Lawrence Berkeley National Laboratory
Recent Work

Title
A NOTE ON THE CONSTRUCTION OF PROJECTION OPERATORS IN THE SEMI-CLASSICAL APPROXIMATION

Permalink
https://escholarship.org/uc/item/1816p23\

Author
Hahn, Yukap

Publication Date
1972-02-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/1816p23v
https://escholarship.org
http://www.cdlib.org/

Submitted to Physical Review LLBI.-718 (’\

Preprint

y

A NOTE ON THE CONSTRUCTION OF PROJECTION
OPERATORS IN THE SEMI-CLASSICAL APPROXIMATION

U3}y 104

Yukap Hahn and Kenneth M. Watson

Wwool siyl wodj udjel aq o3 10N

February 9, 1972
h]

AEC Contract No. W-7405-eng-48




DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. :



s

e
Aot

-1- LBL-718

A NOTE ON -THE CONSTRUCTION OF PROJECTION

) . . : *
OPERATORS IN THE SEMI-CLASSICAL APPROXIMATION

. Yukap HahnT ana Kenneth M. Watson
'PhysicsvDépartment and Lawrence Befﬁéley Laboratory

University of California, Berkeley, California 94720

February 9, 1972

ABSTRACT

The projection operators onto various subsets of.
states of a quantum mechanicalbsystem are constructed in
a semi-classical approximation based on the Wigner
trénsformation of statistical mechanics. As illustrations,
explicit nperator expressions are derived for.the cases
of central Coulomb potential, one-dimensional harmonic
oscillator, and the radial Coulombic states of specified
angular momenta. ’Accuracy of ‘these operators is then
examined in some detail in terms»of the overlap integréls
and dipole fransition probabilities. Tﬁe sémi-classicai
approximation is found to be effective in the energy
regions away from the classical turning points. Extensions
of the approach to partially projected Green’sbfunctions

and'other related moments are discussed and their applica-

tions to scattering problems pointed out.
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I. INTRODUCTION

Projéction operators nccur frequently in formulations of
theories -of scattéring reactions, such as that of Feshbachl and its
subsequent developments.2 For ex;mple, a calculation of compound
resonance states may be set up in terms of the closed channel operator
Q whlch is orthogonal to all open channels at a glven energy E. The
va*1at1onal bound formula.tlon3 of effectlve potentlals and resulting
bounds on reaction matrix elements is also developed with the use of
projection operators.

The difficulty of constructing such projection'operators has
been an obstacle in the application of these theories. In this paper-
we.describe the use of ﬁhé‘Wignerh transformation of %tatistical
mechanics to provide a semi-classical approximation for projection
operators.

The Wigner transformation expresses the Boltzmann function as

a certain Fourier transform of the quantum mechanical density matrix.

Applied to the case of the single particle distribution function this
5

relation is

5 ? .' ? - = ;;}'
f(x,p = b [ ( -5 o] ¥+ §) exp[ip-z"/‘h]dBr <L)
Here f 1is the Boltzmann function for a particle at ¥ with momentum

p and (iﬁpliﬁ) is the density matrix in a coordinate space repre-

sentation.6 The inverse of (1.1) is

ol = [ @ {2F + 1,5 ) explip- (- DAl (1.2)
2

The normalization in Eq. (1.1) is so chosen that

- ff@ﬁ) &x Pp = f Ox@plF) = 1 | (1.3)
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when p 1s expressed in a Hilbert space representation:

M
Fel) = & 3 v, i@,
a=1

the average being over an appropriate ensemble with Wa

function of « in that ensemble.

(1.4)

the wave

L
-

II. PROJECTION OPERATOR ONTO STATES OF ONE OR MORE PARTICLES
" Relations (1.1), (1.2), and {1.L:) suggest the application to
projection operator construction with a change in normalization, of
course. Consider & complete set Kx(ij of o?thonormal single particle

wave function. The projection operator onto a subset J(f of these is

v

@D - ) @D 0 . - (2.1)
5 : '

A classical phase space function F(§2§3 is introduced as7

F(X,p) = f@-gf/\]?# g) exp[iﬁ’-?/h]d% . (2.2)-

The inverse transformation is
JEPEN 1 1, - .i? - : 3
&l = = 5(X +),0) expif- (X - M| ap . (2.3)
h _ .

If the xk are normalized to unity, the normalization of F is

fﬂiﬁa%d% =h3Z o ‘  ERY
3 |

Consider now the plane wave states

2 v
- 2. =
x (x) = h " explip-x/)
p
in some large volume 61/ﬂ. The projection operator onto states of

momentum less than P 1is

@A) = n7 &p expli(X - ¥)-B/8) . (2.5)
- |

For this projection operator Eq. (2.2) gives

FED) = 3q 83 - P), ?pa@ﬁ (2.6)
q<P

-
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We see that F is unity in the "allowed" region (p < P) of phase
space and vanishes outside this . region.

The.abové suggests the following approximate model for a

projection operator. Define .

F(X,D)

1,.

‘with (X,p) in a region fﬂz ‘of classical phase Space; and

F(%,D) 0, (X,7) not in’ . (2.7)

Then the guantum mechanical projection operator corresponding to the

classical phase space 765 is

@Al7) = b7 fd?p explip- (X - V)],
vith (& +7),5) in R . (2.8)

The generalization to the case of N particles is obvious.
Let F(ﬁiﬁa,---ik,ﬁk) be upity in a regiop 7&5 of the N-particle
phase space and let F vanish outside this region. Then the

correspohding projection operator is

ey

(xl} : .,.% ,A'?ll . .?N) = h-BN fd3pl M 'dBPN F

dJ

N .
X expli Zl'i?:j'(?. -VAL (2.9)
3= :
- The .case of a particle in a spherically symmetric attractive
potential V(r) is very simple. Suppose V(r) approaches zero as

r — o, Then choose

F(X,P)

2 .
1 for gﬁ +V(r) s ELO,

0 othervwise.

o

(2.10)

 fm
Let : . _

1
2

p(x) = [2a(E - v(x))I? . (2.11)

[We are to set P =0 if the right-hand side of (2.11) is imaginary.]

The expresSion (2.8) then gives us

| &P L

—~————~— [sin G - G cos G] ,
22X - 7> |

[}
i}

[[% - ?lvP(-é-l? +¥D1A . (2.12)

The projection operator onto &ll bound states of a Coulomb
poténtial, for example,
2
V(r) = - 2e/r

is then [now E =0 in Eq. (2.11)]

. 311
Xingl¥) = {en?<aof?+?l/(uz>)2]
X [sin G/G5 - cos G/GE] ,
‘ - Z ’
G = IX°5’—)"—"_,__,’ s _ - (2.13)
ao X +y
where a. is the Bohr radius.

¢]

The projection operator onto the continuum of the Coulomb

istates is, in the present approximation, obtained as follows:

Fo = 1-F,
so

X ¥) = 8@ -9 - Rag® - (2.14)
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The relation (2.14) is of course exact. This results from the fact
that if F =1 on all phase space our approximation gives the exact

result

&Aly) = 8(x-9) . - (2.15)
we emphasize that the expressions (2.12) and (2.13) are
defined only in that domain of ¥ and 7 for which P((X + 37’)/2) o
is real. Thus (§1A[§3 vanishes for (§;+ §3/2 outside the classical

turning points. Extension of our procedure into the classically
forbidden regime appears possible (as in the WKB method), but is not
discussed here.

The formal relation
AT = A ' (2.16)

to be satisfied by projection operators is not satisfied exactly by
the approximation (2.8). As the domain 7(1 becomes large compared
with ‘ﬁB—-the semi-classical limit--it is easily seen that (2.16)
becomes valid, howeyer. For the classical phase space 1(l described
oy the syﬁmetric_variable (X + §3/2, the operator given by (2.8) is
hermitian. A ‘ o -

The expression corresponding to (2.3)'when a8 momentum space

representation is used is
@A[@) = n7 f Px Py expli(@ 7 - TDIRIAT)
n fd5r FE T+ )/2) emli@ - )7 . (2.17)

It is also of interest to consider the applications of (2.5)

and (2.9) to collision problems. For scatterings in which all the

stetes in the set ;zf correspond to open channels, AB for the

-8-

states in 4{? .may be used to construct the open-channel projection

operators. Thus, for example, in the e-H scattering near the ioniza-

tion threshold, we may use AB(iZii) of (2.12) and construct the

operator as

WBETZ) - @) G2
- ag(T T A5 B = AT (2.18)
and its complement ’
MDE D) = 3T-T)8(F- ) - 4 (T T,F) = 1Y
(2.19)

where . [AB(iiiﬁ), AB(§§ 2")]) = 0. These operators, which are hermitian

and almost idempotent, may then be used to study the resonance structure,
3

distortion effect, and the bounds on scattering parameters” near the

ionization threshold. rAlternatively, a similar projection operator

2

onto the closed-channel space Q for the two-electron systembmay
also be obtainedvdirectly from the multiparticle generﬁlization (2;9).
The effective pseudopotential for this process can then be constructed
with A% | '

Generalizations of (2.18) and (2;19) té systems involving more
than two electrons are also straightfo;ward and the result could be
used with greafer advantage in the e-Atomic and e-Molecular reactions,

Q

simply because AP and A~ are now very simple to evaluate.
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III. APPLICATIONS OF COULOMB PROJECTION OPERATOR:

As a first application of the projection operators deriﬁed in
Sec. II, we study the ionizatien transitions of hydrogenic targets by
fast elecﬁron impact.8 Sincelihe bound stafe — bound state traﬁsitions
are‘dominant in this case, the usual closure approximation to the
transitien probgbilities leads to grosé overestimate, and it is
necessary to earefully isolete fhe continuum contributions; Thus, the

relevant transition probability is given in the leading order by
c 1 == -
an = m Z (n’ﬁ,m; xlx-AC(x,?)ﬂn,E,m; ﬂ ’ (3'1)
m

where all the dipole transitions from In,z,m; 53 to the continuum are

included. Similarly, we also have

Wl = T ) ks AR AEDII L D G.2)
m-

corresponding to the transitions to all the bound states.

In (3.1) and (3.2), we have denoted the hydrogenic states as

In,ﬂ,q;-?} = anm(;) = _an(x) Ylm(x_) ) (3.3)

while the projection operators AB and AC are given by (2.13) and
(2.14), with E = O.
Evidently, the contribution to (3.1) coming from the

8-function part in (2.14) corresponds to transitions to all available

) 9

states, both bound and continuum, and is given in this case by

=10~

1 ) = o N
Mnﬁ -y e Z (n,2,m; XIX'B(X -y ln,ﬂ,m; )
n

- B = C
=_%z + M,
- %[5n2 +1-38(8 + 1)1, (3.4)

where the quentities’defined with bar denote exact values. An addi-
tional qﬁantity of interest for our study is the overlap integral

defined as

SnE = B2 i T Z (n,2,m; ;!AB(;;_Y_))IU,Z)IH§ 3?) . (3.5)
m

Obviously, with the exact XB in (3.5), in place of the approximate

form (2.13), we expect that

w
1

- 1, for the nth sgtate in AB

(3.6)

0 otherwise.

~

B

’ are also availabie9 for n <k

The exact values of ﬁ and M ¢
n nt

for ready comparison.
More expiicitly, after the sum over the magnetic quantum

. . B
numbers is carried out, M becomes

né

w
[

M B o “ax] ¥ ayr (x)R () ETE
ne T X nt nt IRAL Y
0 0 -1

sin G - G cos G] (3‘7)

x|
u3
For some values of u in the range |M| < 1, the variable v goes

through zeros and thus G becomes singular. This causes the integrand
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n (3'9) to oscillate violently and mekes the du integration We have encountered additional difficulties in the evaluation

difficult. To avoid this problem in the actual numerical integration, A and M

c nf ng
A B C . s s

for n > 1, where Mhz ~ an >> an . This seems to be a peculiarity

of anc, because of the severe  cancellation between M B

we change the variables -(§i§3 to (iifﬁ, where T = X + ii and

rewrite the M B in the fof :
ng n of the Coulomb problem under consideration. The difficulty could in
' . w o a 1 . principle be avoided by defining AC directly in a form similar to
"B 1 2 2 1 .
Mg - ;.]’ X & ‘l’ toat Rnl(x) , an(b)-EE[SIHuG - G cos G (2.8), rather than through Ag @&s we have done in (2.14). When the
0 0] . -1 ] : :
: order of integrations -d3p and du are interchanged, the resulting
integral is then well-defined. However, we are left with four
X (0 -x) P, () a, (3.8) . ’ -
dimensional integrations which are difficult to carry out numerically.
where ' C
For the case. n =1 and £ = O, we obtain M10 ~ 1.1 + 0.2.
N .
d = [hxe +t2 - hxta]2
1
b = [t2 + x2 - 2xta]?
. 1 (3.9)
¢ = 2a/(t)2
po= (ta-x)/.
The form (3.8) and the corresponding expression for S,y vere

used in the actual numerical calculations, and the result is given in
Table I for the cases n = 1,2,3 and £ = O. A éemianalytic'integra-
tibh formula, thcﬁ is useful for rapidly osciliating integrands, and
the Newton-Cotes five-point formulas with varying mesh sizes are used
to ascertain the accuracy of the triple integrﬁtions in (3.8). The
actual values given in the table are obtained by rough‘extrapolations
to the-limit of zero mesh sizes (Fig. 1). The mesh size h is_defined
here by h = z/kmax; the convergence was found to be extremely slow?
and becomes worse éé n was inqreased, espécially in the .da integra-

tion of (3.8). ' _ o



-13-

IV. PROJECTION OPERATOR IN ONE-DIMENSION (HARMONIC OSCILLATOR) -
We consider in this section a one-dimensional harmonic
oscillator model. Aside from the simplification in the numerical

analysis, the model involves a very simple -dipole coupling scheme and

V'Y
also allows us to study the accuracy of AB near the classical
. ' ttrning point.
The pafameters of .the model are defined in the units
m=%=1, bylo
2 .
d¢n+32x2¢. - E ¢ (4.1)
-3 axe - 'n n.’n , :
=y :
e with-
e El’l = (2!'1 + l)a » n = 0,1,2,"’
: (%.2)
' ¢ (x) = A H[(a)%] exp(- & ax®)
- n n n ) 2
and
™~
00
ey ) 2
g PP e = 1.
?.:) N . S : .
i ‘: . Thé dipole coupling préduces
‘::‘ I3 . . . , l )
: n + _ o=
— Sa— = Mn,n+1’ for m=n+1
S
. ® 2
‘ »* ) n —_
_ ¢n (x) x ¢m(x) dx = 4 35 = ,Mn,n-l’ for m=n - 1
-00
o, otherwise. (L.3)
\
We let
- = = 2n + 1
Y M'n,n+1 * M:n,n-l = Ja. - (h.4)

The operator

energy En < EC is

xlTgly) =

-1kL-

PN NG
B <E,

XB which projects onto all the states with

(k.5)

The one-dimensional analogue of (2.8) gives us the semi-classical

approximation to-(4.5)

(x|Agly) =
Here

P2(v) = 2B
and

u = X -y,

.
L[ g eexy)
2n
-P
1 sin(Pu
7 u *
2.2
-av,

v=(x+y)/2.

In addition to (k.6) we define

]

(xlag 19

I

/ P
dp cos(px) cos(py), even

s

P
dp sin(px) sin(py), odd

By

%; (sin(Pu)/u = sin(2pv)/(2v)]

(4.6)

(4.7)

(%.8)

(+.9)
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We note that A

T .
p and AS vanish for |v] > Vos vhere

Vo = (QEC/a)% . (k.10)

The quantities ABi would represent projection operators onto
even (odd) states, corresponding to even (odd) n-values, except for
‘the wrong symmetry of Egs. (4.7) and (4.8)..  We shall see, however,
that for those cases considered Bélow ABt represedt very good

approximations to the projection operators on even (odd) states.

The quantities of interest are defined by

MnA = (n,x[x2|n,x) (4.11)
MP = (n,x|xagy|n,y) (k.12)
NS (1.15)
s, = (m,x{agln,y) (4.1b)

and the corresponding integrals with ABi in the place of AB. We

M Ct

Bt
’ n

denote them by M , and Snt°
The dipole couple scheme of this model is very simple,and we

have the exact values for comparison

= A = B
Moo= M (4.15)
=C
M- = 0 (k.16)
and .
§hi = 1 or O, depending on the symmetry of n and AB1L
§ = 1.

-16-

The parameters of the model are chosen as

a” = 0.bs
(h.17)
ZEC = 2nc +1, with n, = 10,
which in turn gives the cutoff value
1 .
2nc + 1]2 . ) oo
VC . = T = 5.6 . ()4.18)

Table IT contains the result of calculation for both cases in

which A_ and A * are used.

B B
MnBi and Snt to oscillate around their respective exact values,

The extra term in ABt causes both

while the integrals with AB give smoother variations in n. The

B Bz t

deviations of M7 S, M, and 8, are illustrated in Figs. 2

and 3. Also included in Table -II is the overlap integral §nt which

was calculated using the wrong symmetry, that is, AB+' for the case

with n odd, and vice versa. Although the form of integrands in

(4.9) are either symmetric or antisymmetric under x — -x (or» Yy - -y),

ABt itself does not have the def;nite sy@metry because of the cutoff

(k.10). quever, we expect that §nt ~ 0 fér those n which are away

from n,, as given in the table. VIn fact, we have §nt =8
1+

and the exact value would of course be §£ = 0.

-
=
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V. PROJECTION OPERATORS ONTO RADIAL WAVE FUNCTIONS
The numerical calculation of the dipole transitions of See. III
can be simplified by the construction of projection operators onto

radial states. Thus, theé exact projection operator onto the bound

Coulomb states corresponding to an angular momentum £ is

=Ly )
(r]/\:B [r') = z an(r) an(r') . : (51)
n=£+1 .
To construct the semi-classical approkimation to this, we proceed as
follows:
The classical Hamiltonian- for a particle with angular momentum

L in a potential V(r) is

L2

Bl

‘H = + = + V() , , _ (5.2)

vhere (p,r) are the canonical radial coordinate and momentum. For

fixed L, if the energy is to be less than E, we must have the

momentum "p less than

: o 1 - ’ U

p(r) = (em(E - 1%/(em®) -V(@)E . (5.3) .
For the semi-classical approximation to, XBZ we then ﬁrite

P(v) ,
2y, 2 2,
(rlAB lr) = = dp p J,(pr) J,(pr') , (5.14)
. Jo .

with

v = (r+r')/2 w =2 (r-1). (5.5)

-18-

We note that ABE vanishes outside the classical turning points, Vo

" - where

P(vy) = 0. ' (5.6)

It is consistent with the semi-classical approximation to use

the asymptotic form of the spherical Bessel functions. This leads to

1
nrre!

(rlar) = [sin(Pu)/a - () sin(epv)/(2v)] . (5.7)
To use this, we must relate I in Eq. (5.2) to 4. Two reasonable

choices are

2

L (5.82)

[H]
e

2(2 + 1)
or

)
L

(¢ +3)7° 2 N CX: )

1]
=)

There is a strong temptation to drop the second term in brackets in
N
(5.7), writing

te

1]
=

(rlABz|r') = nir' sin{pu)/u gy - (5.9)

Later, we shall compare use 6f both expressions with_séme exéct_
results;

' For the projection operator onto all tﬁe bound states of the
Coulomb field we have E =0 and V = -1/r in Eq. (5.3). [We set

m=e=4=1.] Then (5.6) gives

with ABE vanishing within the centrifugal barrier defined by

v < V..
C
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The quantity (3.2) can be reduced to the form, by performing

the angular integrations,

MnéB- = [(2¢ +l)]'lf x3dXI v dy
- Jo - 0 '

X Rag()) B, LK) + (6 v 1) (x[af L))

- ' -1
= [(22 +1)]17"[¢ Mﬁz_ + (2 +1) Nie_‘_] . (5.10)
The corresponding quantity Mﬁﬂt is
C A :
Mge = My - Mﬁti ) (5.11)
where M is given by Eq (3.6). 1In general >, so
nf ’ ? Tng+ ng-’

c_.c. .
that we have ‘an = an+. _Flnally, the normalization integral Snz’

defined by Eq. (3.7), is

-] oo

2 ’ IR
S, = x° dx v ay R, (x) R, (v)(x[ag |y) . (5.12)
0 0

We can also define analogous quantities. using the approximation (5.9)

0

and A g; and denote them as M§2+,\"Sng¥, M§2+: ete.

BO

As is clear from the above discussion, there are essentially

two ambiguities in the present case; we could choose either (5.8a) or

(5.80) for the value of 1° and thus the cutoff a

could use either (5.7) or (5.9) for Ag (and ABO)' We have

, and secondly we

considered here all four possibilities. Table III contains the result.

R s 2 2 1.2 ; £+1 2+1
of calculations with L™ =L, = (¢ + 5) and both Ay~ and Ap .

3 0 ke ) Wl ST 9] N -
We tyus have MBO M§£+, and Mﬁgf’ and ~Nﬁz$.zgorzespandigg t6.the

ng+?

oo
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transitions £ — £ + 1. The cases with L2 ~L " = £(z +1) are

considered in Table IV.

First of all, we should point out that, as in the three-
; ; S : . A B C
dimensional Coulomb case studied in Sec. ?II,. an > an >> an

{Fig. 4). Therefore the accuracy of A

B and ABO should be judged

- in terms of Sn‘ and M B rather than by looking at the small 'anc,

£ ng ’?
Secondly, the results in Tables IIT and IV are not very sensitive to
the choices of L2, so iong as it ié chosen judiciously. Incidentally,
the cutoff for V< Vo partially corrects for the error caused by the
use of asymptotic jz in (5:7). Finally, we note that the extra terﬁ'ﬂ

in A (i.e., Ay - ABO) gives 'rise to small oscillations in Mg£+, .

vwhile ABO yields fairly smooth Mg3+.
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VI. APPROXIMATION TO GREEN'S FUNCTIONS
The reasonable accuracy of the semi-classical approximation

for projection operators suggests a similar application to certain

N other operators. 'In the present section we discuss the construction

of partially projected Green's functions by this technique.

We introduce the "Green's function”

<§15ﬁl§7 . 2: XX(EU(E - EK)'l-xx*(iﬁl. : - (6.1)
’ P ' .

A are eigenvalues of the energy for states XK’ members of

a complete orthonormal set {XK}J and the sum extends over a subset

Here the E

18 of these.
The semi-classical approximation to (6.1) may be obtained in
exactly the same way as with (2.8) and (2.12). Thus, for all states

with E, < Ec and potentisl V(x), we define
' 1 _ .
P(v) = [2nE, - V(v)? (6.2)

- dnd
2

B, o BV, | | o (6:3)

where V = %{§’+ 53 ‘as before. Then, the operator GB -in the semi;

classical approximation is given by

1

. '?ﬂf
(o5l9) = 11]—5[ ®p ——— )
p<P <§c - gE - V(vi)

3

(6.#)

where WEX - ¥. After the angular integrations, (6.4) becomes

(m =-H =”62 = l)

-00.

PO 3 ap sin(pw)

Fegly) = -{%; (6.5)

2 2 ’
o Ee - P - ZV(V)

which is the desiréd result. Analogously, the operator in the

complementary space AX =1 - ‘Qg can also be given directly this

time as:

S ®  p ap sin(pu) = '
Fle 9 = 3+ —, (6.6)
o P(v) 2E, - P~ - 2V(v)

which should be convergent at large p because of the Riemann-Lebeque

theorem. Of course, both GB and GC are defined only in the region

of v such that P(v) is real.
Generalizations of (6.5) and (6.6) to operators of higher

moments are obvious, as

POY) 5 ap sin(pu)

[2E - p2 - 2V(v)]Y ’

r-1
T 2!
eyl = 5
T(.u

T>0, (6.7)
/0

and the corresponding expression for GCY.

‘There are many possible applications of the operators. (6.7);
for example, the adiabatic dipole and higher mulfipole polarizabilities

o, may be evaluatedll using (6.5), while the leading nonadiabatic

)/

- corrections Bz to the adiabatic pseudopotentials in the low energy

eleétronéatom collisions involve operators with Y = 2. The low-energy
scattering parameters are known to be determined principally by these
parameters.

The form (6.7) immediately suggests that the case with v <O

may aléb be of interest, although special care is required in the
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direct evaluation of GCY

large values of p. Thus, we have

because of the convergence difficulties at

P(v)
(ijFBBI§3 = ‘Er—%gsgxi p dp Sié(PU)[EE N
v 0 (6.8)

The case with & =1 may.be used, for example, in the.éaiculation
" of the partially projected oscillator strength. The main advantage of
dealing with the operators in the restricted set ;g or )é? is
that the contributions from each state in that set_are all of the same
sign, often resulting in some type of bound property.

Some insight into the nature of the approximation (6.4) can be
obtained by using it to construct the actual Green's function, G+,
obtained b& setting P = » and using the proper retarded boundary

condition.12 This gives

Zle*I) = -IM/(2xu)]expliuk(v)], (6.9)

where
K(v) = [om(E - V(v))]% . . (6.10)

The corresponding expression for gt 13 in the straight-line

eikonal approximation, [which is certainly more accurate than (6.9)] is
X
+ .
(x| |37)) = -[M/(2nu)] exp 1] K(r) das(T)} . (6.11)
-
Yy

Here the path integral is taken on the straight line Joining points

? and - X.

Ol
Ve see that (6.9) corresponds to approximating the eikonal
integral as
-
X

K(r) as(¥) = [¥- 7] k(| +7l/2) . T (6.12)

*
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The dipole transition probabilities and the overlap integrals for‘the hydro-

Table I,

-

The quantities with bar denote the

The full projection operator

1,2,3 and £ = O.

genic system, with n

for all bound partial wave states is used.

exact values, in atomic units.
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Table I1.
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The dipole transition probabilities Mn and the overlap
integrals Sn for the one-dimensional harmonic oscillator
model. The force constant a2 = 0.45 and the cutoff energy

is chosen the 10th level, with n, = 10. Both cases with

C
AB and ABt are considered.

23,3333 | 0.6632 | 13.807 | 9.527 | 0.7678 | 18.69 b.6% | -0.105 ';

Exact Ag Ag”
n ﬁnA - ﬁnB Sn MnB ‘MnC Snt MnBi MnCi gni
0 1.1111 | 1.0000} 1.1111} 0.0000} 1.0000 | 1.1112 -0.0001 0.0000

3.3333 | 1,0000} 3.3333| 0.0000| 1.0002 { 3.3323] 0.0011} 0.0000
2 5.5556 | 1.0000{ 5.5556( 0.0000} 0.9996 | 5.5593 :-0.0038' 0.000k4
3 7.7778 11.0000) 7.7774} 0.0004{ 1.0007 | 7.8052] -0.027h } -0.0002

10.0000 1 1.0000 | 9.9968| 0.0032| 1.0074 | 9.7765| 0.2235} -0.0074
5 { 12.2222 | 0.999k | 12.2011} 0.0212 6,9717 12.7276 H—o.505h 0.0287
6| 1h.bbbl | 0.9969 | 14.3345] 0.1100| 1.0196 | 14.070 | 0.374 | -0.0227
7 16.6667 | 0.9952 | 16.2100| 0.4566| 1.0197 { 16.361 | 0.305 1-0.0315
8 | .18.8889 }0.9513{17.352 | 1.537 | 0.9931 | 17.9%5 0.94k -0.0518
‘9 | 21.1111 |o0.858: | 16.884 | k.227 0.9159 | 18.86 2.26 | -0.0541
10

“
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Table IIT. The hydrogenic dipole transition probabilities and overlap integrals using the

2

radial projection operators Ag0+ and AB+ for the case z‘-;z + 1. The

choice L° ~1L 2s (£ + %)2 is used in the cutoff v, and momentum P(v).

C
Exact Values Agy? LC2 ‘ Ay LC2
n 4 ﬁﬁzA Mﬁh .Mgz+ Snz M22+ M§2+ Snz M§z+ ) ’Mﬁz+
10 3.00 2,151 0.85 | 0.917 2.24 | 0.76 | 0.910 2.0 0.80
2 0 42,00 39,30-{ 2.70 0.959 ko.90 § 1.10 0.825 Ly 3 -2.3
3 0 207.00 | 202.56 |- L.k | 0.972 205.59 | 1.1 | 1.059 |- 190.k 16.6
b o eu8.0 | 6h2.t | 5.3 0.979 646.5 1.5 0.943 | 668.9 -20.9
5 ol 1575 - o \'. 0.98% | 1573.4 1.6 0.972 | 1581.5 -6.5
6 o] 3255 " 0,985 | 3252.2 2.8 1.021 | 3151.5 103.5
5.1 30,00 27.62 | '2.38 | 0.965 26.52 | 3.48 | 0.890 27.6 2.k
| 3 1 180.00 174k .54 5.46 0.980 176.7 3.3 0.899 181.6 -1.6
i1 600.0 1 591.7 8.3 0.987 596 .4 3.6 1.06% 564.5 35.5
5 1 | 1500 | 0.990 | 1496.2 3,8 0.982 | 1536 -36
6 1 3148 | 0.991 | 31k2.5 5.5 0.974 | 3174 -26

Table IV. The hydrogenic dipole transition probabilities and overlap integrals using the
3 2 .
radial projection operators ABO+ and AB+ for the case £ - £ + 1, The

choice I° =~ chié 4(£ + 1) is used in the cutoff v, amd momentum P(v).

c
- -
Exact Values ABO’ LQ AB’ LQ
- A - —C 0 o | B c
LY oy NI ) 2+ Mg+ | Sng Moo+ Mo+
10 3.00 | 2.15 | 0.85 | 0.947 2.35 | 0.65 | 0.981 2.26 0.7k
2 0o 42.00 39.30 | 2.70 | 0.968 b1.02 | 0.98 | 0.829 /i k.66 -2.66

!

3 0 207.00 202.56 » b Lk 0.977 205.74 1.26 1,062 | 190.62 16.38

koo 648.00 | 6h2.7 5.3 0.981 646.7 1.3 0.948 | 668.1 -20.1

5 0 | 1575 : L 0.984 | 1573.6 1.4 0.972 | 1584.0 9.0

6 0 | 3285 0.986 | 3252.5 | 2.5 1.02% | 3149 106

2 1 30,00 27.62 2.28 0.973 26.85 .15 0.899 27.85 2.15
3 ] 180.00 17hsh 5,006 0.98L 176.93 3,07 0.895 182.% -2.%

o1 600.0 591.7 “8.3 0.990 596.7 3.3 1.062 56k .6 35.4

5 1 1500 0.992 1496.5 3.5 0.985 1535 -35

6 1 3148 ' 0.992 3142.8 5.2 0.97h 5177. -29

-63_
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FIGURE CAPTIONS

The convergénce of the Mgg integraﬁions for the hydrogenic

. system. The angular integral in (5°8) is carried out using

~ integrations. The mesh size h is defined by h = 2/K

both the semianélytic method and the Newton-Cotes (5 point)

max "’

The values of MhB and Sn for the one-dimensional harmonic

= 10, where the

oscillator model,are,givén near the cutoff Ny

projection operator A, 1s used.

B
Bt

The values of Mh and Sni' for the one-dimensional

‘harmonic oscillator model are given near the cutoff n, = 10,

where the projection operator A * is used.

B

- Variations in n of the exact dipole transition probabilities

of the hydrogenic system for the processes

“(n,2) - (all states, with £ + 1), — (all bound states with

2 +1), and - (all continuum states with ¢ + 1). The

cases with 4 =0 and 1 are considered.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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