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High-Quality Draft Genome Sequence of Fischerella thermalis
JSC-11, a Siderophilic Cyanobacterium with Bioremediation
Potential
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aJacobs Engineering/NASA Johnson Space Center, Houston, Texas, USA
bDepartment of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
cDepartment of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
dDepartment of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
eSchool of Oceanography, Shanghai Jiao Tong University, Shanghai, China

ABSTRACT Here, we report the draft genome sequence of the siderophilic cyano-
bacterium Fischerella thermalis JSC-11, which was isolated from an iron-depositing
hot spring. JSC-11 has bioremediation potential because it is capable of both extrac-
ellular absorption and intracellular mineralization of colloidal iron. This genomic in-
formation will facilitate the exploration of JSC-11 for bioremediation.

We report the high-quality draft genome sequence of the cyanobacterium JSC-11,
which was isolated from an iron-depositing mat from Chocolate Pots Hot Springs

(Yellowstone National Park, WY, USA) (temperature of 55°C, pH of 5.6, and total soluble
iron concentration of ;20 mM) (1). Single-colony isolation was performed as described
previously (2, 3). Because optimal growth occurred at 45 to 55°C and 0.4 to 0.6 mM iron,
JSC-11 has been characterized as a thermophilic and siderophilic species (4). Its 16S rRNA
sequence (GenBank accession number HM636645.1) shares 100% identity with those
of several Fischerella thermalis strains, and it shares their characteristic true-branching
morphology (5, 6). Therefore, it was classified as F. thermalis strain JSC-11 (CCMEE 7001).
This strain absorbs iron oxides on its exopolymers and produces intracellular iron deposits
(Fig. 1), making it a potential candidate for bioremediation (7).

Genomic DNA of JSC-11 was isolated using the UltraClean microbial DNA isolation kit
(MoBio Laboratories, USA), following cultivation in DH medium as described previously
(8). The draft genome of JSC-11 was generated at the U.S. Department of Energy (DOE)
Joint Genome Institute (JGI) using a combination of four next-generation sequencing
(NGS) libraries from the same DNA extract. An Illumina GAIIx (9) library was created using
the KAPA-Illumina library creation kit (Kapa Biosystems), yielding 31,933,200 reads of 76-
bp average length. One 454 Titanium library was created using the GS FLX Titanium
rapid library preparation kit (Roche), generating 267,779 reads of 395-bp average length;
two paired-end 454 libraries, with average insert sizes of 4 kb and 8 kb, were created
according to the method described by Peng et al. (10), generating 602,963 reads of 160-
and 188-bp average length, respectively. Kits were used according to the manufacturers’
instructions.

The 454 data were assembled with Newbler v2.3 (9), the Illumina data were
assembled with Velvet v1.0.13 (11), and the contigs were computationally shredded into
2-kb and 1.5-kb overlapping fake reads (shreds), which were integrated with the 454
paired-end library reads using parallel Phrap v1.080812 (High Performance Software,
LLC). POLISHER (12) was used to correct base errors. Misassemblies were corrected by
using Gap Resolution (13), Dupfinisher (14), or sequencing of cloned bridging PCR
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fragments with subcloning. Gaps were closed manually using Consed (15, 16) and
168 PCR and Bubble PCR primer walks.

Annotation was performed with the Oak Ridge National Laboratory annotation
pipeline using Prodigal v1.4 (17), followed by manual curation using the JGI
GenePRIMP pipeline (18). The JSC-11 genome is 5,380,000 bp long, with a G1C content
of 41.0%, and has 99.76% completeness and 0.0% contamination according to CheckM
v1.1.3 (19). It contains 4,367 coding genes, 1 rRNA operon, and 43 tRNA genes.

The JSC-11 genome may shed light on specific mechanisms of iron homeostasis in side-
rophilic cyanobacteria, because it encodes proteins predicted to be involved in iron transport
(21 total) or maintaining a balance between intracellular Fe21 and Fe31 (5 total). Genomic
analysis also revealed that JSC-11 may be capable of far-red-light photoacclimation (20).

Data availability. The GenBank accession number for the 16S rRNA gene is
HM636645.1. The GenBank assembly accession number is GCA_000231365.2. The
NCBI RefSeq assembly accession number is GCF_000231365.1. The BioProject
accession number is PRJNA61093. The nucleotide GenBank accession number is
AGIZ00000000.1. The SRA accession numbers for the raw sequences are SRR21655585,
SRR21655586, SRR21655587, and SRR3927276.
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FIG 1 Scanning transmission electron microscopy (STEM) views of extracellular and intracellular iron-rich particles found in JSC-11 cells incubated with
600 mM FeCl3�6H2O and 0.04 mM Na2HPO4�7H2O. (Upper, left) Bright-field STEM photograph of a JSC-11 cell encrusted with external Fe-bearing precipitates
and containing an electron-dense, internal, Fe-rich particle ;100 nm in size. (Upper, right) Dark-field STEM photograph to localize Fe-rich aggregates.
(Lower) Quantitative element maps for internal and external particles, showing distribution patterns for phosphorus (P), Fe, and oxygen (O). The electron-
dense particles within the JSC-11 cytoplasm contain substantial amounts of P, Fe, and O.
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