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EPIGRAPH

Nothing in biology makes sense

except in light of evolution.

—Theodosius Dobzhansky
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ABSTRACT OF THE DISSERTATION

Exploring the Mechanisms of pre-mRNA Splicing Using Mathematical
Models of Coupled Transcription and Splicing

by

Jeremy Davis-Turak

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2014

Professor Alexander Hoffmann, Chair
Professor Eugene Yeo, Co-Chair

One of the main challenges in modern biology is understanding how and

when genes are turned on. As our knowledge of transcription regulation has ma-

tured, bioinformatic analyses have allowed increasingly quantitative predictions of

gene expression. The ultimate goal of such analyses is to predict gene expression

from concentrations of proteins in the cell, based on protein-DNA networks. Yet

this is a highly ambitious task in Eukaryotes, since their gene expression is de-

termined by chromatin conformation, epigenetic factors, promoter and enhancer

states, rates of transcription initiation, elongation, transcript processing and ter-

mination, and mRNA export and stability.
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This thesis is focused on the co-occurrence of transcriptional elongation and

pre-mRNA splicing, the process in which introns are removed from the pre-mRNA

transcript. Splicing is an important regulatory step because aberrant splicing leads

to either reduced or non-functional protein expression, and alternative splicing

expands the repertoire of functional proteins encoded by the genome. The co-

transcriptional nature of splicing implies that the kinetics of elongation in relation

to splicing are important for the outcome of splicing decisions. Co-transcriptional

splicing (CTS) has been extensively studied, but quantitative models of transcrip-

tion networks that predict gene expression timecourses have yet to incorporate

CTS considerations.

Here I constructed kinetic models of CTS. Initially, I built a model of con-

stitutive CTS and developed methods to fit nascent RNA-seq data to the model.

Fitting this model to published datasets indicated that only a subset of genes can be

expected to process all of their introns co-transcriptionally. Detailed data-mining

of high-throughput datasets and genomes revealed patterns of compensatory sig-

natures in sequence, chromatin and polymerase data, suggesting an evolutionary

selection towards splicing co-transcriptionally. Next I expanded the model to in-

clude alternative splicing reactions. Despite the exponential combinatorial com-

plexity, all possible isoforms resulting from up to nine introns can be simulated.

A further expansion of the model considers separate reactions at the 5 and 3 ends

of introns, which allows for simulation of phenomena such as exon definition and

polymerase-mediated recruitment. Together, these novel tools can be used to test

quantitative predictions of genome-wide splicing outcomes, or be incorporated into

larger gene expression models.

xiv



1 Introduction

1.1 Pre-mRNA splicing

Genes are the fundamental unit of of information within a cell, and DNA

encodes genes along with the instructions for when to activate those genes. When

genes become activated, they are first transcribed into RNA, and this messenger

RNA (mRNA) strand is then translated into a polypeptide chain, which matures

into a functional protein. In ancient single-celled organisms that lack a defined

nucleus, transcription and translation are coupled spatio-temporally. However in

eukaryotes, the nucleus separates these two processes in space and time. This

separation allows for extensive editing of the mRNA message before translation.

Indeed, the processing of precursor mRNA(pre-mRNA) - including removal

of introns, 5’ capping and 3’ polyadenylation - is a hallmark of eukaryotic gene tran-

scription. Approximately 90% of a given human gene is composed of sequences

that are not destined to be expressed as protein sequences. Prior to nuclear ex-

port, these sequences are removed by a catalytic process known as splicing, which

stitches together the expressed sequences (exons), and degrades the non-expressed

sequences (introns). The human genome averages 8.8 introns per gene, and the

human genome contains approximately 20,000 genes, meaning there are almost a

quarter million introns in the genome (Ast, 2004). Splicing is a highly dynamic and

labor-intensive process that requires great specificity, but also has a non-negligible

error rate, and this fact has many important consequences: one being that up to

one third of human disease have a form associated with a defect in splicing (Lim

et al., 2011).

‘Correctly’ spliced genes will contain an open reading frame (the sequences

1
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sufficient to code for a functional protein): a start codon, a series of amino-acid

specifying codons, and a stop codon. If a transcript is ‘incorrectly’ spliced, its

resulting open reading frame, if any, will code for an aberrant protein sequence.

In most cases, this protein sequence will contain a premature termination codon

(PTC), and if this PTC is sufficiently far from the 3’ end of the transcript, the tran-

script will likely get degraded by the nonsense-mediated decay (NMD) surveillance

pathway (Losson and Lacroute, 1979; Lewis et al., 2003; Weischenfeldt et al., 2012).

However, the dichotomy of ‘correct’ and ‘incorrect’ is an over-simplification. For

example, there is widespread evidence that genomes have incorporated the NMD

pathway into auto-regulation of the expression level of splicing factor proteins: of-

ten a high abundance of a splicing factor will lead to an increase in the ‘incorrect

splicing’ of its own transcript that leads to NMD (Ni et al., 2007). Thus, these

‘errors’ sometimes have biological significance, and are referred to as alternative

splicing (AS).

Alternative splicing does not always lead to a disfunctional protein. When a

transcript differs from the most frequently observed (constitutive) splicing pattern,

either a large intron is simply not removed (intron retention), or an entire exon

is skipped (cassette exon splicing), or the exon boundaries of one or more exons

is either lengthened or shortened (Thanaraj et al., 2004). In cases other than

intron retention, the amount of exon added or subtracted can occur in one of

three scenarios: a frame shift of +1, a frame shift of -1, or no frame shift (i.e.,

the change is a multiple of 3). If these events were completely random, all three

scenarios would be equally likely: yet, cassette exons are enriched for the no-frame

shift scenario, indicating that some of this ‘incorrect’ splicing is selected for (Resch

et al., 2004). Since cassette exons whose length is a multiple of 3 would allow for

a full-length protein that escapes the NMD pathway, it seems that nature has co-

opted these AS events. Many of the proteins coded by alternative isoforms have

different functions than those coded by constitutive isoforms, and thus AS amplifies

the complexity of the genome (e.g. in humans giving rise to roughly 100,000

unique proteins from a mere 20,000 genes). Therefore, AS is widely considered an

important step in the evolution of higher-order organisms (Modrek and Lee, 2002;
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Nilsen and Graveley, 2010).

The question arises, why has the total intron content of genome evolved to

take up 10-fold more space than the protein coding content? One possibility is

that the total length of a gene is under selection so that specific timing goals can

be achieved (Swinburne et al., 2008). For example, extremely long genes can take

up to 16 hours to be transcribed (Tennyson et al., 1995), which could be a useful

timing mechanism in development. Another possibility is that long introns allow

for an increased likelihood of AS (Izquierdo and Valcárcel, 2006). Yet, this task

seemingly could be accomplished with shorter introns. However, though many

lower Eukaryotes have shorter introns, they exhibit little AS (Ast, 2004; Fox-

Walsh et al., 2005). Therefore it has been proposed that the lengthening of introns

contributed to the evolution of AS by increasing the error rate of splicing, with

a concomitant increase in the regulatory logic and protein diversity of regulatory

proteins (Izquierdo and Valcárcel, 2006). To explore this regulation, we need to

first understand how splicing is catalyzed.

1.2 The spliceosome catalyzes the splicing reac-

tion

The spliceosome is a large RNA-protein complex that assembles de novo on

nascent strands of RNA (Matera and Wang, 2014), composed of five small U-rich

RNAs, U1, U2, U4, U5 and U6, which associate with protein factors to form five

small nuclear ribo-nucleic particles (snRNPs). Using the help of ATP-dependent

helicase proteins, these snRNPs assemble step-wise on introns via specific base-

pairing of the U-RNAs to the pre-mRNA, and help catalyze the two transesteri-

fication splicing reactions (Gornemann et al., 2005; Hoskins et al., 2011). First,

the U1 snRNP binds to a consensus sequence on the upstream end of the intron

(5’ splice site). The U2 snRNP, chaperoned by the U2AF protein, binds to the

branch-point sequence near the polypyrmidine track at downstream end of the in-

tron (3’ splice site). These two snRNPs then aggregate, forming the A-complex.

Next, a complex of three snRNPs, the U4/U6.U5 tri-snRNP binds and displaces
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the U1 snRNP. This re-arrangement brings the 5’ and 3’ splice sites close together.

Once the spliceosome is catalytically active, the 2’ hydroxyl group on the ribose

backbone of the branch-point adenine base attacks the 5’ end of the intron, cleav-

ing the intron from the upstream exon, and creating a branched intron structure.

After a further ATP-dependent rearrangement, the 3’ hydroxyl group on the free

exon attacks the 3’ end of the intron, cleaving the branched intron from the down-

stream exon and ligating the two exons together. The now-free branched intron is

called the lariat, and is subsequently degraded.

The specificity of a splicing reaction is partially dependent on the sequence

of the pre-mRNA motifs that base-pair with the RNA components of the snRNPs.

Furthremore, before two exons can be joined, U1 and U2 must recognize one an-

other and prior to forming the A complex. Therefore, the manner in which the

spliceosome components find their partners is crucial to determining the speci-

ficity of a splicing reaction (Shepard et al., 2011). In yeast, in which most intron-

containing genes have only one intron, splice sites are comprised of highly circum-

scribed motifs: thus, most of the splicing reactions are very specific, there are very

few examples of AS in yeast (Awan et al., 2013). However in the human genome,

the core splicing motif is comprised of very few bases, and thus there are a great

deal of sequences in every pre-mRNA strand which could theoretically act as splice

sites (Ast, 2004). Somehow, the spliceosome detects a distinction between these

so-called cryptic splice sites and those are constitutively spliced. Up to 95% of

human genes undergo some level of AS (Pan et al., 2008; Wang et al., 2008), in-

dicating that there is some degree of flexibility; yet overall splicing fidelity is very

high in the human genome, meaning most splicing reactions do occur between con-

stitutive splice sites (Fox-Walsh and Hertel, 2009). Thus, a central question in AS

is how the spliceosome can be regulated to achieve a high degree of accuracy and

yet still allow for flexible splice site choice.
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1.3 Regulation of splicing

The regulation of AS is critical to many biological functions, including de-

velopment and differentiation, and is also implicated in many diseases including

neural disorders and cancer (Venables, 2004; Faustino and Cooper, 2003). Trans-

acting splicing factors have been shown to be major players in this regulation.

For example, the splicing factor gene SF2/ASF is a proto-oncogene (Karni et al.,

2007). These splicing factors consist of RNA-binding proteins (RBPs), which gen-

erally fall into two classes: the Serine-Arginine rich protein family (SR proteins),

and the heterogeneous nuclear ribonucleoproteins (hnRNPs) (Zahler et al., 1992;

Huelga et al., 2012). These RBPs generally bind to specific motifs on the pre-

mRNA in exons or introns, near the sites where spliceosomes bind (Xiao et al.,

2007). Depending on the location of the binding, an RBP can enhance or inhibit

the inclusion of a cassette exon (Barash et al., 2010). Furthermore, RBPs can act

in unison (Huelga et al., 2012), setting up a combinatorial landscape for regulation.

Although splicing can occur in pre-mRNAs in the nucleoplasm that have ter-

minated transcription, much of splicing occurs on the nascent pre-mRNA while it is

still being made, in the chromatin environment. The existence of co-transcriptional

splicing (CTS) has long been evident from examining nascent RNA of long genes

(Singh and Padgett, 2009; Wetterberg et al., 1996). However, new insights have

shown many intimate links between the splicing and transcription machineries

(Alexander et al., 2010; Muñoz et al., 2010).

Of particular interest is the link between elongation rate and splicing. Elon-

gation of the nascent strand by RNA polymerase II (Pol II) proceeds at a rate of

approximately 1-10 kb/min (Veloso et al., 2014; Danko et al., 2013). This means

that a typical vertebrate intron would take on the order of one minute to be syn-

thesized. Thus, prior to the existence of the next, downstream exon, a typical

cassette exon exists for about 1-2 minutes (which is the order of magnitude of

the splicing half-life). If splicing really does occur immediately upon synthesis,

one would expect that a delay in creating the downstream exon would increase

the competitive edge for the cassette exon to be included, since the 5’ splice site
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of the upstream exon has no other partner but the cassette exon with which to

interact (Kornblihtt, 2007). Indeed, several experiments have shown that this phe-

nomenon occurs with experimental perturbation (de la Mata et al., 2003; Howe

et al., 2003; Ip et al., 2011; Roberts et al., 1998). However, it remains unclear to

what degree these kinetic considerations affect endogenous splicing decisions, in

part because this process has received little detailed mathematical treatment.

Additionally, the chromatin environment plays a role in splicing outcomes

(Gunderson and Johnson, 2009). Chromatin consists of DNA packed around his-

tone protein octamers to form nucleosomes. The histone proteins in nucleosomes

contain long tails whose amino acid residues can be covalently modified to in-

clude specific chemical groups, notably acetyl or methyl groups. The presence of

nucleosomes, the identities of the histone proteins that comprise them, and the

locations and amount of modifications to those proteins are recognized as central

to the spatial organization of the genome and transcriptional regulation (Berger,

2007). More recently, evidence has emerged that directly links splicing to chro-

matin states (Luco and Misteli, 2011; Bieberstein et al., 2012; Luco et al., 2010;

Kim et al., 2011; Hnilicová et al., 2011; Zhou et al., 2011; de Almeida et al., 2011).

The existence of these interactions suggests that CTS is not merely coincidental

with, but rather is functionally coupled to transcription (Batsche et al., 2006; Lis-

terman et al., 2006; Alexander et al., 2010; Carrillo et al., 2010). Moreover the Pol

II complex, which is the key processive enzyme in transcription, is also implicated

in splicing control, further establishing a link between the production and the pro-

cessing of the RNA message (Muñoz et al., 2010; de la Mata and Kornblihtt, 2006;

McCracken et al., 1997; Misteli and Spector, 1999).

1.4 Splicing is fundamental to transcriptional con-

trol

Our working hypothesis is that splicing is an integral part of the tran-

scription process. To understand this concept, consider that transcription factors

provide information about which genes to activate at a certain time, at which
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levels. However, as we saw above, incorrectly spliced transcripts are often down-

regulated. Therefore splicing is fundamental in determining how much of a protein

is made. Moreover, recent evidence suggests that incompletely spliced transcripts

are retained in the chromatin environment (Bhatt et al., 2012; Brody et al., 2011).

Therefore, splicing can also delay the release of transcripts, subsequently delaying

mRNA export (Rigo and Martinson, 2009; Pandya-Jones et al., 2013; Hao and

Baltimore, 2013; Carmo-Fonseca et al., 1999; Martins et al., 2011). In light of

these considerations, it should not be surprising that genome-wide experiments

correlating mRNA levels with the binding of transcription factors to DNA (which

is a proxy for initiation at gene promoters) show lower than expected correlations,

as these type of experiments largely fail to account for RNA processing including

splicing and mRNA decay rates.

The overarching goal of this Thesis is to provide a mathematical basis for the

integration of splicing into efforts to model gene expression. In doing so, we aimed

to develop a scalable model of the splicing process that would: include CTS and AS;

simulate realistic gene scenarios; create a framework for simulating the interactions

of chromatin and splicing; and develop methods to interpret or fit experimental

data to realistic models. The work in the next three chapters surrounds three

mathematical models of co-transcriptional splicing that we developed.

1.5 Limitations of existing splicing models

Several mathematical models of splicing exist already, although none have

been published that fulfill all the criteria we desire. Top-down statistical models

have been used to examine inclusion rates of cassette exons in AS (Zhang et al.,

2010; Barash et al., 2010). Barash et al. (2010) created a model that integrates

sequence-motif data along with abundances of splicing factors to learn rules for a

‘splicing code’, in order to predict whether an exon is up- or down- regulated in a

certain cell type. This type of analysis is useful when one doesn’t know the optimal

construction of the model, and where it is not tractable to include terms for the

interaction of all possible parameters. However, the parameters that result from
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fitting these models are not based on physical reality, and little biological insight

is gained as to how the input variables can interact with one another. In contrast,

kinetic models that describe physical interactions between biological molecules are

useful in interpreting data and testing mechanistic hypotheses (Shih et al., 2012).

For this reason, we have pursued the use of kinetic models in our study of CTS.

Several kinetic models have been used to study CTS to various extents.

Only one considered CTS in relation to spliceosome assembly (but not splicing

itself), and the authors concluded that the stochastic nature of Pol II elongation

would contribute to CTS considerations (Murugan and Kreiman, 2012). Among

other studies that modeled CTS (Aitken et al., 2011; Schmidt et al., 2011; Carrillo

et al., 2010; Murugan and Kreiman, 2012), one of the most important findings was

that splicing is best modeled as a multi-step process (Schmidt et al., 2011). At

least one mathematical framework has previously been used to model the expected

splicing patterns of multi-intron genes (Melamud and Moult, 2009). The authors

explored the consequences of treating splicing noise (i.e. AS) as a function of gene

length and number of introns, but did not factor CTS into their models.

To address these limitations, we developed a CTS framework that allows

me to simulate variable elongation rates, multi-step splicing, and AS. The models

are scalable, meaning they can be applied to genes with many introns and unique

architectures. By simulating splicing across complex genomes we are therefore able

to ask detailed quantitative questions.
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2 Sequence Signatures and

Polymerase Dynamics Favor

Co-transcriptional Splicing

Genome-wide

2.1 Abstract

Recent genome-wide studies have revealed that, to varying degrees, mes-

senger RNA splicing occurs co-transcriptionally raising the question of whether

co-transcriptional splicing (CTS) is generally functionally important. While single

gene studies are often focused on trans-acting splicing factors, we hypothesized that

genome-wide analyses that average-out intron-specific mechanisms might reveal ki-

netic determinants of CTS. To this end, we constructed a scalable mathematical

model of the kinetic interplay of RNA synthesis and CTS and parameterized it

with chromatin-associated and global run-on RNA-seq data. Examining vertebrate

genomes, we found that protein-coding genes appear to be under evolutionary pres-

sure to favor CTS, but via distinct determinants for different groups of genes: for

example, housekeeping genes exhibited longer transcriptional read-through, higher

splice site scores, but less polymerase pausing than regulated genes. Together, our

findings indicate that, while mechanisms that reinforce it are diverse, regulation

of CTS is intrinsic to the control of gene expression.

15
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2.2 Introduction

Messenger RNA (mRNA) synthesis is a highly regulated process in which

transcription factors and chromatin modifying factors coordinate with Pol II to

produce a nascent strand of RNA. The nascent pre-mRNA is processed by 5’

capping, 3’ polyadenylation and pre-mRNA splicing - the removal of non-coding

introns. Complete splicing is necessary for proper mRNA export, stability, and

protein function. RNA processing steps can in principle be initiated and com-

pleted during the transcription process, i.e., co-transcriptionally, but may also

occur post-transcriptionally (Alexander et al., 2010; Carrillo et al., 2010; Neuge-

bauer, 2002; Pandya-Jones and Black, 2009; Shatkin and Manley, 2000; Singh and

Padgett, 2009; Tennyson et al., 1995; Tilgner et al., 2012; Wetterberg et al., 1996).

Nonetheless, it is now well established that a large fraction of genes undergo co-

transcriptional splicing in metazoan genomes (Khodor et al., 2011; Tilgner et al.,

2012).

Because of the constraints imposed on CTS by transcriptional elongation,

an intron’s fate may be dramatically affected by the elongation dynamics of Pol

II. Indeed, a slower Pol II can result in increased use of a weak 5’ splice site in

reporter gene constructs (de la Mata et al., 2003; Howe et al., 2003). Splice site

choice can be altered in human cell lines by removing downstream pausing sites

(Shukla et al., 2011) or pharmacologically slowing down Pol II (Ip et al., 2011),

and Pol II pausing generally correlates with an increase in CTS activity (Alexander

et al., 2010; Batsche et al., 2006; Carrillo et al., 2010). In addition to the kinetic

coupling between splicing and transcription, much of the cellular machinery for

regulating transcription is also important for CTS. Spliceosome recruitment may

be coordinated with transcription (Bentley, 2002; Close et al., 2012; Gornemann et

al., 2005; Gunderson and Johnson, 2009; Hirose and Manley, 2000); for example,

the Carboxy-Terminal Domain (CTD) of Pol II is known to recruit common factors

(de la Mata and Kornblihtt, 2006), while Pol II lacking the CTD shows splicing

defects (McCracken et al., 1997).

Despite clear evidence of co-transcriptional spliceosome assembly and per-
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vasive CTS, some splicing occurs post-transcriptionally (Bhatt et al., 2012; Tardiff

et al., 2006; Vargas et al., 2011). Which instances of CTS are functionally impor-

tant, and how CTS is reinforced for specific splicing events, remain fundamentally

unanswered questions. Several examples of functional CTS have emerged: CTS

of the first intron may regulate chromatin modifications that reinforce transcrip-

tion initiation (Bieberstein et al., 2012); during the innate immune response, CTS

may facilitate rapid gene expression (Hao and Baltimore, 2013; Pandya-Jones et

al., 2013). In this regard, determining the kinetics of the splicing reaction per

se is critical for understanding both qualitative and quantitative aspects of gene

expression (Darnell, 2013).

Here we examined how transcriptional and splicing kinetics may affect the

probability of CTS. We constructed a scalable mathematical model of splicing

coupled to transcriptional elongation in order to quantitatively asses how gene

structure and sequence features contribute to CTS. Next generation sequencing

methods have generated quantitative, chromatin-associated mRNA information

(Bhatt et al., 2012; Djebali et al., 2012), and here we present methods to extract

kinetic information from such datasets, thus allowing us to parameterize the kinetic

CTS model based on actual transcriptome measurements.

In modeling CTS, we reasoned that while splicing of specific introns may

be critically determined by trans-acting splicing factors, the common kinetic basis

of CTS may be more apparent when considering cohorts of genes in which gene

specific mechanisms are averaged out. This analysis revealed that gene features

that contribute to CTS were over-represented. Examination of multiple genomes

revealed that these gene structure and sequence features are in fact identifiable as

genetic signatures that correlate with splicing dynamics to a remarkable degree.

By expanding the model we were able to simulate co-transcriptional outcomes of

multi-intron genes genome-wide. Our results show that while genes may differ

widely in their cis-determinants of CTS, the kinetic integration of transcription

and splicing is an intrinsic feature of gene expression control.
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2.3 Results

2.3.1 A model to examine the contributions of gene

structure and sequence features to the control of

co-transcriptional constitutive splicing
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Figure 2.1: Fitting CTCS models to ENCODE RNA-seq data. A: Diagram of rel-
evant time periods of single-intron model. B: Nuclear poly(A)-depleted RNAseq.
Median Σ plus S.E.M. for introns grouped into 100, 1,000 and 3,000 equally pop-
ulated bins (left, middle, right, respectively) is shown as a scatterplot. Dashed
lines indicate model fits to 2-parameter model (blue, one-step; purple, 2-step). C.
Parameters and fit scores (AIC criteria) for all fits in B.

We first modeled co-transcriptional splicing of individual introns using a

one- or two-step splicing model (cf. Schmidt et al., 2011). An intron’s probability

of being spliced co-transcriptionally σ is determined by its splicing rate constant

and the duration of the transcriptional phase following the synthesis of the 3’ splice

site but prior to mRNA polyadenylation (Fig. 2.1A).
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Figure 2.2: Model of co-transcriptional constitutive splicing (CTCS). A: Model
schematic showing all possible reactions and species for a 3-intron gene. The 8
possible isoforms that can exist when transcription is complete are color-coded
at right. B. Model simulations of the 3-intron gene. Each column represents the
distribution of the 8 species after each simulation. Left: the lengths of all introns
and exons were scaled up and down by a constant factor. Middle: length of exon
3 was varied; Right: length of exon 4 was varied. C: Distribution of exon lengths
among last and internal exons in the human genome. D: Average splicing acceptor
scores in last and non-last introns genome-wide. All boxes show the extent of the
50% inter-quartile range and the notches estimate a 95% confidence interval for the
median. E: Nucleosome stability scores in the first 147 bp of last versus internal
exons. F: Average genome-wide MNase-seq signal in k562 cells and GM12878 cells
over internal exon starts versus last exon starts.

We next combined models of independent introns to generate a model of co-

transcriptional constitutive splicing (CTCS). Our CTCS model enables simulations

of multi-intron genes of any complexity and allows us to quantitatively assess the

effects of genome structure and kinetic rates on genome-wide splicing outcomes

(Fig. 2.2A). Using parameters fit to RNA-seq data to simulate a test gene (See

Experimental Procedures, and Fig. 2.1B), the CTCS model recapitulated a central

point of the kinetic theory of CTS control (Carrillo et al., 2010; Tilgner et al., 2012;

Wetterberg et al., 1996): namely, that long genes (Fig. 2.2B, left), and specifically

genes with long last exons (Fig. 2.2B, right) would favor CTS (because they provide
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more time for splicing), whereas the length of the penultimate exon (which has no

influence on the splicing time of the last intron) would be less important (Fig. 2.2B

middle). These conclusions are robust to specific splicing parameter values (data

not shown).
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Figure 2.3: Analysis of CTS determinants in metazoan genomes. Last exon
lengths (A), last intron splice site strength (B), and, last exon nucleosome stability
(C) are shown for mouse, chicken, fly and worm genomes. All boxes show the extent
of the 50% inter-quartile range and the notches estimate a 95% confidence interval
for the median. Whiskers (show in A only) indicate the range of the data.

It has previously been suggested that long last exons may have evolved to
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optimize CTS (Figs. 2.2C, 2.3A; Carrillo et al., 2010). We expected that if complex

genomes evolved under pressure to maintain high CTS efficiency, other genomic

signatures besides last exon length, that influence CTS, may be identifiable. Since

our model predicted the excision of last introns to be the limiting step in determin-

ing the CTS efficiency, we compared acceptor splice site strengths across several

genomes based on species-specific sequence motifs. Indeed, we found evidence for

conservation of higher average acceptor scores in last introns compared to non-last

introns in several vertebrate genomes (Figs. 2.2D, 2.3B). Since the presence of nu-

cleosomes can inhibit transcription elongation (Subtil-Rodriguez and Reyes, 2010)

and thus provide more time for CTS, we next tested whether nucleosome stability

was enriched at 3’ exons. We first evaluated nucleosome stability across several

species using a simple algorithm based on biophysical considerations (Vaillant et

al., 2007), and found that nucleosomes are indeed expected to be more stable at

terminal exons than at internal exons (Figs. 2.2E, 2.3C). Furthermore, analysis of

human cell MNase-seq data (ENCODE Project Consortium, 2011) revealed that

nucleosomes are enriched in the proximity of last exons compared to internal exons

(Fig. 2.2F). Interestingly, it was previously observed that nucleosomes are present

in higher abundance in exons flanking weaker splice sites, both in internal and last

exons (Tilgner et al., 2009), reinforcing the hypothesis that nucleosome occupancy

and splice sites may balance each other to control CTS.

2.3.2 Fitting the model to genome-wide

co-transcriptional splicing data reveals a role for

additional time past the poly(A) site

To parameterize our model, we took advantage of existing RNA-seq mea-

surements of purified cellular compartments in K562 cells (Djebali et al., 2012)

to estimate the steady-state spliced fraction (Σ) for each intron (17,266 introns

in 2,768 genes; see Experimental Procedures). For this analysis, we restricted our

set of genes to those that use their most downstream annotated poly(A) site, as

determined by RNA-seq of the cytoplasmic fraction (13,650 introns in 2,136 genes).
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Figure 2.4: Fitting CTCS and CTCS+TFIT models to ENCODE RNA-seq data.
A. Median Σ for 100 bins of introns binned by distance to poly(A) site were plotted
and fit to the two models. Σ was calculated from RNA-seq in different fractions
of k562 cells (top), and in nuclear poly(A) depleted fractions of other human cell
lines (bottom two rows). All genes were filtered for poly(A) site usage by examining
RNA-seq of the cytoplasmic fraction of the respective cell type, as in the main text
(see Methods section). Of the genes that passed this filter, we indicate the percent
of these whose ratio of Up’ reads to Up’ + Down’ reads (in the fraction where we
measured Σ) as highly cleaved. Best-fit parameters for the three-parameter model
are also shown on the figures. B. Table of parameters and goodness-of-fit tests in
the k562 Nuclear poly(A)-depleted fraction, for various bin sizes. For the 100 and
1000 bin cases, the fit is also shown for the two-step splicing reactions. C Summary
of fit parameters (nt/splice, middle; time allowance, right) for 100 and 1000 bins
in k562 nuclear poly(A)-depleted fraction for 1-5 steps per splicing reaction. Error
bars represent standard deviation of parameters. Left: AIC criteria of the 100 bins
and 1000 bins fits (open circles and close circles, respectively) were compared to the
minimum (best) fit to obtain a Fit quality’ e((AICmin−AIC)/2)∗100], which represents
the percent likelihood that a given fit reduces as much of the variance as the best
fit obtained.
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Figure 2.5: Fitting the CTCS+TFIT model to mouse macrophage RNA-seq data.
Median Σ for 100 bins of introns binned by distance to poly(A) site were plotted
and fit to the CTCS+TFIT model. Σ was calculated from RNA-seq of the chromatin
fraction from Bhatt et al. 2012 dataset. All genes were filtered for poly(A) site
usage by examining the average cleavage ratio of RNA-seq of the cytoplasmic
fraction, as in the main text (see Methods section). Of the genes that passed this
filter, we indicate the percent of these whose ratio of Up’ reads to Up’ + Down’
reads (in the fraction where we measured Σ) as highly cleaved’. Best-fit parameters
for the three-parameter model are also shown on the figures.

Examining non-polyadenylated nuclear transcripts, median Σ strongly cor-

relates with distance to the poly(A) site, in K562 cells, as reported previously

(Tilgner et al., 2012), and in other cell types (Fig. 2.4). By fitting our model to

the median Σ of introns binned according to distance from poly(A) site, we ob-

tained a ratio of splicing rate to elongation speed (see Experimental Procedures).

We also examined RNA-seq from the chromatin fraction of mouse macrophages

(Bhatt et al., 2012), but since this dataset contains genes that are polyadenylated

and thus post-transcriptionally associated with chromatin (Fig. 2.5, Bhatt et al.,

2012; Pandya-Jones et al., 2013), we could not derive meaningful co-transcriptional
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parameters using this procedure.
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Figure 2.6: Pol II read-through may contribute to delay time following transcrip-
tion of the poly(A) site. A: Deriving kinetic parameters by fitting CTCS modelf to
median spliced fraction Σ of 100 equally populated bins of introns. Green and Blue
lines are the fits to the CTCS or CTCS+TFIT models, respectively. TFIT refers to
the average additional time after Pol II transcribes the poly(A) site, as determined
by the model fit. B: UCSC browser tracks showing GRO-seq traces in mouse
macrophages for representative genes nudt16 and irf2bp2. Schematic boxes indi-
cate the read-through lengths and transcription units determined computationally
(Allison et al., 2013). C. Distribution of transcriptional read-through as measured
by GRO-seq in human MCF7 cells (top) and mouse macrophages (bottom). D.
Simulations of CTS in all human genes (left) and mouse genes (right). Genes were
split into four evenly sized groups based on total gene length [short (< 6,444 bp),
medium short (6,444 - 20,252bp), medium long (20,257 - 57,229 bp), and long (>
57,229 bp)], and further subdivided by the number of introns. Boxplots of CTS
efficiency for short and long groups are shown for simulations in three models:
CTCS, CTCS+TFIT, and CTCS+TGRO. TGRO refers to the additional time after
Pol II transcribes the poly(A) site if transcription proceeds to the termination sites
identified by GRO-seq, in individual genes for which GRO-seq measurements are
available.
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Fitting the CTCS model to the nuclear poly(A)-depleted K562 data resulted

in a ratio of elongation rate to splicing rate of 615 bp/splicing event, equating to

an intron half-life of 9 seconds if elongation is 3 kb/min (Kwak and Lis, 2013). The

fit was robust to the binning procedure used (Figs. 2.1B,C), and a two-step model

did not improve the fit to the model (Fig. 2.1C). However, previous studies have

derived estimates of co-transcriptional splicing rates in diverse organisms ranging

from a 30 second half-life to a 5-10 minute ’splicing completion time’ (Aitken et

al., 2011; Schmidt et al., 2011; Singh and Padgett, 2009; Tardiff et al., 2006).

A close inspection of the poly(A)-depleted nuclear RNA-seq data revealed

that the CTCS model underestimated the steady-state splicing probabilities of in-

trons proximal to the poly(A) site (Figs. 2.6A, 2.1B), similar to findings in yeast

(Carrillo et al., 2010). This disconnect could be due in part to conditions that

prolong association of nascent, un-polyadenylated RNA with the chromatin tem-

plate beyond the time predicted by the poly(A) site (Boireau et al., 2007), such

as a transcriptional pause near 3’ ends (Carrillo et al., 2010), or transcriptional

read-through past the poly(A) site. We therefore modified our CTCS model to

include a post-poly(A) site time delay (model CTCS+T), and fit this model to the

chromatin-associated RNA-seq data.

Remarkably, allowing for this additional time interval (TFIT ) in our model

dramatically improved the fit to the data (Figs. 2.6A, 2.3). The best fit was ob-

tained when the median time delay was equivalent to elongating 4.7 kb past the

poly(A) site (see Experimental Procedures), and with a new value of 3.1 kb/splicing

event for the elongation to splicing ratio. Assuming an elongation rate of 3 kb/min,

these values equate to a median 3’ delay of 94 seconds and a median intron half-life

of 43 seconds. This second estimate of median splicing half-life is more consistent

with, though still on the fast side of those previously reported (Aitken et al., 2011;

Schmidt et al., 2011; Singh and Padgett, 2009; Tardiff et al., 2006). If elonga-

tion rates turned out to be slower, those half-life estimates would proportionally

increase.

To investigate whether transcriptional read-through could account for the

extra time observed in CTCS+TFIT , we measured the extent of active transcription
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Figure 2.7: Variable Pol II elongation kinetics favor CTS. A: Boxplots of the
nucleosome stability score of each gene in indicated gene categories based on gene
length and intron numbers. Nucleosome scores were averaged over the region of
the gene that encompassed the second through final exon. B: Average MNase-
seq signal over all exon starts in k562 (left) and GM12878 cells (right) in short
and long genes, split up by intron number. C: Average PolS2 ChIP-seq signal
in the 1 kb upstream of the poly(A) site (left), and gene expression, indicated
by fragments per kb per million reads sequenced (FPKM) (right) in k562 cells
for short and long genes split up by number of introns. D: Average PolS2 signal
downstream of the poly(A) site. Traces are normalized to the average of the 1kb
upstream of the poly(A) site for each category. E: Simulations of CTS efficiency in
short and long human genes using model CTCS+TFIT. Boxplots of simulations in
four separate modeling conditions (See Supplemental Experimental Procedures)
are shown: TFIT: same as Fig. 2D; + ∆elong : elongation rate of each gene
was modulated as an inverse function of nucleosome stability. + ∆splice: kinetic
splicing rate was modulated so that last introns had a rate twice the speed of other
introns. + ∆both: both elongation and splicing rates were modulated.
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Figure 2.8: Relationship between gene structure and other CTS determinants in
vertebrate genomes. A: Nucleosome stability in exons was calculated for all genes
in the same categories of gene length and intron count as in figure 3A, for Mouse
and Chicken genomes. B: Acceptor splice site strength in humans was plotted for
the same 19 categories. C: Acceptor strength of last introns (dark outlines) and
non-last introns (light outlines) was plotted for different groups of introns binned
by length of total gene (colors) and length of intron. Gene length groups were the
same used earlier: intron length groups were composed of four equal sized groups
of short introns (< 511 bp), medium short introns (511-1539 bp), medium long
introns (1540-4106 bp), and long introns (> 4106 bp). All boxes show the extent
of the 50% inter-quartile range and the notches estimate a 95% confidence interval
for the median. D: Elongation rate (kb/min) as a function of average nucleosome
stability (-Energy , AU) in k562 cells. The linear regression to the 1,166 datapoints,
which is used to predict elongation rate in the rest of the genome, is depicted (p <
2.662e-16, R = 0.25 ). For clarity, we display the median and standard error of 25
equally-populated bins of genes. E: Boxplots of simulated CTS efficiency of long
and short mouse genes. TFIT: all mouse genes modeled with the basal splicing rate
(3.1 kb/splice) and time allowance (4.7 kb) derived from the fit to human RNA-seq
data. + ∆elong : elongation rate during the 147 bp window at the beginning of
each exon was modulated as an inverse function of nucleosome stability in mouse
genome. + ∆both: kinetic splicing rate was modulated so that last introns had a
rate twice the speed of other introns. + ∆both: both elongation and splicing rates
were varied simultaneously.



30

A

B

Mouse Chicken

A
cc

ep
to

r s
cr

oe

A
cc

ep
to

r s
co

re

C

# introns
Gene length (bp)

introns
last

introns

Short Med short Med long Long

Short introns Med short introns Med long introns Long introns

−2
−1

0
1

2
−2

−1
0

1
2

N
uc

le
os

om
e 

S
ta

bi
lit

y 
sc

or
e

Short Med short Med long Long

−2
−1

0
1

2
N

uc
le

os
om

e 
S

ta
bi

lit
y 

sc
or

e

Short Med short Med long Long

−2
−1

0
1

2

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●
●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●
●
●

●

●●

●
●●
●●
●●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●●
●

●

●●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●

●●●

●

●
●

●

●
●●●

●

●

●

●

●

●●

●

●

●●

●
●●

●●

●●

●
●●

●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●●

●●

●

●●●
●
●
●

●●●

●
●

●

●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
TS

 e
ffi

ci
en

cy

Short Long

TFIT

+
Δ elong

+
Δ splice

+
Δ both TFIT

+
Δ elong

+
Δ splice

+
Δ bothD

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

1.55 1.57 1.59 1.61

0.9

1.1

1.3

Nucleosome Stability

E
lo

ng
at

io
n 

ra
te

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

E

y=12,301 - 7,040 x



31

associated with each gene using a novel software tool (Allison et al., 2013) to

analyze GRO-seq (Core et al., 2008) data. We used our previously characterized

GRO-seq dataset (Kaikkonen et al., 2013) in mouse macrophages (Fig. 2.6B), and

used an existing dataset of human MCF7 cells (Li et al., 2013) to measure how

far pol II activity extends. As cleavage and polyadenylation may occur prior to

termination of pol II activity, these measurements put an upper limit on the pre-

cleavage read-through distance and transcription unit.

Most genes showed pol II activity well beyond the annotated poly(A) site

(Fig. 2.6B) indicating median read-through distances in macrophages and MCF7

of 3.2 and 3.8 kb (equivalent to 68 and 76 sec), respectively (Fig. 2.6C). These

data suggest that transcriptional read-through may contribute but does not fully

account for the estimated delay in polyadenylation after traversing the poly(A)

site.

To investigate the effect of the 3’ delay T on CTS, we calculated the CTS ef-

ficiency of all human and mouse genes using the CTCS and CTCS+T models and a

splicing rate of 3.1 kb/splice (Fig. 2.6D). CTS efficiency was defined as the fraction

of transcripts in which all introns are removed prior to cleavage and polyadenyla-

tion (see Experimental Procedures), though some level of co-transcriptional splic-

ing may be occurring even for transcripts that are scored as incompletely spliced.

With no 3’ delay T, less than 50% of transcripts were predicted to be completely

spliced upon polyadenylation. Genes with many introns, especially short genes,

showed even lower CTS efficiency. With the 3’ delay equated to either the median

fitted delay time (+TFIT ), or to the time equivalent of GRO-seq-measured read-

through distances in individual genes (+TGRO ), resulted in an increase in CTS

efficiency. However, CTS efficiency remained dependent on gene length and the

number of introns, such that even these time delays are not sufficient to ensure

that all introns are spliced in short genes, especially those with many introns.
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2.3.3 Predicted CTS efficiency enhanced by selective Pol

II pausing at 3’ ends

Our model revealed that some genes’ structures predispose their transcripts

for inefficient CTS. However, if efficient CTS were selected for during the evolution

of complex genomes, we would expect to find compensatory signatures of other

CTS determinants. Indeed, we found that nucleosome stability of genes is markedly

higher in short genes than long genes in vertebrate genomes (Figs. 2.7A, 2.8A). This

trend could explain the finding that Pol II elongation rate is positively correlated

with gene length (Veloso et al., 2014). Furthermore, among short genes, those with

high numbers of introns had very high average nucleosome stability scores. No

similar compensatory signatures were observed for splice site scores (Fig. 2.8B),

which correlate with intron length and are universally stronger in last introns

(Figs. 2.3C, 2.8C). We examined nucleosome occupancy in K562 and GM12878

cells using the MNase-seq data. Within short genes, nucleosome density increased

with increasing numbers of introns (Fig. 2.7B).

We next tested whether we could find evidence of differential Pol II dynam-

ics in long and short genes by examining Pol II CTD SerineS2 phosphorylation

(PolS2) in K562 cells in the vicinity of poly(A) sites that were not within 1 kb of

any other genes’ starts or ends. In the 1kb upstream of the poly(A) site, PolS2 read

densities were higher for short genes than long genes (Fig. 2.7C) (though PolS2 read

densities also correlate with gene expression levels), and genes with more introns

have disproportionately high PolS2 densities. Furthermore, short genes generally

had prominent peaks of PolS2 signal after the poly(A) site (Fig. 2.7D), whereas

long genes had lower and broader peaks. These data indicate that differential reg-

ulation of Pol II elongation could be sufficient to confer high CTS efficiency to all

genes, regardless of gene structure.

To test this hypothesis we simulated all human genes (Fig. 2.7E) and mouse

genes (Fig. 2.8E) with our CTCS+TFIT model using variable elongation parame-

ters. Using experimentally determined elongation rates of long genes in K562 cells

(Veloso et al., 2014), we tested that elongation rates were negatively correlated
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Figure 2.9: Housekeeping genes have distinct CTS determinants. A: Splicing
completion in nuclear poly(A)-depleted RNA-seq is higher in housekeeping genes
(red) than other genes (black). Inset shows parameter fits to CTCS+TFIT. The
asterisks indicate statistical significance. B: Read-through in mouse genes as mea-
sured by GRO-seq. C,D: Acceptor scores (C) and exonic nucleosome stability
scores in the first 147 bps (D) in HK vs. non-HK genes based on human, mouse,
and chicken genome sequence. A gene was considered a housekeeping gene if it
shared the Gene Symbol of a human housekeeping gene: otherwise it was con-
sidered a non-housekeeping gene. E: Normalized PolS2 ChIP-seq signal at the
poly(A) site of HK and non-HK genes, for long and short genes.

with nucleosome stability (Fig. 2.8D), and we used this correlation to extrapolate

elongation rates for each gene based on the nucleosome stability scores shown in

Fig. 2.7A (see Experimental Procedures). Allowing for a variable elongation pa-

rameter (+ ∆elong) resulted in preferentially marked increases in CTS efficiency

for short genes with many introns (Fig. 2.7E). Next, we tested the effect of hav-

ing stronger splice sites in last introns (+ ∆splice). This change increased CTS

efficiency in most gene categories, but exacerbated the differences between genes

with many or few introns. When we took into account both variable elongation
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and splicing rates (+ ∆both), there was an increase in CTS efficiency across all

categories. These modeling results are consistent with a central role for elonga-

tion control in the regulation of CTS efficiency. Moreover, these data illustrate

the power of modeling to elucidate the combined contributions of several factors,

such as elongation, nucleosome stability, and splice site strength, for regulating

co-transcriptional splicing.

2.3.4 Distinct genomic features support CTS of

housekeeping genes

Since CTS efficiency depends on Pol II dynamics, we hypothesized that

differentially regulated gene groups would show distinct signatures of CTS. We

compared constitutively-expressed housekeeping (HK) genes with genes whose ex-

pression is more variable across cell types (non-HK; Chang et al., 2011). Nascent

RNA-seq revealed that HK genes have overall higher steady-state intron spliced

fraction Σ than non-HK genes, especially for introns close to the poly(A) site

(Fig. 2.9A). The CTCS+TFIT model, when fit to this data, predicts a significantly

longer post-poly(A) site delay for HK genes (equivalent to 7.3 kb) compared to

non-HK genes (3.8 kb). Interestingly, our mouse GRO-seq data, indicates that the

average read-through is longer in HK genes than non-HK genes (4.4 vs. 3.6 kb,

respectively: Fig. 2.9B).

Next we analyzed how the combination of other CTS determinants could

contribute to the higher CTS efficiency of HK genes. The model fit resulted in a

higher elongation/splicing ratio in HK genes: 3.5 kb per splice compared 3.0 kb per

splice in non-HK genes (Fig. 2.9A). Interestingly, introns throughout HK genes in

fact have stronger splice sites than non-HK gene introns (Fig. 2.9C): therefore the

elongation/splicing ratio in HK genes is consistent with a faster elongation rate

instead of a slower splicing rate. In support of this hypothesis, HK genes have on

average lower nucleosome stability than non-HK genes (Fig. 2.9D). This faster

elongation/splicing ratio implies that HK genes would have lower CTS efficiency

were it not for a longer post-poly(A) site delay time. As transcriptional read-

through measured by GRO-seq (4.4 kb) does not account for the expected delay
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(equivalent to 7.3 kb), we hypothesized that transcriptional pause sites may provide

additional time. Strikingly, in support of this hypothesis, HK genes have much

stronger PolS2 peaks downstream of their poly(A) sites in K562 cells than non-

HK genes (Fig. 2.9E).

2.4 Discussion

In this study we identified genetic structure and sequence features that se-

lectively affect kinetic parameters underlying CTS in vertebrate genomes, and used

these to construct and validate a scalable computational model of CTS for cohorts

of genes. We detected conserved genomic signatures of gene structure, splicing sig-

nals and nucleosome stability that correlate with genes’ inherent capacity to splice

efficiently. Moreover, while chromatin plays a major role in the regulation of gene

expression (Berger, 2002; Workman and Kingston, 1998), regulated genes appear

to have evolved to rely more on nucleosomal control of pol II elongation to achieve

high CTS efficiency than housekeeping genes, which contain more introns (Eisen-

berg and Levanon, 2003) but have higher splice site scores and exhibit longer Pol

II read-through. As nucleosome density is a component of the regulated chromatin

landscape, our observation suggests that splice patterns of non-HK genes are an

integral part of their gene expression regulation.

Model simulations of all human genes, based on average parameters deduced

from RNA-seq data, further suggest that many transcripts remain incompletely

spliced when Pol II reaches the poly(A) site (Fig. 2.6D). However, multiple lines

of evidence suggest that splicing may be completed subsequent to this event but

prior to transcript release. First, we showed that nascent RNA-seq data are most

consistent with an average interval of about one and a half minutes between tran-

scription of the poly(A) site and cleavage of the pre-mRNA (Fig. 2.6A). Second,

Pol II transcripts terminate well past the poly(A) site (Fig. 2.6C). Third, we find

increased PolS2 occupancy indicative of pausing at the 3’ end of shorter genes.

And fourth, several studies have shown that even cleaved and polyadenylated but

incompletely spliced mRNAs are retained on the chromatin (Bhatt et al., 2012;
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Brody et al., 2011; Pandya-Jones et al., 2013). The delay in transcript release could

result from the complex requirements of termination (Proudfoot, 2011), or perhaps

reflects a checkpoint that prevents release of pre-mRNA transcripts (Alexander et

al., 2010).

Even if the ultimate catalytic steps of splicing occur post-transcriptionally,

the recruitment and assembly of splicing complexes likely occur co-transcriptionally

(Brody et al., 2011; Pandya-Jones and Black, 2009; Tardiff et al., 2006; Wetterberg

et al., 1996), and are therefore subject to the kinetic considerations addressed here.

A detailed quantitative delineation of post-transcriptional events will re-

quire refinement of the current model so that the chemical reaction of splic-

ing is delineated starting with the recruitment of splicing factors (cf. Murugan

and Kreiman, 2012). Similarly, the quantitative impact on CTS of other mecha-

nisms such as splicing enhancers or suppressors and associated trans-acting factors

(Barash et al., 2010; Wang and Burge, 2008), the chromatin-mediated recruitment

of splicing factors, or alternative splicing may be studied by extending the current

model formulation. Including these additional mechanisms will likely improve the

predictive power of the model in addressing the control of individual rather than

cohorts of genes, and for diverse biological scenarios that determine the cellular

chromatin and splicing factor milieu. However, the present study supports the

view that kinetic characteristics determined by gene structure, sequence motifs,

and nucleosomes form an important basis for splicing control, even if control of

individual splice patterns may be critically regulated by gene- and intron-specific

mechanisms not yet considered in the current model.

2.5 Experimental Procedures

2.5.1 High-Throughput data used in this study

Encode RNA-seq in human cells lines generated from the Cold Spring Har-

bor Laboratories as well as and MNase-seq and ChIP-seq data generated by the

’SYDH’ group were downloaded from

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/ (ENCODE Project
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Consortium, 2011).

RNA-seq in mouse from Bhatt el. al (2012) used accession GSE32916

from the Gene Expression Omnibus. GRO-seq data in human and mouse were

from GSE45822 (GSM1115995 - GSM1115998) and GSE48759 (GSM1183906 -

GSM1183908 and GSM118391), respectively.

2.5.2 Data Mining

We used the Biostrings (versions 1.13.19) versions 1.13.19 packages in R

to download RefSeq gene sequences for hg19, and mm9 galGal4, dm3, and ce6.

Nucleosome stability was predicted from genomic sequence (Vaillant et al., 2007).

This algorithm calculates the relative free energy cost of bending a 73 base pair

segment of double-stranded DNA in one full loop. We calculated this measure for

the first 147 bp (corresponding to one nucleosome) of each exon in the genome,

and for the entire gene starting with the 2nd exon. Splice site strengths were

calculated by using a position weight matrix calculated from the intron sequences

of each genome. We then converted nucleosome stability scores and splice site

strength scores to Z scores. MNase-seq data for measuring nucleosome occupancy,

as well as Pol II ChIP and Pol S2 ChIP were downloaded from the ENCODE

project (ENCODE Project Consortium, 2011). We report the average number

of reads mapping to each region of interest. Genes analyzed with PolS2 ChIP-seq

were filtered to remove genes whose poly(A) sites were within 1kb of another gene’s

TSS or poly(A) site, and further filtered to include only genes expressed in the the

cytoplasmic fraction of K562 cells (via RNAseq). A published list of 2,064 human

housekeeping genes (Chang et al., 2011) was used to determine housekeeping genes

in vertebrates. All boxplots were generated in R using the boxplot function in

package ’graphics’.

2.5.3 Computational Modeling

We simulate the elongation of a single polymerase and the transformation

of its associated transcript. The probability that an intron has spliced by the time
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that transcription has terminated is a function of the time it takes to cleave and

polyadenylate the mRNA subsequent to the intron’s synthesis, and the kinetic rate

of splicing. Splicing can be modeled as a series of j sequential reactions (Schmidt

et al., 2011). By assuming that the time of each reaction is an independent,

exponentially distributed random variable with forward rate constant ks ∗ j, we

can model the probability of splicing at time t as a gamma-distributed random

variable with shape j and mean 1/ks. Thus the probability P t
i that an intron i has

spliced by time t is the cumulative distribution:

P t
i (j, ks) = σi(t, j, ks) =

1

Γ(j)

∫ jkst

0

xj−1e−xdx (2.1)

For a single-step reaction (j = 1), this equation simplifies to the exponential

distribution:

σi(t, 1, ks) = 1− e−kst

If we assume a constant elongation rate kE, the total elongation time Ti down-

stream of intron i is proportional to the distance Di from intron i to the poly(A)

site:

σi(Di/kE, 1, ks) = 1− e−Diks/kE

Splicing rate constants are reported in the manuscript as kE/(ks ∗ j).

2.5.4 Multi-intron Model

Each potential transcript for a gene with N introns and N + 1 exons can

be represented as a string S = [S1, S2, ... , SN ], Si ∈ {0, 1} , where Si = 1 if intron

i has been spliced out, and 0 if it is retained. Therefore the probability of each

transcript S is:

P (S) =
N∏
i=1

[σi(Ti, j, ks) ∗ I(Si = 1) + (1− σi(Ti, j, ks)) ∗ I(Si = 0)]

where I(x) is the indicator function. To predict the abundance of each

transcript at the end of CTS, we calculate P (S) for all possible transcripts: co-

transcriptional splicing efficiency was defined as the abundance of the transcript S
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whose introns have all been removed (all Si,= 1 ∀ i ∈ {1, 2, , N−1, N}). Therefore,

CTS efficiency can be computed simply as:

CTS efficiency =
N∏
i=1

1− e−Dik
j
s/kE

This is an O(n) operation and is therefore extremely fast, making this model

scalable to genes of any complexity.

2.5.5 Simulations

The model gene used for Fig. 2.2D consisted of four exons of 100bp sepa-

rated by introns of 1kb. Simulations were performed in R. To estimate gene-specific

elongation rates (Fig. 2.7E), we fit the elongation rate of 1,166 genes measured

in K562 cells in Veloso et al. (2014; their Table S1) as a linear regression of the

un-normalized nucleosome stability score of the 40kb regions over which Veloso et

al. measured elongation rates. We then used this function to deduce the average

elongation over the entire gene body (starting with the 2nd exon, where the sim-

ulations commence) of all genes in the human and mouse genomes, assigning each

gene a specific elongation rate. Perturbations of splice site strength were done

by increasing the rate constant of the last introns by two-fold compare to other

introns. To create a neutral effect on the overall rate of splicing, we adjusted the

rates to maintain the same average 1/ks:

Kb
fitted ∗ A = Kb

adjusted ∗ (A− 1) + 1/2 ∗Kb
adjusted

Kb
adjusted = Kb

fitted ∗
A

A− 1/2

where Kb = kb/splice = 1/ks and A = average introns per gene. Our dataset aver-

aged 8.70 introns per gene resulting in an adjustment factor of 1.06 (3.3 kb/splice

for non-last introns, 1.65 kb/splice for last introns).

2.5.6 Model fitting and RNA-seq analysis

Although we cannot directly measure σ, for each intron the splicing rate σ

determines the ’spliced fraction’ (Σ) of each intron, where Σ describes the proba-
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bility at steady-state that an intron is spliced out. We assume that the transcripts

measured are tethered to Pol II units distributed evenly along each gene. Under

this assumption, the probability that a given read is spliced is:

Σ(Di, ks) =

∫ Di

0

σi(x/kE, ks)

Di

dx

=
1

Di

∫ Di

0

1− e−xks/kEdx

= 1− 1− e−Diks/kE

Diks/kE

This model is referred to as the CTCS model. We further model an ad-

ditional time allowance by adding a constant distance D0, which relates to an

additional time my the relationship D0 = T0kE:

Σ0(Di, ks) = 1− 1− e−(Di+D0)ks/kE

(Di +D0)ks/kE

= 1− 1− e−ks(Di/kE+T0)

ks(Di/kE + T0)

This model is referred to as the CTCS+Tx model.

RNA-seq of non-polyadenylated nascent RNA captures both unspliced and

spliced nascent pre-mRNA transcripts (Tilgner et al., 2012), and can be used to

measure Σ. Counts of RNA-seq reads mapping to exon-exon junctions (count53)

and intron-exons junctions (count50 and count03) were determined using bam2ssj

(Pervouchine et al., 2013). We estimated the spliced fraction Σ of each intron as

follows:

Σ̂ =
Count53

Count53 + (Count50 + Count03)/2

Introns were omitted if any reads crossed their junctions but did not conform

to either the unspliced form or the constitutive splicing form. To ensure that we

were using the correct poly(A) sites in this analysis, we generated a ’cleavage ratio’

by aligning RNA-seq reads from the cytoplasmic fraction of the same cell type to

the poly(A) regions of genes of interest. Specifically, using bedtools (Quinlan and

Hall, 2010), we computed the number of reads overlapping by at least one base
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pair the regions defined by 100 bp upstream of the poly(A) site (’Up’) and 100

bp downstream of the poly(A) site (’Down’). The distribution of the ratio of ’Up’

reads to the sum of ’Up’ and ’Down’ reads is generally centered around 0.5 in

un-polyadenylated fractions, but for polyadenylated fractions is it equal to one for

most genes (data not shown). This indicates that most genes are cleaved at their

canonical poly(A) sites: nonetheless, for the splicing assays we discarded genes

that had a ratio of ’Up’ reads to ’Up’ + ’Down’ reads in the cytoplasmic fraction

of less than 0.95. To derive model parameters from the RNA-seq data we first

divided up all introns into 100, 1,000 or 3,000 equally populated bins based on

distance to poly(A) site. We then use the median Σ̂ of introns within the bin,

and the median distance to poly(A) site Di for fitting and plotting. We observed

that Σ̂ does not seem to reach a value of 1 (full splicing) for any groups of introns

(Fig. 2.1B, 2.6A, 2.4), so we employ a correction factor α and fit Σ̂ to the function

Σ̂ = αΣ0(Di, ks)

This gives us two parameters for CTCS (α and ks/kE) and three for CTCS+TFIT

(α, ks/kE, and D0). When fitting this model to HK genes separately from non-HK

genes (Fig 2.9A), in order to directly compare the other parameters we fixed to

the value (0.87) derived for the full genome. Allowing to vary freely has a min-

imal effect on the parameter values slightly, and the extra time allowance is still

significantly longer in HK genes (not shown). Curve fitting was performed in R

with the ’port’ algorithm of the ’nls’ package.

2.5.7 GRO-seq

Thioglycollate-elicited macrophages were isolated from 6-8 week-old BALBc

(Jackson Laboratories) female mice by peritoneal lavage 3-4 days following peri-

toneal injection of 2.5 ml thioglycollate. Cells were plated in RPMI medium 1640

and 10% fetal bovine serum, washed after adherence and again fed with fresh

medium. The cells were then treated with 100 ng/ml of Kdo2-Lipid A or medium

alone for 1 hour. Global run-on and library preparation for sequencing were done

as described (Core et al., 2008).
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GRO-seq reads of were mapped to the mouse (mm9) or human (hg19)

genomes using bowtie (Langmead et al., 2009). Reads were gathered into overlap-

ping segments and adjacent segments assembled into transcripts using Vespucci

(Allison et al., 2013), with the relative weight of the tag density set to 10000 and

weighted distance of 500. Transcripts with length ¿ 200 and RPKM greater than

1/log100 ∗ (length in bp − 200) were kept and overlapped with RefSeq genes for

analysis of transcription units (Fig. 2.6B). To reduce confounding signals, we

removed from the analysis genes where the GRO transcript ended within 1kb of

a different gene’s TSS, or if their average ’cleavage ratios’ (see above) were less

than 0.95 in the cytoplasmic fraction of mouse macrophages (Bhatt et al., 2012) or

K562 cells (Djebali et al., 2012), for the mouse and human analyses, respectively,

indicating that they were cleaved at their canonical poly(A) sites.

The contents of this chapter have been submitted for publication at a peer

review journal Cell Reports, as the manuscript Sequence Signatures and Poly-

merase Dynamics Favor Co-transcriptional Splicing Genome-wide”, with authors

Jeremy Davis-Turak, Karmel Allison, Maxim Shokhirev, Petr Ponomarenko, Lev

Tsimring, Christopher Glass, Tracy Johnson, and Alexander Hoffmann.
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3 A Model of Alternative

Splicing Implicates

Co-transcriptionally Kinetics as

Regulator Splicing Fidelity

3.1 Abstract

The human spliceosome, which catalyzes the removal of introns from pre-

messenger RNA, pairs exons together with remarkable fidelity. Given that splice

site motifs are notably promiscuous in the human genome, cis regulatory se-

quences, trans factors and kinetic considerations all play important roles in specific

splice-site selection. However, the combination of these factors must also encode

inherent flexibility in exon selection, since alternative splicing is a key contributor

to the diversification of the human proteome. Understanding the highly complex

‘splicing code’ requires mathematical modeling, but current models do not com-

bine kinetic considerations with cis or trans elements. We therefore implemented

a kinetic model of alternative splicing during elongation as a tool for studying

complex genomes and asking quantitative questions.
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3.2 Introduction

Chapter 2 focused on the timing of CTS and the gene and sequence struc-

tures that support CTS. In the current chapter we turn our attention to alternative

splicing. Alternative splicing occurs when at least two distinct pre-mRNA isoforms

arise from variable splicing of identical pre-mRNA sequences. The most commonly

studied form of alternative splicing, in which an exon is skipped in its entirety, is

referred to as exon skipping, and the skipped exon is called a cassette exon. If a

cassette exon is included, i.e. is not skipped, then the 5’ splice site of the intron

immediately upstream is joined to the 3’ splice site bordering the cassette exon,

and the 5’ splice site bordering the cassette exon is joined to the 3’ splice site of

the immediately downstream intron. However, if the 5’ splice site of the upstream

intron is joined with the 3’ splice site of the downstream intron, then the cassette

exon is not included in the mRNA, and its pre-mRNA sequence is thus part of the

lariat which is subsequently degraded .

Thousands of these cassette exons have been identified in the human genome

(Thanaraj et al., 2004; Modrek, 2001). Therefore it appears that the splicing ma-

chinery is quite flexible in its ability to skip exons. In fact, the exact mechanisms

of splice-site pairing is an open question. The splicing machinery faces an impres-

sive task of having to consistently remove introns that vary in size from the dozens

to millions of base pairs. Indeed ‘errors’ in splicing do occur in which an mRNA

is spliced in such a way that codes for a non-functional protein (Weischenfeldt

et al., 2012; Lewis et al., 2003). At least one molecular mechanism has evolved

to ‘clean up’ such nonsense transcripts, nonsense-mediated decay (NMD) (Losson

and Lacroute, 1979). Thus splicing is a somewhat noisy process and the kinetics of

binding the various spliceosome components plays a role in this noise. Therefore

alternative splicing can be modeled as a noisy process (Melamud and Moult, 2009;

Schmidt et al., 2011). However, the noise is not uniform (Melamud and Moult,

2009). Furthermore, the lack of exon skipping over the greater than 100,000 exons

in the human genome is quite striking, indicating that the noise level is low (Fox-

Walsh and Hertel, 2009).
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Despite the low level of splicing noise, alternative splicing is functionally

important (Matlin et al., 2005) and highly abundant (Pan et al., 2008; Wang et al.,

2008). Indeed, many alternative splicing events code for proteins that function

differently from the proteins encoded by the constitutively spliced isoforms. In

fact, in this manner the repertoire of approximately 20,000 human genes can be

expanded to over 100,000 functional proteins. This expansion is thought to be

one important factor in the evolution of complex organisms (another important

factor being regulation of those proteins): for example, the 1-mm long nematode

Caenorhabditis Elegans contains approximately 1,000 cells per individual, yet has

almost the same number of genes as humans. Yet, humans have vastly more

functional proteins than C. Elegans. Therefore it is critical to understand how the

genome contains instructions for alternative splicing but still maintains a low level

of splicing noise.

In many instances, specificity of alternative splicing is highly regulated.

Hundreds of proteins have been classified as RNA-binding proteins (RBP), and

many of these, including the SR protein family and the hnRNP family, are impor-

tant in cell-type specific alternative splicing (Huelga et al., 2012; Fu, 1995). These

proteins act by binding near or around splice site to either block the splice site or

induce the inclusion of a particular splice site, in a complex manner (Xue et al.,

2009). Many of these proteins bind to conserved sequences near the splice sites.

The existence of many RBPs, cis-sequences and variation in splice site sequences

all combine to produce a combinatorially complex ‘splicing code’. The deciphering

of the splicing code is a key goal in studying splicing, since we need to have a

quantitative understanding of the code if we wish to predict splicing outcomes in

a genome-wide fashion.

Computational efforts to unravel the splicing code used a machine learning

approach with hundreds of input parameters (Barash et al., 2010; Zhang et al.,

2010). These models are quite good at determining whether rates of individual

exon inclusion will increase or decrease in the presence of different cohorts of RBPs

(up to 70% accuracy). However, the models are limited in both the mechanistic

predictions, since the resulting parameters are not relatable to physical variables, as
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well as their application, by failing to consider of CTS kinetics. IOn the other hand,

several other models have examined CTS kinetics, but do not include alternative

splicing (Melamud and Moult, 2009; Schmidt et al., 2011; Aitken et al., 2011;

Murugan and Kreiman, 2012). Therefore, we created a model of co-transcriptional

alternative splicing.

In constructing this model, our goal was to generate quantitative predictions

about splicing outcomes based on gene structure and kinetic rates of competing

splicing reactions. Therefore, the scope of the model was tailored around coarser-

grained considerations than the cassette exon models (Barash et al., 2010; Zhang

et al., 2010), and thus offers a complementary approach. The model is intended

to be disseminated such that qualitative hypotheses can be turned into quantita-

tive predictions. In this chapter we describe the model and demonstrate its use

in understanding the constraints on intron definition in Drosophila and human

genomes.

3.3 Methods

3.3.1 Markov Chain

The model is represented as a Markov Chain (MC), and is always a directed

acyclic graph (DAG). The root node represents the premature transcript with all

introns present and all other nodes represent unique stages of splicing outcomes.

The absorbing states in the MC are all fully spliced products . For a gene with

N introns, there are N − 1 internal exons, and thus 2N−1 possible fully spliced

products, because each internal exon can either be included or excluded. The

edges connecting the nodes represent splicing reactions. Thus each node x can be

represented by an unordered series of splicing reactions that it has undergone.

3.3.2 Possible splicing reactions

Let R be an upper diagonal matrix entries of all the splicing reactions. Rij

represents a pairing of the 5’ splice site from intron i to the 3’ splice site of intron j:
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i ≤ j. A consitutive splicing reaction occurs is when i = j. There are N(N + 1)/2

splicing reactions possible. We denote the identity of each node by a tuple of entries

into R: e.g., a splicing intermediate in which intron 1 is constitutively spliced and

the donor of intron 2 has spliced to the acceptor of intron 3 is denoted x(1,1)(2,3).

Formally, the state space Ω of the MC X is the collection of states

xa(i1,j1),(i2,j2),...,(im,jm) :m ≤ N − 1,

ik ≤ jk ≤ N(N + 1)/2, ∀ k ∈ (1,m),

a ∈ (1, F ibonacci(2N + 1))

However, this is not the minimal Ω, as we further limit the state space using

biophysical constraints, i.e. rules for splicing.

3.3.3 Rules for splicing reactions

The MC is constructed by enumerating all possible sequences of splicing

reactions. Not all sequences are physically possible because a splice site can only

be used once; furthermore we dissallow any excision of exons that have already

been spliced (e.g. consitutive removal of intron 2 following by joining of Donor

1 to Acceptor 3 is not allowed). This latter rule provides for symmetry in the

splicing reaction rules.

An edge edge Rkl will depart from node x(i1,j1),(i2,j2),...,(im,jm) and arrive at

node x(i1,j1),(i2,j2),...,(im,jm),(k,l) if for each p ∈ (1,m), k ≤ l < ip or jp < k ≤ l.

3.3.4 Algorithm to build MC

The exhaustive sequences of allowed splicing reactions, and thus the nodes

of the MC, are built by an iterative algorithm by first considering cases with N = 1

and assembling all nodes before adding nodes allowed with N = 2, etc...

For N = 1, we start with the root node of the DAG. We then iterate through

all legitimate moves using a recursive strategy:

function Add moves (existing node, all new moves):
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For all new moves:

If new move is allowed by current node:

If node that would be created exists already:

Add and edge between nodes

Otherwise:

Create new node connected by edge

Run add moves(new node, all other moves):

3.3.5 Infinitesimal matrix Q

The MC is a collection of random variables in continuous time, and the

transitions between each state are associated with a kinetic rate constant. Each

splicing reaction may have a unique rate, and correspondingly the edge between two

nodes takes on the rate of the splicing reaction that it represents. The infinitesimal

matrix Q of a continuous-time MC of n nodes is an n ∗ n matrix where:

Qab =


ks if there is an edge a→ b and b 6= a

−
∑
c 6=a

Qac if b = a

0 otherwise

where ks is the kinetic rate of associated edge. We can then write the probablity

of moving between nodes as follows:

dP

dt
= Q ∗ P (t)

which has the solution:

P (t) = e−Qt

where P is an n∗n matrix and Pab(t) is the conditional probability of being in state

b after time t, given that we started in state a. To solve the matrix exponentiation,

we first decompose the matrix:

Q = V DV −1
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where D is a diagonal matrix where the diagonal entries are the eigenvalues and

all others are 0, and V are the eigenvectors of Q. This transformation results in a

solution that is faster to compute:

P (t) = VMV −1

Where M = e−Dt is a diagonal matrix with:

Mij =

e−Dijt if i = j

0 otherwise

Note that if the ith eigenvalue of Q is 0, then Mii = 1.

We shall later refer to the infinitesimal matrix of a MC of N introns as QN .

3.3.6 Simulating splicing

To simulate the splicing of a transcript, we require a vector β of starting

probabilities, such that

~Pβ(t) = βe−Qt

with βa is the probability of starting in state a, and ~P b
β(t) is the probability of

being in state b after time t given, β and Q.

Simulating post-transcriptional splicing (PTS) is equivalent to letting the

simulation run until t→∞. In this case, the solution can be found by setting all

diagonals of M that correspond to the non-zero eigenvalues of Q, to 0.

To simulate purely PTS, meaning that no CTS is allowed, we use the full

Q of N introns and the initial β0:

βij =

1 if i = 1

0 otherwise

To simulate CTS, the simulation is broken up into phases corresponding to

the time intervals during which certain subsets of splicing reactions are available.

The elongation rate and the distance between splicing elements determine the
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duration of each phase. For example after the first intron is transcribed, only

intron 1 can be spliced while RNAPol processes through the downstream region,

until intron 2 is transcribed. We shall denote this duration as T1.

Starting first with N = 1, we use the initial β0 = [10] and compute:

θ1 = ~Pβ0(T1) = β0e
−Q1T1

which simplifies to:

[
e−k1T1

1− e−k1T1

]
where k1 is the rate of constitutively splicing the first intron. Note that this solution

mirrors the CTCS model (Chapter 2).

Next the vector β1 is constructed from the results of simulating phase I:

β1 = [θ1
~0y2 ]

where ~0y2 is a vector of length y2 = rows(Q2) − rows(Q1). This vector is then

used to simulate phase II:

θ2 = ~Pβ1(T2) = β1e
−Q2T2

For a gene with N introns, this strategy is then iteratively followed until

we have computed θN , which is the vector of probabilities of each state after CTS.

Note that TN corresponds to the time it takes to elongate the final exon. Once

this CTS vector has been calculated, we simulate PTS as detailed above, starting

with β = θN , to obtain θcomplete, which gives us the probability of obtaining each

of the 2N−1 fully spliced isoforms. (θcomplete will be 0 for all transient states of

the matrix, which represent the intermediates containing one or more introns. We

obtain the following expression for θcomplete :

θcomplete =

[[[[β0 ∗ e−Q1T1 , ~0y2 ] ∗ e−Q2T2 , ~0y3 ]...~0yN ] ∗ e−QNTN ] ∗ e−QN∞
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3.3.7 Intron definition

DNA looping studies have demonstrated a log-linear relationship between

looping distance and free energy associated with looping (Saiz and Vilar, 2006).

Because calculating kinetic rates involves taking the exponential of a free energy

term, kinetic rates of DNA looping therefore are linearly related to distance. Simi-

larly, intron definition generally penalizes introns over 200 nt in length (Fox-Walsh

et al., 2005). To adapt this concept to looping of pre-mRNA undergoing splicing,

we also take into account the propensity of RNA to take on secondary structures

via base-pairing interactions by using the square root of distance as the penalty.

This formulation results in the following function for ks of an intron as a function

of its length dist, the default splicing rate k0s , and the 200-bp minimum:

ks(dist) = k0s ∗
(

200

max(dist, 200)

)1/2
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Figure 3.1: Model of co-transcriptional alternative splicing. A: Wiring diagram of
CTAS model for a 3-intron gene. Light grey boxes indicate first or last exons, and
colored boxes indicate internal exons. Black lines represent introns. The simulation
begins after the first intron is synthesized, and time interval T1 corresponds to the
time it takes to elongate the 2nd exon and intron (phase I). During T1, intron 1 may
splice with rate k1. Once T1 is complete, the second intron is now available, and
phase II begins (green lines separate the phases). The newly synthesized elements
are outlined in thick green lines in each phase. Constitutive and alternative splicing
reactions are represented by black and colored arrows, respectively. After phase II
is complete, all reactions may occur, and the simulation runs until all introns are
excised. The completely spliced products are highlighted with yellow boxes. B.
Table of Markov chain elements for genes with 1,2,3,7,8 or 9 introns. C. Example
outputs of a two-intron model. Splicing rates were all equalized and the duration
of T1 was set to 0 minutes (left), 0.1 minutes (right), or 1 minute (left). Black
percentages list the probability that the transcript is in various states at the end
of phase I (top) or phase II (bottom). Green percentages represent the probability
that the transcript is in the fully unspliced form at the beginning of phase II. The
blue percentages indicate the fraction of flux out of the fully unspliced transcript
that is directed towards the skipping isoform (in this example it is always 33%
because all ki values are equal).
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3.4 Results

3.4.1 co-transcriptional constitutive splicing model

We extend the concepts in our co-transcriptional constitutive splicing (CTCS)

model to implement the co-transcriptional alternative splicing (CTAS) model. We

employ single-step splicing reactions and allow all possibly pairings of Donor and

Acceptor sites of annotated introns (Fig. 3.1A), allowing any given internal exon

can either be skipped or included. Thus for a gene with N introns, there are 2N−1

isoforms possible in our model (Fig. 3.1B). To simulate the co-transcriptionality

of splicing, the simulation is broken up into temporal phases that correspond to

the orderly synthesis of the introns by Pol II. During the first phase, only the first

intron is allowed to splice (with kinetic rate constant k1). During the second phase,

both intron one and two (k2) may splice, or the donor of the first intron may pair

with the acceptor of the second intron (k3), thus skipping exon 2 and leading to an

alternative splicing outcome. During the final phase, all possible splicing reactions

are allowed, and the model records both the probability of expressing each iso-

form as well as the expected time to finish splicing after elongating the final exon.

The complexity of the model increases greatly as more introns are simulated (Fig.

3.1B), and thus we have implemented the model to handle up to 9 introns, which

covers more than 50% of the human genome. An examination of the simplest

CTAS model, a gene with two introns, reveals that CTS results in an increased

inclusion rate of the middle exon (Fig. 3.1C). Indeed this is a fundamental math-

ematical property of our model, that CTS always leads to higher splicing fidelity

(See Methods).
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Figure 3.2: Intron sizes in human and Drosophila genomes. A. Density scatter-
plot of the lengths of the flanking introns of each internal exon in the Drosophila
genome. Green, blue and red indicate low, medium and high density, respectively.
B. Density scatterplot of the lengths of flanking introns in the human genome.

3.4.2 Mechanisms of splicing fidelity

We next sought to use our model to examine splicing fidelity in Drosophila

and human genomes. Short introns splice significantly more effectively than longer

introns (Fox-Walsh et al., 2005): this effect is referred to as ‘intron definition’. Most

Drosophila genes contain very short introns (Fig. 3.2A), and splicing specificity is

largely achieved through intron definition (Fox-Walsh et al., 2005). In contrast,

human genes contain much longer introns in general (Fig. 3.2B), and splicing

specificity is most likely not achieved through intron definition (Fox-Walsh et al.,

2005), but rather exon definition. Using the CTAS model to simulate intron defini-

tion, we expected that including intron definition would result in higher predicted

splicing fidelity in Drosophila, but that it would have little effect in human.
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Figure 3.3: Simulations of splicing fidelity with the CTAS model. A: Simulations
of Drosophila genes with 2-6 introns. 100 genes were selected from each category.
Stacked bar plots of the average probabilities that the genes skipped 0,1,2,3,4
or 5 exons. The red downward bar is the average post-transcriptional time to
finish splicing for each condition. All genes were simulated either with PTS only,
or with CTS, using times derived from either an emperical splicing/elongation
rate (1X CTS ), or twice that CTS time (2X CTS ). Splicing rates were set to all
be equal, except when the intron definition distance penalty was used (Dist0.5 ).
B: Distributions of the five most abundance isoforms in the 6-intron genes, from
simulations in A. In each of the 100 genes, isoforms were ranked by abundance,
and then boxplots were computed for the most abdunant, second most abundant,
etc. C,D: Simulations of human genes with 2-6 introns (all conventions as in A,B,
respectively).
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We first simulated AS of a cohort of Drosophila and human genes, both

with and without CTS, assuming that all splicing reactions had the same kinetic

rate constant (Figs. 3.3A,C). Under this assumption, PTS-only resulted in the

expression of a wide variety of isoforms for each gene category, including many

isoforms that skip several exons (Figs. 3.3A,C: left plots). Additionally, the top-

expressed isoform of each 8-intron gene accounted for only 5% of the average

gene expression (Figs. 3.3B,D: left plots). However, when CTS is allowed, using

experimentally derived splicing rates (Fig. 2.4B), a much smaller cohort of isoforms

is expressed, and exon skipping is greatly reduced (Fig. 3.3A,C: “1X CTS”).

Interestingly, exon skipping was reduced more in human genes: accordingly, the

top expressed isoform in the 6-intron human genes now accounted for close to

50% of average gene expression, which corresponds quite closely with observed

trends (Gonzàlez-Porta et al., 2013), but the top expressed isoform in the 6-intron

Drosophila genes accounted for only 25% of average gene expression.

We next modeled intron definition by introducing a kinetic rate penalty

for long introns wherein the splicing rate constant varied proportionally to the

inverse of intron length (see Methods), and simulated our cohorts of genes again

(Fig. 3.3A,C: “Dist0.5”). Upon the introduction of intron definition, with PTS we

observe a moderate increase in splicing fidelity, as evidenced by less exon skipping.

We also observed that the expected time to finish splicing increased to 10 minutes

in Drosophila and 20 minutes in human. Both species show the top expressed

isoform accounting for 20% of the average gene expression in the 6-intron genes

(Figs. 3.3B,D). In both species, when CTS is combined with intron definition,

fidelity is higher than in the PTS plus intron definition condition. However, while

in Drosophila, adding intron definition to CTS seems to have an additive effect,

adding intron definition to the CTS condition actually resulted in less fidelity than

the CTS condition alone (Fig. 3.3C,D: “1X CTS” vs “1X CTS + Dist0.5”).
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3.5 Discussion

In this chapter, we described the CTAS model, which simulates alterna-

tive splicing during CTS. We demonstrated the model’s utility by examining the

landscape of splicing fidelity using naive assumptions in two genomes (Fig. 3.3).

Surprisingly, this work demonstrated that CTS results in a default mode of high

fidelity of splicing, and may explain aspects of the observed distribution of human

isoforms. Furthermore, we found that the human genome is more prone to CTS-

mediated splicing fidelity than the Drosophila genome, if there is no penalty for

splicing long introns. Since we used human parameters in both simulations, it is

possible that fitting splicing data from genome-wide data in Drosophila (Khodor

et al., 2011) could result in a faster splicing/elongation ratio, which would indicate

that Drosophila genes use a CTS-mediated fidelity mechanism similar to that of

humans.

Additionally, we are able to vary the kinetic parameters of splicing rate as a

function of intron length to simulate intron definition. Those simulations revealed

that both genomes could make use of intron definition: however, intron definition

was overall only advantageous for the Drosophila genome. Since most Drosophila

introns are very short, the vast majority of constitutive splicing reactions fell be-

low the 200 nt intron definition cutoff (Fig. 3.2A), but alternative splicing events

would much more often be penalized by being longer than 200 nt (see Methods).

Furthermore, adding this penalty for alternative reactions, on top of the moder-

ate CTS-mediated fidelity, resulted in an additive gain of splicing fidelity (Fig.

3.3A,B: “1X CTS” vs “1X CTS + Dist0.5”). However in the human genome, even

the constitutive splicing reactions were usually penalized since most introns are

significantly longer than 200 nt (Fig. 3.2B), thus reducing the amount of CTS

that occurs prior to the synthesis of the next, competing splice site (Fig. 3.3C,D:

“1X CTS” vs “1X CTS + Dist0.5”). Although our simulations used an intron def-

inition mechanism that has not yet been validated, and which could be incorrect,

this disparity in our simulations suggests that the human splicing machinery does

not have the same molecular mechanisms of intron definition as Drosophila, and
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our findings consistent with genome-wide data indicating that intron length is a far

weaker predictor of splicing fidelity in humans than it is in Drosophila (Fox-Walsh

et al., 2005).

In summary, the CTAS model is a useful new tool for examining alterna-

tive splicing. The model is highly scalable, as it can simulate genes with up to

10 exons. Additionally, genes with more than 10 exons could be simulated by

considering only the splice sites that display alternative splicing. Furthermore, the

model can be easily modified to simulate variable elongation rates, similar to the

CTCS model (Chapter 2). Similarly, this framework can incorporate additional

features not explored in this study, for example a variable splicing rate to simulate

the gene architecture-dependent noise in alternative splicing (Melamud and Moult,

2009). Future computational efforts should focus on developing fitting procedures

to derive kinetic rates from biological data, as well as integrating the kinetics of

CTS into models that attempt to predict inclusion rates (Barash et al., 2010).

The contents of this chapter are currently in preparation for submission to

a peer-review journal.
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4 Model of Co-transcriptional

Recruitment of Splicing Factors

4.1 Abstract

During the splicing of vertebrate genomes, the pairing of splice sites is often

defined by recognition of spliceosomal units across the exons, which are usually

under 200 nt, rather than across the introns, which are usually longer than 1,000 nt.

‘Exon definition’, as this phenomenon is referred to, can be crucial for the inclusion

of an alternatively spliced cassette exon. Therefore a quantitative description of

AS must take into account exon definition, and the recruitment or binding of

spliceosome components to the RNA. Here we implemented a mathematical model

of co-transcriptional AS that explicitly encodes dynamics at the 5’ and 3’ splice

sites. Using this model to simulate exon definition, we show that the recruitment

of the U2 snRNP, rather than the U1 snRNP, is likely to be the limiting step in

inclusion of a cassette exon.
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4.2 Introduction

In the previous chapter, we explored a model that focused on the combi-

natorial challenge of combining multiple exons to form a mature message. The

CTAS model confirmed that genes with short introns can best achieve high splic-

ing fidelity via intrinsic pairing of the 5’ and 3’ splice sites across the intron (intron

definition), and that genes with longer introns would not need to make use of this

mechanism. Because the vast majority of human genes fall into the latter cate-

gory, in this chapter we turn our attention to modeling the processes thought to

be involved in controlling the splicing of long introns in vertebrate genomes.

Splicing involves the binding of spliceosomal components on the 5’ and

3’ ends of an intron and the subsequent pairing of two splice sites, prior to the

catalytic splicing reactions that remove the intron from the pre-mRNA. For an

exon to be included in the mature mRNA, the splice sites bordering the exon must

be paired with more distal splice sites: but if those distal splice sites are instead

paired with each other, the exon will not be included in the mRNA. While exons

that are separated by short a intron ( < 200 nt) may be joined rapidly during intron

definition, splicing across a long intron is less favored (Sterner et al., 1996; Guo

et al., 1993; Talerico and Berget, 1994), presumably due to a large diffusion distance

that limits the chances of the two splice sites co-localizing. However, assembly of

the spliceosomes and splicing of such introns can be sped up by communication

across the exon of the 3’ splice site of one intron and the 5’ splice site of the

next intron, provided that the exon separating these introns is relatively short

(Robberson et al., 1990; Talerico and Berget, 1994). This phenomenon is known

as exon definition. If an exon is poorly ‘defined’, spliceosomes may not form at its

splice sites, resulting in the distal splices sites pairing, thus skipping and leading

to AS. Therefore, accurate removal of long introns separated by short exons relies

heavily on exon definition.

Since most vertebrate genes contain long introns and short exons (Hawkins,

1988), understanding how and when an exon is ‘defined’ is intrinsic to understand-

ing how AS is regulated. Interestingly, regulation of AS is largely accomplished
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by imposing constraints on exon definition. AS events are heavily regulated by a

large collection of RNA-binding proteins (RBPs), which usually bind to sequence-

specific regions surrounding the splices sites and influence the inclusion of internal

exons by promoting or inhibiting either the binding of spliceosome components to

the pre-mRNA, or the interaction of those components to form spliceosomal com-

plexes (Kan and Green, 1999; Zuo and Maniatis, 1996; Graveley et al., 2001). In

many cases, the RBPs have dual functions as inhibitors or repressors of inclusion,

depending on their binding location in relationship to the location of the splice

sites. For example, when polypyrimidine tract-binding protein PTB binds near

the splice site of a cassette exon, it often leads to exclusion of that exon, but when

it binds near the competing splice sites of the adjacent constitutive exons, it often

leads to inclusion of the alternative exon (Xue et al., 2009). These observations are

consistent with PTB inhibiting the formation of spliceosomes wherever it binds:

thus an exon with PTB bound nearby will have a delay in its definition, thereby

slowing down its splicing and giving competitive advantage to other splicing reac-

tions.

With much genome-wide data on the binding and functional regulatory ef-

fects of several RBPs now available (Witten and Ule, 2011; Huelga et al., 2012),

mathematical models are necessary to fully understand and predict quantitative

splicing phenotypes. In order to model the effect of RBPs activity on splicing out-

put in a meaningful way, any model formulation must consider interactions taking

place at different splice sites separately (Zhang et al., 2010). In addition, although

machine-learning based models are useful tools (Zhang et al., 2010; Barash et al.,

2010), models grounded in physical reality are necessary to extract biological in-

sights from large datasets. Here, we extend the formulation of our existing CTAS

model to include recruitment events at the 5’ and 3’ splice sites. The resulting

model of co-transcriptional recruitment and splicing (CTRS) allows us to simulate

exon definition. Additionally, this model provides a general framework for testing

other important CTS events including Pol II-mediated recruitment of splicing fac-

tors (Close et al., 2012; Misteli and Spector, 1999) and cryptic splicing (Sun and

Chasin, 2000; Roca et al., 2003).
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4.3 Methods

4.3.1 Additional recruitment reactions

This model simulates recruitment of spliceosome components at the 5’ and

3’ splice sites of each intron, in addition to the actual splicing reaction. Differences

between this model and the One-step splicing reaction model are:

• Temporal phases are split in two to reflect temporally separated synthesis of

the upstream (5’) and downstream (3’) splice sites

• Splice reactions between 5’ splice site s5 and 3’ splice site s3 can proceed only

if the spliceosome recruitment reactions have occurred at s5 and s3

4.3.2 Markov Chain

A similar DAG representation to model 1 is used. Nodes represent species

of pre-mRNA, and edges represent reactions connecting species. The root node

and absorbing nodes are the completely unreacted pre-mRNA, and fully spliced

mRNA isoforms, respectively.

Each of the 2N−1 fully spliced isoforms is represented by a subset Sf of

absorbing nodes. All such subsets Sk∀ k ∈ [1, 2, ..., 2N−1] are non-overlapping.

This interpretation is necessary because for each of n exons that was skipped in a

given isoform, there are 2 splice sites adjacent to that exon that were not used in

any splicing reaction, yet a recuitment event may have occurred at each of those

splice sites. Thus the subset Sk for isoform k that skips n exons contains 4n nodes.

4.3.3 Possible reactions

The same N(N+1)/2 splicing reactions as model 1 are possible. We denote

the identity of each node by a tuple of recruitment reactions states and entries into

R: e.g., a splicing intermediate in which intron 1 is constitutively spliced and the
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donor of intron 2 has spliced to the acceptor of intron 3, and the recruitment

reactions have not occurred at the unused splice sites, is denoted

xr51 ,r31 ,r52 ,r
−3
2 ,r−5

3 ,r33 ,(1,1)(2,3)

where r5j and r5j mean recruitment at the 5’ and 3’ splice sites of intron j have

occurred, and r−5j and r−4j mean they have not.

Formally, the state space Ω of the MC X is the collection of states

xa
rq

5

1 ,rq
3

1 ,...,rq
5

M ,rq
3

M ,(i1,j1),...,(im,jm)
:m ≤M ≤ N − 1,

ik ≤ jk ≤ N(N + 1)/2,∀ k ∈ (1,m),

a ∈ (1, F ibonacci(2N + 1))

where qpj = p ∗ i2+2I(spliceosome has been recruited to p’ splice site of intron j) and I is the iden-

tity function. The minimal Ω is obtained by employing the following constraints:

4.3.4 Rules for splicing reactions

Splice reactions between 5’ splice site s5 and 3’ splice site s3 can proceed

only if the spliceosome recruitment reactions have occurred at s5 and s3. Identically

to model 1, a splice site can only be used once, and we disallow any excision of

exons that have already been spliced.

4.3.5 Simulations of recruitment and splicing

All procedures are identical to model 1, except that more fine-grained time

windows are used. This modification requires us to have created two versions of

the infinitesimal matrix Q, per intron, instead of one. QN represents the full MC

of a gene with N introns, whereas Q5
N+1 represents the state space after having

transcribed the beginning of intron N + 1, such that the 5’ splice site is available

for recruitment, but not the 3’ splice site.
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Thus the simulations are run incrementally as before, with first Q5
1 simu-

lated with initial β0 = [10] and time T 5
1 (the time it takes to elongation the first

intron), then Q1 simulated for time T1 (the time it takes to elongate the 2nd exon)

with β resulting from the simulation of Q5
1, etc. We obtain the following expression

for θcomplete :

θcomplete =

[[[[β0 ∗ e−Q
5
1T

5
1 , ~0y31 ] ∗ e−Q1T1 , ~0y52 ]...~0y3N ] ∗ e−QNTN ] ∗ e−QN∞

where y31 = rows(Q1)− rows(Q5
1)

and y52 = rows(Q5
2)− rows(Q1)

θcomplete describes the probability of expression of each absorbing state of

the MC. Since in this version of the model, each fully spliced isoform can be

represented as a subset of states, the probability of expressing isoform k is

P (isoform k) =
∑
s=Sk

θcompletex
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4.4 Results
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Figure 4.1: Model of co-transcriptional recruitment and splicing]. A: Temporal
phases and location of spliceosome recruitment events in the 2-intron gene. B:
Wiring diagram of CTRS model for a 2-intron gene. During phase I, only recruit-
ment of the U1 snRNP to the 5’ splice site of intron 1 can occur (k1, green arrow).
During phase II, recruitment of the U2 snRNP to the 3’ splice site of intron 1 (k2,
orange arrows), as well as the excision of intron 1 from transcripts where both
U1 and U2 have been recruited (k3, black arrow), can additionally occur. During
phase III, recruitment of U1 to intron 2 is allowed (k4, green arrows on the right
hand side). Dotted reaction lines (k2*, k4*)indicate reactions that could be affected
by exon definition (see Main Text). During phase IV and the post-transcriptional
phase, the remainder of the reactions are available: recruitment of U2 to intron 2
(k5, orange arrows on the right hand side); excision of intron 2 (k7, dotted black
curved arrows); the alternative splicing reaction that removes exon 2 (k6, blue
arrows). Recruitment reactions in bold indicate those that occur proximal to Pol
II, and may be subject to Pol II-mediated regulation.
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Table 4.1: Markov chain elements in CTRS model for genes with 1,2 or 3 introns.

Introns fully
spliced
isoforms

distinct
splicing
reactions

distinct
recruit
reactions

nodes in
graph

edges in
graph

1 1 1 2 5 5
2 2 3 4 29 54
3 4 6 6 181 174

In order to faithfully recapitulate AS of vertebrate genomes, we extended

the scope of our previous model, which can simulate intron definition during CTAS

(Chapter 3). We implemented the CTRS model, which explicitly encodes the

recruitment of the U1 snRNP to the 5’ss and the U2 snRNP to the 3’ss (Fig. 4.1,

for a two-intron gene). In this model, the pairing and splicing of a donor and

acceptor can only occur when the recruitment events have already occurred. To

simulate this model co-transcriptionally, we now require twice as many temporal

phases as there are introns (Figs. 4.1A,B). During phase I, U1 can bind to the 5’ss

of intron 1 (k1). During phase II, U2 can bind to 3’ss of intron 1 (k2), and intron

1 can be excised (k3). During phase III, U1 can bind to the 5’ss of intron 2 (k4).

During phase IV, U2 can bind to 3’ss of intron 2 (k5), and intron 2 can be excised

(k7), or the AS reaction can occur (k6). The additional complexity of this model

results in even greater combinatorial computation necessary to simulate increasing

numbers of introns (Fig. 4.1).

4.4.1 U2 snRNP recruitment is limiting step in CTS

By adding the recruitment reactions, we now are able to simulate more

complicated phenomena. Pol II-mediated regulation of recruitment is simulated

by modulating the recruitment reaction rates during specific phases. For example,

during Phase II, the 3’ss of intron 1 is newly synthesized and is in close proximity

to Pol II. Therefore, k2 is a candidate for Pol II-mediated regulation (Fig. 4.1B).

All such candidates are indicated in Fig. 4.1B with bold arrows.
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Figure 4.2: Pol II-mediated recruitment. Example simulations of exon inclusion
with a CTRS model of a 2-intron gene with weak recruitment at the internal exon
(k2=k4=1/min) compared to the other splice sites (k1=k5=4/min). All splices
rates were fast (k2=k6= k7=10/min). A: Probability of inclusion of interior exon
as a function of changes to the 3’ss recruitment (k2, orange) or 5’ss recruitment (k4,
green). B: Probability of inclusion of interior exon as a function of Pol II-mediated
recruitment (dotted lines). Solid lines reproduce the results in the left panel.

We first simulated the inclusion of a cassette exon with 50% inclusion using

the CTRS model, with variable recruitment rates but with all splicing reactions

(k3, k6, k7) set equal to each other (Fig. 4.2). The recruitment rate of U2 to the

internal 3’ss had a much stronger effect on inclusion than did the rate of recruiting

U2 to the internal 5’ss (Fig. 4.2A). Allowing for Pol II-mediated recruitment

showed a similar trend (Fig. 4.2B), although stronger enhancements were required

to achieve similar effects on the inclusion rate.
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Figure 4.3: Cotranscriptional exon definition. Upper diagram in each panel
shows the relative strength of each recruitment event: larger size oval means faster
kinetic rate. Graphs demonstrate the probability of inclusion of interior exon as a
function of fold enhancement of recruitment during exon definition (dashed lines).
The orange line indicates the enhancement of k2 when U1 is already present at the
5’ of intron 2. The green line indicates the enhancement of k4 when U2 is already
present at the 3’ of intron 1. Dashed black line indicates the enhancement of
either snRNP when the other snRNP is present. A: U2 recruitment is faster than
U1 recruitment by default and independent of intron position. B: U2 recruitment
is faster than U1 recruitment by default and independent of intron position. C:
U2 recruitment is faster than U1 recruitment by default and middle exon has 10-
fold slower recruitment rates. D: U1 recruitment is faster than U2 recruitment by
default and middle exon has 10-fold slower recruitment rates.
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4.4.2 Exon definition

Exon definition, the phenomenon by which the 3’ss and 5’ss across short

exons are included together in the mature RNA, is modeled by cooperativity be-

tween the two binding events. In transcripts where one snRNP has been recruited

already, the binding rate of the other snRNP is increased (Fig. 4.1B, dashed green

and orange arrows). We initially tested exon definition in scenarios where either

the U1 recruitment was three-fold slower than the U2 recruitment rate (4.3A), or

vise-versa (4.3B). In each of these scenarios, we then allowed exon definition to

either enhance the U2 recruitment to the 3’ss when the U1 was present across the

exon, or enhance the U1 recruitment to the 5’ss when U2 was present across the

exon, or allowed both enhancements. When the U2 recruitment was fast, exon

inclusion started out quite high (93%), and enhancing either or both reactions in-

creased inclusion marginally, to about 95-96% (4.3A). When U1 was fast, inclusion

started out at 87%, and enhancing U2 recruitment could guarantee almost 100%

inclusion, but further increases to U1 recruitment had no effect in inclusion (4.3B).

We next tested scenarios where the internal exon’s recruitment rates were

10-fold lower than in Figs. 4.3 A and B (4.3C,D respectively). In both cases,

inclusion started at 33%. When U2 is faster than U1, enhancing either reaction

can induce a slight change in inclusion, and enhancing both raises inclusion to

almost 40% (Fig. 4.3C). However, when U1 is faster, further increases in U1

recruitment have no effect, but increasing recruitment of U2 leads to an inclusion

of up to 47% (Fig. 4.3D). These result indicates that U2 recruitment, to a greater

degree than U1 recruitment, is a limiting step in co-transcriptional exon definition.



76

0

5000

10000

15000

0.7

0.8

0.9

1

CTS only
Exon Definition

CTS only
Exon Definition

0

0.1

0.2

Equal rates
Weak cassette exon

Upstream intron length D
ow

ns
tre

am
 in

tro
n 

le
ng

th
 

0.7

0.8

0.9

1

Upstream intron length D
ow

ns
tre

am
 in

tro
n 

le
ng

th
 

0.3

0.5

0.7

0.9

Upstream intron length 

D
ow

ns
tre

am
 in

tro
n 

le
ng

th
 

0.7

0.8

0.9

1

Upstream intron length 

D
ow

ns
tre

am
 in

tro
n 

le
ng

th
 

0.3

0.5

0.7

0.9

Downstream intron length 

Downstream intron length 

Downstream intron length 

0.3

0.5

0.7

0.9

102 103 104 105 106

in
cl

us
io

n
in

cl
us

io
n

in
cl

us
io

n
in

cl
us

io
n

A

B

102 103 104 105

102 103 104 105102 103 104 105

10
2

10
3

10
4

10
5

102 103 104 105
10

2
10

3
10

4
10

5

102 103 104 105

10
2

10
3

10
4

10
5

102 103 104 105

10
2

10
3

10
4

10
5

C

D
iff

er
en

ce
in

 in
cl

us
io

n
in

te
rn

al
 e

xo
ns

Figure 4.4: The human genome is optimally tuned for exon definition. Inclusion
of a 200-bp middle exon was simulated during CTS with varying lengths of its
flanking introns. U1 recruitment was set to 3-fold faster than U2 recruitment.
A: The splice sites flanking the middle exon were equally as strong as the other
splice sites, analogous to Fig. 4.3B). B’: The splice sites flanking the middle exon
were 10-fold weaker than the other splice sites (analogous to Fig. 4.3D). (A,B left :
CTS, but not exon definition, was enabled. A,B middle: CTS and exon definition
were enabled, such that recruitment rates were 10-fold higher across the exon when
the other snRNP was present. A,B right : Comparison of inclusion rates with or
without exon definition, when the upstream intron is 1.5 kb. C: top: Difference
in inclusion of internal exon between exon definition scenario and normal CTS,
for the simulations with equal rates (solid line, from A) or with the internal splice
sites 10-fold weaker (dashed line, from B). bottom: histogram of intron lengths in
the human genome.

To test the propensity for human genome architecture to support exon
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definition, we created test cassette exons with varying lengths of flanking introns to

match the observed distribution of human introns (Fig. 3.2B), which span several

orders of magnitude, and simulated inclusion with or without exon definition (Fig.

4.4). Without exon definition, length of the upstream intron had little effect on

inclusion, but the length of the downstream exon was sufficient to tune the inclusion

within the range of 0.7 to 1 when the cassette exon had strong splice sites (Fig.

4.4A, left), or between 0.3 and 0.9 when the cassette exon had weak splice sites

(Fig. 4.4B, left). Additionally, the ranges of lengths over which these changes

occurred was slightly different for the two cassette exon types: for equal-strength

cassette exons, the largest increase occurred when the downstream intron was

between 100 and 10,000 nt, and inclusion saturated above that; for weak cassette

exons, the largest increase was between 1,000 and 30,000 nt, with saturation above

that.

With exon definition enabled, the inclusion rate was universally higher (Fig.

4.4A,B middle), with saturation occurring at shorter downstream intron lengths.

To better assess the relationship between exon definition and downstream introns

length, we compared the difference in inclusion between exon definition and CTS

for both strong and weak cassette exons to the distribution of intron lengths in

the human genome (Fig. 4.4C). The peak intron length is centered close to 1.5

kb (Fig. 4.4C, bottom). The peak effect of exon definition for strong cassette

exons is approximately 1kb, and the peak for weak cassette exons is around 10kb

(Fig. 4.4C, top). Our model therefore predicts that exon definition by cooperative

binding can be effective in increasing inclusion over much of the genomic range

of human genes. Furthermore, it suggests that weak cassette exons would benefit

most from exon inclusion if their downstream intron were larger than the average

intron.

4.5 Discussion

In this chapter we constructed the CTRS model of co-transcriptional spliceo-

some recruitment and intron splicing. This model encodes spliceosome recruitment
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reactions, which allows us to model Pol II-mediated recruitment and cooperativ-

ity in exon definition. Modeling exon definition enabled us to make mechanistic

predictions about AS in human genes, since most splicing events in human genes

are thought to be mediated by exon definition.

The CTRS model predicts that most human exons will be included at 12%

greater frequency than they would otherwise be included without exon definition,

and that weak cassette exons surrounded by long introns would be included at

up to 20% greater frequency. These changes are in line with changes in inclusion

associated with RBPs (Xue et al., 2009). Remarkably, alternatively spliced human

cassette exons tend to be flanked by long introns and have weak splice sites (Clark

and Thanaraj, 2002), and are predicted to be included by means of exon definition.

Thus, the model accurately predicted the biologically relevant conditions for which

exon definition has the most phenotypic importance.

Additionally, the model predicted that U2 recruitment would be rate lim-

iting, and U1 recruitment rate would be less important (re-word), regardless of

whether or not a particular splicing event relies on exon definition. Interestingly,

U1 is the most abundant snRNP () and does not require the existence of an intron

to be recruited to the transcription site (Brody et al., 2011). Therefore it is likely

that U1 is rapidly recruited to the nascent 5’ splice sites, and that U2 recruitment

is the limiting step in intron or exon definition, as predicted by the model. Indeed

one study found that kinetics of U1 were more rapid than other snRNPs (Hura-

nová et al., 2010). These predictions highlight the utility of the CTRS model as a

tool for studying AS.

The contents of this chapter are currently in preparation for submission to

a peer-review journal.
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5 Conclusions

5.1 Summary

In this Thesis I have developed three computational models to study various

aspects of pre-mRNA splicing. To supplement these theoretical experiments, I

took advantage of several published high-throughput datasets of genomic sequences

and gene architectures, RNA expression in several species, cell types and cellular

compartments, positioning of nucleosome positioning and Pol II signals.

In Chapter 2, the CTCS model served as a springboard to examine interde-

pendent patterns of gene structures, Pol II dynamics, and sequence signatures. Far

from being arranged randomly, gene architectures show several correlations: first,

last exons are long and last 3’ splice sites are strong; short genes, and those with

many introns, have a higher degree of nucleosome stability throughout their genes.

Therefore, genes appear to be under selective pressure to remove their introns co-

transcriptionally. These efforts were aided by published RNA-seq data. Although

others have used this dataset to statistically model the relationship between splic-

ing levels and distance to the end of the gene (Tilgner et al., 2012), our use of the

kinetic model to inform the statistical model construction was the first effort to

yield biological parameters from this line of research. Consequently, we were able

to adapt the model by incorporating a delay time in polyadenylation. Further, by

comparing model fits to RNA-seq data of HK and non-HK genes, we discovered

a distinction between the mechanisms these classes of genes use to enforce CTS,

and confirmed that genomic sequence signatures and Pol II dynamics upheld this

distinction.

In Chapter 3, we extended the kinetic model to study AS by encoding all
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possible splicing pairs among known exons. This modeling framework is the first

to model AS co-transcriptionally. This construction allows us to model AS as a

competition between splice sites. In this study we took a bottom-up approach

to explore mechanisms of splicing fidelity (including intron definition) and ask

quantitative questions about the impact of different splicing ’rules’ or ’codes’, which

may be encoded in gene structures. This approach confirmed that as previously

observed, intron definition cannot fully explain the high rates of splicing fidelity in

vertebrate genomes, but that CTS actually explains most of the observed fidelity.

Moreover, we also pinpointed the need for an even finer-grained model of exon

definition to fully characterize splicing in complex vertebrate genomes such as

human and mouse.

In Chapter 4, we explored the consequences of incorporating dynamics of

spliceosome assembly at the splice sites. This model allows us to test mechanistic

predictions of exon definition. In doing so, we found that the splice site dynamics

at the 3’ end of the intron was the limiting factor both in exon definition as well as

general CTS, which agrees with previous findings. Moreover, our model predicts

that human exons are well-suited for exon definition, and this is especially true

for those exons that have weak 3’ splice sites and long flanking introns - two

properties enriched in human cassette exons. Therefore our modeling framework

is well-placed to be used as a basis for studying AS in human genes. In addition

this approach overlaps nicely with existing machine-learning algorithms that take

advantage of cis- and trans- factors to model exon inclusion.

Several biological questions emerge from these investigations. First, it is

intruiging to speculate that there a checkpoint for complete splicing prior to release

of mRNAs from chromatin. Our data indicate that there is a time delay after

transcribing the poly(A) site, and an increased PolS2 pause in genes predicted

to be the least spliced. Interestingly, the spliceosome component U1 is already

implicated in regulation of Pol II termination (Berg et al., 2012). Moreover, U1

and U2 are released from splicing complexes after successful transesterification

reactions (Matera and Wang, 2014), but accumulate at transcription sites when

spliceosomes are prevented from assembling past the A complex, in which U1 and



83

U2 remain bound to the 5’ and 3’ splice sites, respectively (Huranová et al., 2010).

Consequently, the presence of these two snRNPs could in theory signal the presence

of unspliced introns.

Second, the results from the CTAS model indicate that when the rate of

CTS is high, the default mode of splicing is high-fidelity (exon inclusion); in con-

trast, if CTS rates are low - and therefore PTS is the dominant mode of splicing

- the default mode of splicing switches to low-fidelity (exon skipping;Fig. 3.3).

Therefore one would expect that in genomes operating mainly in a PTS context,

regulation by splicing factors will focus on activation i.e. exon inclusion, whereas

in a CTS context splicing factors may involve both activators and repressors. Ex-

ploring this hypothesis could shed light on the evolution of splicing.

5.2 Future directions

Some interesting experiments could be perfomed without changing the model

construction. In chapter 4 we briefly touched on the simulations of Pol II-mediated

recruitment of splicing factors. This concept could be expanded further to encode

the interaction of chromatin signals and splicing.

Future explorations should combine the insights from both AS models. For

example, one can use the CTRS model to obtain detailed kinetic information for

individual splicing events or cassette exons. Then, these data can be plugged into

the CTAS model to simulate the splicing of the entire gene. The CTRS model could

be especially useful in simulation cryptic splicing, the phenomenon in which a weak

splice site occasionally competes with a stronger splice site nearby, resulting in an

exon being longer or shorter than normal. This simulation could be performed by

specifying in the model with an intron of length 0, only one of whose splice sites

(either its 5’ or 3’ end) has a non-zero kinetic rate constant for recruitment; in

that case, the lone splice site could compete with the splice sites of other introns.

This situation is not all that different from cassette exon splicing, and our model

is unique in having the flexibility to simulate such a phenomenon.
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5.2.1 Extending the model formulation

At least two FRAP studies have reported diffusion rates and some dynamics

for various snRNPS (Huranová et al., 2010; Rino et al., 2007). If further exper-

iment can obtain rate constants for the binding and release of snRNPs to RNA

components, these rates could be incorporated into the model. Currently we use

irreversible reactions, but reversible reactions can be modeled tractably in this

framework, since incorporating them would not increase the size of the Q matrix

(Chapters 3 and 4). Adding the backwards reaction would result in slightly dif-

ferent overall dynamics: the current rate constants would be roughly equivalent

to the net forward rates in the reversible model, but the effects of competition

between reactions may be altered because the recruitment reactions would not be

permanent: thus e.g. a long delay might not result as much of an advantage for

an upstream splice site.

Another useful addition would be to employ cooperativity to model in-

tron definition (Robberson et al., 1990). This mechanism might be more biologi-

cally relevant than the looping hypothesis explored here (see Methods, Chapter 3):

furthermore it may predict different results vis-a-vis the timing of CTS for long

introns, and testing this prediction could distinguish which hypothesis is more ac-

curate. This extension would be straightfoward since it simply involves altering

the rates of certain recruitment events in the same manner that exon definition

was employed, and would therefore require one extra rate constant per intron.

The CTRS and CTAS models could both be used to test the hypothesis that

splicing fidelity increases as a function of number of introns in a gene (Melamud

and Moult, 2009). This could be accomplished by artificially increasing splicing

rates. However, a more appealing approach would be to explore whether we obtain

similar results without artificial perturbations. Alternatively, it may be necessary

to model the effect of splicing on Pol II elongation, for example by encoding a

splicing-induced pause.
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5.2.2 Statistical inference

In Chapter 2, our ability to fit a large RNA-seq dataset of nascent RNA

splicing levels to the steady-state predictions of the CTCS model enabled us to

confidently rule out one version of the model, as well as fit two parameters for a

different version. Ideally we would like to make similar inferences by fitting AS

data with either the CTRS or CTAS model. One challenge is that if we examine

known cassette exons, we expect the contribution from trans-acting factors to be

especially great. For example, our model predicts that if the cassette exon is

preceded by a short intron, its inclusion rate would be high: yet it’s possible that

an RBP could be bound specifically to the 3’ splice site of that intron, preventing

intron definition from taking place. Unfortunately, measuring only one variable

(exon inclusion) per AS event would prevent us from making strong inferences

about individual splicing events.

A potentially more viable approach would be to examine splicing levels of

induced genes with timecourse data, instead of steady-state splicing levels. By first

comparing unspliced to spliced intron amounts, one could estimate the net splicing

rate of an intron: this information may help differentiate between AS regulatory

regimes, e.g. fast (potentially intron definition or exon definition), or slow (pausing

between the last two exons).

5.2.3 Integrating with other models

The greatest advances in inferring splicing regulation will likely be from

models that combine the co-transcriptional kinetics explored here, with machine-

learning approaches that incorporate cis- and trans- elements specific to each

event (Barash et al., 2010; Zhang et al., 2010). In these approaches, briefly, all

input variables are fed into an algorithm that determines a weight for each vari-

able, the weighted variables are summed together, and the sum is transformed

into a probability between 0 and 1, via a sigmoid function (either logistic or gaus-

sian CDF). Such machine learning algorithms can be quite accurate at classifying

events. Yet, it is challenging both to interpret the value of the output parameters
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in terms of physical constants, and to test for interactions between parameters in

constructing the models in the first place. However, the CTS models presented

here provide a good foundation for building a model that parameters like intron

length and cis motifs.

One possibility is to use the variables from the other models (Barash et al.,

2010; Zhang et al., 2010) to predict kinetic rates. The CTRS model for a cassette

exon combines four recruitment parameters, three splicing rates and three time

intervals (i.e. average elongation rates): since the other models use information

about particular sequences, they are ideally suited to model the recruitment rates.

To vary the other parameters, elongation rates could be estimated from nucleo-

some information, and splicing rates could be inferred from the intron definition

paradigm. Moreover, nucleosome positioning and chromatin modifications could

be considered as input variables, and the recruitment rate variations in the CTRS

models would be an ideal integration point for this type of data.
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