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Dewleen G Baker1,2, Mark A Geyer1,3, Victoria Risbrough1,2, and Marine Resiliency Study 
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Abstract

Background—Risk for posttraumatic stress disorder (PTSD) is thought to be mediated by gene 

× environment (G×E) interactions that affect core cognitive processes such as fear learning. The 

catechol-O-methyltransferase (COMT) val158met polymorphism has been associated with risk for 

PTSD and impaired fear inhibition. We used a large, relatively homogenous population to: (1) 

replicate previous findings of poor fear inhibition in COMT Met/Met carriers with PTSD; (2) 

determine if COMT association with fear inhibition is moderated by childhood trauma (CT), an 

environmental risk factor for PTSD; and (3) determine if COMT is associated with altered fear 

processing after recent exposure to combat trauma.

Methods—Male Marines and Navy Corpsmen of European-American ancestry were assessed 

prior to (n = 714) and 4–6 months after deployment to Afghanistan (n = 452). Acquisition and 

extinction of fear-potentiated startle, childhood and combat trauma history, and PTSD diagnosis 

were assessed at both time points.

Results—Before deployment, Met/Met genotype was associated with fear inhibition deficits in 

participants with current PTSD; however this association was dependent on CT exposure. After 

deployment, combat trauma was associated with a modest reduction in fear extinction in Met/Met 

compared to Val/Val carriers. There were no associations of COMT genotype with fear extinction 

within healthy and non-traumatized individuals.

Conclusions—These findings support the hypothesis that G×E interactions underlie associations 

of COMTval158met with fear inhibition deficits. These studies confirm that Met/Met carriers with 

PTSD have poor fear inhibition, and support further research in understanding how this 

polymorphism might impact response to extinction-based therapies.
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Introduction

Posttraumatic stress disorder (PTSD) affects 7–8% of the American population and up to 

20% of military veterans (Pace & Heim, 2011). The risk of developing PTSD, which is 

characterized by intrusive re-experiencing of a traumatic event, avoidance of trauma-related 

stimuli and hyperarousal, is close to 40% in individuals who endorsed a sufficiently high 

number of traumatic events (Kolassa, Kolassa, Ertl, Papassotiropoulos, & De Quervain, 

2010; Neuner et al., 2004). In the US, 61% of men and 51% of women endorsed at least one 

trauma in their lifetime (Kessler, Ruscio, Shear, & Wittchen, 2010; Kessler, Sonnega, 

Bromet, Hughes, & Nelson, 1995). Because only a fraction of those that experience trauma 

go on to develop chronic PTSD symptoms, understanding the biological risk factors that 

contribute to PTSD is important and may lead to development of novel prophylactic and 

treatment targets.

In humans, a commonly carried single nucleotide polymorphism (SNP) in the coding 

sequence for COMT, with valine (Val) being substituted by methionine (Met) at amino acid 

residue 158, results in a 40% reduction in COMT enzymatic activity in Met/Met carriers, 

leading to increased catecholamine tone in Met/Met carriers, particularly in the cortex (Chen 

et al., 2004). This SNP (rs4680) has been associated with risk for several neuropsychiatric 

disorders, although these associations are controversial and inconsistent (Almli, Fani, Smith, 

& Ressler, 2013; Clark et al., 2013; Goenjian et al., 2014). Some human studies reported 

that Met/Met carriers are at higher risk to develop PTSD by exhibiting impaired affective 

function, reduced fear extinction, and exaggerated potentiated startle reflex and anxiety 

(Enoch, Xu, Ferro, Harris, & Goldman, 2003; Lonsdorf et al., 2009; Montag et al., 2008; 

Zubieta et al., 2003). Nevertheless, the relationship between COMTval158met 

polymorphism and PTSD remains inconclusive (Li et al., 2016), suggesting the importance 

of gene × environment interactions in the development of PTSD. Although several studies 

have shown COMTval158met polymorphism × trauma interactions on risk for PTSD, it 

remains unclear how the SNP interacts with other PTSD risk factors such as early life stress 

or recent trauma (Boscarino, Erlich, Hoffman, & Zhang, 2012; Kolassa et al., 2010; Valente 

et al., 2011).

PTSD is associated with increased fear responding, reduced safety signal learning, and poor 

fear extinction (Acheson et al., 2015b; Jovanovic & Norrholm, 2011). Although previous 

studies have indicated that homozygous Met carriers similarly exhibit increased conditioned 

fear, reduced safety signal learning, and/or impaired fear extinction (Lonsdorf et al., 2009; 

Norrholm et al., 2013; Wendt et al., 2015), the results are inconsistent as to whether these 

alterations are found in healthy subjects or in subjects with current PTSD symptoms only. 

Childhood trauma is a strong predictor of PTSD in adulthood, and is well known to interact 

with genes to modulate PTSD risk (Mehta & Binder, 2012). However, it is not clear how 

early life stress may modify COMT associations with fear learning processes or if these 
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processes are altered by recent trauma exposure. In the present study we used a large, 

relatively homogenous population to: (1) replicate previous findings of altered fear processes 

in COMT Met/Met carriers with and without PTSD; (2) determine if COMT associations 

with fear learning and inhibition are moderated by childhood trauma, a strong environmental 

risk factor for PTSD; and (3) determine if COMT is associated with altered fear processing 

after exposure to recent combat trauma.

Methods

Study design and participants

The second phase of the Marine Resiliency study (MRS-II; Baker et al., 2012) involved a 

prospective longitudinal study of ≈ 1200 U.S. Marines and Navy Corpsmen that were 

deployed to Afghanistan. The U.S. Marines were from infantry battalions tested between 

October 2011 and October 2013, at bases in Southern California. Participants of European-

American ancestry were assessed prior to (n = 714) and approximately 4–6 months after 

deployment to Afghanistan (n = 452) (see below for exclusion details). The study, for which 

all participants provided written informed consent, was approved by the institutional review 

boards of the University of California San Diego, Veterans Affairs San Diego Research 

Service, and Naval Health Research Center. Only males were included in the study, since 

infantry battalions did not include females at the time of assessment.

Genotyping

COMTval158met SNP (rs4680) was genotyped as previously described (Nievergelt et al., 

2015). Briefly, blood samples were collected at the first visit and blood leukocytes were 

isolated. Genomic DNA was prepared from blood leukocytes at the Biomedical Genomics 

Microarray (BioGeM) Core facility (University of California San Diego, La Jolla, CA, USA) 

using the automated AutoGenFlex Star System, quantified with the Nanodrop 1000 

spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Genotyping was performed 

by RUCDR Infinite Biologics (Piscataway, NJ, USA) with the human OmniExpress Exome 

array (Illumina Inc., San Diego, CA, USA). The assay call and reproducibility rates were > 

99%. SNPs for control samples (identified as those with no PTSD diagnosis) respected the 

Hardy-Weinberg Equilibrium (p < 5 × 10−8). To control for race/ethnicity we used ancestry 

identification using genetic markers as previously described (Nievergelt et al., 2013), to 

identify 4 possible ancestry categories: African-American, Hispanic/Native American, 

European-American and East Asian/other. All ancestries other than European-American 

were excluded to reduce population stratification. Within European-Americans a principal 

component analysis (PCA) (Nievergelt et al., 2015), implemented in EIGENSTRAT (Price 

et al., 2006) was performed to control for additional genetic background heterogeneity. 

PCAs were then used as covariates in all statistical models.

Childhood Trauma Questionnaire

Before deployment, participants completed a modified 34-item (25–170 range) Childhood 

Trauma Questionnaire (CTQ; Bernstein et al., 1994) to assess traumatic experiences 

(emotional, physical and sexual abuse and emotional and physical neglect) during childhood. 

Presence of childhood trauma was determined based on cut-off scores as previously 
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described (Agorastos et al., 2014): emotional abuse: ≥13; physical abuse: ≥10; sexual abuse: 

≥8; emotional neglect ≥15; physical neglect: ≥10. It has been shown that risk for PTSD and 

depression symptoms were similar for both single and multiple childhood traumatic event 

type (Agorastos et al., 2014). Therefore, we divided the childhood traumatic experiences in 

two categories: 0 (no childhood trauma) or 1 (at least one type of childhood trauma).

Combat experiences and stress

After deployment, combat trauma and stress during deployment were measured using the 

Deployment Risk and Resilience Inventory-2 (DRRI-2), with high criterion validity and 

internal consistency (0.92) (Vogt et al., 2013). From the questionnaire, a total Combat 

Experience Score (CES) was calculated that encompassed all the traumatic and stressful 

events during deployment. To determine the role of trauma exposure (CES, 0–56 possible 

score), we used a validated approach (Collings, Valjee, & Penning, 2013; DeSantis et al., 

2011): a median was calculated and the CES was divided in two groups: low (CES score ≤ 

12) and high (CES score > 12).

Assessment of psychiatric symptoms

As previously described (Baker et al., 2012; Glenn et al., 2016), the Clinician-Administered 

PTSD Scale (CAPS), an interview designed to assess DSM-IV PTSD symptoms, was 

administered (Blake et al., 1995; Smith, Redd, DuHamel, Vickberg, & Ricketts, 1999; 

Weathers, Keane, & Davidson, 2001). Four CAPS subscales were assessed based on 

symptoms: re-experiencing (B1–5); avoidance (C1–2); numbing (C4–6); and hyperarousal 

(D1–5). PTSD symptom severity was measured by the CAPS total score (0–136 range). 

PTSD diagnosis was defined based on modified “subthreshold” guidelines, specifically at 

least one criterion A event, one cluster B symptom, and either three cluster C or two cluster 

D symptoms (Blanchard et al., 1996). Depression symptoms were assessed via self-report 

using the Beck Depression Inventory (BDI-II), which scores depressive symptoms as 

moderate to severe (> 19) within the past two weeks (Beck, Steer, Ball, & Ranieri, 1996).

Fear conditioning protocol

Fear conditioning was performed as previously described (Acheson, Eyler, Resovsky, Tsan, 

& Risbrough, 2015a; Orcutt et al., 2016). Briefly, a SR-HLAB Electromyography (EMG) 

system (San Diego Instruments, San Diego, CA, USA) was used to deliver startle pulses 

(108 dB, 40 ms). The air puff (250 psi) was delivered through a plastic tube positioned 2.5 

cm from the center of the throat and stimuli were presented to the participant using E-Prime 

Software (Psychology Software Tools Inc., Sharpsburg, PA, USA). Eyeblink EMG responses 

were recorded through Ag/Ag 3 M Red Dot electrodes (resistance < 10 kΩ) placed on the 

orbicularis oculi muscle at the left eye. A reference electrode was placed at the mastoid bone 

behind the left ear.

The fear conditioning task was divided in two sessions: acquisition and extinction phases. 

Before the acquisition phase, each participant was instructed that one of two colored 

symbols presented was associated with an air puff. For stabilization of startle responding, 

each phase began with 6 startle pulses without stimuli. During the acquisition phase, 8 

conditioned stimuli (CS+; danger signal; either a blue or yellow circle or square) were 
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presented for 6 s followed by an air puff in 75% contingency (previously measured and 

described; Acheson et al., 2015b), and 8 non-reinforced stimuli (CS-; safety signal; either a 

blue or yellow circle or square) were never paired with an air puff, and 8 startle stimuli were 

presented in the absence of any stimuli (noise-alone trial). The noise-alone trials were used 

as an index of baseline startle across the phase. The startle pulses were presented 4 s after 

the onset of CS+ or CS- signal, and the stimuli (blue or yellow circles or squares) paired 

with the CS+ and CS- signals were randomly assigned across subjects. After the acquisition 

phase, participants rested for 5 min and were then told to remember the associations they 

have learned before starting the extinction phase. During the extinction phase, each stimulus 

(CS+, CS- and noise-alone) was presented 16 times, but no air puff was presented. Fear 

extinction learning in this task is relatively similar after both short (less than 10 min) or long 

delays (72 hrs) after fear acquisition learning (Norrholm et al., 2008).

Statistical analysis

A total of 1134 U.S. Marines were assessed at pre-deployment. Only participants of 

European-American ancestry (EA; n = 714) were included in the study due to potential 

population stratification (Met allele is less frequent in African American, Hispanic, and 

Asian populations) (DeMille et al., 2002; Palmatier, Kang, & Kidd, 1999). Data on 7 

participants were excluded from analysis due to technical difficulties during testing that 

resulted in low signal/noise ratio that precluded accurate signal measurement. Of the 714 EA 

participants analyzed in the pre-deployment phase, 524 completed all the questionnaires and 

fear conditioning testing at post-deployment, and 2 participants were excluded from analysis 

due to technical difficulties. Among the 522 participants from whom all the parameters were 

successfully obtained after deployment, 70 participants were excluded from the post-

deployment analysis because they had been diagnosed with PTSD before deployment which 

could have confounded interpretation of deployment effects on fear processing (Figure 1).

Fear conditioning data were analyzed as previously described, standard for this FPS protocol 

(Acheson et al., 2015b). Within each block, the noise-alone startle averages were subtracted 

from the CS+ and CS- averages to adjust for changes in baseline startle across the session. 

As in past studies using this task, to assess fear acquisition we collapsed the last half of the 

trials in the acquisition phase (Acheson et al., 2015b). To assess fear extinction, we followed 

the statistical conventions described by our group and others for this task (Acheson et al., 

2015b; Norrholm et al., 2011) by collapsing each trial type into 4 equal blocks, the first 

block (early) consisting of the first 4 trials of the phase, the second block (mid 1) trials 5–8, 

the third block (mid 2) trials 9–12, and the last block (late) trials 13–16.

We first determined if our study replicated previous reports of Met/Met increases in FPS 

during acquisition and extinction in subjects with PTSD, using the pre-deployment data set. 

Repeated measures two-way (Genotype × PTSD diagnosis) analysis of variance (ANOVA), 

with block as within-subjects factor and childhood trauma (total CTQ score), lifetime trauma 

burden (Life Event Checklist, LEC; Gray, Litz, Hsu, & Lombardo, 2004), CAPS score, and 

4 ancestry PCAs as covariates, was used for each CS trial separately, followed by Sidak post 
hoc tests, as appropriate. We separated the CS trial types because of the difficulty in 

interpreting and powering analyses with >3-way interactions, and because previous studies 
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suggest that CS- responses are strongly associated with COMTval158met genotype 

(Norrholm et al., 2013). We next asked if childhood trauma moderates the relationship 

between COMT genotype and PTSD on FPS acquisition and extinction. Therefore, repeated 

measures three-way ANOVA (Genotype × PTSD diagnosis × childhood trauma), with block 

as within-subjects factor, and LEC, CAPS score and ancestry PCAs as covariates, was 

conducted, followed by Sidak post hoc tests. Finally, to investigate the effect of recent 

combat trauma exposure on FPS, repeated measures two-way ANOVA (Genotype × CES), 

with block as within-subjects factor, and childhood trauma, LEC, CAPS score, and ancestry 

PCAs as covariates, was performed, followed by Sidak post hoc tests. Interactions with 

block were followed by separate ANOVAs at each block.

Results

Demographic and trauma history of participants

Demographic and descriptive information of participants in MRS-II have been described 

previously (Acheson et al., 2015b; Minassian et al., 2015). Pre-deployment demographic and 

trauma information are described for each COMT genotype (Table 1). Following one-way 

ANOVA, no differences in age, months spent in military, childhood or lifetime trauma 

history (CTQ and LEC, respectively), or BDI-II score were found across COMT genotype 

groups before deployment (Table 1) and Chi-square test revealed no difference in marital 

status, education, or PTSD diagnosis (Table 1). However, a non-parametric Kruskal-Wallis 

test revealed a main effect of genotype was observed on CAPS score (p < 0.01), with 

Met/Met carriers showing higher CAPS score before deployment compared to Met/Val 

carriers (p < 0.01, following Dunn’s comparison test) (Table 1). In Marines not diagnosed 

with PTSD, a main effect of genotype was still observed before deployment on CAPS score 

(Kruskal-Wallis test, p = 0.01), with Met/Met carriers showing higher CAPS score compared 

to Met/Val carriers (p < 0.01 following Dunn’s comparison test) (data not shown). After 

deployment, no change was observed on combat experience score (CES), CAPS and BDI-II 

score, or in the percentage of participants diagnosed with PTSD across COMT genotype 

groups (Table 2).

Met/Met genotype is associated with increased fear-potentiated startle in individuals with 
PTSD and childhood trauma exposure

We first determined if our study replicated previous reports of Met/Met increases in FPS 

during acquisition and extinction in participants with PTSD when controlling for trauma 

burden and childhood trauma. In the acquisition phase, genotype was not associated with 

differences in FPS during either the CS+ or CS- (no main effects or interactions with PTSD 

group, Figure 2, for Table of means ± SEM see Supplementary Table 1). PTSD participants 

exhibited increased FPS to the CS- (F1,701 = 8.85; p < 0.01) regardless of genotype (Figure 

2b). During extinction, main effects of block (F3,701 = 10.83; p < 0.001 and F3,701 = 11.07; p 
< 0.001) were observed on CS+ and CS- signal, respectively, but did not interact with other 

factors (Figure 3a–f, for Table of means ± SEM see Supplementary Table 1). There were no 

significant associations of genotype or PTSD with CS+ responding (Figure 3g). Across the 

CS- trials however, Met/Met carriers diagnosed with PTSD had increased FPS compared to 

Met/Met carriers without PTSD (genotype: F2,701 = 4.48, p < 0.05; genotype × PTSD: F2,701 
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= 3.21, p < 0.05, followed by post hoc test p < 0.05) (Figure 3h). These results replicate 

previous findings that Met/Met carriers with PTSD exhibit increased responses to safety 

signals compared to Met/Met carriers without PTSD (Norrholm et al., 2013).

We next asked if childhood trauma moderates the relationship between COMT genotype and 

PTSD on FPS acquisition and extinction. In the acquisition phase, three-way ANOVA 

(Genotype × PTSD diagnosis × childhood trauma) showed no main effects of childhood 

trauma or interactions with the other factors during the CS+ or CS- trials (see above). During 

the extinction phase, all groups showed significant reductions in potentiation to both the CS

+ and CS- trials (main effects of block: F3,696 = 10.82; p < 0.001 and F3,696 = 9.51; p < 

0.001) (Figure 4a–f). Whereas no genotype associations were observed with FPS during the 

CS+ trials (Figure 4g), a genotype × PTSD diagnosis × childhood trauma interaction was 

observed (F2,696 = 3.50, p < 0.05; genotype: F2,696 = 3.80, p < 0.05; genotype × PTSD: 

F2,696 = 2.96, p = 0.05) on FPS across the CS- trials (Figure 4h). Post hoc comparisons 

indicated that high FPS during the safety signal in Met/Met carriers with PTSD was 

primarily found in participants that endorsed childhood trauma (p < 0.05, compared to 

Met/Met carriers not diagnosed with PTSD, but with at least one childhood trauma) (Figure 

4h), while Met/Met carriers with PTSD but without childhood trauma were not different 

than carriers without PTSD.

Increased fear-potentiated startle in Met/Met carriers after deployment is moderated by 
combat trauma

We next investigated the effect of deployment-related combat trauma exposure on FPS after 

return from deployment. To assess combat trauma effects, we grouped subjects into high and 

low trauma exposure via a median split of combat experience scores (CES) assessed by the 

DRRI post-deployment. To control for chronic PTSD, we excluded participants who were 

already diagnosed with PTSD at pre-deployment. In the acquisition phase, neither genotype 

nor combat trauma was associated with FPS during the CS+ and CS- signals. During the 

extinction phase, a main effect of block (F3,439 = 7.59; p < 0.001) and a block × genotype × 

CES interaction (F6,439 = 2.14; p < 0.05) were found during the CS+ trials. Thus, ANOVAs 

(Genotype × CES) were conducted for each block separately (Figure 6). Within the mid 2 

extinction block, a strong trend for a genotype × CES interaction was observed (F2,439 = 

3.28; p < 0.05). High combat exposure increased fear-potentiated response during the mid 2 

CS+ trials only in Met/Met carriers, compared to Met/Val or Val/Val carriers (Figure 6a–c). 

During the CS- signal, a main effect of block was found (F3,439 = 5.73; p < 0.001), but no 

effect of either genotype or combat trauma was found on FPS (Figure 6d–f).

Discussion

The present study aimed to verify whether COMTval158met polymorphism moderated 

impaired fear processes observed in PTSD, if these associations were further moderated by 

childhood trauma, and if genotype was associated with recent trauma effects on learned fear 

processes. We replicated previous findings that homozygous Met carriers diagnosed with 

PTSD displayed greater FPS to the CS- (safety signal) compared to Val carriers before 

deployment. Importantly, childhood trauma significantly moderated this association, since 
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only Met/Met carriers with PTSD who endorsed childhood trauma, as compared to those 

who did not endorse childhood trauma, had a higher fear-potentiated response to the safety 

signal during extinction. After deployment, Met/Met carriers reporting high, not low, combat 

trauma showed modest elevations in fear-potentiated response to the CS+ (danger signal) 

during extinction compared to Val carriers when controlling for PTSD symptoms.

Here, the increased FPS found in Met/Met carriers diagnosed with PTSD replicated previous 

studies reporting poor safety signal learning and reduced fear extinction in the same 

genotype group (Norrholm et al., 2013). However, we showed that the elevated FPS in 

homozygous Met carriers was moderated by childhood trauma history, such that Met/Met 

carriers diagnosed with PTSD who endorsed at least one category of childhood abuse/

neglect showed the lowest safety signal learning (i.e. high FPS to CS-). This pattern of 

results supports the theory that gene × environment interactions are important factors in the 

risk of PTSD development, perhaps via alterations in core fear learning processes such as 

fear cue generalization. Although childhood trauma has widely been described as a risk 

factor for PTSD in U.S. troops (Agorastos et al., 2014; Cabrera, Hoge, Bliese, Castro, & 

Messer, 2007; Van Voorhees et al., 2012) and has been suggested to predict impaired fear 

extinction in PTSD patients (Stevens et al., 2016), the development of PTSD and the severity 

of its symptoms have been strongly associated with gene × environment interactions 

(Koenen, 2007; Nievergelt et al., 2015; Norrholm & Ressler, 2009; Skelton, Ressler, 

Norrholm, Jovanovic, & Bradley-Davino, 2012). Among the genes that have been linked to 

PTSD, the COMTval158met SNP interacts with traumatic load and urban violence, with 

Met/Met genotype showing a higher risk of PTSD (Boscarino et al., 2012; Kolassa et al., 

2010; Valente et al., 2011). To our knowledge, the findings presented here are the first to 

report gene × environmental risk factor interactions in disruption of fear inhibition, a 

behavioral characteristic linked to the fear-related symptoms of PTSD (Acheson et al., 

2015b; Jovanovic & Norrholm, 2011; Jovanovic et al., 2010).

Marines with no history of PTSD symptoms before deployment, who carried the Met/Met 

genotype and endorsed high combat trauma showed modest increases in FPS to the CS+ 

during extinction compared to Met/Met carriers who experienced low trauma or were 

Val/Val carriers. These findings suggest that acute trauma exposure, and more importantly, 

current PTSD symptoms are necessary to observe COMTval158met associations with 

altered fear processes. Two other studies have reported modulation of fear extinction by the 

COMTval158met polymorphism in healthy controls (Lonsdorf et al., 2009; Wendt et al., 

2015), but those studies did not control for lifetime trauma. In sum, our finding that COMT 
SNP-modulated response to severe combat trauma (Nievergelt et al., 2015) is in agreement 

with the gene × environment hypothesis of PTSD. Interestingly, impaired fear extinction has 

been specifically associated with PTSD, not depression or anxiety, in active-duty Marines 

(Acheson et al., 2015b; Jovanovic et al., 2010), suggesting that impaired fear conditioning 

before deployment might be a predictor of higher PTSD risk after combat.

Altogether, our data support the conclusion that the COMTval158met SNP may contribute 

to disrupted fear inhibition in the context of severe trauma exposure and PTSD symptom 

burden. Dopamine transmission in the prelimbic and infralimbic cortex in rodents (dorsal 

anterior cingulate cortex and ventromedial prefrontal cortex in humans) modulates fear 
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response by maintaining and inhibiting fear response, respectively (Abraham, Neve, & 

Lattal, 2014; Quirk & Mueller, 2008). Although COMT is mainly expressed in the PFC, the 

involvement of other brain regions, such as hippocampus, should not be excluded. The 

hippocampus modulates contextual fear learning through dopaminergic activity (Abraham et 

al., 2014; Phillips & LeDoux, 1992). Interestingly, COMTval158met polymorphism has 

been associated with changes in hippocampal CA2/3 volumes, which is negatively correlated 

with trauma exposure in Met/Met (Rabl et al., 2014). Decreased hippocampal volume has 

been reported in civilian trauma-related PTSD (Smith, 2005; Villarreal et al., 2002; Woon, 

Sood, & Hedges, 2010) and combat-related PTSD (Gurvits et al., 1996), and has been shown 

to predict vulnerability to psychological trauma (Gilbertson et al., 2002). Therefore, 

COMTval158met polymorphism could alter contextual fear inhibition through changes in 

hippocampal function. Additionally, COMT may affect fear inhibition via modulation of 

norepinephrine signaling (Chen et al., 2004; Mier, Kirsch, & Meyer-Lindenberg, 2010). The 

COMT enzyme catabolizes norepinephrine (Tunbridge, 2010), and elevated plasma 

concentrations are reported in Met carriers (Jung et al., 2012). PTSD patients have higher 

stress-induced norepinephrine release compared to healthy individuals (O'Donnell, 

Hegadoren, & Coupland, 2004). The noradrenergic signaling modulates fear memory 

consolidation by enhancing fear response in humans (Soeter & Kindt, 2011; Visser, Kunze, 

Westhoff, Scholte, & Kindt, 2015), suggesting a potential role of COMT-mediated fear 

extinction through noradrenergic as well as dopaminergic mechanisms.

Despite the large sample size of this study (714 participants), a limitation is that women 

were not included, because they were not part of infantry battalions at the time of 

assessment. Women show lower COMT activity than men, due to its estrogen-modulated 

downregulation (Chen et al., 2004; Hassan, Salama, Arafa, Hamada, & Al-Hendy, 2007; 

Tunbridge, 2010). Furthermore, sex-dependent associations between COMT polymorphism 

and anxiety-related traits have been reported (Stein, Fallin, Schork, & Gelernter, 2005). A 

previous large study showed no sex-dependent effect of COMTval158met polymorphism on 

impaired fear inhibition found in PTSD patients (Norrholm et al., 2013). However, further 

investigation will be necessary to assess the potential gene × trauma interactions in women.

These findings replicate previous studies showing that the Met/Met carriers with PTSD are 

more likely to show increased fear responding compared to Met/Val or Val/Val carriers with 

PTSD, and extend this finding to show that this association is modulated by early life trauma 

exposure. This study supports the suggestion that COMT could be a potential biomarker of 

treatment response to exposure-based cognitive-behavior therapy (CBT). Here, Met/Met 

carriers that endorsed a childhood or combat trauma exhibited resistance to extinction, 

suggesting that these individuals may show reduced response to therapy targeting the 

behavioral patterns associated with fear symptoms, such as exposure-based CBT (Lonsdorf 

& Kalisch, 2011). In addition, Met/Met carriers also exhibit increased fear responding after 

combat trauma, regardless of PTSD diagnosis, suggesting some acute loss of fear regulation 

after trauma in Met/Met carriers as a whole. These results support a role of COMT gene-

environment interactions in the development of psychiatric-relevant phenotypes. Further 

work will be necessary to understand the mechanisms underlying the modulation of cortical 

signaling by the COMTval158met polymorphism and fear extinction memory impairments 

in PTSD pathophysiology.
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Figure 1. 
Chart indicating the number of participants recruited and excluded from the final analysis.
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Figure 2. 
Effect of COMT genotype and PTSD diagnosis on fear-potentiated startle during late 

acquisition before deployment.
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Figure 3. 
Effect of COMT genotype and PTSD diagnosis on fear-potentiated startle during extinction 

before deployment.
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Figure 4. 
Modulation by childhood trauma (CT) of the effect of COMT genotype and PTSD diagnosis 

on fear-potentiated startle during extinction before deployment.
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Figure 5. 
Effect of COMT genotype and combat trauma on fear-potentiated startle during late 

acquisition after deployment.
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Figure 6. 
Effect of COMT genotype and combat trauma on fear-potentiated startle during extinction 

after deployment.
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Table 2

Combat trauma history and psychiatric symptoms across COMT genotype groups after deployment

COMT
Met/Met

COMT
Met/Val

COMT
Val/Val

p
value

n 127 236 124 N/A

Combat experience score (M, SD) a 11.64 (7.60) 13.29 (8.52) 13.45 (9.90) 0.18

CAPS score (M, SD)b 16.91 (17.36) 14.00 (15.69) 15.22 (16.75) 0.19

BDI-II (M, SD) a 3.56 (5.92) 3.42 (5.56) 3.24 (4.32) 0.37

PTSD diagnosis (%)c 17.32 18.64 18.55 0.95

BDI-II, Beck Depression Inventory II; CAPS, Clinician-Administered PTSD Scale.

a
One-way ANOVA performed followed by Tukey’s post hoc test;

b
non-parametric Kruskal-Wallis test;

c
Chi-squared test performed
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