, each with three items: interest in computing, computing identity, computing 

self-efficacy: professional milestones, and computing self-efficacy: professional competencies. 

Of note for this dissertation is the measure of computing identity, which includes three items 

related to students’ self-identity as a computing person, their sense that computing is a part of 

their core identity, and their sense of belonging in the greater computing community. 
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Specifically, these three items are: “I see myself as a ‘computing person,’” “Computing is a big 

part of who I am,” and “I feel like I ‘belong’ in computing.” 

These findings highlight several important contributions to the literature. First, this is the 

first known study to assess whether computing identity is best measured as a second-order factor 

with subconstructs or as a distinct factor in and of itself. Understanding that self-efficacy is 

different from computing identity and that it can be broken down into two separate measures 

offers computing education researchers more clarity on what computing identity is and provides 

self-efficacy researchers with more insight into the nuance of this concept in computing. Second, 

the finding that computing identity cannot be separated from students’ sense of belonging in 

computing is relatively new. Interestingly, this finding conflicts with the work of some scholars, 

such as Werner & Chen (2024), who recently argued that belonging and identity are separate 

measures and more closely supports the work of scholars who have argued that sense of 

belonging is a core aspect of computing identity (Lunn et al., 2021a; Mahadeo et al., 2020; 

Taheri et al., 2019; Rodriguez et al., 2023). 

Importantly, while a measure of computing identity with subconstructs could be used and 

would align more with existing literature, the fact that four separate factors provided the best fit 

for these data does not mean the work of others should be overlooked. Instead, we must 

remember that other studies mostly used different populations of students and were driven by 

different theoretical frameworks, leading to different approaches to data analysis and subsequent 

findings. The implications of these findings and recommendations for future research is 

discussed later in this chapter. 
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Research Question 2 Finding: The Measure of Computing Identity Held Consistently for 

Students from Different Gender, Racial/Ethnic, and Intersectional Identities but Did Not 

Necessarily Hold Consistently over Time 

Given the need to broaden the participation of students in computing paired with the 

mixed research on what is known about how computing identity varies for students by gender 

and race/ethnicity, I investigated the equivalence of the new computing identity measure for 

students from different social groups and across each survey time point (Litson & Feldon, 2021). 

Findings from these analyses indicated computing identity did not vary by gender, race/ethnicity, 

or intersections of students’ gender and racial/ethnic identities but did vary over time. 

Overall, these findings are important because they expand on the work of Mahadeo and 

their colleagues (2020), who investigated the equivalence of their computing identity measure 

and also found that it did not differ by gender, race, and ethnicity. While Mahadeo et al. (2020) 

assessed invariance for their computing identity measure with subconstructs, my study measured 

computing identity as a distinct factor without subconstructs. Additionally, Mahadeo and their 

coauthors treated women, Black, and Hispanic students as binaries in their analyses, and my 

study disaggregated gender and race/ethnicity to assess measure equivalence over more 

categories in addition to looking at it for intersections for students’ gender and race/ethnicity. 

Because one year elapsed for students who took their pretest in the fall and the follow-up survey 

the following fall and less than one year elapsed for students who took their pretest survey in the 

spring before their final survey the following fall, more research may be necessary to explore 

whether computing identity should be measured in the same way over time, especially as 

scholars use data with longer time periods between survey time points. For instance, a researcher 

seeking to study computing identity among early career or more seasoned computing 
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professionals might add survey items related to belonging in the tech industry or perception of 

being a computing person at work versus at technical conferences. 

In practice, findings from this study suggest that researchers can use the single latent 

measure of computing identity in their computing education research studies, including research 

among samples of students from these student backgrounds. However, scholars should still take 

heed of the applicability of the three-item computing identity measure among different groups 

that this study did not assess (e.g., international students, gender nonbinary students, and 

racial/ethnic student subgroups). 

Research Question 3 Finding: Across Gender and Racial/Ethnic Identities, there Exist Both 

Commonalities and Differences in Computing Identity Development 

Findings from the regression analyses highlights several key variables that predict 

computing identity and how the predictive power varies not only among (a) all students, (b) 

women, (c) men, (d) a combined group of underrepresented Students of Color, (e) Asian 

students, and (f) white students, but also across gender and racial/ethnicity. In accordance with 

Miller’s Generalization, Example, Exception (GEE) guide to writing effectively about findings 

from quantitative analyses (2013), I begin by reviewing the key variables that share similar 

direction and magnitude in predicting computing identity across two or more of the regression 

models. Then, I share variables with exceptions to those patterns, augmenting the unique 

relationships of these variables for students from varying gender and racial/ethnic identities. 

Discussion of Key Variables with Shared Salience and Direction 

Variables that played a similarly positive role in two or more models included the pretest 

measure of computing identity, amount of prior programming experience, interest in computing, 

and being a computing major/minor at the point of the first follow-up survey. Also consistent 
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across multiple models was that when controlling for all other variables, women, Asian, and 

Black students have lower computing identity scores relative to men and white students. In this 

section, these common findings are discussed with the extant literature. 

The Importance of Incoming Computing Identity and Prior Programming 

Experience. Findings from the regression analyses indicate the importance of students’ pre-

college experience—namely, students’ incoming computing identity and prior programming 

experience—as critical components to fostering students’ computing identity during college. In 

fact, the pretest computing identity measure was unsurprisingly the strongest predictor of 

students’ computing identity in the fall of the academic year following students’ introductory 

computing course for all student groups. Importantly, because many of the students surveyed 

were in their first or second year of college, students’ scores on this measure were likely a result 

of their experiences prior to college, such as their family background, their experiences in 

primary and secondary school, and their exposure to the computing field to date (Kapoor & 

Gardner-McCune, 2019; Rodriguez et al., 2020; Taheri et al., 2019). 

The salience of prior programming experience in the regression from the full model with 

all students aligns with existing literature on the importance of preparation during high school 

(Azmitia et al., 2009; Chang et al., 2014; Robnett et al., 2015). However, the gender and 

racial/ethnic exploration of this variable shows that previous programming experience was only 

predictive of computing identity in the regression among all students and for Asian students, not 

for other subgroups in particular. This finding indicates that the value of prior programming 

experience is not universal (especially when comparing Asian students with their white and 

USOCC peers), and thus merits further exploration—particularly to ascertain why early 
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programming experiences appear to be particularly salient to Asian students’ sense of computing 

identity. 

In general, these findings align with existing literature highlighting the important role of 

preparation during high school in fostering students’ psychosocial factors such as computing 

identity (Azmitia, Cooper, & Brown, 2009; Chang, Sharkness, Hurtado, & Newman, 2014; 

Robnett et al., 2015), which emphasizes the importance of early education (i.e., elementary, 

middle, and high school) in generating that interest for young students. As such, we must 

continue investigating ways to bolster students’ incoming computing identities and focus our 

investments on resources that support these endeavors, as will be discussed later in this chapter. 

The Value of Initial and Sustained Interest in Computing. College-related variables 

also contributed to students’ development of computing identity, including students’ interest in 

computing at the end of their introductory course and majoring or minoring in computing in the 

fall after completing their introductory computing course. These findings are an important 

contribution to the literature because prior studies have only included interest as a component of 

computing identity measures, not as a separate independent variable, and have not used 

longitudinal data to explore the role of major in fostering students’ STEM disciplinary identities 

(e.g., Lunn et al., 2021a; Mahadeo et al., 2020; Taheri et al., 2019). 

In alignment with literature suggesting that interest in computing is an essential facilitator 

of computing identity, the fact that the measure of interest in computing was a strong positive 

predictor in four out of the six regression models was unsurprising (e.g., Carlone & Johnson, 

2007; Lunn et al., 2021a). In fact, the factor for interest was one of the strongest predictors for 

forming computing identity among men and white students. One possible explanation for these 

findings is that men and white students may find it easier to “fit in” with the CS stereotype (e.g., 
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Cheryan et al., 2015), so seeing themselves as a computing person may come easier to them than 

it does for other students. Further, the alignment with stereotypical image of a computer scientist 

might make it easier for students to reinforce their self-perception as a computing person and 

sense of belonging in the computing domain (Leary et al., 2013). For example, students from 

these groups (i.e., men and white students) might observe more individuals in computing who 

share their gender and/or racial/ethnic identity, making it easier for them to internalize that they 

belong in the field. 

Additionally, being a computing major or minor in the fall of the academic year 

following a student’s completion of their introductory course was a significant predictor of their 

computing identity, meaning that computing majors and minors tended to have stronger 

computing identities than the sample of students who changed their major from computing to 

another field or who had not yet declared their major. While this variable was significant for all 

groups, being a computing major was the least important predictor among the key variables 

predicting computing identity for USOCC, suggesting that while important, there are other 

variables that are more salient in predicting computing identity for this population that need 

further investigation. 

The Role of Students’ Gender and Racial/Ethnic Identities. The separate regression 

analyses among gender and racial/ethnic groups help us to understand the variables that predict 

computing identity across the groups while offering insights into unique ways to foster 

computing identity for particular groups. For instance, my findings highlight that both Asian 

women and Black women had lower computing identity scores than white women, raising 

questions about why this may be. While literature documenting students’ experiences with 

microaggressions, sexism, racism, and misogyny broadly in STEM (and computing more 
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specifically) are quite dated, recent research from Rodriguez et al. (2020) provides evidence that 

Latinas in their study attributed their lower computing identity to ongoing racism and sexism in 

the academy. While the survey data used in this study did not include questions related to these 

important concepts, my findings highlight differences in women’s computing identity by 

race/ethnicity; therefore, I encourage more researchers to study the environmental mechanisms 

that may contribute to these differences in computing identity for women. I return to this and 

provide recommendations for future survey design and analytic studies in this chapter’s 

“Limitations and Future Directions” section. 

Overall, the separate regression analyses across gender and racial/ethnic groups 

illuminates key variables that help to nuance our understanding of how computing identity is 

developed among students from different social identities during college that the analysis among 

all students combined could not reveal. Additionally, and perhaps more importantly, these 

analyses allowed for the comparison of predictive variables across gender and race/ethnicity 

models and the advancement of our understanding of differences in the magnitude of predictive 

variables within these groups (Brickhouse et al., 2000). However, we must continue to 

disaggregate gender and race/ethnicity data wherever possible (i.e., while maintaining sample 

sizes large enough to protect the anonymity of study participants) to better our understanding of 

these nuances and interrogate what it means that certain underrepresented populations in 

computing continue to be unable to see themselves or to adopt computing identities in the same 

ways as their majority male and majority white peers. 

Discussion of Key Variables with Different Salience and/or Direction 

I also found some variables that had different relationships to computing identity that 

were otherwise exceptions to the aforementioned patterns, further implying there is not a one-
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size-fits-all approach to fostering computing identity among our students. One such example is 

the finding that men’s computing identity scores tended to be greater the more they felt 

dismissed. This finding is somewhat unanticipated, yet some recent scholarship has also found 

students’ perceptions of feeling dismissed being a positive predictor of computing outcomes 

(Wofford et al., 2022; Lunn et al., 2021b). In these studies, the authors propose a few possible 

theories to explain this phenomenon—one such explanation suggesting that the dissonance 

students feel in these discouraging encounters could, rather than dissuade them, serve as fuel in 

their efforts to double down to prove others wrong. However, the important contribution of my 

work is that this variable was only a predictor for men. One explanation for the salience of this 

variable being seen only for men may be found in how masculinity is taught through sports and 

other activities, where men may be socialized toward being motivated by negative experiences so 

that they “fit the mold” of what it means to be successful in computing (Cheryan et al., 2015). 

I would be remiss if I did not mention that there are other variables with interesting and 

sometimes counterintuitive effects on computing identity for some groups, such as the 

differential role that self-efficacy: professional milestones plays for USOCC versus for white 

students and the fact that the peer support variable is only significant in the model for white 

students. However, the unique role these variables play for some groups and not others was not 

easily interpretable, as these anomalous occurrences may be due to uniqueness among these 

groups for this dataset or multicollinearity. Therefore, further investigation beyond the scope of 

the present study is needed. 

Implications and Recommendations 

Given the significance of these findings and my interest in equitably supporting all 

students in computing, this dissertation provides new insights into computing identity and offers 
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valuable recommendations for its development among the diverse range of students in the field. I 

center these recommendations around enhancing practice and policy and advancing theory and 

research. 

Implications for Practice and Policy 

In particular, my findings show four key student experiences that promote computing 

identity. Upon beginning their introductory course, students’ preexisting computing identities 

and prior programming experience are the strongest predictors of their later computing identities. 

During their introductory course, however, the most salient variables of students’ later 

computing identities are their computing interest and whether or not they major in computing. 

Therefore, in order to promote computing identity we must examine the educational spaces and 

opportunities that students have both before and during college, which research suggests 

promotes these factors. Put simply, providing greater computing exposure to more students can 

help encourage students to pursue computing and ultimately promote their computing identity. In 

doing so, given the persistent lack of diversity in the field, attracting a diverse range of students 

is particularly important. Below are some suggestions that speak to this. 

Cultivate Interest before College. Several studies examining how to foster greater 

interest in and exposure to computing before college show that beyond issues of inequitable 

access to computing (2023 State of CS Report, n.d.), we must start early to promote positive and 

gender-neutral stereotypes that combat long-held beliefs about what computing is and the 

demographic of those in the field. For instance, masculine stereotypes about computing have 

been shown to develop as early as third grade, and these stereotypes tend to predict lower interest 

in computing among girls (Masters et al., 2021). Suggestions for combating these stereotypes 

include creating gender-neutral marketing content (Jhally & Kilbourne, 2010; PBS, 2021); 
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highlighting women technologists from all racial/ethnic backgrounds and People of Color from 

various gender identities in computing who can serve as role models (Gallup-Amazon, 2021; 

Kapor Center, 2023); and strengthening the encouragement young students receive from their 

counselors (NCWIT, n.d.a), their teachers (Kapor Center, 2023), and their families (e.g., Sax et 

al., 2017). For example, instructors can make learning computing fun, show students that what 

they are already doing in their classrooms is considered coding/programming, and explore the 

potential impact these skills could have on advancing technology for our society (Kapor Center, 

2023). With more exposure to computing and a greater belief in one’s ability to be successful, 

students will likely gain a stronger sense of not only belonging (Sax et al., 2018) but also 

computing identity, as these concepts are intertwined. 

Even if students do not get this exposure in their K-12 education, they still have 

opportunities to cultivate an interest in computing during college. Given that women and other 

historically underrepresented minority groups have less early exposure to computing and their 

interests in computing tend to develop later in life (Margolis et al., 2017; CRA, 2017), there is a 

particularly important opportunity to foster interest among these groups in introductory 

computing courses (Lehman et al., 2022; Sax et al., 2017). Specifically, researchers have found 

that inclusive teaching practices can effectively garner students’ interest in computing and 

promote the formation of strong computing identities (Kapor Center, 2017). In particular, 

Ladson-Billings (2021) highlights that there have been nearly three decades of research 

advocating for culturally responsive, sustaining, and congruent pedagogy that encourages 

educators to take asset-based approaches to support students from marginalized backgrounds. 

These approaches are critical to fostering and sustaining students’ interest in computing during 

college because they recognize the strengths students bring with them and meet students where 



 

 141 

they are through inclusive curricula that students can relate to and instruction environments 

designed to foster computing identity. For instance, computing instructors can remind students 

that there are multiple ways to solve problem sets and allow students the freedom to find the 

answer in their own unique ways (NCWIT, n.d.). Further examples of these efforts include using 

socially relevant computing examples or assignments relating to things students care about or 

aspects of their identity (Kapor Center, 2017). Indeed, these practices have been proven useful 

for fostering interest even for students exploring majors (Lehman et al., 2022) and those seeking 

to acquire computing skills through an interdisciplinary computing major (Newhouse et al., 

2024). 

Importantly, while this study does not detect the pedagogical style and teaching 

philosophy of computing instructors or the unique role of structured programs tailored to support 

students from marginalized groups in computing, some studies suggest these factors may be 

helpful to nurturing computing identity, particularly for marginalized students in STEM (e.g., 

Chang et al., 2011, 2014). Therefore, awareness of these resources and support dedicated to 

members of these groups (e.g., Society of Asian Scientists and Engineers; BlackComputeHER) 

is necessary and may need to be scaled up. While I acknowledge that there is not enough 

literature that nuances the experiences of all individuals marginalized in computing—for 

instance, Asian women who are “overrepresented” in the field compared to their representation 

in the U.S. population but still experience sexism and racism as Women of Color (Lane et al., 

2021; Ong et al., 2011)—there are still valuable resources for helping to understand the distinct 

experiences of other marginalized Women of Color, such as Black women, in computing. For 

instance, the Modern Figures podcast (McMullen & Waisome, 2019-present) seeks to inspire the 

next generation of Black girls in computing by uplifting the voices of successful Black women 
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with PhDs in the field of computing. The podcast shares these women’s various perspectives, 

successes, and past and present hurdles. Additionally, there are other important resources related 

to Latinas in computing (e.g., Latinas in Computing community, LATINITY conference) that 

may also be valuable. Of note, however, is that in this study, the Latine variable was not a 

significant predictor of students’ computing identity during college. 

Review and Revise Curriculum and Policy. In addition to interest in computing being a 

key factor of students’ computing identity development, the variable representing students’ 

computing major emerged as another key research finding. To address the important role of 

being a computing major or minor one year after students’ introductory computing courses on 

students’ computing identity, computing departments should critically examine the equity of 

their admissions and enrollment practices for students in computing at various transition points 

(CRA, 2017; Lehman et al., 2020). For example, institutions should (re)consider if their policies 

and practices around student admission (direct versus transfer) and major declaration 

inadvertently skew who is represented in their computing departments. For example, recent 

research shows that community college transfer students tend to be more diverse than their non-

transfer peers but experience stigma as they navigate university systems (Blaney et al., 2024). 

Additionally, Newhouse and her colleagues (2024) demonstrate that online resources for those 

seeking interdisciplinary majors are vague at best and often unavailable on department websites. 

Therefore, computing departments may attract a more diverse student body by providing more 

transparency in their policies and processes and offering different pathways into and through the 

field. 

Beyond these different points of entry into computing, it is also important for schools to 

consider making curricular changes and even offering different academic degree plans that are 
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more tailored to student’s goals and reflect the diversity of students’ experiences. For instance, 

some institutions offer a bachelor of arts (BA) and a bachelor of science (BS) degree option in 

computing. Here, these institutions work toward redefining what it means to be a computing 

person by offering undergraduate courses such as “Computing and the Humanities” or 

interdisciplinary degree programs that bring together computing and humanities studies (e.g., 

Evrard & Guzdial, 2023). While these efforts are newer, computing programs have seen an 

increase in the percentage of women and historically marginalized students who opt for BA 

degrees in computing (Lapan, 2023). Therefore, to leverage these new degree offerings to 

increase the representation of women across race/ethnicities and People of Color more broadly in 

computing, it will be crucial for the technology industry to recognize the rigor of these emerging 

degrees. However, more research would be needed to determine whether students’ computing 

identities in these programs differ, as found in one study (Parker, 2019). 

Despite the importance of prior programming experience in predicting computing 

identity, not all students have the resources to acquire these skills and access these experiences 

before college, especially if their pre-college institutions do not offer foundational computing 

course options (2023 State of CS Report). Institutions aiming to address equity and cultivate 

interest and participation in computing across diverse student groups may consider restructuring 

their curriculum to accommodate students’ varying levels of computing experience when they 

begin college. Such a curricular policy was used to help broaden participation in computing at 

Harvey Mudd College, which successfully increased the number of women in computing in the 

early 2010s. By creating different sections of their introductory computing course (i.e., “Green,” 

“Gold,” and “Black”), students were able to learn with others who had a similar level of prior 
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programming experience. All courses prepared students equally for the next course in the 

sequence (Alvarado et al., 2012). 

Taken together, combating stereotypes to foster greater interest in computing, adapting 

the computing curriculum and pedagogy in introductory computing courses to be more inclusive 

and formative, and even generating alternative pathways to computing degrees can help us to not 

only recognize the diverse needs of our students who may not have had computing-related 

opportunities prior to college but also be ready to support them during their college career 

(Kapor Center, 2023). Further, research shows these best practices can also help to foster a 

greater sense of belonging among students (Sax et al., 2018), which my study finds to be integral 

to students’ computing identities. Therefore, elevating and investing more in these efforts can 

ultimately help us move the needle toward recruiting and retaining a more diverse range of 

students to create a more socially just computing environment. 

Limitations and Future Research 

Despite the significance of these research findings, there are also important limitations to 

consider. Although the limitations of this study are detailed in Chapter Three, it is important to 

briefly reiterate them here in order to explore how future research can address issues surrounding 

generalizability and sample size, extend what we know about differences by groups, and 

strengthen survey design and measurement. 

Ultimately, the results of this study may not be generalizable to all students in computing 

writ large. For instance, I cannot be sure that the reason certain variables are not significant in 

the regression analyses predicting computing is due to the unique makeup of the students from 

research institutions that are driven (and funded) to diversify computing or because these 

variables simply are not predictors of computing identity. As a result, one key avenue of future 
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research would be to corroborate these findings with additional research that replicates and 

extends the work of this study using samples of students from other higher education contexts to 

reflect a wider range of student demographics and institution types. 

Although this dissertation contributes to the breadth of what we know about computing 

identity and provides evidence that computing identity forms differently among various student 

groups, it does not provide a deeper understanding of why these differences exist or the 

mechanisms by which computing identity is formed among each student group. While I applied 

an intersectional gender and racial/ethnic lens in my analyses, I ultimately opted to exclude or 

combine groups with small counts. Even though I made these decisions for this study, I 

recognize that not all students experience college in the same ways (even among these student 

groups); therefore, I recommend more research to more fully understand students’ unique 

experiences with computing identity. 

To this end, I have several recommendations to expand analyses to provide more nuanced 

understandings of students’ intersectional computing identity experiences. One way to expand 

this work is by integrating a qualitative stream of research that contextualizes undergraduate 

students’ lived experiences and how they make meaning of their computing identities. For 

instance, it would be valuable to conduct semi-structured interviews with a phenomenological 

approach to understand how students make meaning of the phenomenon of computing identity. 

Additionally, qualitative research that uses portraiture or case studies can help illuminate these 

differences further and avoid a homogenous approach to promoting students’ computing identity 

(Lawrence-Lightfoot & Davis, 2002). Future research could explore the nuanced salience of the 

key variables unique to particular groups, as has been done for Latinas in computing (Rodriguez 

et al., 2020, 2023). Similarly, quantitative research might accomplish this by studying how 
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computing identity is developed among more nuanced student groups (e.g., post hoc analyses 

among Asian and USOCC subgroups) or through simple descriptive disaggregation (e.g., 

frequencies, crosstabulations, mean comparisons). Studies of this nature would also benefit from 

comparative analyses focusing on understanding students’ other intersectional identities, such as 

class or citizenship (Sax et al., 2024). 

While using a longitudinal design and data on students from multiple institutions adds 

strength to contextualize these findings, the surveys these data were drawn from were not 

designed to study computing identity. While this study is longitudinal (and includes three survey 

time points), it only assesses students’ computing identities in the year directly following their 

introductory course experiences. Therefore, additional research that examines the concept of 

computing identity over an extended period of time (e.g., either later during college or into 

students’ early or later graduate school or career journey) is needed to document the 

development of students’ computing identities and to articulate the ebb and flow of these 

identities during and after college (Mahadeo et al., 2020). Relatedly, while I treat computing 

identity as an outcome for this study, I conceptualize it as a process. Therefore, other scholars 

might consider computing identity as a malleable trait rather than as a discrete outcome. In doing 

so, research should explore if and how what constitutes our measurement of computing identity 

varies over time and if this study’s results are more applicable to computing identity among 

undergraduates rather than among individuals at later educational and career stages. 

Despite the value of being able to include data from before, during, and just following 

students’ introductory computing course, findings from this study indicate that we need more 

research that uses student demographics, academic background contexts, and prior college 

experiences to help us further understand the factors that predict students’ early college 
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computing identities. Additionally, I found it difficult to identify variables on the survey with 

enough data related to components of computing identity that prior literature suggested were 

critical (i.e., recognition from others, performance, and sense of belonging). Therefore, studies 

that investigate students’ computing identities might seek to develop survey questions around (a) 

recognition (how one is recognized and whose recognition matters); (b) performance (subjective 

measures, beyond grades and perceived confidence, of students’ ability to do computing); (c) 

sense of belonging (both at the individual and environmental levels); (d) the quality and nature of 

students’ interactions with peers, faculty/TAs, and computing department personnel; and (e) 

nuanced classroom experiences related to bias, hostility, racism, and sexism that may affect 

students’ interests. Fortunately, many of these topics and others are being explored by the Center 

for Inclusive Computing longitudinal surveys developed by Momentum at UCLA (Momentum, 

2021; 2023). 

Future research should also provide transparency in operationalizing and assessing 

computing identity measures. Researchers using the same dataset and subsample can rely on the 

factor analyses and measure invariance tests done in this study and therefore use the three-item 

measure of computing identity I propose. However, as scholars continue to explore the 

phenomenon of computing identity in their studies of students in computing writ large (e.g., 

Mahadeo et al., 2020; Lunn et al., 2021a) or research focused on subpopulations such as Latinas 

in computing (Rodriguez et al., 2020), they should be clear in how they are defining their 

measure of computing identity and in how they have ensured adequate fit for their measure for 

their unique sample. Clear operationalization of one’s computing identity measure includes 

naming whether related concepts (like sense of belonging or self-efficacy) are considered 

subcomponents or are intertwined with their theory and conceptualization. In terms of 
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measurement, I encourage using confirmatory factor analysis to validate the number of items, 

factor(s), and model structure to elucidate the extent to which one’s measure differs from prior 

scholarship. I also recommend that researchers assess how their computing identity measure 

functions among students from different demographic populations in their samples to combat the 

monolithic, one-size-fits-all approach to understanding and fostering computing identity. 

Finally, findings from this study illuminate several important opportunities for future 

scholars to further research computing identity as a means to promote greater persistence among 

marginalized students in computing. There are a variety of different analytical approaches that I 

recommend to help extend this research. Given that computing identity is multifaceted 

(Rodriguez et al., 2017; 2020), we may need additional scholarship to identify meaningful 

subtypes or subprofiles of students’ computing identities. Fortunately, statistical techniques such 

as latent class analysis and latent profile analysis, though less prominent in education research, 

take a more holistic, person-centered (rather than a variable-centered) approach that would allow 

researchers to understand how variables interact within and across student populations (Lanza et 

al., 2013). Similar to Carlone & Johnson’s (2007) three computing identity typologies (i.e., 

research scientist, altruistic scientist, and disrupted scientist), these latent profile analyses with 

distal outcomes could help validate these “types” of computing identities among students in 

computing and unveil distinct profiles of students with these distal outcomes—thereby further 

nuancing our understanding of computing identity and its unique functions for each student 

(Carlone & Johnson, 2007). Alternatively, we can use this approach to explore the relationship 

between computing identity and self-efficacy to help us identify the profiles of those students 

who might have high self-efficacy but not identify with computing. We could also incorporate 

more scholarship that utilizes path analysis, such as SEM, to build upon the regression findings 
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to better understand the indirect effects of self-efficacy, identity, and interest in supporting the 

development of students’ computing identities. Further, similar to the work of Taheri (2019), 

multigroup SEMs could help clarify not only the influence of these variables upon students’ 

educational or career-related outcomes but also how these distinct pathways vary for students by 

gender, race/ethnicity, class standing, or over time. Unlike Taheri’s examination of how the 

latent constructs of interest, performance/competence, recognition, and sense of belonging (as 

subcomponents of disciplinary identity) contribute to academic persistence, however, future 

studies may consider whether and how a distinct, latent computing identity measure predicts 

other outcomes related to success in computing. 

Conclusion 

In response to the need for more research that thoroughly examines the operationalization 

and measurement of computing identity for marginalized student groups (Rodriguez & Lehman, 

2017), the purpose of this study is to (a) create a robust measure of computing identity; (b) 

explore the extent to which the new computing identity measure holds over time, during college, 

and across student’s gender, racial/ethnic, and intersectional social groups; and (c) identify the 

key demographic, pre-college, and during-college variables that predict the new computing 

identity measure and explore how the predictive power of these variables differs by gender and 

race/ethnicity. Using longitudinal survey data from 1,036 undergraduate students from 15 

research universities across the United States, this study finds that the three-item measure of 

computing identity is distinct from measures of self-efficacy and interest but not from the 

concept of sense of belonging. Additionally, findings indicate that the measure of computing 

identity held across students’ gender identities, racial/ethnic identities, and intersections of 

students’ gender and racial/ethnic identities but did not necessarily hold over time during college. 
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Finally, this study highlights the importance of students’ incoming computing identities and prior 

programming experiences, the value of an initial and sustained interest in computing, and the 

role of students’ gender and racial/ethnic identities in the development of their computing 

identities in the academic year following their introductory course experience. Illuminating these 

unique factors that contribute to computing identity for students from different social groups can 

help educators serve their students more equitably. 

In essence, we know from prior research that computing identity equips educators to 

better support student persistence, as computing identity is such a strong predictor of 

undergraduate and career outcomes in computing (George et al., 2022; Lehman et al., 2022; 

Wofford et al., 2022). In investigating computing identity for this study, I find that while there 

are some common contributing factors, there are also differences across these different gender 

and race/ethnicity groups that need to be taken into consideration if we are to broaden 

participation in computing. Further, I find that this comprehensive understanding of computing 

identity and the pre-college and college-related experiences that bolster students’ identities in 

computing by gender and race/ethnicity is crucial to promoting student retention and much-

needed diversification in the computing field. Therefore, this study offers not only important 

implications for enhancing students’ interest in and experiences of programming before college 

but also inclusive curricula and policy recommendations that can help strengthen the 

development of students’ computing identities when they get to college. Moving forward, we 

must also consider tailoring our approaches toward marginalized gender and racial/ethnic groups 

in computing and technology. Overall, these insights have broader implications for diversifying 

the representation of undergraduate students in computing and the workforce. 
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APPENDICES 

Appendix A 

Overview of Variables and Coding 

Variable Definition/Coding Scheme 

Dependent Variable 
 

—Computing Identity  Three-item factor (follow-up). Based on items from Likert scale 

ranging from 1 (Strongly Disagree) to 5 (Strongly Agree)  
—I see myself as a “computing person.”  
—Computing is a big part of who I am.  
—I feel like I “belong” in computing. 

Pretest Computing Identity 
 

—Pretest Computing Identity 

Score 

Three-item factor (pretest). Based on items from Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree)  
—I see myself as a “computing person.”  
—Computing is a big part of who I am.  
—I feel like I “belong” in computing. 

Personal Characteristics 
 

—Gender: Women  Dichotomous: 1 (Woman); 0 (Man) 

Race (White) 
 

—Race: Asian  Dichotomous: 1 (Yes); 0 (No) 

—Race: Black  Dichotomous: 1 (Yes); 0 (No) 

—Race: Latine  Dichotomous: 1 (Yes); 0 (No) 

—Race: Indigenous, 

Multiracial, or Other  

Dichotomous: 1 (Yes); 0 (No) 

—First-Generation Status Dichotomous: 1 (Yes; students’ parents/guardians do not have a 

bachelor’s degree); 0 (No) 

Background Contexts 
 

—Class Standing Dichotomous: 1 (Yes; first- or second-year student); 0 (No; third-

year student or beyond) 

—Socioeconomic Status Categorical: 1 (Poor); 2 (Below Average); 3 (Average); 4 (Above 

Average); 5 (Wealthy) 

—Transfer Status Dichotomous: 1 (Yes; student transferred from another college or 

university); 0 (No; student did not transfer) 

—HS Computing Course Dichotomous: 1 (Yes); 0 (No) 

—HS GPA Continuous 

Early Computing Identity 

Experiences 

 

—Parent Computing Career 

Status 

Dichotomous: 1 (Computing Career) 0 (Non-computing career) 

—Family Computing Support Four-item factor, based on items from Likert scale ranging from 1 

(Strongly Disagree) to 5 (Strongly Agree) 

—My family encourages me to pursue a computing degree. 
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—My family questions why I would pursue a computing degree. 

(Reverse coded) 

—My family wonders why I invest so much time and effort into 

studying computing. (Reverse Coded) 

—My family emphasizes the value of earning a computing degree. 

—Amount of Prior 

Programming Experience 

Seven-item aggregate measure: sum of prior programming 

experiences ranging from 0–7 where responses were summed as each 

item’s response options were 1 (Yes) and 0 (No). 

—I did not have programming experience prior to this course. 

—I took a computer programming course in high school (e.g., Java, 

Python, HTML, etc.). 

—I took a computer programming course at computer camp. 

—I took a computer programming course online.  
—I took a computer programming course at this college. 

—I took a computer programming course at another four-year 

college. 

—I took a computer programming course at community college. 

—I did not take a specific course, but I learned to program on my 

own (e.g., by reading books).  

Additional Psychosocial Computing Identity Factors 

—Interest in Computing Three-item factor (posttest). Based on items from Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree)  
—I am interested in learning more about what I can do with 

computing  
—Using computers to solve problems is interesting  
—I care about doing well in computing. 

—Computing Self-efficacy: 

Professional Competencies 

Three-item factor (posttest). Based on items from Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree)  
—I am confident I can—become a leader in the field of computing.  
—I am confident I can—win a computing-related contest (e.g., 

programming context, robotics contest, hackathon).  
—I am confident I can—quickly learn a new programming language 

on my own. 

—Computing Self-efficacy: 

Professional Milestones 

Three-item factor (posttest). Based on items from Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree)  
—I am confident I can—find employment in an area of computing 

interest.  
—I am confident I can—get admitted to a graduate computing 

program.  
—I am confident I can—complete an undergraduate degree in 

computing. 

College Computing Identity Experiences Within the Intro Course 

—Relevant Social/Personal 

Examples 

Four-item factor (posttest), based on items from Likert scale ranging 

from 1 (Never) to 5 (Always)  
-Use of examples involving women  
-Use of examples involving People of Color  
-Use of examples involving relevant social issues 
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-Discussions addressing misconceptions about the computer science 

field 

—Instructor Inclusivity Six-item factor (posttest), based on items from Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree)  
—TAs are inclusive and supportive of women  
—TAs are inclusive and supportive of students of color  
—TAs are interested in helping me when I come to them with 

questions  
—Introductory course instructor(s) are inclusive and supportive of 

women  
—Introductory course instructor(s) are inclusive and supportive of 

students of color  
—Introductory course instructor(s) are interested in helping me when 

I come to them with questions 

—Feeling Dismissed Three-item factor (posttest), based on items from Likert scale ranging 

from 1 (Never) to 5 (All of the Time)  
—People tend to attribute your success to special treatment or luck 

rather than to your competence.  
—You are “talked down to” by classmates, instructors, or advisors.  
—Your ideas or opinions are minimized or ignored. 

College Computing Identity Experiences Outside of the Intro Course 

—Peer Support Four-item factor (posttest), based on items from Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree)  
To what extent is each of the following kinds of support available to 

you from other computing students if you need it? 

—Someone to hang out with.  
—Someone to confide in or talk to about your problems.  
—Someone to get class assignments for you if you were sick.  
—Someone to help you understand difficult homework problems. 

—Mentor Support Three-item factor (posttest), based on items from Likert scale ranging 

from 1 (Strongly Disagree) to 5 (Strongly Agree) 

To what extent do you have a mentor who:  
—Shows compassion for any concerns and feelings you discussed 

with them.  
—Shares personal experiences as an alternative perspective to your 

problems.  
—Explores career options with you. 

—Computing Major/minor Dichotomous: 1 (Student indicated they were a computing major or 

computing minor on the first follow-up survey); 0 (Student indicated 

they were not computing major or computing minor on the first 

follow-up survey) 

—Undergraduate Research 

Participation 

Dichotomous: 1 (Yes, student participated in at least one research 

experience); 0 (No, did not participate in undergraduate research) 

—Technical Conference 

Participation  

Dichotomous: 1 (Yes, attended at least one conference); 0 (No, did 

not attend a conference) 
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Appendix B 

Simple Correlations and Descriptive Statistics of Factor Items 
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Appendix C 

Single Factor (AKA Unidimensional) Model of Computing Identity 
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Appendix D 

Bifactor Model of Computing Identity 
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Appendix E 

Hierarchical (AKA Second-Order) Model of Computing Identity 
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Appendix F 

Simple Correlations and Descriptive Statistics of Blocked Regression Variables 
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Appendix G 

Comparison of Stepwise Linear Regression Findings Predicting Computing Identity One Year after Students’ Intro Computing 

Courses 

Dependent Variable 

—Computing Identity at 

First Follow-up 

REGRESSION 1 

ALL 

(n = 768) 

REGRESSION 2 

MEN 

(n = 492) 

REGRESSION 3 

WOMEN 

(n = 276) 

REGRESSION 4 

WHITE 

(n = 375) 

REGRESSION 5 

ASIAN 

(n = 268) 

REGRESSION 6 

USOCC 

(n = 193)  
Final Model 

(Step 17) 

Final Model 

(Step 16) 

Final Model 

(Step 16) 

Final Model 

(Step 13) 

Final Model 

(Step 13) 

Final Model 

(Step 13) 

Independent Variables 

 

b Sig b Sig b Sig b Sig b Sig b Sig 

Pretest Item 
            

—Pretest Computing 

Identity Score 

0.41 *** 0.39 *** 0.43 *** 0.52 *** 0.38 *** 0.40 *** 

Personal Characteristics 

—Gender: Women  −0.16 *** -- -- -- -- −0.08 * −0.16 *** −0.26 *** 

Race (White)   

          

—Race: Asian  −0.08 ** −0.08 * −0.11 * -- -- -- -- -- -- 

—Race: Black −0.06 * −0.04 
 

−0.11 * -- -- -- -- -- -- 

—Race: Latine  −0.04 
 

−0.02 
 

−0.07 
 

-- -- -- -- -- -- 

—Race: Other −0.03 
 

−0.02 
 

−0.07 
 

-- -- -- -- -- -- 

Background Contexts 

—Class Standing −0.04 
 

−0.08 
 

0.02 
 

−0.07 
 

0.00 
 

−0.05 
 

—Transfer Status −0.04 
 

−0.06 
 

−0.02 
 

−0.04 
 

−0.02 
 

−0.13 
 

—HS CS Course 0.02 
 

0.01 
 

0.04 
 

0.05 
 

−0.02 
 

−0.01 
 

—HS GPA 0.03 
 

0.01 
 

0.06 
 

0.03 
 

0.01 
 

−0.01 
 

Pre-College Computing Identity Experiences 

—Amount of Prior 

Programming 

Experience 

0.07 * 0.07 
 

0.10 
 

0.04 
 

0.16 *** 0.01 
 

Additional Psychosocial Computing Identity Factors 
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—Interest in 

Computing+ 

0.14 ** 0.21 *** 0.09 
 

0.16 *** 0.10 
 

−0.01 
 

—Computing Self-

Efficacy: Professional 

Milestones+ 

0.00 
 

−0.01 
 

0.01 
 

−0.12 ** 0.01 
 

0.18 ** 

College Computing Identity Experiences Within the Intro Course 

—Instructor Provides 

Relevant Social/Personal 

Examples+  

0.00 
 

0.02 
 

−0.03 
 

0.03 
 

0.04 
 

−0.10 
 

—Feeling Dismissed+ 0.04 
 

0.10 ** −0.02 
 

0.02 
 

0.01 
 

−0.04 
 

College Computing Identity Experiences Outside of the Intro Course 

—Peer Support+ 0.05 
 

0.07 
 

0.01 
 

0.07 * 0.09 
 

0.00 
 

—Computing 

Major/minor at First 

Follow-up 

0.23 *** 0.21 *** 0.27 *** 0.24 *** 0.24 *** 0.16 ** 

Model R2  0.48  0.43  0.46  0.55  0.44  0.45 

Note. b = unstandardized regression coefficient; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; -- denotes variable did not enter the 

model; + denotes variable is a factor. 
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Appendix H 

Linear Regression Findings Predicting Computing Identity Among Women One Year after Students’ Intro Computing Courses (n = 

276) 

Dependent Variable 
  

Pretest Only Background Psychosocial College 

—Computing Identity at First Follow-up 
  

(Step 1) (Step 10) (Step 12) (Step 16) 

Independent Variables r Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 

Pretest Item 
          

—Pretest Computing Identity .57 *** 0.57 *** 0.54 *** 
 

*** 0.43 *** 

Personal Characteristics           
Race (White)   

 

       
—Race: Asian  −.04 

 
−0.01 

 
−0.08 0.13 −0.07 

 
−0.11 * 

—Race: Black −.13 * −0.12 * −0.15 *** −0.13 * −0.11 * 

—Race: Latine  .05 
 

−0.05 
 

−0.08 0.13 −0.09 
 

−0.07 
 

—Race: Other −.02 
 

−0.03 
 

−0.07 0.18 −0.06 
 

−0.07 
 

Background Contexts           
—Class Standing .02 

 
0.04 

 
0.03 0.58 0.03 

 
0.02 

 

—Transfer Status .05 
 

−0.04 
 

−0.02 0.73 −0.02 
 

−0.02 
 

—HS CS Course .22 *** 0.09 
 

0.04 0.47 0.04 
 

0.04 
 

—HS GPA .02 
 

0.09 
 

0.08 0.11 0.08 
 

0.06 
 

Pre-College Computing Identity Experiences           
—Amount of Prior Programming Experience .30 *** 0.10 

 
0.10 0.08 0.10 

 
0.10 

 

Additional Psychosocial Computing Identity Factors           
—Interest in Computing+ .34 *** 0.18 *** 0.17 *** 0.17 *** 0.09 

 

—Computing Self-Efficacy: Professional Milestones+ .28 *** 0.05 
 

0.03 
 

0.02 
 

0.01 
 

College Experiences Within the Intro Course           
—Relevant Social/Personal Examples+  −.04 

 
−0.06 

 
−0.06 

 
−0.05 

 
−0.03 

 

—Feeling Dismissed+ −.16 *** −0.08 
 

−0.07 
 

−0.05 
 

−0.02 
 

College Experiences Outside of the Intro Course           
—Peer Support+ .14 * 0.07 

 
0.03 

 
0.01 

 
0.01 

 

—Computing Major/minor .44 *** 0.31 *** 0.30 *** 0.28 *** 0.27 *** 

Model R2 
   

0.321 
 

0.367 
 

0.392 
 

0.457 

Note. r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; 𝛽 = standardized regression 

coefficient. 
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Appendix I 

Linear Regression Findings Predicting Computing Identity Among Men One Year after Students’ Intro Computing Courses (n = 492) 

Dependent Variable   Pretest Only Background Psychosocial College 

—Computing Identity at First Follow-up   (Step 1) (Step 10) (Step 12) (Step 16) 

Independent Variables r Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 

Pretest Item 
          

—Pretest Computing Identity .58 *** 0.58 *** 0.55 *** 0.46 *** 0.39 *** 

Personal Characteristics   

  

    

  

Race (White)   

  

    

  

—Race: Asian  −.09 * −0.03 
 

−0.04 
 

−0.03 
 

−0.08 * 

—Race: Black −.04 
 

−0.02 
 

−0.01 
 

−0.02 
 

−0.04 
 

—Race: Latine  .03 
 

−0.01 
 

−0.01 
 

−0.01 
 

−0.02 
 

—Race: Other .02 
 

0.01 
 

0.00 
 

0.00 
 

−0.02 
 

Background Contexts   

  

    

  

—Class Standing −.03 
 

−0.02 
 

−0.04 
 

−0.04 
 

−0.08 
 

—Transfer Status −.02 
 

−0.04 
 

−0.07 
 

−0.05 
 

−0.06 
 

—HS CS Course .11 * 0.05 
 

0.02 
 

0.04 
 

0.01 
 

—HS GPA .01 
 

0.03 
 

0.03 
 

0.01 
 

0.01 
 

Pre-College Computing Identity Experiences   

  

    

  

—Amount of Prior Programming Experience .25 *** 0.10 * 0.09 * 0.07 
 

0.07 
 

Additional Psychosocial Computing Identity Factors   

  

    

  

—Interest in Computing+ .43 *** 0.21 *** 0.20 *** 0.21 *** 0.21 *** 

—Computing Self-Efficacy: Professional Milestones+ .32 *** 0.05 
 

0.05 
 

−0.01 
 

−0.01 
 

College Experiences Within the Intro Course   

  

    

  

—Relevant Social/Personal Examples+  .04 
 

0.02 
 

0.02 
 

0.04 
 

0.02 
 

—Feeling Dismissed+ −.01 
 

0.00 
 

0.01 
 

0.08 * 0.10 * 

College Experiences Outside of the Intro Course   

  

    

  

—Peer Support+ .17 *** 0.09 * 0.09 * 0.07 
 

0.07 
 

—Computing Major/minor .34 *** 0.21 *** 0.22 *** 0.20 *** 0.21 *** 

Model R2 
   

0.332  0.347 
 

0.379 
 

0.428 

Note. r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; 𝛽 = standardized regression 

coefficient. 
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Appendix J 

Linear Regression Findings Predicting Computing Identity Among USOCC One Year after Students’ Intro Computing Courses (n = 

193) 

Dependent Variable   Pretest Only Background Psychosocial College 

—Computing Identity at First Follow-up   (Step 1) (Step 7) (Step 9) (Step 13) 

Independent Variables r Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 

Pretest Item 
          

—Pretest Computing Identity .55 *** 0.55 *** 0.50 *** 0.42 *** 0.40 *** 

Personal Characteristics           
—Gender: Women −.36 *** −0.27 *** −0.27 *** −0.28 *** −0.26 *** 

Background Contexts           
—Class Standing .01 0.43 0.03 

 
−0.04 0.54 −0.06 

 
−0.05 

 

—Transfer Status −.07 0.17 −0.12 * −0.14 0.06 −0.15 * −0.13 
 

—HS CS Course .11 0.07 0.03 
 

0.00 0.95 0.00 
 

−0.01 
 

—HS GPA −.03 0.36 −0.01 
 

0.03 0.57 0.01 
 

−0.01 
 

Pre-College Computing Identity Experiences           
—Amount of Prior Programming Experience .13 * 0.00 

 
0.02 0.74 0.02 

 
0.01 

 

Additional Psychosocial Computing Identity Factors           
—Interest in Computing+ .28 *** 0.09 

 
0.09 

 
0.04 

 
−0.01 

 

—Computing Self-Efficacy: Professional Milestones+ .34 *** 0.14 * 0.17 * 0.15 * 0.18 * 

College Experiences Within the Intro Course           
—Relevant Social/Personal Examples+  −.06 0.22 −0.13 * −0.13 * −0.13 * −0.10 

 

—Feeling Dismissed+ −.24 *** −0.10 
 

−0.07 
 

−0.07 
 

−0.04 
 

College Experiences Outside of the Intro Course           
—Peer Support+ .13 * 0.00 

 
−0.03 

 
−0.03 

 
0.00 

 

—Computing Major/minor .36 *** 0.22 *** 0.18 *** 0.18 *** 0.16 * 

Model R2 
   

0.301 
 

0.386 
 

0.411 
 

0.450 

Note. r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; 𝛽 = standardized regression 

coefficient. 
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Appendix K 

Linear Regression Findings Predicting Computing Identity Among Asian Students One Year after Students’ Intro Computing Courses 

(n = 268) 

Dependent Variable   Pretest Only Background Psychosocial College 

—Computing Identity at First Follow-up   (Step 1) (Step 7) (Step 9) (Step 13) 

Independent Variables r Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 

Pretest Item 
          

—Pretest Computing Identity .55 *** 0.55 *** 0.47 *** 0.41 *** 0.38 *** 

Personal Characteristics   
        

—Gender: Women −.30 *** −0.17 *** −0.18 *** −0.19 *** −0.16 *** 

Background Contexts   
        

—Class Standing .05 0.20 0.05  0.03 0.52 0.04 0.51 0.00 0.93 

—Transfer Status .01 0.46 −0.04  −0.04 0.47 −0.02 0.65 −0.02 0.69 

—HS CS Course .16 *** 0.10  0.03 0.55 0.04 0.49 −0.02 0.78 

—HS GPA −.02 0.39 0.01  0.03 0.56 0.02 0.64 0.01 0.77 

Pre-College Computing Identity Experiences   
        

—Amount of Prior Programming Experience .27 *** 0.14 * 0.15 * 0.15 * 0.16 *** 

Additional Psychosocial Computing Identity Factors   
        

—Interest in Computing+ .29 *** 0.11 * 0.14 * 0.13 * 0.10 0.07 

—Computing Self-Efficacy: Professional Milestones+ .29 *** 0.04  0.03  0.02 0.76 0.01 0.80 

College Experiences Within the Intro Course   
        

—Relevant Social/Personal Examples+  .11 * 0.05  0.03  0.05  0.04 0.48 

—Feeling Dismissed+ .01 0.41 −0.01  −0.02  0.01  0.01 0.78 

College Experiences Outside of the Intro Course   
        

—Peer Support+ .19 *** 0.11 * 0.11 * 0.09  0.09 0.09 

—Computing Major/minor .35 *** 0.27 *** 0.25 *** 0.24 *** 0.24 *** 

Model R2 
   

0.308  0.363 
 

0.379 
 

0.440 

Note. r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; 𝛽 = standardized regression 

coefficient. 
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Appendix L 

Linear Regression Findings Predicting Computing Identity Among White Students One Year after Students’ Intro Computing Courses 

(n = 375) 

Dependent Variable   Pretest Only Background Psychosocial College 

—Computing Identity at First Follow-up   (Step 1) (Step 7) (Step 9) (Step 13) 

Independent Variables r Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 𝛽 Sig 

Pretest Item 
          

—Pretest Computing Identity .67 *** 0.67 *** 0.61 *** 0.57 *** 0.52 *** 

Personal Characteristics           
—Gender: Women −.29 *** −0.08 * −0.09 * −0.09 * −0.08 * 

Background Contexts           
—Class Standing −.05 

 
−0.03 

 
−0.03 

 
−0.03 

 
−0.07 

 

—Transfer Status .04 
 

0.00 
 

−0.02 
 

−0.02 
 

−0.04 
 

—HS CS Course .24 *** 0.07 
 

0.05 
 

0.07 
 

0.05 
 

—HS GPA −.06 
 

0.04 
 

0.05 
 

0.03 
 

0.03 
 

Pre-College Computing Identity Experiences           
—Amount of Prior Programming Experience .36 *** 0.09 * 0.06 

 
0.04 

 
0.04 

 

Additional Psychosocial Computing Identity 

Factors           
—Interest in Computing+ .42 *** 0.18 *** 0.19 *** 0.21 *** 0.16 *** 

—Computing Self-Efficacy: Professional Milestones+ .31 *** −0.06 
 

−0.04 
 

−0.08 
 

−0.12 ** 

College Experiences Within the Intro Course           
—Relevant Social/Personal Examples+  .01 

 
0.04 

 
0.04 

 
0.04 

 
0.03 

 

—Feeling Dismissed+ −.09 * −0.04 
 

−0.04 
 

0.00 
 

0.02 
 

College Experiences Outside of the Intro Course           
—Peer Support+ .22 *** 0.10 ** 0.10 * 0.09 * 0.07 * 

—Computing Major/minor .46 *** 0.25 *** 0.25 *** 0.24 *** 0.24 *** 

Model R2 
  

0.451  
 0.468 

 
0.502 

 
0.553 

Note. r = simple correlation; + denotes variable is a factor; Sig = p-value; *** = p < .001; ** = p < .01; * = p < .05; 𝛽 = standardized regression 

coefficient. 
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