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Root-associated microbiomes in the rhizosphere (rhizobiomes) are increasingly known to play an important role in nutrient acquisition, 
stress tolerance, and disease resistance of plants. However, it remains largely unclear to what extent these rhizobiomes contribute to trait 
variation for different genotypes and if their inclusion in the genomic selection protocol can enhance prediction accuracy. To address 
these questions, we developed a microbiome-enabled genomic selection method that incorporated host SNPs and amplicon sequence 
variants from plant rhizobiomes in a maize diversity panel under high and low nitrogen (N) field conditions. Our cross-validation results 
showed that the microbiome-enabled genomic selection model significantly outperformed the conventional genomic selection model 
for nearly all time-series traits related to plant growth and N responses, with an average relative improvement of 3.7%. The improvement 
was more pronounced under low N conditions (8.4–40.2% of relative improvement), consistent with the view that some beneficial mi
crobes can enhance N nutrient uptake, particularly in low N fields. However, our study could not definitively rule out the possibility 
that the observed improvement is partially due to the amplicon sequence variants being influenced by microenvironments. Using a 
high-dimensional mediation analysis method, our study has also identified microbial mediators that establish a link between plant 
genotype and phenotype. Some of the detected mediator microbes were previously reported to promote plant growth. The enhanced 
prediction accuracy of the microbiome-enabled genomic selection models, demonstrated in a single environment, serves as a proof-of- 
concept for the potential application of microbiome-enabled plant breeding for sustainable agriculture.
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Introduction
An increasing number of studies have suggested that plant- 
associated microbial communities, especially the microbial species 
colonizing in the plant roots, can stimulate plant growth (Saleem 
et al. 2019), enhance nutrient availability in soils (Zhu et al. 2016; 
Gomes et al. 2018), and decrease abiotic stress responses (Roquigny 
et al. 2017; Xu et al. 2018). Harnessing these beneficial microbes in 
crop production provides a promising opportunity for crop improve
ment to fight against climate challenges, reduce dependency on 
chemical fertilizers, and boost genetic gain. Indeed, from the begin
ning of plant domestication, rhizosphere microbes were reported to 
be involved in crop performance (Soldan et al. 2021). For example, 
studies have shown that domesticated plants exhibited distinct mi
crobial compositions as compared to the wild ancestors and showed 
a reduced ability to establish symbiotic relationships with beneficial 
microbes (Abdullaeva et al. 2021; Abdelfattah et al. 2022). Recent 
crop improvement further reduced the microbial diversity in a num
ber of different crop species, including wheat (Hetrick et al. 1992), 
maize (Sangabriel-Conde et al. 2014), and soybean (Kiers et al. 2007). 
Realizing the importance of microbiomes in contributing to crop pro
duction, recently, efforts have been made to screen for beneficial mi
crobes as potential seed additives to promote plant performance 

(Singer et al. 2021; Yee et al. 2021). Though promising results were 
found in controlled environments (Eida et al. 2017; Sessitsch et al. 
2019; Kaur et al. 2020), it is difficult for many microbial inoculants to 
survive for a long period of time under field conditions (Piromyou 
et al. 2011). Considering the collective genomes of microbial species 
colonized in plants as the secondary genome of a plant (Berendsen 
et al. 2012), a hologenome (i.e. plant genome with its associated endo
cellular or extracellular microbiome) approach to incorporate the nat
urally occurring genotype-specific microbiomes into the genomic 
selection (GS) protocol provides an alternative strategy to improve to
morrow’s crops.

GS, an innovative plant and animal breeding technology, enables 
the selection of promising individuals (and the associated heritable 
microbes) to advance to the next generation before or without phe
notyping, therefore reducing the generation interval and increasing 
the genetic gain per unit of time. After the initial introduction of the 
landmark GS research conducted by Meuwissen et al. (2001), animal 
and plant breeders embraced the unprecedented acceleration of GS 
with the development of statistical methods and computational 
tools (de Koning 2016), including genomic best linear unbiased pre
diction (G-BLUP), ridge regression best linear unbiased prediction 
(RR-BLUP), and the Bayesian regression models (BayesA, BayesB, 
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BayesCπ, Bayes least absolute shrinkage and selection operator 
[LASSO], etc.) (Gianola et al. 2009; Habier et al. 2011; Burgueño et al. 
2012; Wang et al. 2015, 2018; Krishnappa et al. 2021). The Bayesian 
regression models (with different assumptions for prior distribu
tions of marker effects) allow genome-wide markers to have differ
ent effects and variances and usually achieve high prediction 
accuracy (Wang et al. 2018). However, Bayesian regression models 
might be more sensitive to the number of QTLs as compared to 
the RR-BLUP and G-BLUP methods (Wang et al. 2015). In addition 
to these parametric methods, non-parametric methods, such as re
producing kernel Hilbert space (Gianola et al. 2006) and deep 
learning-based methods (Gianola et al. 2011), are likely to be more 
efficient for capturing non-additive genetic effects than convention
al methods, while there is no clear superiority in terms of prediction 
power (Montesinos-López et al. 2021). Albeit the rapid development 
of the GS methods in the past 20 years, little attention has been paid 
to incorporating host-associated microbiomes into the prediction 
protocols (but see a recent simulation study in dairy cattle; 
Pérez-Enciso et al. 2021).

For microbiome-enabled GS (MEGS) modeling, it is straightfor
ward to consider different microbes in a linear mixed model as 
the random variables, similar to the SNP markers used in conven
tional GS. However, unlike SNPs, microbiomes are dynamic and pro
foundly affected by soil microenvironments and root exudates, 
composed of organic acids, polysaccharides, and other metabolites 
(Canarini et al. 2019). These differentially recruited microbiomes by 
different genotypes may, in turn, impact soil physicochemical char
acteristics and nutrient bioavailability for plants, such as nitrogen 
(N) availability, ultimately regulating plant physiological processes 
and leading to phenotypic variation. In such a scenario, micro
biomes can be modeled as an intermediate process bridging the 
host genotype and phenotype. In human genetics studies, using 
Mendelian randomization analysis by treating the microbiome as 
an exposure, results revealed potential causal effects of the human 
gut microbiome on blood metabolites (Liu et al. 2022), ulcerative col
itis, rheumatoid arthritis (Kurilshikov et al. 2021), abdominal obesity 
(Xu et al. 2021), or even colorectal cancer (Ni et al. 2022). However, 
Mendelian randomization assumes that there is no other pathway 
through which the instrumental variables (i.e. host genotypes) af
fect the outcome (i.e. host phenotypes) other than the exposure it
self. Violation of this assumption can introduce bias (Hemani et al. 
2018). Similar to the concept of Mendelian randomization analysis 
but without the assumption that the effect is solely through the ex
posure, either directly or indirectly through the host genotypes, 
genome-wide mediation analysis enables the identification of sig
nificant intermediate mediators with large effects (Yang et al. 2022).

In this study, by leveraging the GS methods and our recently de
veloped mediation models, we conducted integrative analyses using 
our previously published datasets (Meier et al. 2022; Rodene et al. 
2022) collected on the maize diversity panel—a panel representing 
maize genetic diversity in temperate latitudes (Flint-Garcia et al. 
2005). The rhizosphere microbiomes were collected under high 
N (HN) and low N (LN) field conditions (Meier et al. 2022). From the 
same fields, phenotypic data were collected using an unmanned aer
ial vehicle (UAV) in a time-series manner (Rodene et al. 2022). In our 
MEGS analysis, a linear mixed model was used to predict maize 
phenotype by including both host genotype and rhizosphere micro
biome, where SNPs and amplicon sequence variants (ASVs) (from 
plant rhizobiomes) were treated as random effects with different 
variance components. Additionally, we modeled a presumed causal 
chain from host genotype to host-associated microbe to host pheno
type using our previously developed high-dimensional mediation 
analysis method (Yang et al. 2022). These methods serve as an initial 

trial to integrate genome and microbiome data, aiming to enhance 
prediction accuracy and identify beneficial microbes for use as 
seed additives in field conditions. Overall, our study highlights the 
potential of beneficial microbes in enhancing crop performance 
and emphasizes the importance of considering plant-microbe inter
actions in plant breeding.

Materials and methods
Microbiome and phenotype data in the maize 
diversity panel
The rhizosphere microbiome (or rhizobiome) data were obtained 
from our previously published study collected from a subset of the 
maize diversity panel (n = 230 genotypes) eight weeks after planting 
in both HN and LN field conditions in 2019 (Meier et al. 2022). The 
rhizobiome data included n = 3, 626 ASVs that can be clustered 
into 154 microbial groups. These microbial groups spanned 19 major 
classes of rhizosphere microbiota. In summary, the relative abun
dances of n = 3, 626 ASVs were collected for n = 795 observations.

Meanwhile, high throughput phenotyping data were collected 
from the same field in a time-series manner using UAV (Rodene 
et al. 2022). After image analysis at the plot level, a number of vege
tation indices (VIs) were obtained, some of which showed a high 
correlation with conventional agronomic traits, such as leaf N con
tent and 20-kernel weight. Of the eight VIs assessed, the Visible 
Atmospherically Resistant Index (VARI) showed the highest overall 
correlations with both leaf N content and 20-kernel weight; there
fore, we will use VARI as a representative trait for illustrating our 
theme. The environmental conditions under which VIs were col
lected varied, leading to differences in data quality. Here, we se
lected the data from 11, 21, and 35 days after rhizobiome data 
sampling, which shared similar high quality, for our analysis. 
More details of phenotypic data can be found in Rodene et al. (2022).

Genotypic data processing and linkage 
disequilibrium pruning
The genotypic data for maize HapMap V3.2.1 (with imputation, 
AGPv4) were obtained from the Panzea database (https://www. 
panzea.org/genotypes; Bukowski et al. 2017). Using the PLINK soft
ware (Purcell et al. 2007), we merged the variants on different chro
mosomes and retained the bi-allelic SNPs only. We then 
performed SNP filtration by discarding variants with the missing 
rate >0.3 across lines and a minor allele frequency <0.05, resulting 
in a subset of 22.5 million SNPs. Subsequently, linkage disequilib
rium (LD)-based SNP pruning was performed by calculating LD be
tween each pair of SNPs in the window of 10 kb, and one of a pair of 
SNPs was removed if the LD (R2) was greater than 0.1. We then 
shifted the window 10 bp forward and repeated the procedure, re
sulting in a final subset of 770k SNPs.

Linear mixed model for microbiome-enabled 
genomic prediction
We conducted the MEGS using the rrBLUP software (Endelman 
2011), where n = 50, 000 randomly selected SNPs and n = 3, 626 re
producible ASVs were included simultaneously (Meier et al. 2022). 
Below is the model used for genomic prediction with both maize 
SNPs and rhizobiome ASVs:

yijkuv = μ + fi + bj + spu + spbv +
􏽘n

l=1

αlgkl +
􏽘s

t=1

γtmijkt + ϵijk,

αl ∼iid N(0, σα
2) γt ∼iid N(0, σγ

2) ϵijk ∼iid N(0, σϵ
2), 
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where yijk is the observation of phenotype for the kth genotype in 

the jth block uth split plot and vth split plot block with the ith N 
treatment level, and there are 795 observations in total; μ is the 
intercept; fi is the fixed effect of the ith N treatment (i = 1, 2); 
bj is the fixed effect of the jth block ( j = 1, 2); spu is the fixed effect 

of the uth split plot (u = 1, 2, 3, 4); spbv is the fixed effect of the vth 
split plot block (v = 1, 2, 3); αl is the random coefficient of the lth 
SNP; gkl is the value of the lth SNP for kth genotype (l = 1, . . . , n, 
where n is the total number of SNPs); γt is the random coefficient 
of the tth ASV (t = 1, . . . , s, where s is the total number of ASVs); 
mijkt is the value (log relative abundance from 16S sequencing) of 

the tth ASV for kth genotype in jth block with the ith N level; 
and ϵijk is the residual error.

In the model, we assumed that the random coefficients of the 
lth SNP (αl), the tth ASV (γt), and the residual error (ϵ) are independ
ent variables following normal distributions with a mean of zero 
and estimated variances of σ2

α (i.e. σ2
α = 2.6 × 10−8 for VARI trait at 

11 days after rhizobiome sampling), σ2
γ (i.e. σ2

γ = 6.5 × 10−6 for 
VARI trait at 11 days after rhizobiome sampling), and σ2

ϵ , respect
ively. To estimate the marker effect variance σ2

α, we only fitted 
SNPs with random effects without ASVs in an RR-BLUP model. 
Similarly, to get an estimate for ASV effects variance σ2

γ , we only 
fitted ASVs with random effects with the first three principal com
ponents (PCs) of SNPs (fixed effects) to control for the genomic 
background effect in an RR-BLUP model.

Finally, we assessed the predictive accuracy through rando
mized five-fold cross-validation. During this process, we con
ducted randomization at the plot level and ensured that maize 
genotypes were distinct and non-overlapping between folds. 
And, to exclude that the possibility of just adding more variables 
will increase prediction accuracy, we also used shuffled micro
biome as control. We kept the rows of the microbiome matrix con
stant, with each row assigned a randomly non-repetitive sampled 
ID within the same N-treatment, either within or not within a 
quadrant.

Conventional GS model by considering ASVs 
as microenvironmental factors
We conducted the following analyses to account for the microen
vironmental effects on the rhizobiome. We fitted a conventional 
mixed linear model to obtain the BLUP value for each genotype 
by considering both with ASVs and without ASVs and conducted 
the analyses under HN and LN conditions separately.

yijkl = μ + gi + bj + spk + spbl + ϵijkl,

yijkl = μ + gi + bj + spk + spbl +
􏽘154

t=1

γtmijt + ϵijkl,

g ∼ MVN(0, Aσg
2) ϵijkl ∼iid N(0, σϵ

2), 

where yijkl is the observation of phenotype for ith genotype in 

jth block, kth split plot, and lth split plot block; μ is the intercept; 
gi is the ith genotype effect, i = 1, . . . , 230; A is the additive rela
tionship matrix calculated from SNPs using “A.mat” function 
from the rrBLUP package; bj is the jth block effect, j = 1, 2; spk is 

the kth split plot effect, k = 1, 2, 3, 4; spbl is the lth split plot block 
effect; γt is the random coefficient of the tth taxonomic group, 
t = 1, . . . , 154; mijt is the value of the tth taxonomic group for ith 

genotype in jth block; t = 1, . . . , 154; and ϵijkl is the residual error. 

We employed the randomized five-fold cross-validation to obtain 
the prediction accuracy.

Mediation analysis by considering microbes 
as intermediate variables
Mediation analysis introduces a type of variable called mediator 
to infer the underlying mechanism of the relationship between 
an independent variable and a dependent variable (Baron and 
Kenny 1986). Similar to our previous study (Zhang 2021; Yang 
et al. 2022), here we conducted genome-wide mediation analysis 
using SNPs as exposures, ASVs as microbe mediators, and the first 
three PCs with other experiment and treatment factors as con
founders. The mediation analysis consists of two models: the me
diator model and the outcome model. Specifically, the mediator 
model is shown as follows:

Mj = QAj + ZBj + ej, 

where Mj (a n × 1 vector) represents the abundance of the jth ASV; 

Q (a n × (s + f + b + u + v) matrix) is the design matrix for first s PCs 
of genotypes, f nitrogen treatments b blocks, u split plots, and 
v split plot blocks (s = 3, f = 2, b = 2, u = 4, v = 3 in our analysis); 
Aj (a (s + f + b + u + v) × 1 vector) is the coefficient of the first s 

PCs, f nitrogen treatments, b blocks, u split plots, and v split plot 
blocks to the jth ASV; Z (a n × q matrix) represents the SNP set of 
the population composed of n individuals with q number of 
SNPs; Bj (a q × 1 vector) is the coefficients of the q SNPs to the jth 

ASV ( j = 1, . . . , p); and ej is the vector of the residual errors with 

ej ∼ N(0, σ2
j In).

Additionally, we fitted the SNPs and the microbe mediators (i.e. 
ASVs) in the outcome model, which uses phenotype as the re
sponse variable, as shown below:

y = Qv + Za + Mc + e, 

where y (a n × 1 vector) represents the phenotype; Q (a n × (s + f + 
b + u + v) matrix) and Z (a n × q matrix) are the same matrices as 
the above mediator model; v (a (s + f + b + u + v) × 1 vector) is the 
coefficients of the first s PCs, f nitrogen treatments, b blocks, u split 
plots and v split plot blocks; a (a q × 1 vector) denotes the coeffi
cients of the SNPs to the phenotype; M (a n × p matrix) is the abun
dance of the ASVs (i.e. a matrix combines all the vectors of Mj);  

c (a p × 1 vector) is the coefficient of ASVs to the phenotype; e is 

the vector the residual errors with e ∼ N(0, σ2In).

Results
Rhizobiome incorporation into the GS model 
improves prediction accuracy for host phenotype
Tens of thousands of microbial species colonize plant roots, many 
of which are heritable (Peiffer et al. 2013; Meier et al. 2021). To as
sess if rhizosphere microbiomes (hereafter referred to as rhizo
biomes) could be leveraged to predict the plant phenotypic 
performance, we analyzed the composition of rhizobiomes quan
tified in a diversity panel of 230 maize inbred lines under HN and 
LN field conditions (Meier et al. 2022). Additionally, we obtained 
the image-extracted VI traits collected from the same field in 
2019 (Rodene et al. 2022). Since most of the VI traits exhibit high 
correlation (see Supplementary Fig. S1), we focused on one of 
the most representative VIs—VARI—collected on three dates, i.e. 
11, 21, and 35 days after microbiome sampling (DAMS) in the field. 
We fitted the host rhizobiomes (ASVs) at varying levels of reso
lution—3,626 ASVs, 154 taxonomic groups, and 19 classes—along 
with host genotypes (SNPs) as explanatory variables, by 
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incorporating them as random effects into a linear mixed model 
(see Materials and Methods). After conducting 20 randomized 
five-fold cross-validations, our results indicate that including 
ASVs in the model significantly enhances the GS prediction accur
acy compared to the traditional SNP-only model for all three time 
points when using either 3,626 ASVs (Fig. 1b) or 154 taxonomic 
groups (Fig. 1b). For the 19 classes (Fig. 1c), a slight increase in pre
diction accuracy was observed on Day 11 post-microbiome sam
pling, which was an anticipated result given the substantial 
decrease in microbiome resolution from 3,626 ASVs to 19 classes. 
Interestingly, the 154 taxonomic groups are as informative as the 
3,626 ASVs, particularly for the 35 DAMS. As the days post- 
microbiome sampling increased, we noted a decline in overall pre
diction accuracy, likely due to the decreased heritability of VARI 
traits as plants close to senescence. To verify that the improved 
prediction accuracy was not merely a consequence of a larger 
number of explanatory variables, we generated a comparable 
set of dummy variables by randomly shuffling the ASVs using dif
ferent shuffling strategies (see Materials and Methods). Results 
showed that the additional shuffled variables either did not sig
nificantly influence the prediction accuracy (Fig. 1) or improved 
prediction accuracy but less than the original variables 
(Supplementary Fig. S2, this shuffling strategy within the quad
rant is closer to original order). Compared to the conventional 
GS model utilizing only SNPs, the addition of ASVs resulted in ac
curacy improvements of 4.1%, 3.6%, and 3.4% at 11, 21, and 35 
DAMS, respectively (Fig. 1a). Even when measured against results 
from the randomly shuffled ASVs, an average improvement of 
3.7% was observed. Using 154 taxonomic groups, the resulting im
provement is similar or even slightly higher, with an average im
provement of 3.9% (Fig. 1b). Similar results were also observed 
for other image-extracted traits (see Supplementary Fig. S3).

Prediction improvement is predominantly 
observed under LN conditions
To investigate the impact of N treatment on MEGS results, we fitted 
the ASV-based model separately for HN and LN conditions. Under 

HN conditions, the model did not outperform the conventional 
SNP-only model (Fig. 2a). However, under LN conditions, significant 
improvements were observed on all three days (Fig. 2b). Specifically, 
prediction accuracy increased from 55.9% to 59.7% at 11 DAMS (6.8% 
improvement), from 52.3% to 56.7% at 21 DAMS (8.4% improve
ment), and from 24.1% to 33.8% at 35 DAMS (40.2% improvement). 
While the rhizobiome is likely influenced by microenvironment, to 
account for its effects, we fitted ASVs as environmental factors in a 
conventional GS model to obtain the BLUP values (see Materials 
and Methods). As shown in Supplementary Figure S4, considering 
ASV in BLUP calculation yielded consistent results with the MEGS 
model (except for the 11 DAMS under HN conditions), and the results 
were more substantial and statistically significant under LN condi
tions. These findings suggest that rhizobiomes are not entirely con
founded by microenvironments, as evidenced by the consistent 
experimental layout under both N conditions. To further test rhizo
biome’s effect on host phenotype prediction, we conducted a parallel 
analysis using four yield component traits (cob length, cob weight, 
cob width, and 20-kernel weight) collected from the same field 
(Palali Delen et al. 2023). MEGS results revealed significant improve
ments for two yield-related traits (cob length and cob weight) under 
HN and three traits (cob length, cob weight, and cob width) under LN 
conditions (Supplementary Fig. S5). Similar to VI traits, the enhance
ments for cob length and cob weight were more pronounced under 
LN than HN conditions (Supplementary Fig. S5).

Microbiomes exhibit more pronounced effects 
in the early DAMS
To better understand the impact of specific microbes on predic
tion, we evaluated the effect sizes of the ASVs and SNPs included 
in the prediction model (Fig. 3). As expected, the overall SNP effects 
remained largely consistent across different dates (Fig. 3b). In con
trast, the effects of ASVs diminished with the increasing interval 
between the initial microbiome sampling and the subsequent 
collection of plant phenotypes (Fig. 3a). The investigation into 
the relationship between the effect sizes of ASVs and their re
spective taxonomic groups revealed highly significant results 
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(Kruskal–Wallis test, P−value < 2.2 × 10−16) for both N conditions 
on all three days, suggesting a disproportionate enrichment of 
large effect ASVs within certain taxonomic groups. Notably, 
among the top 1% large effect ASVs (Supplementary Table S1), four 
ASVs from the taxonomic groups Massilia niabensis, Microbacterium 
testaceum, Pseudomonas parafulva, and Sphingomonas limnosediminicola 

consistently exhibited relatively large effects on VARI trait 
across all dates in both N conditions. Additionally, we identified 
one ASV belonging to P. parafulva that showed a consistently 
large effect under HN conditions and another ASV associated 
with Solirubrobacter that consistently showed a large effect un
der LN conditions.
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To identify shared features of ASVs with the largest effects, we 
compared the top 1% of ASVs against all other ASVs in terms of 
their heritability (the degree to which that ASV abundance is de
termined by host genetics as compared to the surrounding envir
onmental factors) and selection scores (the magnitude of effect of 
ASV to the phenotypic trait of interest), as calculated previously 
(Meier et al. 2022). The results showed that the top 1% ASVs 
were more heritable under LN field conditions (Wilcoxon rank 
sum test, P−values = 1.2 × 10−4, 0.0015, and 0.0071 for Day 11, 
21, and 35, respectively, under LN; P−values = 0.99, 0.15, and 
0.14 for Day 11, 21, and 35, respectively, under HN), and they 
had significantly higher selection scores under LN conditions on 
11 and 21 DAMS (Wilcoxon rank sum test, P−values = 0.0019, 
3.5 × 10−6, and 0.291 for Day 11, 21, and 35, respectively, under 
LN; P−values = 0.90, 0.12, and 0.62 for Day 11, 21, and 35, respect
ively, under HN) (Supplementary Fig. S6). These findings align 
with the observed enhancement in prediction accuracy in the 
LN field attributed to the rhizobiome and imply that plant hosts 
may possess a genetic mechanism that promotes the recruitment 
of specific microbes to alleviate LN stress.

Microbiome mediation analysis reveals promising 
microbial mediators
In order to establish a causal chain from plant genotype to micro
biome to plant phenotype, we sought to model ASVs as the inter
mediate mediators that are selectively recruited by different plant 
genotypes and have a significant effect on plant phenotype. 
Therefore, we supplemented the MEGS with our previously devel
oped genome-wide mediation analysis (Yang et al. 2022). This ap
proach (see Materials and Methods) enabled us to identify 17 
unique ASVs acting as mediators for eight VI traits 
(Supplementary Table S2), with 8/17 ASVs mediating the VARI 
trait. Notably, ASVs in taxonomy groups of Enterobacter, Massilia 
putida, P. parafulva, TM7a sp 2 were also the top 1% with the largest 
effect sizes in the MEGS model under both N conditions. 

Additionally, the same ASVs annotated as M. putida and P. paraful
va were also in the top 1% large effect ASVs.

To investigate the effects of M. putida and P. parafulva on plant 
phenotype, we performed Spearman’s rank correlation test to 
determine if there was a significant correlation between the 
abundance of ASVs and the VARI phenotype. For M. putida 
(Fig. 4a), under HN conditions, we found barely negative correla
tions on 11 (r = −0.10, P−value = 0.044), 21 (r = −0.048, 
P−value = 0.34), and 35 (r = −0.014, P−value = 0.78) days. Under 
LN conditions, results showed significantly larger and positive 
correlations on days 11 (r = 0.17, P−value = 9.7 × 10−4) and 21 
(r = 0.17, P−value = 3.4 × 10−4), yet the correlation on 35 DAMS 
was insignificant (r = 0.015, P−value = 0.78). These results are con
sistent with the previous finding that M. putida promotes plant 
growth under LN conditions (Yu et al. 2021). In terms of P. parafulva 
(Fig. 4b), an opposite trend was observed. There were larger 
and more significant correlations under HN conditions: Day 
11 (r = 0.079, P−value = 0.11), 21 (r = 0.058, P−value = 0.25), and 
35 (r = 0.13, P−value = 0.0083) than LN conditions: Day 11 
(r = −0.063, P−value = 0.21), 21 (r = −0.046, P−value = 0.37), and 
35 (r = 0.054, P−value = 0.29), aligning with the fact that P. parafulva 
was top 1% ASVs under HN conditions.

Discussion
In this study, we developed a MEGS method and provided empirical 
evidence, albeit from only one location, that incorporating micro
biome data led to a significant increase (about 4%) in prediction 
accuracy for most traits extracted from UAV images across different 
dates. We acknowledged that there might be correlations between 
SNPs (host genome) and ASVs (microbiome) or microenvironments 
and ASVs, leading to multicollinearity, but this will not affect 
the screen for beneficial ASVs as seed additives for improving 
crop production. Besides, the spatial and temporal stability of 
the microbiome affects the efficacy of prediction models 
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(Pérez-Enciso et al. 2021). Several studies suggest that the micro
biome residing in the roots undergo alterations throughout the life
span of an individual plant (Mougel et al. 2006; Houlden et al. 2008; 
Yu et al. 2012; Chaparro et al. 2014). However, research has also in
dicated that the microbiome could potentially reach a relatively 
stable condition after the initial two weeks of growth (Ibekwe and 
Grieve 2004; Edwards et al. 2015; Aleklett et al. 2022). 
Consequently, to enhance the accuracy of predictions, incorporat
ing microbial data collected during a pre-determined stable stage 
would be recommended. This preference for stable stage signifi
cantly restricts the application of microbiome in prediction within 
breeding programs when compared to genomic data, which re
mains unchanged (Pérez-Enciso et al. 2021). Nonetheless, significant 
potential applications remain, given the observed increase in pre
diction accuracy (about 4% on average) after incorporating micro
biome data into prediction models. This improvement is 
noteworthy when compared to the approximately 1% yearly genetic 
gain achieved using traditional breeding approaches. As the cost of 
obtaining ASV data through 16S rRNA sequencing decreases with 
advances in sequencing technology, MEGS offers an unprecedented 
opportunity to predict complex traits, such as N or water usage ef
ficiency, by including ASVs as additional explanatory variables.

We analyzed prediction accuracy separately under HN and LN 
conditions and found that microbiome data were more beneficial 
under the latter (improvement can be up to 40% under N deficit field 
conditions). This observation is consistent with the idea that the 
symbiotic relationship between plants and their associated micro
biomes has evolved over a long history of coexistence. However, 
recent changes in farming practices, especially modern crop produc
tion under N-sufficient field conditions with inorganic N fertilizer, 
may have a homogenizing effect on the root-associated microbiome 
and reduce plants’ reliance on rhizosphere microbial species for as
sistance in N uptake. This change is reflected in our results, where 
microbiome data were not as strong predictors under HN conditions 
compared to LN conditions. It suggests that plants may selectively 
recruit specific microbes to enhance nutrient absorption when soil 
N levels are insufficient. However, bulk soil data were not collected; 
therefore, a comparison of the homogeneity between the HN and LN 
fields cannot be conducted in this study.

Our mediation analysis, which considered the microbes as inter
mediaries between plant genotype and plant phenotype, pin
pointed several microbe mediators. Among these, two mediator 
microbes, namely M. putida and P. parafulva, played crucial roles in 
predicting the plant phenotype in the MEGS analysis. Notably, 
M. putida was enriched in the rhizosphere and is thought to enhance 
plant growth and N uptake by inducing lateral root formation under 
LN conditions (Yu et al. 2021). And, P. parafulva have previously been 
reported to promote plant growth (Preston 2004; Oteino et al. 2015). 
We also detected several other large effect ASVs, such as Bacillus fu
marioli, some of which have been linked to plant development 
(Kumar et al. 2012). Other top 1% large effect ASVs in the prediction 
model, like strains belonging to Bacillus which were only detected on 
certain dates, may also be important candidates for seed additives. 
However, further phenotypic and functional validation of these 
identified microbe mediators and large effect microbes is necessary 
to reveal their effects on the host plants.

Due to computational constraints, we randomly sampled a sub
set of SNPs in low LD across the whole genome to fit the MEGS mod
els. To determine the influence of SNP size on prediction accuracy, 
we performed a sensitivity test and found no significant difference 
in prediction accuracy when random sampling 10k, 25k, and 50k 
SNPs out of the 770k low LD SNPs. The prediction accuracy was rea
sonably high, ranging from 52.1–76.4% for both SNP-only and 

SNP-ASV models across different dates (Supplementary Fig. S7). 
To maintain high fidelity under the current computation resource, 
we chose 50k SNPs for all traits and dates in the study. However, 
the use of more computationally efficient methods is necessary 
to handle larger SNP datasets in the future. Although the present 
study was able to achieve reasonable prediction accuracy with a 
limited set of SNPs and the whole set of ASVs, the use of more com
prehensive datasets with more host diversity, more environmental 
conditions, and enhanced microbiome sampling would undoubt
edly improve the accuracy of the MEGS models.

There are several caveats to microbiome-enabled prediction. 
One limitation is the transferability of models, as microbiomes col
lected in one environment at a particular plant developmental 
stage may differ significantly from other microbiome datasets. In 
fact, our previous study has demonstrated that collection date, 
crop rotation, and N treatment all exert significant effects on mi
crobiome composition (Meier et al. 2021). In the current dataset, 
our microbiome data were collected within a three-day window 
at a single location. In the analysis, we controlled for microenviron
ment effects using the experimental design factors and also com
pared models with and without including ASV in calculating 
BLUP values. From the results, we could not determine whether 
the rhizobiome is simply associated with the microenvironment 
or actively recruited by the host genotype. Nevertheless, under 
both scenarios, incorporating root-associated microbiome data 
consistently improved prediction accuracy, especially under LN 
field conditions. Another foreseeable caveat is the method imple
mentation. One of the most significant advantages of GS is the abil
ity to predict phenotypes without planting, but microbiome data 
have to be collected from plant roots, which limits the extent to 
which predictions can be made before observations. While it may 
not scale up the breeding process as effectively as SNP-based GS, 
it still offers valuable applications, i.e. making crossing decisions 
before observing the phenotypes. Despite these limitations, the 
proof-of-concept of this study positions MEGS as a possible alterna
tive for sustainable crop improvement. Our results suggest that mi
crobial effects are substantial when considered close to the date of 
collection, but these effects diminish over time. To successfully im
plement this approach in a breeding program, meticulously de
signed experiments are essential for in-field microbiome data 
collection. This is crucial to mitigate microenvironmental effects 
and ensure uniform data collection within a specified timeframe. 
In addition to root-associated microbiome data, collecting the mi
crobiome in bulk soil, along with other environmental factors such 
as soil type, temperature, and precipitation, is important.

Data availability
The data and code used for the analyses can be accessed 
through GitHub (https://github.com/ZhikaiYang/GP_microbiome).

Supplemental material is available at G3 online.
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