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A NOTE ON-THE CONSTRUCTION OF PROJECTION 

. * OPERATORS IN THE SEMI-CLASSICAL APPROXIMATION 

Yukap Hahnt and Kenneth M. Watson 

Physics Department and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

February 9, 1972 

ABSTRACT 

The projection operators onto various subsets of 

states of a quantum mechanical system are constructed in 

a_ semi-classical approximation based on the Wigner 

transformation of statistical mechanics. As illustrations, 

explicit operator expressions are derived for the cases 

of central Coulomb potential, one-dimensional harmonic 

oscillator, and the radial Coulombic states of specified 

angular momenta. Accuracy of 'these operators is then 

examined in some detail in terms of the overlap integrals 

and dipole transition probabilities. The semi-classical 

approximation is found to be effective in the energy 

regions away from the classical turning points. Extensions 

of the approach to partially projected Green's functions 

and other related moments are discussed and their applica-

tions to scattering problems pointed out. 

I. INTROD~CTION 

Projection operators occur frequently in formulations of 

theories of scattering reactions, such as that of Feshbach1 and its 

2 subsequent developments. For example, a calculation of compound 

resonance states may be set up in terms of the closed channel operator 

Q which is orthogonal to all open channels at a given energy E. The 

variational b~und formulation3 of effective potentials and resulting 

bounds on reaction matrix elements is also developed with the use of 

projection operators. 

The difficulty of constructing such projection operators has 

been an obstacle in the application of these theories. In this paper 

we describe the use of the Wigner4 transformation of statistical 

mechanics to provide a semi-classical approximation for projection 

operators. 

The Wigner transformation expresses the Boltzmann function as 

a certain Fourier transform of the quantum mechanical density matrix. 

Applied to the case of the single particle distribution function this 

relation is5 

(,Ll) 

Here f is the Boltzmann function for a particle at t with momentum 

P and (tjpjt•} is the density matrix in a coordinate space repre­

sentation.6 The inverse of (1.1) is 

ctJp IY> f d3p rQct + Y},p) exp[ ip· (Jt - Y} ,hi J. (1.2) 

The normalization in Eq. (1.1) is so chosen that 

__ J f(t,P) d3x :i3p J d3x(t/ p /X} 1 (1.3) 
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·v~hen p is expressed in a Hilbert space representation: 

M 

~ L wc/XJ w~(Y')' (1. 4) 

0:=1 

the average being over an appropriate ensemble with wo: the wave 

function of o: in that ensemble. 
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II. PROJECTION OPERATOR ONTO STATES OF ONE OR MORE PARTICLES 

Relations (1.1), (1~2), and (l.L) suggest the application to 

projection operator construction with a change in normalization, of 

course. Consider a complete set A."-(Xj of orthonormal single particle 

wave function. The projection operator ont~ a subset .,J of these is 

L x~-. (Xj X: (Y') • 
.rO 

A classical phase space function F(x,p) is introduced as7 

The inverse transformation is 

(2.1) 

(2.2) 

(2.3) 

If the x~-. are normalized to unity, the normalization of F is 

(2.4) 

Consider now the plane wave states 

_L 
X (Xj 
-+ 

·2 -+->~) = h - exp[ip•X/u 
p 

in some large volume ~. The projection operator onto states of 

momentum less than P is 

(x/A 10 

For this projection operator Eq. (2.2) gives 

.(2.6) 

' 

' . 
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We see that F is unity in the "allowed" region (p < P) of phase 

space and vanishes outside this region. 

The. above suggests the following approximate model for a 

projection operator. Define 

F(i',P) = 1, 

~ • with (i',P) in a region 1G of classical phase space' and 

• 

i . 

F(i',P) = 0, (i',P) not in 1( . 

Then the quantum mechanical projection operator corresponding to the 

classical phase space ~ is 

<i'IAIY) = h-3 f d3p exp[ip·(i'- Y)jtlJ, 

with ((~(X'+ Y),P) in ~ } • (2.8) 

The generalization· to the case of N particles is obvious. 

Let be unity in a region ~ of the N-particle 

phase space and let F vanish outside this region. Then the 

corresponding projection operator is 

(2.9) 

The case of a particle in a spherically symmetric attractive 

potential V(r) is very simple. Suppose V(r) approaches zero as 

r --+ oo. Then choose 

2 
F(it,P) 1 for ~ + V(r) ~ E ~ 0 , 

0 otherwise .• (2.10) 

-6-

Let 

P(x) 
l 

[2m~ - v(x))r2 . (2.11) 

[We are to set P = 0 if the right-hand side of (2.11) is imaginary.] 

The expression (2.8) then gives us 

1 

2 21 --+ --+
13 

[sin G - G cos G) , 
rt X - y 

G (2.12) 

The projection operator onto all bound states of a Coulomb 

potential, for example, 

V{r) 2 = - Ze /r 

is then [now E = 0 in Eq. (2.11)] 

G 

where ao is the Bohr radius. 

(2.13) 

The projection operator onto the continuum of the Coulomb 

'states is, in the present approximation, obtained as follows: 

1 - F , 

so 

(2 .14) 
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The relation (2.14) is of course exact. This results from the fact 

that if F = 1 on all phase space our approximation gives the exact 

result 

o(Jt- Y> • (2.15) 

We emphasize that the expressions (2.12) and (2.13) are 

defined only in that domain of Jt and y for which p~)t + YJ/2) 

is real. Thus (Jt/A/YJ vanishes for (Jt + YJ/2 outside the classical 

turning points. Extension of our procedure into the classically 

forbidden regime appears possible (as in the WKB method), but is not 

discussed here. 

The formal relation 

A (2.16) 

to be satisfied by projection operators is not satisfied exactly by 

the approximation (2.8). As the domain ~ becomes large compared 

with ~3--the semi-classical limit--it is easily seen that (2.16) 

becomes valid, however. For the classical phase space ~ described 

by the symmetric variable (Jt + YJ/2, the operator given by (2.8) is 

hermitian. 

.The expression corresponding to (2.3) when a momentum space 

representation is used is 

C<liAIC/•) = h-3 J d3x d3y exp[i(q' ·y- C/·j{)](JtiAIY> 

h-3 J d3r F(?,(q + q' )/2) exp[i(q' - V·fJ (2.17) 

It is also of interest to consider the applications of (2.5) 

and (2.9) to collision problems. For scatterings in which all the 

states in the set ~ correspond to open channels, AB for the 

-8-

states in ..J may be used to construct the open-channel projection 

operators. Thus, for example, in the e-H scattering near the ioniza-

tion threshold, we may use AB(1;t•) of (2.12) and construct the 

operator as 

(2.18} 

and its complement 

A (rz· r· z· > c ' ' ' 
(2.19} 

where [AB(r,r•), ~(Z; Z'}] = 0. These operators, which are hermitian 

and almost idempotent, may then be used to study the resonance structure, 

distortion effect, and the bounds on scattering parameters3 near the 

ionization threshold. Alternatively, a similar projection operator 

AQ onto the closed-channel space Q for the two-electron system may 

also be obtained directly from the multiparticle generalization (2.9). 

The effective pseudopotential for this process can then be constructed 

with AQ. 

Generalizations of (2.18} and (2.19} to systems involving more 

than two electrons are also straightforward and the result could be 

used with greater advantage in the e..:Atomic and e-Molecula:r reactions, 1• 

simply because AP and AQ are now very simple to evaluate. 
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III. APPLICATIONS OF COULOMB PROJECTION OPERATOR 

As a first application of the projection operators derived in 

Sec. II, we study the ionization transitions of hydrogenic targets by 

fast electron impact. 8 Since the bound state ~bound state transitions 

are dominant in this case, the usual closure approximation to the 

,. • transition probabilities leads to gross overestimate, and it is 

.. r 

necessary to carefully isolate the continuum contributions. Thus, the 

relevant transition probability is given in the leadirig order by 

M C 
nt 

1 
2£ + 1 

m 

(3.1) 

where all the dipole transitions from ln,t,m; X) to the continuum are 

included. Similarly, we also have 

1 
2£ + 1 L (n,t,m; ;iJ;t.AB(;t,Y}Yjn,£,m; :y') 

m· 

corresponding to the transitions to all the bound states. 

(3.2) 

In (3.1) and (3.2), we have denoted the hydrogenic states as 

In,.£ ,m; ;t; 

while the projection operators 

(2.14), with E = 0. 

A c 

(3.3) 

are given by (2.13) and 

Evidently, the contribution to (3.1) coming from the 

a-function part in (2.14) corresponds to transitions to all available 

states, both bound and continuum, and is given in this case by9 

-10-

1 
2£ + 1 L (n,.e,m; ;tl;t·o(;t- Y)y\n,.e,m; ::;') 

m 

- B - C 
Mn.e + ~.e 

(3.4) 

where the quanti ties defined with bar denote exact values. An addi-

tional quantity of interest for our study is the overlap integral 

defined as 

(n,.e,m; XlAB(;t,Y) ln,£,m; Y> . (3.5) 
m 

Obviously, with the exact ~ in (3.5), in place of the approximate 

form (2.13), we expect that 

1, for the nth state in ~ 

0 otherwise. 

'- B 
The exact values of Mn£ 

for ready comparison. 

and are also available9 for 

(3.6) 

n < 4 

More explicitly, after the sum over the magnetic quantum 

numbers is carried out, 

M B 
n.e 

M B becomes n.e 

(3.7) 

For some values of 1-l in the range !I-ll < 1, the variable v goes 

through zeros and thus G becomes singular. This causes the integrand 
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in (3.9) to oscillate violently and makes the d~ integration 

difficult. To avoid this problem in the actual numerical integration, 

we change the variables (J!,Y} to 

rewrite the 

where 

d 

b 

G 

~ 

M B 
n£ in the form 

X 

1 

[4x2 
+ t2 - 4xtaJ2 

[t2 2 1 

+X - 2xta)2 

1 

2d/(t )2 

(ta - x)jb . 

(1, n' where :t = X:+ y, and 

(ta - x) P£(~) da, 

(3.9) 

The form (3.8) and the corresponding expression for Sn£ were 

used in the actual numerical calculations, and the result is given in 

Table I for the cases n = 1,2,3 and £ = 0. A semianalytic integra-

tion formula, which is useful for rapidly oscillating integrands, and 

the Newton-Cotes five-point formulas with varying mesh sizes are used 

to ascertain the accuracy of the triple integrations in (3.8). The 

actual values given in the table are obtained by rough extrapolations 

to the limit of zero mesh sizes (Fig. 1). The mesh size h is defined 

here by h = 2/Kmax; the convergence was found to be extremely slow, 

and becomes worse as n was increased, especially in the da integra-

tion of (3.8). 

-12-

We have encountered additional difficulties in the evaluation 

of ~£C' because of the severe cancellation between 

for n > 1, where This seems to be a peculiarity 

of the coulomb problem under consideration. The difficulty could in 

principle be avoided by defining Ac directly in a form similar to 

(2.8), rather than through AB as we have done in (2.14). When the 

order of integrations d3p and du are interchanged, the resulting 

integral is then well-defined. However, we are left with four 

dimensional integrations which are difficult to carry out numerically. 

For the case n = 1 and 
I c 

.e = 0, we obtain ~O ~ 1.1 t 0.2. 
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IV. PROJECTION OPERATOR IN ONE-DIMENSION (HARMONIC OSCILLATOR) 

We consider in this section a one-dimensional harmonic 

oscillator model. Aside from the simplification in the numerical 

analysis, the model involves a very simple dipole coupling scheme and 

also allows us to study the accuracy of ~ near the classical 

turning point . 

The parameters of the model are defined in the units 

m = -tr = 1 1 by
10 

2 
d ¢n 2 2 
--+ax rt. 
dx2 l"n 

with 

(2n + l)a 1 n = 0 1 1 1 2,••• 

¢ (x) 
n 

and 

l 1 2 
A H [(a)2x] exp(- -2 ax ) 

n n 

The dipole coupling produces 

n + 1 
2i1" 

[ ~- 9n•(x) x ?.(x) dxr 
n 
2a 

o, 

We let 

M +M n,n+l n,n-1 
2n + 1 
~ 

-

-

Mn 1 n+l 1 for 

Mn n-1 1 for 
1 

otherwise. 

(4 .1) 

(4.2) 

m = n + 1 

m = n - 1 

(4.3) 

(4.4) 
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The operator AB which projects onto all the states with 

energy En ~ EC is 

The one-dimensional analogue of (2.8) gives us the semi-classical 

approximation to-(4.5) 

1 p dp eip(x,-y) 
2n 

p 

1 

! sin(Pu) (4.6) 

Here 

and 

1l u 

2 2 
- a v , 

u = x - y 1 v = (x + y)/2 . 

In addition to (4.6) we define 

:i-
(xi~ !Y) 

!._fp dp sin(px) sin(py), odd 
- 2n 

0 

~ [sin(Pu)/u ± sin(2Pv)/(2v)] . 
2n 

(4.8) 

(4.9) 
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f... ± vanish for 
B lvl > vC' v1here 

(4.10) 

The quantities ~± would represent projection operators onto 

even (odd) states, corresponding to even (odd) n-values, except for 

the wrong symmetry of Eqs. (4.7) and (4.8). We shall see, however, 

that for those cases considered below AB± represent very good 

approximations to the projection operators on even (odd) states. 

The quantities of interest are defined by 

MA (n,xlx
2

1n,x) (4.11) n 

MB (n,xlxvln,y) (4.12) n 

~c ~A_ ~B (4.13) 

s (n,x!~ln,y) (4.14) n 

and the corresponding integrals with ~± in the place of ~· We 

denote them by M B±, M C± and S ± 
n n ' n 

The dipole couple scheme of this model is very simple ,-and we 

have the exact values for comparison 

-B 
~ 

Me 0 
n 

and 

1 or 0, depending on the symmetry of n and 

(4.15) 

(4.16) 

A ± 
B 
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The parameters ·of the model are chosen as 

o.4s 
(4.17) 

with nc = 10, 

which in turn gives the cutoff value 

(4.18) 

Table II contains the result of calculation for both cases in 

which + AB- are used. The extra term in + A -
B 

causes both 

M B± and S ± to oscillate around their respective exact values, 
n n 

while the integrals with 

deviations of MnB' Sn' 

AB give smoother variations in n. The 

M B±, and S ± are illustrated in Figs. 2 -11 n , 
~ + 

and 3. Also included in Table II is the overlap integral sn- which 

+ was calculated using the wrong symmetry, that is, ~ for the case 

with n odd, and vice versa. Although the form of integrands in 

(4.9) are either symmetric or antisymmetric under x ~ -x (or y ~ -y), 

A ± itself does not have the definite symmetry because of the cutoff 
B 

(4.10). However, we expect that s±""o n for those n which are away 

~ + s .± In fact, we have s - s -n n n ' 
from nc, as given in the table. 

and the exact value would of course be 

• 

• 

\ 
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V. PROJECTION OPERATORS ONTO RADIAL WAVE FUNCTIONS 

The numerical calculation of the dipole transitions of Sec. III 

can be simplified by the construction of projection operators onto 

radial states. Thus, the exact projection operator onto the bound 

Coulomb states corresponding to an angular momentum £ is 

00 

n=£+1 

To construct the semi-classical approximation to this~ we proceed as 

follows: 

The classical Hamiltonian·for a particle with angular momentum 

L in a potential V(r) is 

'H 
2 L2 

E...+--+ V(r) 
2m 2mr2 . 

where (p,r) are the canonical radial coordinate and momentum. For 

fixed L, if the energy is to be less than E, we must have the 

'') momentum · p less than 

P(r) 
l 

(2m[E - L
2 /(2mr

2
) - V(r)] )2 (5.3) 

• 
For the semi-classical approximation to,~£ we then write 

I • 
i

P(v) 
2 2 
- dp p 
n 

.o 

with 

v - (r +'r')/2, u a (r - r') 

-18-

We note that ,~£ vanishes outside the classical turning points, vc 

where 

It is consistent with the semi-classical approximation to use 

the asymptotic form of the spherical Bessel functions. This leads to 

1 
nrr' [sin (Pu)/u - ( -l sin (2Pv) /(2v)] (5.7) 

To use this, we must relate L in Eq. (5.2) to £. Two reasonable 

choices are 

or 

£(£ + 1) ? 
- L -

Q 

There is a strong temptation to drop the second term in brackets in 

(5.7), writing 

~ ~ sin(pu)ju 
nrr (5.9) 

Later, we shall compare use of both expressions with some exact 

results • 

For the projection operator onto all the bound states of the 

Coulomb field we have E = 0 and V = -1/r in Eq. (5.3). [We set 

m = e = 11 = 1. ] Then ( 5. 6) gives 

with ~£ vanishing within the centrifugal barrier defined by 

v < vc. 
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The quantity (3.2) can be reduced to the form, by performing 

the angular integrations, 

(5.10) 

The corresponding quantity 

M A - zl' n.e n£± ' 
(5.11) 

where M A 
n.e is given by Eq. (3.6). In general, Me >>Me so 

n£+ n£-' 

that we have Mn.ec ~ ~t+' Finally, the normalization integral Sn£' 

defined by Eq. (3.7), is 

(5.12) 

We can also define analogous quantities. using the approximation (5.9) 
.e ' ,)30 ' 0 co 

and ABO , and denote them as '''n.t±' Sn£±' ~£±' etc. 

As is clear from the above discussion, there are essentially 

two ambiguities in the present case; we could choose either (s.8a) or 
-

(S. 8b) for the value of L 
2 

and thus the cutoff v C' and secondly we 

could use either (5.7) or (5.9) for ~ (and ~0). We have 

considered here all four possibilities. Table III cont.ains the result. 

of calculations with 

We thus have ~+' 

2 2 1 2 ' £+1 £+1 
L ""Lc = (.e + 2) and both ABO and Aj3 • 

{.e +' and ~~+' and "~.ect·· :~orreS.panding tO:. the 

-20-

transitions £-+£+1. The cases with 

considered in Table IV. 

r} ~ L 2 
Q 

.£(2 +1) are 

First of all, we should point out that, as in the three-

dimensional Coulomb case studied in Sec. III, M A>M B»M C 
n£ ~ n£ -il.e 

(Fig. 4). Therefore the accuracy of AB and ABO should be judged 

B . C • 
in terms of Sn£ and Mn.e , rather than by looking at the small ~.e • 

Secondly, the results in Tables III and IV are not very sensitive to 

the choices of 1
2

, so long as it is chosen judiciously. Incidentally, 

the cutoff for ~ < vc partially corrects for the error caused by the 

use of asympto.tic j .e in (S. 7). Finally, we note that the eXtra term 

in AB (i.e., AB - ~0) gives ·rise to small oscillations in ~£+' 

while ~O yields fairly smooth ~~+· 

" 

• 



• 
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VI. APPROXIMATION TO GREEN'S FUNCTIONS 

The reasonable accuracy of the semi-classical approximation 

for projection operators suggests a similar application to certain 

"- other operators. In the present section we discuss the construction 

of partially projected Green's functions by this technique. 

We introduce the "Green's function" 

(6.1) 

Here. the E~ are eigenvalues of the energy for states x,_, members of 

a complete orthonormal set 

..J of these. 

(X. } and the sum extends over a subset 
~ J 

The semi-classical approximation to (6.1) may be obtained in 

exactly the same way as with (2.8) and (2.12). Thus, for all states 

with E~ ~ Ec and potential V(x), we define 

P(v) (6.2) 

and 

~ lc·~ ::7\ where v = 2 x + YJ as before. Then, the operator GB in the semi-

classical approximation is given by 

where 

(m =~ 

~ ~ ~ 
U ;;: X - y. After the angular integrations, (6.4) becomes 

(6.4) 

1 
2 
1l u 

-22-

p dp sin(pu) 

which is the desired result. Analogously, the operator in the 

complementary space ~ = 1 - _J can also be given directly this 

time as 

1 
2 
1l u 

(" 

00 

p dp sin(pu) 

j P ( v) -2E_c __ -p""'2---2-V (-v-) 
(6.6) 

which should be convergent at large p because of the Riemann-Lebeque 

theorem. Of course, both GB and GC are defined only in the region 

of v such that P(v) is real. 

Generalizations of (6.5) and (6.6) to operators of higher 

moments are obvious, as 

2_

2

r-l fP( v) __ P_dp-;.;-s-in_(_p_u_) --::: 

nu 
0 

[2E-i-2v(v)]Y 

and the corresponding expression for 

y > 0 ' (6.7) 

There are many possible applications of the operators (6.7); 

for example, the adiabatic dipole and higher mul tipole polari~bf4.ities 

11 at may be evaluated using (6.5), while the leading nonadiabatic 

corrections ~£ to the adiabatic pseudopotentials in the low energy 

electron-atom collisions involve operators with Y = 2. The low-energy 

scattering parameters are known to be determined principally by these 
I 

parameters. 

The form (6.7) immediately suggests that the case with Y' 0 

may also be of interest, although special care is required in the 
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direct evaluation of G Y because of the convergence difficulties at c 
large values of p. Thus, we have 

2 - 0 
p dp sin(pu)[2E - p - 2V] 

(6.8) 

The case with o = 1 may,be used, for example, in the calculation 

of the partially ~rejected oscillator strength. The main advantage of 

dealing with the operators in the restricted set ..J or is 

that the contributions from each state in that set are all of the same 

sign, often resulting iri some tYIJe of bound property. 

Some insight into the nature of the approximation (6.4) can be 

obtained by using it to construct the actual Green's function, G+, 

obtained by setting P = oo and using the proper retarded boundary 

condition. 12 This gives 

-[Mj(2rru)]exp[iuK(v)], (6.9) 

where 

K(v) (6.10) 

The corresponding expression for G+ l3 in the straight-line 

eikonal approximation, [which is certainly more accurate than (6.9)] is 

(6.11) 

Here the path integral is taken on the straight line joining points 

y and- "1. 

-24-

ltle see that (6.9) corresponds to approximating the eikonal 

integral as 

.... 

f
x 

~ K(r) ds(r) 

y 

jJt- Y\ K( ~Jt + yjj2) (6.12) 

• 



4 • 

s--& 

. -;;:.; 

·~ .. " 

"·-. 

::; 

~ 

.=.') 

C') 

·~ ... 
""' 

'':) 

' •'''"\ . ___ .,.., 

' 

t 

l. 

c:. 

-25-

FOOTNOTES AND REFERENCES 

P.esearch supported in part by the U. S. Atomic Energy Commission 

and by the Air Force Office of Scientific Research, Office of 

Aerospace Research, United States Air Force, under Contract 

#F44620-70-C-0028. 

On sabbatical leave from the Physics Department, University of 

Connecticut, Storrs, Connecticut 06268. Participating guest 

Lawrence Berkeley Laboratory. 

H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962) and L' 357 (1958). 

w. A. Friedman and H. Feshbach, Contribution to Racah memorial 

volume; M. H. Mittleman, Ann. Phys. (N.Y.) 28, 430 (1964); J. C. Y • 

Chen and M. H. Mittleman, ibid LI' 264 (1966); M. Coz, ibid l2' 
53 (1965) and 2£, 217 (1966); Y. Hahn, ibid 58, 137 (1970) and 

§]_, 389 (1971). 

3· Y. Hahn and L. Spruch, Phys. Rev. ~' 1159 (1967); Y. Hahn, ibid 

Cl, 12 (1970) • 

4. E. P. Wigner, Phys. Rev. 40, 749 (1932). 

s. A similar expression is of course available for the case of more 

than one particle [see Ret. 4]. 

6. See, for example, R. Balescu, Statistical Mechanics of Charged 

Particles (Interscience Publishers, N.Y., 1963), Chapter 14. 

1
,?(:;· Planck's constant is retained in this section to explicitly exhibit 

classical and quantum aspects of our formulation. 

8. See, for example, N. F. Mott and H. S. W. Hassey, The Theory of 

Atomic Collisions (Oxford Press, 1965), Chapter 16. 

9. H. A. Bethe and E. E. Salpeter, Handbuch der Physik, edited by S. 

FlUgge (Springer-Verlag, Berlin, 1957), Vol. 35· 

-26-

10. 1. I. Schiff, Quantum Mechanics {McGraw-Hill Book Co. Inc., N. Y., 

1955). 

11. C. J. Kleinman, Y. Hahn, and L. Spruch, Phys. Rev. ~' 53 (1968). 

12~ M. 1. Goldberger and K. M. Watson, Collision Theory (John Wiley 

and Sons, Inc., New York, 1964), page 303. 

13. Ref. 12, page 331. 



-27-

(\J (\J 
0 0 

QJ . 
..c: 0 0 

I .f1 +' 
0 0 +• +• 
'"' 

QJ s:: 
'd +' 00 t- ti"\ » '"' 

0 aJ 0\ ..c: 0 s:: . . 
+' QJ 0 0 

QJ aJ 'd 
..c: '"' +' QJ 

'"' P< aJ 

'"' 0 p rl 
0 0 rl 

""' s:: ..c: 
0 +' 0 0 \D 

Cll .... .... 
rl +' :;, u +t +• +• 
a! 0 0 

'"' 
QJ Cll ~s:: "' bO .,..., (!) 0\. ...:t 

QJ 0 .... 
+' '"' +' 0 (\J aJ 
s:: P< .... rl 

·r< +' 
rl s:: 

P< rl t1l 
aJ e ~ 
rl 0' rl 

'"' 0 rl 
Q) QJ QJ 

> eS eS 0 0 \D 
0 

~ +• +• +• 
Q) 0 ..c: ~ t-
+' 0 'd 0 \D 

QJ . 
'd Cll (\J 0\ 0\ 
s:: ~ "' aJ 
a! ~ rl 

Cll 
Cll .... 
QJ 'd .... s:: Cll 
+' aJ QJ 0 0 0 .... +' ..;0 0 0 0 
rl t1l . ' . 
..-! "' +' Cll ~s:: "' (\J t-
~ 

~ Cll +' ...:t 0 
(\J .... (\J 

p ~ QJ s:: 
0 rl > ~ 

'"' a! 
P< ;;.: 0 .... 
s:: s:: rl E! u ti"\ 0 ...:t 
0 aJ 0 0 aJ t- ...:t .... ·r< +' I~ +' ..c: +' aJ 0 (\J ...:t 

..-! +' '"' Cll .... aJ s:: 
s:: ;;.: P< •rl 
aJ 

'"' E!~ 'd ~ ti"\ 0 \D 
+' s:: Cll ~ rl "' ti"\ 

QJ ~ QJ 0 . 
QJ +' 0 ~ I~ 

(\J 0\ (\J 
rl Cll p rl "' 0 
0 » aJ (\J 
P< "' rl > 

..-1 rl 
'd 0 aJ +' .... 0 
QJ s:: '"' aJ 0 0 0 

eS QJ 0 :<: ..; 0 0 ·o 
bO ""' QJ 0 

l~s:: "' (\J t-
...:t 0 . (\J 

H 

QJ 
rl 
p 
aJ rl (\J "' E-t 

-28-

Table II. The dipole transition probabilities Mn and the overlap 

integrals Sn for the one-dimensional harmonic oscillator 

2 
model. The force constant a = 0.45 and the cutoff energy 

n 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

is chosen the lOth level, with nC = 10. Both cases with 

Aa and Aa± are considered. 

Exact -~ Aa± 
MA - B s M B M C s t M Bt M Ct ~ + 

= M s -n n n n n n n n n -

1.1111 1.0000 1.11111 0.0000 1.0000 1.1112 -0.0001 0.0000 

3·3333 1.0000 3·3333 o.oooo 1.0002 3·3323 0.0011 0.0000 

5·5556 1.0000 5·5556 0.0000 0.9996 5·5593 -0.0038· 0.0004 

7-7778 11.0000 7-7774 o.ooo4 1.0007 7-8052 -0.0274 -0.0002 

10.0000 1.oooo 1 9-9968 0.0032 1.0074 9-7765 0.2235 -0.0074 
i 

-0.5054 0.0287 12.2222 0.9994 i 12.2011 0,0212 0.9717 12.?276 
i 

14.4444 0.9969 I 14.''''1 o.11oo 1.0196 14.070 0.374 -0.0227 

16.6667 0.9952 I 16.2100 o.4566 1.0197 16.361 0.305 -0.0315 

0.9513117-352 
-

.18.8889 1.537 0.9931 17-945 0.944 -0.0418 

21.1111 o.8584 16~884 4:227 0.9159 18.86 2.26 --0.0541 

23.3333 0.6632 13.807 9-527 0.7678 18.69 4.64 -0.105 . 
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Table III. The hydrogenic dipole transition probabilities and overlap integrals using the 

n £ 

l 0 

2 0 

3 0 

4 0 

5 0 

6 0 

2 1 

3 1 

4 l 

5 1 

6 l 

radial projection operators ~O+ and AB+ £ for the case £ ~ £ + l. The 

choice L2 ~ LC2 ~ (£ + ~)2 is used in the cutoff vc and momentum P(v). 

------

Exact Values ABO' LC 
2 - 2 

AB' LC 
' 

- A gB ~£+ sn£ 
BO Mco sn£ ~ Mn£ n£+ ~£+ n£+ n£+ Mri.t+ 

3·00 2.15 0.85 0.917 2.24 0.76 0.910 2.20 0.80 
I 

42.00 
I 

40.90 1.10 0.825 44.3 -2.3 39-30 2.70 I 0.959 

207.00 202.56 4.44 I 0.972 205.59 . 1.41 1.059 190.4 16.6 

648.0 642.7 
I 

646.5 0.943 668.9 5·3 0.979 1.5 -20.9 

1575 - 0.983 l 1573·4 1.6 I 0.972 1581.5 -6.5 
' 

3255 0.985 . 3252.2 2.8 1.021 3151.5 l 103·5 

30.00 27.62 2.38 0.965 26.52 3.48 0.890 27.6 2.4 

180.00 17)~.54 5.46 0.980 176·7 3·3 0.899 181.6 -1.6 

600.0 591-7 8.3 0.987 596.4 3·6 l.o63 564.5 35·5 

1500 0.990 1496.2 3.8 0.982 1536 -36 

3148 0.991 3142.5 5·5 0.974 3174 -26 

Table IV. The hydrogenic dipole transition probabilities and overlap integrals using the 

n £ 

l 0 

2 0 

3 0 

4 0 

5 0 

6 0 

2 1 

3 l I 
4 1 

5 l 

6 1 

radial projection operators 

choice L2 ~ LQ2 = £(£ + l) 

£ 
ABO+ and ~+ for the case £ ~2 + 1. The 

is used in the cutoff vC amd momentum P(v). 

Exact Values 2 
ABO' L.Q. 

2 
~' LQ 

- A 
M!£+ if sn£ ~~+ r{o sn£ 

B· c 
Mn£ n£+ £+ Mn£+ Mh£+ 

' 

3.00 2.15 0.85 0.947 2.35 0.65 0.981 2.26 0.74 

42.00 39.30 2.70 0.968 41.02 0.98 0.829 /1 44.66 -2.66 

207.00 202.56 4.44 0.977 205.74 1.26 1.062 190.62 16.38 

648.00 642.7 5·3 0.981 646.7 1.3 0.948 i 668.1 

I 
-20.1 

! 
1584.0 1575 I o.984 1573·6 1.4 0.972 I -9.0 

? l 

3255 I 0.986 3252·5 2 ,r) l 3149 I 106 1.023 l 

30.00 27.62 ! ~.38 1 0.973 26.85 3.1') 0.899 1 27.85 1 2.1'> 

! 0.89') \ 
~ 

180.00 l74,•:))j I 'j .JH; I 0. 984 I 176.93 3·07 l82.'i -2. ') 

6oo.o 591.7 8.3 0.990 ~596. 7 3·3 1.062 ·~;64 .. 6 35-4 

1500 0.992 1496.5 3·5 0.985 1535 -35 

3148 0.992 3142.8 5·2 0.974 3177 -29 

I 
1\) 
\0 

I 

I 
\.>J 
0 
I 
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FIGURE CAPTIONS 

Fig. 1. The convergence of the ~g integratioqs for the hydrogenic 

system. The angular integral in (3.8) is carried ou~ using 

both the semianalytic method and the Newton-Cotes (5 point) 

integrations. The mesh size h is defined by h = 2/Kmax· 

Fig. 2. The values of M B and S for the one-dimensional harmonic 
n n 

Fig. 3 • 

oscillator model .are given near the cutoff nc = 10, where the 

projection operator AB is used. 

The values of M B± and S ± for the one-dimensional 
n n 

harmonic oscillator model are given near the cutoff nc = 10, 

where the projection operator + 
AB- is used. 

Fig. 4. Variations in n of the exact dipole transition probabilities 

of the hydrogenic system for the processes 

(n,.e) -?(all states, with .e + 1), -?(all bound states with 

.e + 1), and -? (all continuum states with .e + 1). The 

cases with .e = 0 and 1 are considere~. 

Ill 
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·A~ with nc= 10 
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r------------------LEGALNOTICE---------------------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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