
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Sample Reweighting Using Exponentiated Gradient Updates for Robust Training Under
Label noise and Beyond

Permalink
https://escholarship.org/uc/item/181562qw

Author
Majidi, Negin

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/181562qw
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

SAMPLE REWEIGHTING USING EXPONENTIATED
GRADIENT UPDATES FOR ROBUST TRAINING UNDER

LABEL NOISE AND BEYOND

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Negin Majidi

September 2021

The Thesis of Negin Majidi
is approved:

Professor Roberto Manduchi, Chair

Professor Luca de Alfaro

Dr. David Harrison

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Negin Majidi

2021

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Dedication viii

Acknowledgments ix

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 3

2 Previous Work 5

3 Loss Minimization 8
3.1 Common Loss Functions . 12
3.2 Regression Loss Functions . 13

3.2.1 Squared Loss . 13
3.2.2 Mean Absolute Error . 14
3.2.3 Root Mean Squared Error . 14

3.3 Classification Loss Functions . 14
3.3.1 Hinge Loss . 15
3.3.2 Relative Entropy / Kullback-Leibler Divergence 15
3.3.3 Bi-tempered Loss . 16
3.3.4 Focal Loss . 17

3.4 Sample Weight Assignment . 18
3.4.1 Weights Update . 19

4 EG Updates 21
4.1 Motivation . 21

iii

4.2 Derivation . 22

5 Sample Pruning Using EG 24
5.1 Mini-batch Setting . 24
5.2 Regularized updates . 25
5.3 Capped updates for PCA . 27
5.4 Capturing Noisy Examples in Model Training 28

5.4.1 When to Apply the EG Updates? 29
5.4.2 When is the Noise Reflected in the Training Loss? 30

6 Experiments 34
6.0.1 Noisy PCA . 34
6.0.2 Noisy Imagenet Classification . 37

7 Conclusion 41

8 Contribution 43

A Hyperparameter Tuning 46
A.1 Noisy PCA Experiments . 46
A.2 Noisy Imagenet Experiments . 48

Bibliography 50

iv

List of Figures

5.1 Fashion MNIST Classification – Label noise : (a) The model over-
fits to noisy examples after ∼ 15 epochs. (b) noisy examples incur rel-
atively larger training loss values compared to the clean examples. (c)
EG Reweighting successfully captures the noise and improves generaliza-
tion. (d) A normalized subset of 20 weights shows how clean but hard to
classify examples recover later on via the EG regularization. [57] 31

5.2 Fashion MNIST Classification – Blur noise: (a) The (clean) train
and test accuracy does not reveal any major overfitting. (b) Average
training loss values for the clean and noisy examples are roughly the
same. (c) We apply EG Reweighting on a pseudo-loss, consisting of the
negative variance of the Laplacian operator [11] applied to each image.
EG Reweighting successfully improves the performance. (d) A normalized
subset of 20 weights which indicates the progression of the weights for
clean and noisy examples. [57] . 32

6.1 Noisy PCA with EG Reweighting: (a) A subset of noisy images
from AT&T dataset with increasing levels of Gaussian noise power σ (i.e.
L2-norm of the additive noise component) along with their corresponding
weights w assigned by the EG Reweighting approach. (b) Weights of the
examples vs. the noise power. [57] . 38

v

List of Tables

6.1 Results on the noisy PCA problems: (Regularized) EG Reweighting
outperforms the state-of-the-art robust PCA methods in all cases. [57] . 37

6.2 Results on the noisy Imagenet classification problems: EG Reweight-
ing consistently outperforms other methods. For the case of label noise,
näively combining EG Reweighting with bi-tempered loss using the best
performing hyperparameters for each case improves the performance fur-
ther. [57] . 40

vi

Abstract

Sample Reweighting Using Exponentiated Gradient Updates for Robust

Training Under Label noise and Beyond

by

Negin Majidi

Learning tasks in machine learning usually involve taking a gradient step to-

wards minimizing an objective. Most of the time, the objective is the average loss of

the training batch. In many cases, the dataset is noisy, so treating the examples equally

during the training can cause overfitting to the noise in the data and poor generalization.

Noisy examples generally incur a larger loss in comparison to clean examples. Inspired

by the expert setting in online learning, we propose an algorithm for learning from noisy

examples. We take each example as an expert and maintain a probability distribution

over all examples as their weights. We update the parameters of the model using gra-

dient descent and example weights using exponentiated gradients, alternatingly. Unlike

other methods, our method handles a general class of loss functions and noise types.

Our experiments show that our approach outperforms the existing baseline methods in

supervised settings such as classification problems and unsupervised settings such as

principle component analysis.

vii

To my parents,

who taught me to always strive to be the best.

viii

Acknowledgments

Foremost, I would like to express my deepest appreciation to my thesis advisor,

Prof. Manfred Warmuth, for his immense knowledge, expertise, and support. It was

a great honor for me to have him as my advisor. I also wish to express my sincere

gratitude to my co-advisor, Dr. Ehsan Amid, without whom completing this study could

have never been possible. His knowledge and guidance were always a great assistance

throughout my research work.

Besides my advisor and co-advisor, I would like to thank my thesis committee,

Prof. Roberto Manduchi, Prof. Luca de Alfaro, and Dr. David Harrison. Thank you

for taking the time to read my thesis, and I appreciate your insightful comments which

helping me strengthen my thesis.

I want to thank my friends: Amirata, for being a consistent source of support

and professional advice who kindly shared his experiences with me; my high school

friends, Sahar and Parisa, for their endless and unconditional love and motivation; and

many other fantastic friends.

Last but not least, I am thankful to my family. My parents, Jamal Majidi,

and Tahereh Aliabadi, for their sacrifice, encouragement, and love throughout my entire

life; and my sister, Nazanin Majidi, for being the best source of joy and hope in my life.

ix

Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) [2] models have shown to be powerful in learning the

signal in data in many learning tasks such as classification, regression, etc. Due to the

recent advancement of deep neural network architectures [29] and the availability of

abundant data, the last decade has observed remarkable progress in fileds like computer

vision [35, 39], natural language processing [17, 63], and speech recognition [98, 60] and

their applications in healthcare [20, 21] and finance [18, 37]. The majority of this success

can be attributed to supervised learning, typically leveraging a significant number of

labeled training examples. However, the occurrence of noisy samples in datasets can

significantly impact learning any meaningful information from data. One source of

noise may be the sampled data itself which can happen due to the noisy nature of data

gathering process (e.g. blurred images in satellite imagery [10]). The other common

1

source is having noisy labels which happens due to human annotation error [19] or

the intrinsic difficulty of the task [55]. Many experiments have shown that corrupted

data dramatically leads to poor prediction results [1, 24]. For instance, although deep

neural networks show an overall robustness against label noise in classification tasks [65],

they tend to overfit to noise, which negatively impacts the model’s performance for

generalization [53]. Trying to solve this problem by focusing on gathering clean datasets

is not always possible for several reasons, such as difficulty in labeling data correctly even

for the experts [55], the expensiveness of the annotating process [71], or the disagreement

among labelers with unknown levels of expertise [93]. Therefore, it is essential to account

for the presence of sample or label noise and find methods to reduce their deleterious

effects on ML models.

Importance reweighting is one of the popular methods to address the noisy

data problem [12], which will be the main focus of this thesis. The idea is that noisy

examples are more difficult to learn and therefore the goal is to guide the ML model to

be trained using the easy examples and not to be distracted by the difficult examples.

Curriculum learning represents a type of learning in which easy examples are learned

first and then gradually the model exploits the difficult examples to learn better dis-

criminating features. In this work, we introduce a general algorithm that works using

sample importance reweighting to overcome the overfitting problem in the presence of

noisy samples. In regular training, every example contributes equally to the training of

the network. However, in the presence of noisy examples, the model’s loss at each step

of the training is dominated by the large loss of the noisy training examples. Since the

2

noisy examples’ loss is large, they can distract the network from being correctly trained.

In order to reduce the effect of the noisy examples, we assign weights to each example

and try to update the weights at each iteration of training based on the examples’ loss.

We need to assign large weights to clean data points and smaller weights to noisy data

points. Inspired by exponentiated gradient (EG) method [45], we update the weights

at each step of training as we update the model’s parameters. We show that by using

EG updates, we can assign larger weights to the easy examples and smaller weights

to the hard examples. Unlike other methods, our approach handles a general class of

supervised learning tasks such as classification and unsupervised learning tasks such as

principle component analysis (PCA) [44].

1.2 Outline

In Chapter 2, we investigate the previous work. In Chapter 3, we discuss loss

minimization in machine learning problems and various types of loss functions. We also

explain how the sample weight assignment works. In Chapter 4, we give a common

motivation for using EG updates along with the derivation of the update rules. In

chapter 5, we introduce our method in which we use EG update to assign a weight to

the samples as well as describe two extensions of this method, regularized updates, and

capped updates. Chapter 6 reports the results of our experiments on ImageNet [16],

Fashion MNIST [91] for the classification task, and on UMIST [88] and AT&T [67]

face recognition datasets for the PCA task. We use label noise, blur noise, and JPEG

3

compression in ImageNet classification; label noise and blur noise in Fashion MNIST

classification; and random noise, occlusion noise, and blur noise in UMIST and AT&T.

4

Chapter 2

Previous Work

Several studies have been done on addressing the issues associated with noisy

data in ML [29, 53, 28, 83, 99, 84, 92]. A group of methods are focused on introducing

modified loss functions that are robust against noisy data. Examples are symmetric

cross-entropy [84], two-temperature logistic loss [8], bi-tempered loss function [7], and

focal loss function [52]. Symmetric cross-entropy augments the cross-entropy loss by

adding a reverse cross-entropy term. Two-temperature logistic loss is motivated using

the Tsallis divergence. Bi-tempered loss function enables learning from noisy labels, and

Focal loss addresses the class imbalance problem. A similar approach is to regularization

terms that prevent overfitting like early-learning regularization [53]. The idea is that

the model only overfits on the noisy labels in the latter steps of the training process

and therefore the idea is to prevent the training dynamics to deviate from early stages.

These methods are only functional in supervised problems such as classification and fail

to address the noisy data problem in unsupervised settings.

5

Our proposed method is related to Curriculum learning that has been a pop-

ular topic in machine learning recent research. This concept has been used in several

approaches [15, 30, 40, 79, 68, 50, 75]. In the first works where the concept of cur-

riculum learning was used such as [73] and [12], the curriculum was pre-defined and

fixed before the training starts. The pre-defined curriculum favors the samples with

smaller loss in the training [42]. Later on, [48] introduced Self Paced Learning (SPL),

in which the curriculum is optimized simultaneously with the network parameters. In

SPL, a weight is assigned to the training examples (similar to what we do in our algo-

rithm). The weight variable is alternatively updated along with the model parameters

at each step of training. More accurately, the examples with loss values larger than

a threshold λ > 0 are completely ignored in practice, and their weight is set to zero.

Harder examples are revealed to the network by increasing λ as training progresses, and

the network learns from easy examples and switches onto hard examples later. This

method has been used in various problems [49, 51, 61], and it has been used in some

empirical problems such as computer vision [74, 14], natural language processing [82],

and multitask learning [30]. In other works, several weighting methods has been in-

troduced that improve SPL [22, 41, 43, 100]. Earlier works perform discrete sampling

of data, which may cause the model to get stuck in local minima. In contrast, our

method does not use a discrete selection of data (zero/one weights), and the weights are

continuous real-valued numbers. In [69], data parameters are introduced which govern

the importance of the samples in training. They use gradient descent to update their

weights jointly with model parameters. On the other hand, we use EG updates instead

6

of GD to update the training sample weights. Unlike [69], that the sample weights can

be unboundedly negative, in EG update, the sample weights are a probability vector,

and projecting the updated weights onto the probability simplex is relatively simpler.

This projection corresponds to dividing the weights by the sum of the updated weights.

Meta-learning has also been investigated in some recent works to dynamically

alter the loss functions to update the sample weights based on the label noise [22, 41, 43,

100]. Some recent works that discuss training deep learning models noisy data attempt

to learn an optimal curriculum from data with a helper neural network [43, 31, 81],

called MentorNet in [43]. The idea is that a Mentor network is trained on the original

data and then the labels generated by this model are used to train a second network

called StudentNet. This method involves training an extra network on a held-out clean

dataset. In other words, to learn an effective curriculum, their method requires a clean

validation set that is sometimes hard to achieve. In contrast, our approach learns

the sample weights jointly with the network parameters and does not need to train

another network. Moreover, we validate our network on a validation set with the same

distribution as our training set which is a more realistic scenario in real-life datasets.

7

Chapter 3

Loss Minimization

Loss functions or error functions are measures for evaluating the performance of

a machine learning model on a given set of data points. They define how the predictions

of the model deviate from the ground truth, thus mapping a model prediction to an

associated cost value. The ground truth can be a real value (regression), a category

(classification), or a structured object (structured prediction). Training an ML models

is to find the set of parameters that minimize the loss function over a set of training

points:

θ∗ = arg min
{θ∈Rm}

L(θ|X) where L(θ|X) =
1

N

N∑
i=1

`(θ|xi,yi) (3.1)

where L is the total loss of the model, (xi,yi) is a pair of input and target label in the

training set with N examples, and `(θ|xi,yi) is the loss of the example (xi,yi) given

model parameters θ.

In some machine learning problems it is possible to directly find θ∗. One

example is linear regression where L(θ|X) = 1
N

∑N
i=1 ||xTi θ − yi||2 and the optimal

8

parameters can be derived using a closed-form solution: θ∗ = (xTx)−1xTy. In many

cases, however, solving for θ∗ is not feasible in a single step. In practice, several iterative

steps are applied where each step aims to improve the loss value compared to the pre-

vious step. Examples are the CART [56] algorithm for training decision trees, gradient

boosting [27], and gradient descent. Our focus in this work will be on the family of

problems that are solved using gradient descent. In gradient descent, we maintain an

estimate of the parameters θt at each step t using an update rule. The update rule uses

the parameters of the previous step and the gradient of the loss function with respect

to those parameters.

In the update rule, two main things should be considered: First, at each step,

the network should update its knowledge of the examples that it has observed. That is,

given the same set of example for the second time, the loss function of those examples

should be no larger than the first time. This tendency of the model to improve its

predictions is called correctiveness. Secondly, training steps should not be independent

and at each step of the training the network should remember part of its knowledge

in the previous steps. Thus, new parameters should be close to the old ones. This

closeness can be measured by a distance function D(θt+1,θt) which is called the inertia

term. This tendency of network to keep the current solution to the old solution is called

conservativeness. In gradient descent, we use Squared Loss as a distance function.

There is always a trade-off between correctiveness and conservativeness. There-

fore, we define the update rule as minimizing a linear loss function L(θ|X) that accounts

for correctiveness along with the distance of the current parameters with the param-

9

eters of the previous step that accounts for conservativeness. The two loss terms are

aggregated with an importance coefficient η > 0 given to correctiveness relative to con-

servativeness which is called the learning rate. All in all, the gradient descent update

at step t + 1 can be written as a regularized loss minimization problem w.r.t. the

parameters θ at step t,

θt+1 = arg min
θ

{
1/2η ‖θ − θt‖2 + L(θ|X)

}
. (3.2)

To solve the equation, we set the derivative of the right side of (3.2) w.r.t θ to zero

which results in the following equation:

θt+1 = θt − η∇L(θt+1|X) . (3.3)

The above equation is called implicit gradient descent update for parameter θ [33, 46,

6, 4]. Since calculating the future loss of the model is not feasible, the future loss is

approximated by the current loss of the network, and yields

θt+1 ≈ θt − η∇L(θt|X) = θt − η 1

N

∑
i

∇`(θt|xi,yi) (3.4)

This equation is called explicit gradient descent update for parameter θ. The last

term can be seen as an expectation over the loss of individual examples w.r.t. the

uniform distribution (each example is treated equally). We will generalize this notion

by maintaining a probability distribution over the examples and instead of a uniform

distribution, we assign a probability weight to each example that shows the importance

of the example in the training of the model.

10

Choosing a loss function to solve any learning problem is an important task as

the loss function is the evaluation metric for the training which determines the model

parameters. If we choose an inappropriate loss function, then the model may not gen-

eralize well on unforeseen data.

Several factors should be considered in choosing a loss function for a particular

machine learning problem, such as the type of machine learning task at hand, the

configuration of the output, difficulty of computing its derivatives with respect to model

parameters , and the problem’s constraints.

Loss functions are broadly categorized into two classes: Classification loss func-

tions for classification tasks and regression loss functions for regression tasks. Loss

functions used in structured prediction tasks are one of the classification (e.g. object

segmentation [66]) or regression (e.g. object detection [64]) loss functions. In the clas-

sification task, we intend to predict the output from a set of finite categories. For

example, in the ILSVRC2012 dataset usually referred to as the ImageNet [16], the goal

is to classify 1.2 million images into one of the 1000 different categories. On the other

hand, in regression, we want to predict an output value, which is a continuous quan-

tity. This output is then compared with the actual value to get a measure of loss. For

instance, in the famous Boston Housing dataset [32], the task is to predict the median

price of a house prices based on some of its features like its size and neighborhood.

Additionally, triplet losses are used for image recognition [70] and dimensionality re-

duction [5]. Therefore, the type of problem that we need to solve is a factor in the type

of loss function we want to use. Nevertheless, it is not the only factors as other factors

11

like outliers, class imbalance, and label noise are important. The following section will

discuss the loss functions’ properties and introduce some standard loss function used in

the learning tasks.

3.1 Common Loss Functions

The loss function has an important impact on the training task and it should

consider all of the model’s specs and the task’s goals. Therefore, it is crucial to choose

a proper loss function for a particular task.

Loss of the model is usually measured by a distance function D applied to the

ground truth value y and the model prediction ŷ. For instance, in classification task, our

goal is to learn a prediction function f which maps an example xi to its predicted label

probability ŷ = f(θ|xi) and the goal is to make this probability as close as possible to the

true label y. Therefore, the loss function of the model usually has the form `(θ|x,y) =

D(y, ŷ) where the true label is y ∈ Rd, and the predicted label is ŷ = f(θ|x) ∈ Rd. This

distance function can be calculated using the squared Euclidean distance, or relative

entropy, also known as Kullback-Leiber divergence. The loss function which uses squared

Euclidean distance is called Squared Error, and the loss function which uses Kullback-

Leiber divergence is called cross-entropy. The EG algorithm results from using Kullback-

Leiber divergence as a distance function for conservativeness. The EG update has been

used in boosting [25], online PCA [85], and learning rate adaptation [3].

Although Euclidean distance and cross-entropy are widely used in many ma-

12

chine learning problems, they can be susceptible to noisy data. In what follows, in

addition to common loss functions, we will discuss other loss functions that are shown

to be robust to label noise, such as Bi-tempered loss function, and Focal loss.

3.2 Regression Loss Functions

Regression problems involve predicting a quantity, which is usually a real num-

ber. In this section, we discuss loss functions that are appropriate for regression tasks.

3.2.1 Squared Loss

Squared loss is one of the fundamental loss functions and the workhorse of the

regression problems. As the function’s name suggests, the function calculates the mean

of the squared errors.

DSq(y, ŷ) = 1/2 ‖y − ŷ‖2 (3.5)

i.e., ` is the loss function, N is the number of data points in the training set, ŷi is the

prediction of the network for the i-th training sample, and yi is the label of i-th training

sample.

Squared error is only concerned with the magnitude of deviation from the

actual value irrespective of their deviation direction. Due to squaring the errors, pre-

dictions that are distant from the actual values penalize the network notably compared

to less deviated examples.

13

3.2.2 Mean Absolute Error

As we mentioned before, MSE penalizes outliers (examples with large errors)

more strongly. Therefore, to avoid this problem we need to use a loss function which is

more robust to outliers. In MAE, instead of calulating the average squared error over

all of the examples, we calculate the average absolute value of the distance between the

real value and the predicted value over all of the data points.

DMAE(y, ŷ) ==

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (3.6)

Like MSE, MAE works with the magnitude of error and does not consider the direction

of error in the samples as well.

3.2.3 Root Mean Squared Error

Although MAE is more robust to examples with large errors, the main issue

with this method is that it is not differentiable at its minimum. This issue can cause

convergence problems when training the model. To avoid the problem of differentiability

and robustness to outliers, we usually use the squared version of MSE which is RMSE.

DRMSE(y, ŷ) =
1

N

N∑
i=1

|yi − ŷi| (3.7)

3.3 Classification Loss Functions

Classification problems are those predictive problems where samples are as-

signed to a class out of a finite number of classes. In classification task, we desire to

14

minimize zero-one loss which is D0/1(y, ŷ) = I{y 6= ŷ}. However, minimizing this loss

function is an NP-hard problem [23]. This section investigates common surrogate loss

functions that are mainly used in classification problems instead of the zero-one loss.

3.3.1 Hinge Loss

Hinge loss is used for ”maximum-margin” classification and is commonly used

for training support vector machines (SVM). In binary classification task, where y ∈

{+1,−1}, the hinge loss is

DHG(y, ŷ) = max(0, 1− yŷ) (3.8)

When the data points are farther away from the correct side of the desicion

boundry, the loss increases and the model penalizes those points.

3.3.2 Relative Entropy / Kullback-Leibler Divergence

Relative Entropy or Kullback-Leibler Divergence (KL divergence) is commonly

used in classification tasks. KL divergence measures how much a probability distribution

differs from another probability distribution.

For two probability distributions P and Q, KL divergence can be calculated

by the negative sum of each event in P multiplied by the log of the probability of the

event in P over the probability of the event in Q.

In case of classification problem, this loss function calculates the relative en-

tropy between the true labels and the predictions. It is assumed that y and ŷ are

15

probability vectors: all the components of y and ŷ are positive and the constraints∑d
i=1 yi = 1 and

∑d
i=1 ŷi = 1 are maintained.

DKL(y, ŷ) =
d∑
i=1

yi log
yi
ŷi

=
d∑
i=1

(yi log yi − yi log ŷi) (3.9)

where DKL is the relative entropy entropy loss function, y ∈ Rd is the vector of true

labels, ŷ = f(θ|x) ∈ Rd is the vector of predicted labels, and N is the number of

examples in the training set.

Note that the first term in the distance is independent of the model parameters

and therefore only the second term is optimized during training. This second term is

referred to as the cross-entropy loss function can be used in both binary classification

and multi-class classification tasks.

3.3.3 Bi-tempered Loss

Bi-tempered loss function [7] is in the family of tunable loss functions which

provides robustness to noise during training. Bi-tempered loss introduces a temperature

t1, and the second temperature t2 to generalize the cross-entropy loss and the softmax

function, respectively. The standard softmax function with cross-entropy is recovered

when t1 = t2 = 1. However, introducing a mismatch between the two temperatures

makes the loss function non-convex and more robust to noise.

16

3.3.4 Focal Loss

In some classification problems, the distribution of samples across the classes

is imbalanced or skewed i.e., the examples from one or more classes are over-represented

compared to other classes. Training on an imbalanced dataset makes the model biased

towards learning more from the over-represented class and ignore the under-represented

class [34] (as the second term in Eq. 3.4 is dominated by the examples in the majority

class). The Focal loss function has been introduced to solve this problem by adding

weighting to Cross-Entropy loss [52]. In case of binary classification the Focal loss

function is defined by

DFL(y, ŷ) = −α(1− ŷ)γy log ŷ + (1− α)ŷγ(1− y) log(1− ŷ) (3.10)

where ŷ is the prediction probability of the positive class. The parameter α

is a hyperparameter that handles the class imbalance problem through increasing the

weight of the minotrity class in the loss function and γ is the other hyper-parameter

that controls the loss of misclassified examples. Both hyper-parameters are tuned using

cross-validation. Using Focal Loss with γ > 1 reduces the loss for correctly predicted

examples or examples when the model predicts the right right class (probability of right

class more than 0.5). In contrast, it increases loss for wrongly predicted samples (when

the model predicts the right class with probability less than 0.5). As the minority class

examples are the ones that are predicted incorrectly and have a small correct prediction

probability, the gamma parameter helps minority examples to dominate the loss and

17

therefore draw the model’s attention towards the under-represented class.

3.4 Sample Weight Assignment

As discussed earlier, in the training stage of the model, the optimizer intends to

minimize the average loss over the entire training set. Therefore, the training examples

contribute equally, regardless of whether they have a large loss value (wrongly predicted)

or they have a small loss value (correctly predicted) at the current state of the model.

However, some of the examples are noisy and they can distract the network from learning

the general pattern in the data. It is shown [53] that throughout the iterations of

training, the network learns to classify the ”easy” examples, the examples that are

well-represented in the training set and have a small loss, and memorizes the hard

examples, the examples with large loss (outliers). In order to reduce the effect of the

noisy examples in the training and avoid overfitting, we assign a weight to each example

in the loss function that shows the importance of the example. Therefore, the overall

loss of the model would be a weighted average loss over the training examples. The

optimization problem is now to find both the model parameters and the sample weights

θ∗,w∗ = arg min
{θ∈Rm,w∈∆n−1}

L(θ,w|X) where L(θ,w|X) =
N∑
n=1

wi`(θ|xi,yi) (3.11)

where L is the total loss of the model, (xi,yi) is a pair of input and target label in the

training set with N examples, w ∈ RN is the sample weight vector, and `(θ|xi,yi) is

the loss of the example (xi,yi) given model parameters θ.

The constraint
∑N

i=1wi = 1 is always maintained to have a unique solution

18

and so that the common unweighted sum of loss over the examples would be an especial

case of the weighted sum where w = 1N/N where 1N is a vector of size N where all

elements are equal 1.

To confront the effect of noisy examples on the training dynamics, we prefer-

ably want to assign larger weights to the easier data points than the harder ones to

prevent them from dominating our objective. At each step of training, as the param-

eters of the network are being updated to minimize the cost function, we update the

weights of the example as well. The most important question is how can we update the

sample weights? We present a flexible approach using exponentiated gradient descent

that can be used to reweight the examples. The goal is to reduce the effect of noisy

examples during training. Unlike other methods of reweighting, our method can be

applied to a broader set of loss functions and can be used in supervised problems such

as classification, regression, as well as unsupervised problems such as PCA, and model

averaging in federated learning.

3.4.1 Weights Update

As mentioned above, we take a vector of weights w ∈ RN , where the i-th

element wi in this vector indicates the weight of the i-th example in the training data.

At the first step of training, we initialize the weight vector and dynamically update it as

the training proceeds. At first, we assume that the importance of each example in the

training are the same, so that every example should equally contribute in the training.

Therefore, we initialize the weight vector with w = 1N . We denote the weight vector at

19

training time t with wt. At training step t, we minimize the weighted loss w.r.t. θt as

well as wt. We update the parameters θ of the network using weighted gradient descent

and we update the sample weights w, alternatively.

In the update procedure for w, we would like to reduce the loss, but we do

not want to move away from the current estimate wt (conservativeness). Therefore, the

objective in the weight update would be minimizing the weighted loss of the network

along with minimizing the divergence on w. For a fixed θ, the weighted the loss function

is linear w.r.t. w. However, the loss is constrained to vectors of w with sum equal to

one. To satisfy this constraint, using squared regularizer as the inertia term is not a

good choice. In the next section, we expand this and motivate using EG updates for

the weight updating task.

20

Chapter 4

EG Updates

Consider a setting that we have a vector of size N for sample weights and we

need to update the weight along with the network parameters to minimize a loss function

and achieve our final goal which is getting a better prediction on the unseen data. Here,

we present an approach inspired by the idea of learning in the expert setting [47] and

updating sample weights using exponentiated gradient update rule [45] at each step of

training.

4.1 Motivation

Consider a model with parameters θt at iteration t that observes an example

xi. The weight of the example is wti . Then, using the prediction function f the model

predicts ŷi = f(θt|xi) ∈ Rd as the output for this example, and the true label yi is

revealed afterwards. Then the model updates its parameters and the weight of the

example to θt+1 and wt+1
i , respectively.

21

Similar to the network’s parameters’ update, correctness and conservativeness

are both important for updating sample weights. The network should learn something

at each step of training, which means that it should move towards a set of weights

where the loss of the network is reduced. In the meanwhile, we also need to keep the

current solution of the sample weights close to the weights from the previous step. As

we mentioned before, to maintain the condition
∑N

i=1wi = 1, we use relative entropy

or KL divergence to measure conservativeness of the model in EG update. Therefore,

we define the update rule as minimizing a linear loss function w · `t (accounts for

correctiveness) along with the distance of the current weights with the weights of the

previous step (accounts for conservativeness) with an importance coefficient η > 0 given

to correctiveness relative to conservativeness which is the learning rate,

wt+1 = arg min
w∈∆n−1

{
1/ηDKL(w,wt) +w · `t+1

}
. (4.1)

4.2 Derivation

In order to guarantee
∑N

i=1wi = 1, we introduce a Lagrangian multiplier λ,

wt+1 = arg min
w∈Rn

+

{
1/ηDKL(w,wt) +w · `t+1 + λ(

N∑
i=1

wi − 1)
}
. (4.2)

To minimize function (4.2), we need to take a partial derivative of the function

w.r.t. wi’s, for all i = 1, ..., N , and set it to zero.

Solving for ∂w·`t+1

∂wi
is difficult, however, we can replace it with ∂w·`t

∂wi
which is

reasonable approximation. Thus, we get the following equation:

22

1/η
∂DKL(w,wt)

∂wi
+
∂w · `t
∂wi

+
∂λ(
∑N

i=1wi − 1)

∂wi
= 0 (4.3)

Solving (4.3) for wi and combining the derivatives to make a vector w yields

1/η (logw − logwt) + `t + λ = 0 (4.4)

⇒ exp(logw − logwt) = exp(−η`t + λ)

⇒ wt+1 = wt exp(−η`t)

where wi ≥ 0 for all i = 1, ..., N , and
∑N

i=1wi = 1.

From the above equation and the additional equation
∑N

i=1wi = 1 we have

wt+1
i =

wti exp(−η `ti)∑
j w

t
j exp(−η `tj)

. (4.5)

23

Chapter 5

Sample Pruning Using EG

In EG, sample weights update is usually followed by network parameter θ

update by computing the gradient of the objective function w.r.t. θ and performing a

gradient descent step

θt+1 = θt − ηθ
N∑
i=1

wt+1
i ∇`(θt|xi,yi). (5.1)

where ηθ > 0 indicates the network parameter learning rate. Note that the sample

gradient ∇`(θt|xi,yi) is scaled by sample weights wt+1
i .

5.1 Mini-batch Setting

As discussed in [57], a common practice for training is to use a mini-batch of

examples at each step instead using the full-batch of examples. That is, a subset of

indices Bt ⊆ [n] corresponding to the subset of examples X t ⊆ X is used at iteration

t. Thus, we consider a more general approach that includes the full-batch setting as a

24

special case. Specifically, instead of maintaining a normalized weight wt ∈ ∆n−1, we

can consider the unnormalized weights w̃t ∈ Rn+ throughout the training and apply the

EGU weight updates on the coordinates (i.e. weights) that are present in the mini-batch

X t,

w̃t+1
i = w̃ti exp(−ηw `(θt|xi,yi)) for i ∈ Bt . (5.2)

The EGU update is then followed by a projection onto the simplex to form the following

weighted loss for updating the model parameters θ ∈ Rm,

min
θ∈Rm

{ 1

WBt

∑
i∈Bt

w̃t+1
i `(θ|xi,yi)

}
, where WBt :=

∑
i∈Bt

wt+1
i . (5.3)

The EG weight update is followed by a parameter update using the gradient

of the objective w.r.t. θ and performing a gradient descent step as before,

θt+1 = θt − ηθ
1

WBt

∑
i∈Bt

w̃t+1
i ∇`(θt|xi,yi) ,

where ηθ > 0 denotes the parameter learning rate. Note that now the sample gradient

∇`(θt|xi,yi) is scaled by the factor
w̃t+1

i
WBt

.1

5.2 Regularized updates

The main goal of example reweighting is to reduce the effect of noisy examples

by penalizing the example with large loss values. However, this reweighting procedure

also affects the harder examples which may initially have large loss values, but are

1Our mini-batch updates are closely related to the specialist approach developed for on-line learn-
ing [26], which would use the (normalized) EG to update the example weights of the current mini-batch,
always renormalizing so that total of weight of the mini-batch examples remains unchanged. Our method
of maintaining unnormalized weights combined with GD updates on the reweighted gradients performs
better experimentally.

25

eventually learned by the model later in the training. This side effect is desirable initially

to allow the model to learn from the easier examples to form a better hypothesis. A

similar approach is considered in curriculum learning where the level of difficulty of the

training examples is increased gradually over the course of training [12]. However, in

the case of EG updates, there is no mechanism to recover an example which incurs large

loss values earlier in the training. In this section, we propose a regularized version of

the updates that alleviates this problem [57].

Consider the following modified formulation of the EG update in Eq. (4.1),

wt+1 = arg min
w∈∆n−1

{
1/ηDKL(w,wt) +w · `t − 1/γH(w)︸ ︷︷ ︸

maximize entropy

}
, (5.4)

where the last term H(w) := −∑i

(
wi logwi −wi

)
is the entropy of the distribution w

and γ > η is a regularization constant. The effect of adding the negative entropy of w

to the objective function is to bring the weights closer towards a uniform distribution

after the update. By introducing a Lagrangian multiplier λ into Eq. (5.4) to enforce the

constraint
∑n

i wi = 1, we have

wt+1 = arg min
w∈Rn

{
1/ηDKL(w,wt) +w · `t − 1/γH(w) + λ(

n∑
i=1

wi − 1)} , (5.5)

Setting the derivatives to zero yields

(1/η + 1/γ) logw − 1/η logwt + `t + λ = 0 (5.6)

Let 1
η′ := 1

η + 1
γ . For η > 0 and γ > 0, we have η′ ≤ η. Let 0 ≤ r := η

η′ ≤ 1.

Refactoring Eq. (5.6) in term of r and enforcing the constraint yields,

26

Algorithm 1 Example Reweighting Using the Exponentiated Gradient Update

input: training examples X of size n, model parameters θ, model parameters and

weights learning rates (ηθ, ηw), regularizer factor 0 ≤ r ≤ 1

initialize w̃0 = 1n

for t = 0 to T − 1 do

for a given data batch X t ⊆ X indexed by Bt ⊆ [n] do

• update the weights: w̃t+1
i =

(
w̃ti exp(−ηw `(θt|xi,yi))

)r
for i ∈ Bt

• calculate the sum: W t
B =

∑
i∈Bt w̃

t+1
i

• update the model parameters: θt+1 = θt − ηθ 1
WBt

∑
i w̃

t+1
i ∇`(θt|xi,yi)

end for

wt+1 =
1

W t

(
wt exp(−η `t)

)r
for 0 ≤ r ≤ 1 , (Regularized EG Update)

where W t :=
∑

i

(
wti exp(−η `ti)

)r
. Note that r = 1 recovers the vanilla EG up-

date whereas r = 0 sets the updated weights to a uniform distribution, i.e. wt+1 = 1/n1.

Model training using regularized EG update for example reweighting is summarized in

Algorithm 1 [57].

5.3 Capped updates for PCA

We use capping algorithm, introduced in [86], to regularize the updated weight

vector. We would like to prevent to updated weight vector to be larger than the capping

27

threshold. After updating the vector wt at training step t, the resulting weight vector

might lie outside of the capped probability simplex. Therefore, we use the Capping

algorithm to rescale the weights and prorate the excess amount of weight among all of

the examples in the training batch. In the experiments, we observe that using Capping

algorithm helps to get better reconstruction error in PCA problem.

5.4 Capturing Noisy Examples in Model Training

In this section, we discuss the practical considerations for applying EG Reweight-

ing for noise-robust training. First, we discuss the problem of overfitting to noise and

develop a learning rate schedule for the EG update that we found beneficial in practice.

We also show the effect of the regularization on the updates. Next, we discuss the limi-

tations of the EG Reweighting approach using the training loss for the weight updates,

especially when applied to deep neural networks. We provide practical solutions in this

direction and validate our approach in the experimental section. As our motivating

example, we consider a simple convolutional neural network (two convolutional layers

of size 32 and 64, followed by two dense layers of size 1024 and 10) trained on differ-

ent noisy versions of the Fashion MNIST dataset [91]. We use a SGD with heavy-ball

momentum (0.9) optimizer with a fixed learning rate of 0.1 and train the model for

80 epochs with a batch size of 1000. The baseline model achieves 91.35 ± 0.38% test

accuracy [57].

28

5.4.1 When to Apply the EG Updates?

As we mentioned in [57], the update in Eq. (5.2) adjusts the weight of an

example based on the value of the training loss of the example. This update entails the

assumption that the noise may move the examples far away from the decision boundary,

thus causing the example to induce larger loss values. We will discuss the validity of

such assumption more thoroughly for different cases in the next section. The main

question that we aim to address in this section is at which stage of training the model,

the loss of the example may be indicative of noise?

In general, model training with noise can be split into two phases: i) initial

warm-up and ii) overfitting to noise [90, 54]. In the early phase of training, the model

starts from an initial solution and gradually forms a hypothesis based on the given set of

noisy examples. In this phase, the model parameters are still close to the initial solution,

thus the model behaviour is mainly dominated by a regularization effect similar to early

stopping. At this point, the solution may not be highly descriptive of the (clean) data,

but at the same time has not overfit to the noisy examples. This is shown in Fig. 5.2(a)

where we train the model on the Fashion MNIST dataset with 40% symmetric label

noise. The classification accuracy on both the clean train set (not available to the

model) as well the held-out test set improves up to around 15 epochs. However at this

stage, the large loss (thus, the gradient) of noisy examples starts to dominate the model

training (Fig. 5.2(b)). Thus, the model starts to overfit to the noise and thus, sacrificing

generalization.

29

Based on this observation, the effect of example reweighting should gradually

increase during the warm-up phase and then decrease over time once the overfitting

is prevented. Thus, we propose using the following learning rate schedule for the EG

Reweighting procedure, which we found effective in our experiments: a linear warm-up

in the early stage followed by a decay over time. In this example, we apply a linear warm-

up, up to 0.1, in the first 20 epochs followed by an exponential decay by a factor of 0.95

per epoch. We use r = 0.98. Fig. 5.2(c) shows that EG Reweighting with the proposed

schedule successfully captures the noise and improves generalization. Fig. 5.2(d) shows

a subset of 20 weights (normalized by their sum). As can be seen, the weights for some

of the clean examples drop initially. These clean examples are inherently harder for the

model to classify initially, thus incurring comparatively larger training losses. However,

the regularization in the EG updates allows these examples to recover later on.

5.4.2 When is the Noise Reflected in the Training Loss?

The underlying assumption for example reweighting in Algorithm 1 is that the

noisy examples (after the initial warm-up stage) incur much higher loss values than the

clean examples. Here, we show a case where such an assumption does not hold. For

this, we consider the same model as in the previous section for classifying the Fashion

MNIST dataset [91]. However, instead of adding label noise, we consider corrupting a

subset of examples by adding blur noise to the input image. Specifically, we sample 40%

of the images in the training set randomly and convolve these images with a Gaussian

filter with a radius of 2. As can be seen in Fig. 5.2(a), although the generalization

30

0 20 40 60 80

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline: Classification Accuracy

train (clean)
train (noisy)
test

(a)

0 20 40 60 80

epochs

°0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
ss

Baseline: Average Training Loss
noisy examples
clean examples

(b)

0 20 40 60 80

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

EG Reweighting: Classification Accuracy

train (clean)
train (noisy)
test

(c)

0 20 40 60 80

epochs

0.00

0.02

0.04

0.06

0.08

0.10

w
ei

gh
t

EG Reweighting: Example Weights

noisy
clean

(d)

Figure 5.1: Fashion MNIST Classification – Label noise : (a) The model overfits
to noisy examples after ∼15 epochs. (b) noisy examples incur relatively larger training
loss values compared to the clean examples. (c) EG Reweighting successfully captures
the noise and improves generalization. (d) A normalized subset of 20 weights shows
how clean but hard to classify examples recover later on via the EG regularization. [57]

31

0 20 40 60 80

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Baseline: Classification Accuracy

train (clean)
train (noisy)
test

(a)

0 20 40 60 80

epochs

°0.5

0.0

0.5

1.0

1.5

2.0

lo
ss

Baseline: Average Training Loss
noisy examples
clean examples

(b)

0 20 40 60 80

epochs

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

EG Reweighting: Classification Accuracy

train (clean)
train (noisy)
test

(c)

0 20 40 60 80

epochs

0.04

0.06

0.08

0.10

0.12

w
ei

gh
t

EG Reweighting: Example Weights
clean
noisy

(d)

Figure 5.2: Fashion MNIST Classification – Blur noise: (a) The (clean) train and
test accuracy does not reveal any major overfitting. (b) Average training loss values for
the clean and noisy examples are roughly the same. (c) We apply EG Reweighting on a
pseudo-loss, consisting of the negative variance of the Laplacian operator [11] applied to
each image. EG Reweighting successfully improves the performance. (d) A normalized
subset of 20 weights which indicates the progression of the weights for clean and noisy
examples. [57]

32

performance of the model degrades compared to the noise-free baseline model, no clear

overfitting manifests during training and the noisy and clean examples incur roughly the

same average training loss values throughout (Fig. 5.2(b)). Thus, any method, including

vanilla EG Reweighting, which aims to reduce the effect of noisy examples based on the

training loss may fail to improve the performance.

In such settings, having access to a method that can reflect the noise in the data

can be highly beneficial. Consequently, we can leverage this information for reweighting

the examples using the EG update. In particular, we consider the signal from such a

model as a pseudo-loss for EG, replacing the training loss in the weight update in Algo-

rithm 1. In the case of the Gaussian blur in our toy example, we calculate the variance

of the Laplacian operator [11]. A lower value of variance indicates smooth edges, thus

suggesting a higher rate of blurring. Therefore, we consider the negative of the vari-

ance of the Laplacian operator as the pseudo-loss. We use the same hyperparameters

and learning rate schedule as the previous section, but set r = 1. Fig. 5.2(c) shows

that using this pseudo-loss improves the generalization performance of the model (from

89.07 ± 0.50% test accuracy to 90.13 ± 0.38% test accuracy). Also, Fig. 5.2(d) illus-

trates a subset of 20 weights (normalized). As the final remark, note that in many cases

the pseudo-loss does not depend on the model parameters, thus does not vary during

training. In such cases (as is in this example), the pseudo-loss needs to be calculated

only once for each example (when visited for the first time). We will consider a more

realistic setup in the next section.

33

Chapter 6

Experiments

In this chapter, as stated in [57], we evaluate the performance of our EG

Reweighting algorithm through extensive unsupervised and supervised learning exper-

iments. Our first set of experiments involve the unsupervised problem of learning the

principal component, i.e. PCA, from noisy examples. Next, we focus on a significantly

more challenging classification problem compared to the commonly used baselines in

the previous work, namely classifying noisy versions of the Imagenet dataset. We show

the utility of our approach on three different types of noise. The details of the hyper-

parameter tuning for different methods are given in Appendix A and the code for EG

Reweighting will be made available online.

6.0.1 Noisy PCA

In this experiment, we examine our EG Reweighting method on the PCA

problem and show improvements when the examples are noisy. Given a set of unlabeled

34

training examples X = {xi ∈ Rd}ni=1, the goal of the PCA algorithm [44] is to learn a

subspace of dimension k � d which minimizes the reconstruction loss of all examples.

More formally, given a mean vector m ∈ Rd and an orthonormal matrix U ∈ Rd×k s.t.

U>U = Ik, the reconstruction loss of the example xi ∈ X is defined as

`(m,U |xi) = ‖(xi −m)−UU>(xi −m)‖2 .

The goal of the PCA algorithm is to find parameters {m,U} that minimize the average

reconstruction loss over all examples. Instead, we consider a reweighted version of the

problem as in Eq. (3.11) by maintaining a distribution w ∈ ∆n−1 on all examples. The

algorithm proceeds by alternatingly solving for {m,U} and updating the weights w

using EG. For a fixed w, the parameter updates follow similar to [96]: the mean vector

is replaced with a weighted average m =
∑

iwi xi and U is set to the top-k eigenvectors

of the matrix
∑

iwi(xi −m)(xi −m)>.

To evaluate the performance of different algorithms, after computing the mean

m and the subspace matrix U , we report the average reconstruction loss on a set of clean

test examples. More specifically, we split the datasets into training and test sets with a

90%/10% ratio, respectively and then add noise only to the training examples. We run

experiments for three types of noise: 1)Gaussian random noise, 2)occlusion noise, and

3)Gaussian blur noise. In occlusion noise, we corrupt 50% of training images by placing

a rectangular occlusion with a size chosen uniformly at random between 25-100% the

size of the image. The location of the occlusion is chosen randomly on the image and

its pixels are randomly drawn from a uniform distribution. In Gaussian random noise,

35

we add a random Gaussian noise to the entire image where the noise std is randomly

drawn from a beta distribution β(a = 2, b = 5). For blur noise, we convolve each image

with a Gaussian filter with standard deviation drawn from the same beta distribution

multiplied by 10.

To evaluate the effect of our proposed regularization on EG, we also consider

an alternative regularization based on capping [87] which upper-bounds the value of

each weight by a constant value. Thus, we report the results for three versions of the

EG Reweighting approach: (1) PCA with EG Reweighting (EGR-PCA), but no regular-

ization, (2) PCA with capped EG (Capped EGR-PCA), and (3) PCA with regularized

EG (Regularized EGR-PCA). We compare our results against vanilla PCA [44], ro-

bust 2DPCA with optimal mean (R2DPCA) [94], capped robust 2DPCA with optimal

mean (Capped R2DPCA) [94], and robust PCA with RWL-AN [96]. We consider two

benchmark face image datasets in our experiments, (i) AT&T [67] which consists of

400 images of size 64× 64 from 40 classes, and UMIST [88] which contains 575 images

of size 112 × 92 from 20 classes. Table 6.1 summarizes all of the experimental results.

To account for the variance in results due to the random nature of the added noise,

we run each algorithm 50 times with different random seeds and reset the train-test

at each run. It can be shown that for all three noises, EG, especially the regularized

EGR-PCA, results in lower reconstruction losses on the test set compared to other al-

gorithms. Fig. 6.1(a) shows a subset of the noisy training examples from the AT&T

dataset that are corrupted with additive Gaussian noise. Each image is captioned by

its noise power σ, i.e. norm of the additive component, and its weight w. It can be seen

36

Table 6.1: Results on the noisy PCA problems: (Regularized) EG Reweighting
outperforms the state-of-the-art robust PCA methods in all cases. [57]

Vanilla PCA RWL-AN R2DPCA Capped R2DPCA EGR-PCA Capped EGR-PCA Regularized EGR-PCA

AT&T (random) 37.48± 1.37 29.96± 1.90 30.67± 0.22 28.51± 0.17 28.47± 1.71 28.36± 1.63 25.92± 1.42
AT&T (occlusion) 23.06± 0.19 20.01± 0.36 28.85± 0.06 28.39± 0.15 19.85± 0.28 19.86± 0.33 19.82± 0.36
AT&T (blur) 19.01± 0.20 19.41± 0.32 28.41± 0.07 28.40± 0.08 18.93± 0.21 18.99± 0.15 18.91± 0.19

UMIST (random) 100.48± 2.94 85.25± 4.66 115.47± 0.45 111.73± 0.27 79.63± 3.75 79.61± 4.00 73.77± 3.61
UMIST (occlusion) 65.26± 0.48 58.75± 1.36 114.25± 0.19 114.22± 0.23 58.69± 1.42 58.54± 1.41 58.38± 1.42
UMIST (blur) 55.97± 0.57 56.98± 0.85 110.99± 0.11 110.97± 0.10 56.02± 0.50 55.97± 0.50 55.78± 0.50

that as the examples become more corrupted, EG algorithm reduces their effect on the

overall loss function by assigning smaller weights. Fig. 6.1(b) shows the same result for

all images in the dataset where we see that the weight of examples decreases as they

become more noisy.

6.0.2 Noisy Imagenet Classification

It is noted that we have done Noisy Imagenet classification experiments in

collaboration with Google AI and we used Google resources to run the experiments. As

stated in [57], we consider classifying noisy versions of the Imagenet dataset [16] which

contains ∼ 1.28M examples from 1000 classes. We use a ResNet-18 architecture [35]

trained with SGD with heavy-ball momentum (0.9) optimizer with staircase learning

rate decay and batch size of 1024 for 240 epochs. The baseline model achieves 72.58±

0.09% top-1 accuracy on the test set. We consider three types of noise: 1) Symmetric

label noise: the labels of a random 40% subset of the training examples are flipped, 2)

JPEG compression noise [62]: where the JPEG quality factors are sampled from a beta

distribution β(a = 0.9, b = 0.8) and multiplied by 100. (a higher quality factor induces

less noise.) The JPEG compression noise is highly non-uniform since for a fixed quality

37

(σ = 0.022, w = 0.231) (σ = 1.481, w = 0.230) (σ = 3.022, w = 0.213) (σ = 7.390, w = 0.084)

(σ = 10.160, w = 0.051) (σ = 12.960, w = 0.017) (σ = 16.160, w = 0.004) (σ = 22.070, w = 0.000)

Figure 1: PCA examples

1

(a)

0 10 20 30
noise power

10−8

10−6

10−4

10−2

no
rm

al
iz

ed
ex

am
pl

e
w

ei
gh

t

EG Weights vs. Noise Power

(b)

Figure 6.1: Noisy PCA with EG Reweighting: (a) A subset of noisy images from
AT&T dataset with increasing levels of Gaussian noise power σ (i.e. L2-norm of the
additive noise component) along with their corresponding weights w assigned by the
EG Reweighting approach. (b) Weights of the examples vs. the noise power. [57]

38

factor, the amount of perceivable noise largely depends on the content of the image [58].

3) Blur noise: where we apply a Gaussian filter with a kernel size of 5 to each image

(noise std ∼β(a = 1, b = 0.2)).

For comparison, we consider the following methods: 1) baseline trained with

cross entropy loss, 2) baseline trained with the bi-tempered cross entropy with softmax

loss [7] which provides a robust generalization of the standard cross entropy loss, 3)

DCL [69] which has similar complexity to our algorithm and has shown promising

performance in settings with label noise, 4) our EG Reweighting method trained with

cross entropy loss, 5) our EG Reweighting method combined with bi-tempered cross

entropy loss. For each method, we tune the hyperparameters. For the combined EG

additional Reweighting + bi-tempered loss, we do not perform any further tuning and

simply combine the best performing hyperparameters for each case. Each result is

averaged over 5 runs.

For the label noise experiment, we apply the EG Reweighting algorithm on

the training loss. For the JPEG compression and blur noise experiments, we rely on the

negative of the visual quality score from the NIMA model as the pseudo-loss. NIMA [78]

is a deep convolutional neural network trained with images rated for aesthetic and

technical perceptual quality. The baseline model used in NIMA is Inception-v2 [76].

In [78], the last layer of Inception-v2 is modified to 10 neurons to match the 10 human

ratings bins in the AVA dataset [59]. The original learning loss used in NIMA is the

Earth Mover’s Distance, yet, in the current framework we compute the mean score and

use it in our hybrid loss. This approach is similar to the method used in [77] to employ

39

Table 6.2: Results on the noisy Imagenet classification problems: EG Reweight-
ing consistently outperforms other methods. For the case of label noise, näively combin-
ing EG Reweighting with bi-tempered loss using the best performing hyperparameters
for each case improves the performance further. [57]

Noise type Baseline Bi-tempered loss DCL EG Reweighting Bi-tempered loss & EG Reweighting

40% label noise 65.36± 0.19 66.18± 0.21 67.21± 0.09 67.44± 0.11 67.63± 0.19

JPEG Compression noise 70.88± 0.18 70.95± 0.07 70.63± 0.16 71.05± 0.02 70.91± 0.20

Blur noise 71.01± 0.16 71.06± 0.05 70.83± 0.10 71.18± 0.11 70.87± 0.14

NIMA as a training loss. As shown in [78, 77], the NIMA loss is sensitive to image

degradation such as blur, imbalanced exposure, compression artifacts and noise.

The results are shown in Table 6.2. EG Reweighting consistently outperforms

the comparator methods in all cases. Additionally, combining EG Reweighting and the

bi-tempered loss näively provides further improvement in the label noise case. This

shows the potential of combining the EG Reweighting method with a variety of loss

functions. Also, we believe such improvements are possible for the JPEG compression

and blur noise as well, however, this may require additional tuning of the hyperparam-

eters. Note that methods such as DCL which reply on the training loss for handling

noise yield even worse performance than the baseline in the case of JPEG compression

and blur noise [57].

40

Chapter 7

Conclusion

The Exponentiated Gradient update [45] is one of the main updates developed

mainly in the on-line learning context. It is based on trading off the loss with a relative

entropy to the last weight vector instead of the squared Euclidean distance used for

motivating Gradient Descent. A large number of techniques have been theoretically an-

alyzed for enhancing the EG update such as specialist experts [26], capping the weights

from above [87] and lower bounding the weights for handling shifting and sleeping ex-

perts [38, 13]. We explore some of these techniques experimentally for the purpose of

reweighting examples with the goal of increasing noise robustness. Surprisingly, these

methods work well experimentally for both supervised and unsupervised settings under

a large variety of noise methods even though we introduce one additional weight per

example. We found alternates to the specialist update and capping serving the same

function as the original that work better experimentally. The modifications still clearly

belong to the family of relative entropy motivated updates. In future work, we are also

41

planning to explore techniques for shifting and sleeping experts.

42

Chapter 8

Contribution

This work has been done in collaboration with Ehsan Amid, and Hossein Talebi

from Google AI, under the supervision of my advisor, Prof. Manfred Warmuth. A

summary of our results appears as a preprint manuscript in [57].

Exponentiated Gradient is a method which was created by Prof. Manfred

Warmuth in [45] and we adapted the algorithm for settings involving large number of

examples. My contributions to this project are as follows:

1) I contributed to the main idea of how to use Exponentiated Gradient updates

for both supervised and unsupervised settings. Specifically, I contributed to how to use

EG for the mini-batch setting, specifically how to normalize the weights of the examples

when there is a large number of examples in the training set and we only observe a small

subset of the examples in a mini-batch.

2) I contributed to using regularization for the example weights, and I imple-

mented the code for this method.

43

3) I implemented all of the experiments for PCA, including the implementation

of our method and six other baseline methods.

4) I implemented and conducted experiments on small convolutional neural

networks for MNIST/Fashion MNIST classification using Tensorflow. My collaborators,

Ehsan Amid and Hossein Talebi, later used my code for running the experiments on

large neural networks for ImageNet classification using Google resources since I did not

have access to these resources as they are internal to Google.

5) I implemented the code for applying various types of noises on the data,

such as feature noise and symmetric label noise.

6) Prof. Warmuth suggested using capping for the EG updates in the exper-

iments. I implemented the function for capping the weights. Ehsan helped me debug

the code.

7) I contributed to the idea of using a linear warm-up in the early stage,

followed by a decay over time which improves the performance of EG.

8) I contributed to writing most parts of the paper [57]. I had written this

thesis before we started writing the paper.

Ehsan Amid contributed to the main idea and theoretical parts, such as us-

ing capping and regularization for EG. He conducted the experiments for ImageNet

classification with large neural networks. He advised me on writing the paper.

Hossein Talebi joined the effort around January 2021. He helped Ehsan set up

the large-scale experiments and debug the code to run them using Google resources.

Prof. Warmuth, as my advisor, helped me with framing the overall problem

44

and providing feedback on the write-up.

45

Appendix A

Hyperparameter Tuning

In this section, we provide more details about the hyperparameter tuning for

the experiments.

A.1 Noisy PCA Experiments

In R2DPCA and capped R2DPCA the reduced dimensionalities are set to d1 =

5 and d2 = 5, and in all other methods the reduced dimensionality is k = d1×d2 = 25. In

capped R2DPCA, for parameter ε, we perform a grid-search on values {10, 20, . . . , 50}.

The integer parameter in RWL-AN is set to rs × n, where rs is the ratio parameter

searched in a grid of {0.05, 0.1, ..., 0.95}. As there is no warm-up phase for the PCA

problem, we consider a learning rate of the form η0/t
α where η0 is the initial learning

rate and α is tuned in the range {0.6, 0.65, ..., 0.95}. The initial earning rate for EG is

tuned in a grid of {10−2, 10−1.5, 10−1, 10−0.5, 1}. For capped EGR-PCA and regularized

EGR-PCA, in addition to the learning rate and the decay factor α, we tune the capping

46

ratio in a set of {0.2, 0.25, ..., 0.9} and regularization factor in a set of {0.1, 0.15, ..., 0.95},

respectively.

The hyperparameters chosen for methods are as follows:

1. For RWL-AN, rs = 0.65 for UMIST(blur), rs = 0.6 for UMIST(random), rs = 0.8

for UMIST(occlusion), rs = 0.25 for AT&T(blur), rs = 0.95 for AT&T(occlusion),

and rs = 0.45 for AT&T(random)

2. For capped R2DPCA, ε = 10 for all kinds of noise on AT&T, ε = 50 for UMIST(occlusion),

ε = 20 for UMIST(blur) and UMIST(random)

3. For EGR-PCA, (η0, α) = (0.01, 0.7) for UMIST(blur), (η0, α) = (0.01, 0.95) for

UMIST(random), (η0, α) = (0.01, 0.6) for UMIST(occlusion), (η0, α) = (0.01, 0.6)

for AT&T(blur), (η0, α) = (0.032, 0.8) for AT&T(random), (η0, α) = (0.032, 0.6)

for AT&T(occlusion).

4. For Capped EGR-PCA, (capping-ratio, η0, α) = (0.25, 0.01, 0.75) for UMIST (blur),

(capping-ratio, η0, α) = (0.45, 0.32, 0.75) for UMIST(random), (capp-

ing-ratio, η0, α) = (0.45, 0.01, 0.8) for UMIST(occlusion), (capping-ratio,

η0, α) = (0.45, 0.01, 0.6) for AT&T(blur), (capping-ratio, η0, α) = (0.35, 0.1,

0.85) for AT&T(random), (capping-ratio, η0, α) = (0.4, 0.032, 0.6) for AT&T

(occlusion).

5. For regularized EGR-PCA, (reg-factor, η0, α) = (0.15, 0.1, 0.68) for UMIST

(blur), (reg-factor, η0, α) = (0.5, 0.1, 0.95) for UMIST(random), (reg-factor, η0,

47

α) = (0.35, 0.032, 0.65) for UMIST(occlusion), (reg-factor, η0, α) = (0.5, 0.32,

0.9) for AT&T(blur), (reg-factor, η0, α) = (0.45, 0.32, 0.95)

for AT&T(random), (reg-factor, η0, α) = (0.35, 0.1, 0.6) for AT&T(occlusion).

A.2 Noisy Imagenet Experiments

In noisy Imagenet experiments we tune hyperparameters in the suggested range

for all methods: for bi-tempered loss, we tune t1 and t2 in the range [0.8, 0.99], [1.05, 1.2],

respectively. For DCL, we set set the regularizer to 5e-4 and tune the scale learning

rate for the examples in the range [0.01, 1.0] and set the momentum parameter to 0.9.

We tune the learning rate and the regularizer factor r as in the previous section and

use a linear ramp-up until 20 epochs followed by a decay of 0.9 every 30 epochs. For

the combined EG additional Reweighting + bi-tempered loss, we do not perform any

tuning and simply combine the best performing hyperparameters for each case. The list

of hyperparameters for different methods are as follows: (1) Bi-tempered loss: (t1, t2) =

(0.92, 1.1) for label noise and (t1, t2) = (0.95, 1.05) for JPEG compression and blur noise

experiments. We start all temperatures from 1.0 (i.e. cross entropy with softmax) and

linearly interpolate to the final value in the first over the first 10 epochs. (2) DCL: we

set the example scale learning rate to 0.05 in all experiments (all the non-trivial values of

the learning rate deteriorated the performance compared to the baseline for the JPEG

compression and blur noise). We do not apply any scaling based on the class. (3) EG

Reweighting: we set the learning rate and the regularizer to 0.1 and 0.9, respectively, for

48

label noise, 0.02 and 1.0 for JPEG compression noise, and 0.05 and 1.0 for blur noise.

49

Bibliography

[1] Görkem Algan and Ilkay Ulusoy. Label noise types and their effects on deep

learning. arXiv preprint arXiv:2003.10471, 2020.

[2] Ethem Alpaydin. Introduction to Machine Learning (Adaptive Computation and

Machine Learning). The MIT Press, 2004.

[3] Ehsan Amid, Rohan Anil, Christopher Fifty, and Manfred K. Warmuth. Step-size

adaptation using exponentiated gradient updates. In Workshop on “Beyond first-

order methods in ML systems” at the 37th International Conference on Machine

Learning (ICML), 2020.

[4] Ehsan Amid, Rohan Anil, and Manfred K. Warmuth. LocoProp: Enhancing

BackProp via local loss optimization. arXiv preprint arXiv:2106.06199, 2021.

[5] Ehsan Amid and Manfred K. Warmuth. TriMap: Large-scale Dimensionality

Reduction Using Triplets. arXiv preprint arXiv:1910.00204, 2019.

[6] Ehsan Amid and Manfred K Warmuth. An implicit form of Krasulina’s k-PCA

50

update without the orthonormality constraint. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 34, pages 3179–3186, 2020.

[7] Ehsan Amid, Manfred K. Warmuth, Rohan Anil, and Tomer Koren. Robust bi-

tempered logistic loss based on Bregman divergences. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems, NeurIPS,

2019.

[8] Ehsan Amid, Manfred K. Warmuth, and Sriram Srinivasan. Two-temperature

logistic regression based on the tsallis divergence. In Proceedings of the Twenty-

Second International Conference on Artificial Intelligence and Statistics, vol-

ume 89 of Proceedings of Machine Learning Research, pages 2388–2396. PMLR,

2019.

[9] Ehsan Amid and Manfred K. K Warmuth. Reparameterizing mirror descent as

gradient descent. In Advances in Neural Information Processing Systems, vol-

ume 33, pages 8430–8439, 2020.

[10] Rizwan Ahmed Ansari and Krishna Mohan Buddhiraju. Noise filtering in

high-resolution satellite images using composite multiresolution transforms.

PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science,

86(5):249–261, 2018.

[11] Raghav Bansal, G. Raj, and T. Choudhury. Blur image detection using lapla-

51

cian operator and open-cv. 2016 International Conference System Modeling &

Advancement in Research Trends (SMART), pages 63–67, 2016.

[12] Yoshua Bengio, J. Louradour, Ronan Collobert, and J. Weston. Curriculum learn-

ing. In ICML ’09, 2009.

[13] O. Bousquet and M. K. Warmuth. Tracking a small set of experts by mixing past

posteriors. J. of Machine Learning Research, 3(Nov):363–396, 2002.

[14] Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional

networks. CoRR, abs/1505.01554, 2015.

[15] Monojit Choudhury, Kalika Bali, Sunayana Sitaram, and Ashutosh Baheti. Cur-

riculum design for code-switching: Experiments with language identification and

language modeling with deep neural networks. In Proceedings of the 14th Inter-

national Conference on Natural Language Processing (ICON-2017), pages 65–74,

Kolkata, India, December 2017. NLP Association of India.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

52

[18] Matthew F Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in Finance.

Springer, 2020.

[19] Rajmadhan Ekambaram, Dmitry B Goldgof, and Lawrence O Hall. Finding label

noise examples in large scale datasets. In 2017 IEEE International Conference on

Systems, Man, and Cybernetics (SMC), pages 2420–2424. IEEE, 2017.

[20] Andre Esteva, Katherine Chou, Serena Yeung, Nikhil Naik, Ali Madani, Ali Mot-

taghi, Yun Liu, Eric Topol, Jeff Dean, and Richard Socher. Deep learning-enabled

medical computer vision. NPJ Digital Medicine, 4(1):1–9, 2021.

[21] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter,

Helen M Blau, and Sebastian Thrun. Dermatologist-level classification of skin

cancer with deep neural networks. nature, 542(7639):115–118, 2017.

[22] Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach.

CoRR, abs/1805.03643, 2018.

[23] Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and Yi Wu. Ag-

nostic learning of monomials by halfspaces is hard. SIAM Journal on Computing,

41(6):1558–1590, 2012.

[24] David Flatow and Daniel Penner. On the robustness of convnets to training on

noisy labels, 2017.

[25] Y. Freund and R. E. Schapire. A Decision Theoretic Generalization of On-Line

53

Learning and an Application to Boosting. In Second European Conference on

Computational Learning Theory (EuroCOLT-95), pages 23–37, 1995.

[26] Y. Freund, R. E. Schapire, Y. Singer, and M. K. Warmuth. Using and combining

predictors that specialize. In Proc. 29th Annual ACM Symposium on Theory of

Computing, pages 334–343. ACM, 1997.

[27] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of sta-

tistical learning, volume 1. Springer series in statistics New York, 2001.

[28] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under

label noise for deep neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 31, 2017.

[29] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learn-

ing, volume 1. MIT press Cambridge, 2016.

[30] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray

Kavukcuoglu. Automated curriculum learning for neural networks. CoRR,

abs/1704.03003, 2017.

[31] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong,

Matthew R. Scott, and Dinglong Huang. Curriculumnet: Weakly supervised

learning from large-scale web images. CoRR, abs/1808.01097, 2018.

[32] David Harrison Jr and Daniel L Rubinfeld. Hedonic housing prices and the demand

54

for clean air. Journal of environmental economics and management, 5(1):81–102,

1978.

[33] Babak Hassibi, Ali H Sayed, and Thomas Kailath. H∞ optimality of the LMS

algorithm. IEEE Transactions on Signal Processing, 44(2):267–280, 1996.

[34] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Trans-

actions on knowledge and data engineering, 21(9):1263–1284, 2009.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[36] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard

Scholkopf. Support vector machines. IEEE Intelligent Systems and their ap-

plications, 13(4):18–28, 1998.

[37] James B Heaton, Nick G Polson, and Jan Hendrik Witte. Deep learning for

finance: deep portfolios. Applied Stochastic Models in Business and Industry,

33(1):3–12, 2017.

[38] M. Herbster and M. K. Warmuth. Tracking the best expert. Journal of Machine

Learning, 32(2):151–178, August 1998.

[39] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4700–4708, 2017.

55

[40] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,

and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep

networks. CoRR, abs/1612.01925, 2016.

[41] Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G. Hauptmann. Easy

samples first: Self-paced reranking for zero-example multimedia search. In Pro-

ceedings of the 22nd ACM International Conference on Multimedia, MM ’14, page

547–556, New York, NY, USA, 2014. Association for Computing Machinery.

[42] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexan-

der Hauptmann. Self-paced learning with diversity. In Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K. Q. Weinberger, editors, Advances in Neural In-

formation Processing Systems, volume 27. Curran Associates, Inc., 2014.

[43] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Men-

tornet: Regularizing very deep neural networks on corrupted labels. CoRR,

abs/1712.05055, 2017.

[44] Ian Jolliffe. Principal Component Analysis. 2011.

[45] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient

descent for linear predictors. Information and Computation, 132(1):1–63, 1997.

[46] Jyrki Kivinen, Manfred K Warmuth, and Babak Hassibi. The p-norm generaliza-

tion of the LMS algorithm for adaptive filtering. IEEE Transactions on Signal

Processing, 54(5):1782–1793, 2006.

56

[47] Wouter M Koolen, Dmitry Adamskiy, and Manfred K Warmuth. Putting bayes

to sleep. In NIPS, pages 135–143, 2012.

[48] M. Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for la-

tent variable models. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,

and A. Culotta, editors, Advances in Neural Information Processing Systems, vol-

ume 23. Curran Associates, Inc., 2010.

[49] Y. J. Lee and K. Grauman. Learning the easy things first: Self-paced visual

category discovery. In CVPR 2011, pages 1721–1728, 2011.

[50] Siyang Li, Xiangxin Zhu, Qin Huang, Hao Xu, and C.-C. Jay Kuo. Multi-

ple instance curriculum learning for weakly supervised object detection. CoRR,

abs/1711.09191, 2017.

[51] Jian Liang, Zhihang Li, Dong Cao, Ran He, and Jingdong Wang. Self-paced cross-

modal subspace matching. In Proceedings of the 39th International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR ’16,

page 569–578, New York, NY, USA, 2016. Association for Computing Machinery.

[52] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal

loss for dense object detection. In Proceedings of the IEEE international conference

on computer vision, pages 2980–2988, 2017.

[53] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-

57

Granda. Early-learning regularization prevents memorization of noisy labels.

arXiv preprint arXiv:2007.00151, 2020.

[54] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-

Granda. Early-learning regularization prevents memorization of noisy labels, 2020.

[55] Yuan Liu, Ayush Jain, Clara Eng, David H Way, Kang Lee, Peggy Bui, Kimberly

Kanada, Guilherme de Oliveira Marinho, Jessica Gallegos, Sara Gabriele, et al. A

deep learning system for differential diagnosis of skin diseases. Nature Medicine,

26(6):900–908, 2020.

[56] Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews:

data mining and knowledge discovery, 1(1):14–23, 2011.

[57] Negin Majidi, Ehsan Amid, Hossein Talebi, and Manfred K. Warmuth. Expo-

nentiated gradient reweighting for robust training under label noise and beyond.

arXiv preprint arXiv:2104.01493, 2021.

[58] Juan Carlos Mier, Eddie Huang, Hossein Talebi, Feng Yang, and Peyman Milan-

far. Deep perceptual image quality assessment for compression. arXiv preprint

arXiv:2103.01114, 2021.

[59] Naila Murray, Luca Marchesotti, and Florent Perronnin. AVA: A large-scale

database for aesthetic visual analysis. In 2012 IEEE Conference on Computer

Vision and Pattern Recognition, pages 2408–2415. IEEE, 2012.

[60] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

58

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499,

2016.

[61] Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu, Jun Xiao, and Yueting Zhuang.

Self-paced boost learning for classification. In Proceedings of the Twenty-Fifth In-

ternational Joint Conference on Artificial Intelligence, IJCAI’16, page 1932–1938.

AAAI Press, 2016.

[62] Matt Poyser, Amir Atapour-Abarghouei, and Toby P Breckon. On the impact

of lossy image and video compression on the performance of deep convolutional

neural network architectures. arXiv preprint arXiv:2007.14314, 2020.

[63] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. OpenAI blog,

1(8):9, 2019.

[64] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 779–788, 2016.

[65] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is

robust to massive label noise. arXiv preprint arXiv:1705.10694, 2017.

[66] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional net-

works for biomedical image segmentation. In International Conference on Medi-

59

cal image computing and computer-assisted intervention, pages 234–241. Springer,

2015.

[67] F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human

face identification. In Proceedings of 1994 IEEE Workshop on Applications of

Computer Vision, pages 138–142, 1994.

[68] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Tim-

othy P. Lillicrap. One-shot learning with memory-augmented neural networks.

CoRR, abs/1605.06065, 2016.

[69] Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data parameters: A new

family of parameters for learning a differentiable curriculum. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 32. Curran Asso-

ciates, Inc., 2019.

[70] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

embedding for face recognition and clustering. CoRR, abs/1503.03832, 2015.

[71] Burr Settles, Mark Craven, and Lewis Friedland. Active learning with real an-

notation costs. In Proceedings of the NIPS workshop on cost-sensitive learning,

volume 1. Vancouver, CA:, 2008.

[72] Jonathon Shlens. A tutorial on principal component analysis, 2005.

[73] Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Baby steps: How

60

“less is more” in unsupervised dependency parsing. In NIPS 2009 Workshop on

Grammar Induction, Representation of Language and Language Learning, 2009.

[74] James S. Supancic, III and Deva Ramanan. Self-paced learning for long-term

tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2013.

[75] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and

Peter Stone. Automatic curriculum graph generation for reinforcement learning

agents. In Proceedings of the 31st AAAI Conference on Artificial Intelligence

(AAAI), February 2017.

[76] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 2818–

2826, 2016.

[77] Hossein Talebi and Peyman Milanfar. Learned perceptual image enhancement. In

2018 IEEE international conference on computational photography (ICCP), pages

1–13. IEEE, 2018.

[78] Hossein Talebi and Peyman Milanfar. NIMA: Neural image assessment. IEEE

Transactions on Image Processing, 27(8):3998–4011, 2018.

[79] Kevin Tang, Vignesh Ramanathan, Li Fei-fei, and Daphne Koller. Shifting

weights: Adapting object detectors from image to video. In F. Pereira, C. J. C.

61

Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information

Processing Systems, volume 25. Curran Associates, Inc., 2012.

[80] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht,

and Ludwig Schmidt. Measuring robustness to natural distribution shifts in image

classification. arXiv preprint arXiv:2007.00644, 2020.

[81] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from

massive noisy labeled data for image classification. In 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2691–2699, 2015.

[82] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A sim-

ple and general method for semi-supervised learning. In Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, ACL ’10, page

384–394, USA, 2010. Association for Computational Linguistics.

[83] Xinshao Wang, Yang Hua, Elyor Kodirov, and Neil M Robertson. Imae for noise-

robust learning: Mean absolute error does not treat examples equally and gradient

magnitude’s variance matters. arXiv preprint arXiv:1903.12141, 2019.

[84] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey.

Symmetric cross entropy for robust learning with noisy labels. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 322–330,

2019.

[85] Manfred K. Warmuth and Dima Kuzmin. Randomized online PCA algorithms

62

with regret bounds that are logarithmic in the dimension. Journal of Machine

Learning Research, 9(75):2287–2320, 2008.

[86] Manfred K. Warmuth and Dima Kuzmin. Randomized online pca algorithms with

regret bounds that are logarithmic in the dimension. Journal of Machine Learning

Research, 9(75):2287–2320, 2008.

[87] Manfred K Warmuth and Dima Kuzmin. Randomized online pca algorithms with

regret bounds that are logarithmic in the dimension. Journal of Machine Learning

Research, 9(Oct):2287–2320, 2008.

[88] Harry Wechsler, Jonathon P Phillips, Vicki Bruce, Francoise Fogelman Soulie,

and Thomas S Huang. Face recognition: From theory to applications, volume 163.

Springer Science & Business Media, 2012.

[89] Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jianhuang Lai, and Tie-Yan

Liu. Learning to teach with dynamic loss functions, 2018.

[90] Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge,

and Yi Chang. Robust early-learning: Hindering the memorization of noisy labels.

In International Conference on Learning Representations, 2021.

[91] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms, 2017.

[92] Yilun Xu, Peng Cao, Yuqing Kong, and Yizhou Wang. L dmi: A novel

63

information-theoretic loss function for training deep nets robust to label noise.

In NeurIPS, pages 6222–6233, 2019.

[93] Yan Yan, Rómer Rosales, Glenn Fung, Ramanathan Subramanian, and Jennifer

Dy. Learning from multiple annotators with varying expertise. Machine learning,

95(3):291–327, 2014.

[94] Rui Zhang, Feiping Nie, and Xuelong Li. Auto-weighted two-dimensional principal

component analysis with robust outliers. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6065–6069. IEEE,

2017.

[95] Rui Zhang, Feiping Nie, and Xuelong Li. Auto-weighted two-dimensional principal

component analysis with robust outliers. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA,

USA, March 5-9, 2017, pages 6065–6069. IEEE, 2017.

[96] Rui Zhang and Hanghang Tong. Robust principal component analysis with adap-

tive neighbors. NeuIPS, 2019.

[97] Rui Zhang and Hanghang Tong. Robust principal component analysis with adap-

tive neighbors. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Sys-

tems, volume 32. Curran Associates, Inc., 2019.

[98] Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming

64

Pang, Quoc V Le, and Yonghui Wu. Pushing the limits of semi-supervised learning

for automatic speech recognition. arXiv preprint arXiv:2010.10504, 2020.

[99] Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training

deep neural networks with noisy labels. arXiv preprint arXiv:1805.07836, 2018.

[100] Qian Zhao, Deyu Meng, Lu Jiang, Qi Xie, Zongben Xu, and Alexander G. Haupt-

mann. Self-paced learning for matrix factorization. In Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence, AAAI’15, page 3196–3202.

AAAI Press, 2015.

65

